Package ‘webtrackR’

January 23, 2026
Title Preprocessing and Analyzing Web Tracking Data
Version 0.3.2

Description
Data structures and methods to work with web tracking data. The functions cover data prepro-
cessing steps, enriching web tracking data with external information and methods for the analy-
sis of digital behavior as used in several academic papers (e.g., Clemm von Hohen-
berg et al., 2023 <doi:10.17605/0SF.I0/M3U9P>; Stier et al., 2022 <doi:10.1017/S0003055421001222>).

URL https://github.com/gesistsa/webtrackR

BugReports https://github.com/gesistsa/webtrackR/issues
Depends R (>=3.5.0)

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports utils, stats, fastmatch, adaR, httr, data.table (>= 1.18.0)
LazyData true

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author David Schoch [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2952-4812>),
Bernhard Clemm von Hohenberg [aut] (ORCID:
<https://orcid.org/0000-0002-6976-9745>),
Frank Mangold [aut] (ORCID: <https://orcid.org/0000-0002-9776-3113>),
Sebastian Stier [aut] (ORCID: <https://orcid.org/0000-0002-1217-5778>)

Maintainer David Schoch <david@schochastics.net>
Repository CRAN
Date/Publication 2026-01-23 19:40:02 UTC

https://doi.org/10.17605/OSF.IO/M3U9P
https://doi.org/10.1017/S0003055421001222
https://github.com/gesistsa/webtrackR
https://github.com/gesistsa/webtrackR/issues
https://orcid.org/0000-0003-2952-4812
https://orcid.org/0000-0002-6976-9745
https://orcid.org/0000-0002-9776-3113
https://orcid.org/0000-0002-1217-5778

2 add_duration

Contents
add_duration L e 2
add_next_VISIt e e e e 4
add_panelist_data e 4
add_previous_Visit e 5
add_referral e 6
add_SeSSION e, 7
add_title L e e e e e e 8
atkinson_index e 9
bakshy e 9
classify_Visits 10
create_urldummy oL 11
deduplicate e e e e 12
dissimilarity_index 14
domain_list e e 14
drop_query e e e e 15
extract_domain e e e e e e e e 16
extract_hoSt e 17
extract_path 17
fake_tracking 18
1solation_indeX e e e e 19
NEWS_LYPES .« v v v v e o e 20
parse_path L e e e 20
print.wt_dt. e e e e 21
summary.wt_dt L 21
SUM_ACHIVILY v o o o e e e e e e e e e e e e e e 22
sum_durations e e e e e e e 23
SUM_VISIES o o e e e e e e e e e e e e e 24
testdt_survey_1 25
teStdt_SUrvey_W e e e e e 25
testdt_tracking L e e e 26
VArS_EXIST . o o o o e e s, 26
WE At . e e 27

Index 28

add_duration Add time spent on a visit in seconds
Description

add_duration() approximates the time spent on a visit based on the difference between two con-
secutive timestamps, replacing differences exceeding cutoff with the value defined in replace_by.

add_duration

Usage
add_duration(
wt,
cutoff = 300,

replace_by = NA,
last_replace_by = NA,
device_switch_na = FALSE,

device_var

Arguments

wt

cutoff

replace_by

last_replace_by

NULL

webtrack data object.

numeric (seconds). If duration is greater than this value, it is reset to the value
defined by replace_by. Defaults to 300 seconds.

numeric. Determines whether differences greater than the cutoff are set to NA,
or some value. Defaults to NA.

numeric. Determines whether the last visit for an individual is set to NA, or some
value. Defaults to NA.

device_switch_na

device_var

Value

boolean. Relevant only when data was collected from multiple devices. When
visits are ordered by timestamp sequence, two consecutive visits can come from
different devices, which makes the timestamp difference less likely to be the true
duration. It may be preferable to set the duration of the visit to NA (TRUE) rather
than the difference to the next timestamp (FALSE). Defaults to FALSE.

character. Column indicating device. Required if ’device_switch_na’ set to
TRUE. Defaults to NULL.

webtrack data.frame with the same columns as wt and a new column called for duration.

Examples

Not run:

data("testdt_tracking”)
wt <- as.wt_dt(testdt_tracking)
wt <- add_duration(wt)
Defining cutoff at 10 minutes, replacing those exceeding cutoff to 5 minutes,
and setting duration before device switch to “NA™:
wt <- add_duration(wt,
cutoff = 600, replace_by = 300,
device_switch_na = TRUE, device_var = "device”

)

End(Not run)

4 add_panelist_data

add_next_visit Add the next visit as a new column

Description

add_next_visit() adds the subsequent visit, as determined by order of timestamps as a new col-
umn. The next visit can be added as either the full URL, the extracted host or the extracted domain,
depending on level.

Usage

add_next_visit(wt, level = "url")
Arguments

wt webtrack data object.

level character. Either "url”, "host” or "domain". Defaults to "url”.
Value

webtrack data.frame with the same columns as wt and a new column called url_next,host_next
or domain_next.

Examples

Not run:

data("testdt_tracking")

wt <- as.wt_dt(testdt_tracking)

Adding next full URL as new column

wt <- add_next_visit(wt, level = "url")

Adding next host as new column

wt <- add_next_visit(wt, level = "host")
Adding next domain as new column

wt <- add_next_visit(wt, level = "domain")

End(Not run)

add_panelist_data Add panelist features to tracking data

Description

Adds information about panelists (e.g., from a survey) to the tracking data.

Usage

add_panelist_data(wt, data, cols = NULL, join_on = "panelist_id")

add_previous_visit 5

Arguments
wt webtrack data object.
data a data frame containing panelist data which contains columns about panelists
cols character vector of columns to add. If NULL, all columns are added. Defaults to
NULL.
join_on which columns to join on. Defaults to "panelist_id".
Value

webtrack object with the same columns and the columns from data specified in cols.

Examples

Not run:

data("testdt_tracking”)
data("testdt_survey_w")

wt <- as.wt_dt(testdt_tracking)

add survey test data
add_panelist_data(wt, testdt_survey_w)

End(Not run)

add_previous_visit Add the previous visit as a new column

Description

add_previous_visit() adds the previous visit, as determined by order of timestamps as a new
column The previous visit can be added as either the full URL, the extracted host or the extracted
domain, depending on level.

Usage

add_previous_visit(wt, level = "url")
Arguments

wt webtrack data object.

level character. Either "url”, "host"” or "domain". Defaults to "url”.
Value

webtrack data.frame with the same columns as wt and a new column called url_previous,host_previous
or domain_previous..

6 add_referral

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

Adding previous full URL as new column

wt <- add_previous_visit(wt, level = "url")

Adding previous host as new column

wt <- add_previous_visit(wt, level = "host")
Adding previous domain as new column

wt <- add_previous_visit(wt, level = "domain")

End(Not run)

add_referral Add social media referrals as a new column

Description

Identifies whether a visit was referred to from social media and adds it as a new column. See details
for method.

Usage

add_referral(wt, platform_domains, patterns)

Arguments

wt webtrack data object.
platform_domains

character. A vector of platform domains for which referrers should be identified.
Order and length must correspondent to patterns argument

patterns character. A vector of patterns for which referrers should be identified. Order
and length must correspondent to platform_domains vector.

Details

To identify referrals, we rely on the method described as most valid in Schmidt et al.: When the
domain preceding a visit was to the platform in question, and the query string of the visit’s URL
contains a certain pattern, we count it as a referred visit. For Facebook, the pattern has been identi-
fied by Schmidt et al. as 'fbclid=", although this can change in future.

Value

webtrack data.frame with the same columns as wt and a new column called referral, which takes
on NA if no referral has been identified, or the name specified platform_domains if a referral from
that platform has been identified

add_session 7

References

Schmidt, Felix, Frank Mangold, Sebastian Stier and Roberto Ulloa. "Facebook as an Avenue to
News: A Comparison and Validation of Approaches to Identify Facebook Referrals". Working

paper.

Examples

Not run:
data("testdt_tracking”)
wt <- as.wt_dt(testdt_tracking)

wt <- add_referral(wt, platform_domains = "facebook.com”, patterns = "fbclid=")
wt <- add_referral(wt,

platform_domains = c("facebook.com”, "twitter.com"),

patterns = c("fbclid=", "utm_source=twitter")
)

End(Not run)

add_session Add a session variable

Description
add_session() groups visits into "sessions", defining a session to end when the difference between
two consecutive timestamps exceeds a cutoff.

Usage

add_session(wt, cutoff)

Arguments
wt webtrack data object.
cutoff numeric (seconds). If the difference between two consecutive timestamps ex-
ceeds this value, a new browsing session is defined.
Value

webtrack data.frame with the same columns as wt and a new column called session.

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

Setting cutoff to 30 minutes

wt <- add_session(wt, cutoff = 1800)

End(Not run)

8 add._title

add_title Download and add the "title" of a URL

Description

Gets the title of a URL by accessing the web address online and adds the title as a new column. See
details for the meaning of "title". You need an internet connection to run this function.

Usage

add_title(wt, lang = "en-US,en-GB,en")

Arguments
wt webtrack data object.
lang character (a language tag). Language accepted by the request. Defaults to
"en-US,en-GB, en". Note that you are likely to still obtain titles different from
the ones seen originally by the user, because the language also depend on the
user’s IP and device settings.
Details

The title of a website (the text within the <title> tag of a web site’s <head>) #’ is the text that
is shown on the "tab" when looking at the website in a browser. It can contain useful information
about a URL’s content and can be used, for example, for classification purposes. Note that it may
take a while to run this function for a large number of URLSs.

Value

webtrack data.frame with the same columns as wt and a new column called "title"”, which will be
NA if the title cannot be retrieved.

Examples

Not run:

data("testdt_tracking")

wt <- as.wt_dt(testdt_tracking)[1:2]

Get titles with “lang™ set to default English
wt_titles <- add_title(wt)

Get titles with “lang™ set to German
wt_titles <- add_title(wt, lang = "de")

End(Not run)

atkinson_index 9

atkinson_index Symmetric Atkinson Index calculates the symmetric Atkinson index

Description

Symmetric Atkinson Index calculates the symmetric Atkinson index

Usage

atkinson_index(grp_a, grp_b)

Arguments
grp_a vector (usually corresponds to a column in a webtrack data frame) indicating the
number of individuals of group A using a website
grp_b vector (usually corresponds to a column in a webtrack data frame) indicating the
number of individuals of group B using a website
References

Frankel, David, and Oscar Volij. "Scale Invariant Measures of Segregation "Working Paper, 2008.

Examples

perfect score

grp_a <- c(5, 5, 0, @)

grp_b <- c(0, 9, 5, 5)
atkinson_index(grp_a, grp_b)

grp_a <- c(5, 5, 5, 5)
grp_b <- c(5, 5, 5, 5)
atkinson_index(grp_a, grp_b)

bakshy Bakshy Top500 Ideological alignment of 500 domains based on face-
book data

Description

Bakshy Top500 Ideological alignment of 500 domains based on facebook data

Usage
bakshy

10 classity_visits

Format

An object of class data. table (inherits from data. frame) with 500 rows and 7 columns.

References

Bakshy, Eytan, Solomon Messing, and Lada A. Adamic. "Exposure to ideologically diverse news
and opinion on Facebook." Science 348.6239 (2015): 1130-1132.

classify_visits Classify visits by matching to a list of classes

Description

classify_visits() categorizes visits by either extracting the visit URL’s domain or host and
matching them to a list of domains or hosts; or by matching a list of regular expressions against the
visit URL.

Usage
classify_visits(
wt,
classes,
match_by = "domain”,
regex_on = NULL,

return_rows_by = NULL,
return_rows_val = NULL

)
Arguments

wt webtrack data object.

classes a data frame containing classes that can be matched to visits.

match_by character. Whether to match list entries from classes to the domain of a visit
("domain”) or the host ("host") with an exact match; or with a regular ex-
pression against the whole URL of a visit ("regex”). If set to "domain” or
"host", both wt and classes need to have a column called accordingly. If set
to "regex”, the url column of wt will be used, and you need to set regex_on
to the column in classes for which to do the pattern matching. Defaults to
"domain”.

regex_on character. Column in classes which to use for pattern matching. Defaults to
NULL.

return_rows_by character. A column in classes on which to subset the returning data. Defaults
to NULL.

create_urldummy 11

return_rows_val
character. The value of the columns specified in return_rows_by, for which
data should be returned. For example, if your classes data contains a col-
umn type, which has a value called "shopping”, setting return_rows_by to
"type" and return_rows_val to "shopping” will only return visits classified
as "shopping”.

Value

webtrack data.frame with the same columns as wt and any column in classes except the column
specified by match_by.

Examples

Not run:
data("testdt_tracking")
data(”"domain_list")
wt <- as.wt_dt(testdt_tracking)
classify visits via domain
wt_domains <- extract_domain(wt)
wt_classes <- classify_visits(wt_domains, classes = domain_list, match_by = "domain")
classify visits via domain
for the example, just renaming "domain" column
domain_list$host <- domain_list$domain
wt_hosts <- extract_host(wt)
wt_classes <- classify_visits(wt_hosts, classes = domain_list, match_by = "host")
classify visits with pattern matching
for the example, any value in "domain” treated as pattern
data(”"domain_list")
regex_list <- domain_list[type == "facebook"]
wt_classes <- classify_visits(wt[1:5000],
classes = regex_list,
match_by = "regex”, regex_on = "domain"
)
classify visits via domain and only return class "search”
data("domain_list")
wt_classes <- classify_visits(wt_domains,
classes = domain_list,
match_by = "domain"”, return_rows_by = "type",
return_rows_val = "search”

End(Not run)

create_urldummy Create an urldummy variable

Description

Create an urldummy variable

12 deduplicate

Usage

create_urldummy(wt, dummy, name)

Arguments
wt webtrack data object
dummy a vector of urls that should be dummy coded
name name of dummy variable to create.

Value

webtrack object with the same columns and a new column called "name" including the dummy
variable

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

wt <- extract_domain(wt)

code_urls <- "https://dkri1.ssisurveys.com/tzktsxomta"”
create_urldummy(wt, dummy = code_urls, name = "test_dummy")

End(Not run)

deduplicate Deduplicate visits

Description

deduplicate() flags, drops or aggregates duplicates, which are defined as consecutive visits to the
same URL within a certain time frame.

Usage
deduplicate(
wt,
method = "aggregate”,
within = 1,
duration_var = "duration”,

keep_nvisits = FALSE,
same_day = TRUE,
add_grpvars = NULL

deduplicate 13

Arguments

wt webtrack data object.

method character. One of "aggregate”, "flag” or "drop”. If set to "aggregate”,
consecutive visits (no matter the time difference) to the same URL are combined
and their duration aggregated. In this case, a duration column must be specified
via "duration_var". If set to "flag"”, duplicates within a certain time frame
are flagged in a new column called duplicate. In this case, within argument
must be specified. If set to "drop”, duplicates are dropped. Again, within
argument must be specified. Defaults to "aggregate”.

within numeric (seconds). If method setto "flag"” or "drop”, a subsequent visit is only
defined as a duplicate when happening within this time difference. Defaults to 1
second.

duration_var character. Name of duration variable. Defaults to "duration”.

keep_nvisits boolean. If method set to "aggregate”, this determines whether number of
aggregated visits should be kept as variable. Defaults to FALSE.

same_day boolean. If method set to "aggregate”, determines whether to count visits as
consecutive only when on the same day. Defaults to TRUE.

add_grpvars vector. If method set to "aggregate”, determines whether any additional vari-
ables are included in grouping of visits and therefore kept. Defaults to NULL.

Value

webtrack data.frame with the same columns as wt with updated duration

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

wt <- add_duration(wt, cutoff = 300, replace_by = 300)

Dropping duplicates with one-second default

wt_dedup <- deduplicate(wt, method = "drop"”)

Flagging duplicates with one-second default

wt_dedup <- deduplicate(wt, method = "flag")

Aggregating duplicates

wt_dedup <- deduplicate(wt[1:1000], method = "aggregate")

Aggregating duplicates and keeping number of visits for aggregated visits
wt_dedup <- deduplicate(wt[1:1000], method = "aggregate”, keep_nvisits = TRUE)
Aggregating duplicates and keeping "domain"” variable despite grouping

wt <- extract_domain(wt)

wt_dedup <- deduplicate(wt, method = "aggregate”, add_grpvars = "domain”)

End(Not run)

14 domain_list

dissimilarity_index Dissimilarity Index

Description

The Dissimilarity Index can be interpreted as the share of Group A visits that would need to be
redistributed across media for the share of group A to be uniform across websites.

Usage
dissimilarity_index(grp_a, grp_b)

Arguments
grp_a vector (usually corresponds to a column in a webtrack data frame) indicating the
number of individuals of group A using a website
grp_b vector (usually corresponds to a column in a webtrack data frame) indicating the
number of individuals of group B using a website
References

Cutler, David M., Edward L. Glaeser, and Jacob L. Vigdor. "The rise and decline of the American
ghetto." Journal of political economy 107.3 (1999): 455-506.

Examples

perfect dissimilarity
grp_a <- c(5, 5, 0, 0)
grp_b <- c(0, @, 5, 5)
dissimilarity_index(grp_a, grp_b)

no dissimilarity

grp_a <- c(5, 5, 5, 5)

grp_b <- c(5, 5, 5, 5)
dissimilarity_index(grp_a, grp_b)

domain_list Domain list classification of domains into news,portals, search, and
social media

Description

Domain list classification of domains into news,portals, search, and social media

Usage

domain_list

drop_query 15

Format

An object of class data. table (inherits from data. frame) with 663 rows and 2 columns.

References

Stier, S., Mangold, F., Scharkow, M., & Breuer, J. (2022). Post Post-Broadcast Democracy? News
Exposure in the Age of Online Intermediaries. American Political Science Review, 116(2), 768-
774.

drop_query Drop the query and fragment from URL

Description

drop_query() adds the URL without query and fragment as a new column. The query is defined
as the part following a "?" after the path. The fragement is anything following a "#" after the query.

Usage

drop_query(wt, varname = "url")
Arguments

wt webtrack data object.

varname character. name of the column from which to extract the host. Defaults to "url”.
Value

webtrack data.frame with the same columns as wt and a new column called '<varname>_noquery'

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

Extract URL without query/fragment
wt <- drop_query(wt)

End(Not run)

16 extract_domain

extract_domain Extract the domain from URL

Description

extract_domain() adds the domain of a URL as a new column. By "domain", we mean the "top
private domain", i.e., the domain under the public suffix (e.g., "com") as defined by the Public Suffix
List. See details.

Extracts the domain from urls.

Usage
extract_domain(wt, varname = "url")
Arguments
wt webtrack data object.
varname character. Name of the column from which to extract the host. Defaults to
1Iurlll.
Details

We define a "web domain" in the common colloquial meaning, that is, the part of an web address that
identifies the person or organization in control. is google.com. More technically, what we mean
by "domain" is the "top private domain", i.e., the domain under the public suffix, as defined by
the Public Suffix List. Note that this definition sometimes leads to counterintuitive results because
not all public suffixes are "registry suffixes". That is, they are not controlled by a domain name
registrar, but allow users to directly register a domain. One example of such a public, non-registry
suffix is blogspot.com. For a URL like www.mysite.blogspot.com, our function, and indeed
the packages we are aware of, would extract the domain as mysite.blogspot.com, although you
might think of blogspot.com as the domain. For details, see here

Value

webtrack data.frame with the same columns as wt and a new column called 'domain’' (or, if var-
name not equal to 'url', '<varname>_domain')

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

Extract domain and drop rows without domain
wt <- extract_domain(wt)

Extract domain and keep rows without domain
wt <- extract_domain(wt)

End(Not run)

https://github.com/google/guava/wiki/InternetDomainNameExplained

extract_host 17

extract_host Extract the host from URL

Description

extract_host() adds the host of a URL as a new column. The host is defined as the part following
the scheme (e.g., "https://") and preceding the subdirectory (anything following the next "/"). Note
that for URL entries like chrome-extension://soomethingorhttp://192.168.0.1/something,
result will be set to NA.

Usage
extract_host(wt, varname = "url")
Arguments
wt webtrack data object.
varname character. Name of the column from which to extract the host. Defaults to
HurlH.
Value

webtrack data.frame with the same columns as wt and a new column called '"host' (or, if varname
not equal to 'url', '<varname>_host")

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

Extract host and drop rows without host
wt <- extract_host(wt)

Extract host and keep rows without host
wt <- extract_host(wt)

End(Not run)

extract_path Extract the path from URL

Description

extract_path() adds the path of a URL as a new column. The path is defined as the part following
the host but not including a query (anything after a "?") or a fragment (anything after a "#").

18 fake_tracking

Usage
extract_path(wt, varname = "url"”, decode = TRUE)
Arguments
wt webtrack data object
varname character. name of the column from which to extract the host. Defaults to "url”.
decode logical. Whether to decode the path (see utils::URLdecode()), default to
TRUE
Value

webtrack data.frame with the same columns as wt and a new column called 'path’ (or, if varname
not equal to 'url', '<varname>_path')

Examples

Not run:
data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)
Extract path

wt <- extract_path(wt)

End(Not run)

fake_tracking Fake data

Description

Small fake webtracking data for testing purpose

Usage

fake_tracking

Format

An object of class data. frame with 500 rows and 3 columns.

isolation_index 19

isolation_index Isolation Index

Description
Given two groups (A and B) of individuals, the isolation index captures the extent to which group
A disproportionately visit websites whose other visitors are also members of group A.

Usage

isolation_index(grp_a, grp_b, adjusted = FALSE)

Arguments
grp_a vector (usually corresponds to a column in a webtrack data frame) indicating the
number of individuals of group A using a website
grp_b vector (usually corresponds to a column in a webtrack data frame) indicating the
number of individuals of group B using a website
adjusted logical. should the index be adjusted (defaults to FALSE)
Details

a value of 1 indicates that the websites visited by group A and group B do not overlap. A value of
0 means both visit exactly the same websites

Value

numeric value between 0 and 1. 0 indicates no isolation and 1 perfect isolation

References

Cutler, David M., Edward L. Glaeser, and Jacob L. Vigdor. "The rise and decline of the American
ghetto." Journal of political economy 107.3 (1999): 455-506. Gentzkow, Matthew, and Jesse M.
Shapiro. "Ideological segregation online and offline." The Quarterly Journal of Economics 126.4
(2011): 1799-1839.

Examples

perfect isolation

grp_a <- c(5, 5, 0, 0)

grp_b <- c(0, 9, 5, 5)
isolation_index(grp_a, grp_b)

perfect overlap

grp_a <- c(5, 5, 5, 5)

grp_b <- c(5, 5, 5, 5)
isolation_index(grp_a, grp_b)

20 parse_path

news_types News Types

Description

Classification of domains into different news types

Usage

news_types

Format

An object of class data. table (inherits from data. frame) with 690 rows and 2 columns.

References

Stier, S., Mangold, F., Scharkow, M., & Breuer, J. (2022). Post Post-Broadcast Democracy? News
Exposure in the Age of Online Intermediaries. American Political Science Review, 116(2), 768-
774.

parse_path Parse parts of path for text analysis
Description
parse_path() parses parts of a path, i.e., anything separated by "/", "-", "_" or ".", and adds them

as a new variable. Parts that do not consist of letters only, or of a real word, can be filtered via the
argument keep.

Usage

parse_path(wt, varname = "url”, keep = "letters_only"”, decode = TRUE)

Arguments
wt webtrack data object
varname character. name of the column from which to extract the host. Defaults to "url”.
keep character. Defines which types of path components to keep. If set to "all”,

anything is kept. If "letters_only”, only parts containing letters are kept. If
"words_only", only parts constituting English words (as defined by the Word
Game Dictionary, cf. https://cran.r-project.org/web/packages/words/index.html)
are kept. Support for more languages will be added in future.

decode logical. Whether to decode the path (see utils::URLdecode()), default to
TRUE

print.wt_dt 21

Value

webtrack data.frame with the same columns as wt and a new column called 'path_split' (or, if
varname not equal to 'url', '<varname>_path_split') containing parts as a comma-separated
string.

Examples

Not run:
data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)
wt <- parse_path(wt)

End(Not run)

print.wt_dt Print web tracking data

Description

Print web tracking data

Usage
S3 method for class 'wt_dt'
print(x, ...)
Arguments
X object of class wt_dt
additional parameters for print
Value

No return value, called for side effects

summary.wt_dt Summary function for web tracking data

Description

Summary function for web tracking data

Usage

S3 method for class 'wt_dt'
summary (object, ...)

22 sum_activity

Arguments
object object of class wt_dt
additional parameters for summary
Value

No return value, called for side effects

sum_activity Summarize activity per person

Description

sum_activity() counts the number of active time periods (i.e., days, weeks, months, years, or
waves) by panelist_id. A period counts as "active" if the panelist provided at least one visit for
that period.

Usage
sum_activity(wt, timeframe = "date")
Arguments
wt webtrack data object.
timeframe character. Indicates for what time frame to aggregate visits. Possible values are
"date”, "week"”, "month"”, "year" or "wave". If set to "wave", wt must contain
a column call wave. Defaults to "date”.
Value

a data.frame with columns panelist_id, column indicating the number of active time units.

Examples

Not run:

data("testdt_tracking”)

wt <- as.wt_dt(testdt_tracking)

summarize activity by day

wt_sum <- sum_activity(wt, timeframe = "date")

End(Not run)

sum_durations

23

sum_durations

Summarize visit duration by person

Description

sum_durations() summarizes the duration of visits by person within a timeframe, and optionally
by visit_class of visit. Note:

e If for a time frame all rows are NA on the duration column, the summarized duration for that
time frame will be NA.

* If only some of the rows of a time frame are NA on the duration column, the function will
ignore those NA rows.

« If there were no visits to a class (i.e., a value of the ’visit_class’ column) for a time frame, the
summarized duration for that time frame will be zero; if there were visits, but NA on duration,
the summarized duration will be NA.

Usage

sum_durations(wt, var_duration = NULL, timeframe = NULL, visit_class = NULL)

Arguments

wt

var_duration

timeframe

visit_class

Value

webtrack data object.

character. Name of the duration variable if already present. Defaults to NULL,
in which case duration will be approximated with add_duration(wt, cutoff
=300, replace_by = "na", replace_val =NULL)

character. Indicates for what time frame to aggregate visit durations. Possible
values are "date”, "week”, "month”, "year", "wave" or NULL. If set to "wave",
wt must contain a column call wave. Defaults to NULL, in which case the output
contains duration of visits for the entire time.

character. Column that contains a classification of visits. For each value in this
column, the output will have a column indicating the number of visits belonging
to that value. Defaults to NULL.

a data.frame with columns panelist_id, column indicating the time unit (unless timeframe set to
NULL), duration_visits indicating the duration of visits (in seconds, or whatever the unit of the
variable specified by var_duration parameter), and a column for each value of visit_class, if

specified.

Examples

Not run:

data("testdt_tracking”)
wt <- as.wt_dt(testdt_tracking)

24 sum_ visits

summarize for whole period

wt_summ <- sum_durations(wt)

summarize by week

wt_summ <- sum_durations(wt, timeframe = "week")

create a class variable to summarize by class

wt <- extract_domain(wt)

wt$google <- ifelse(wt$domain == "google.com”, 1, 0)]

wt_summ <- sum_durations(wt, timeframe = "week"”, visit_class = "google")

End(Not run)

sum_visits Summarize number of visits by person

Description
sum_visits() summarizes the number of visits by person within a timeframe, and optionally by
visit_class of visit.

Usage

sum_visits(wt, timeframe = NULL, visit_class = NULL)

Arguments
wt webtrack data object.
timeframe character. Indicates for what time frame to aggregate visits. Possible values are
"date”, "week”, "month”, "year", "wave" or NULL. If set to "wave", wt must
contain a column call wave. Defaults to NULL, in which case the output contains
number of visits for the entire time.
visit_class character. Column that contains a classification of visits. For each value in this
column, the output will have a column indicating the number of visits belonging
to that value. Defaults to NULL.
Value

a data.frame with columns panelist_id, column indicating the time unit (unless timeframe set to
NULL), n_visits indicating the number of visits, and a column for each value of visit_class, if
specified.

Examples

Not run:
data("testdt_tracking")

wt <- as.wt_dt(testdt_tracking)
summarize for whole period
wt_summ <- sum_visits(wt)

summarize by week

testdt_survey_l 25

wt_summ <- sum_visits(wt, timeframe = "week")

create a class variable to summarize by class

wt <- extract_domain(wt)

wt$google <- ifelse(wt$domain == "google.com”, 1, 0)]

wt_summ <- sum_visits(wt, timeframe = "week”, visit_class = "google")

End(Not run)

testdt_survey_1 Test survey

Description

Same randomly generated survey data, one row per person/wave (long format)

Usage

testdt_survey_1

Format

An object of class tbl_df (inherits from tbl, data. frame) with 15 rows and 7 columns.

testdt_survey_w Test survey

Description

Randomly generated survey data only used for illustrative purposes (wide format)

Usage

testdt_survey_w

Format

An object of class data. frame with 5 rows and 8 columns.

26 vars_exist

testdt_tracking Test data

Description

Sample of fully anomymized webtrack data from a research project with US participants

Usage

testdt_tracking

Format

An object of class data. frame with 49612 rows and 5 columns.

vars_exist Check if columns are present

Description

vars_exist() checks if columns are present in a webtrack data object. By default, checks whether
the data has a panelist_id, aulr and a timestamp column.#’

Usage

vars_exist(wt, vars = c("panelist_id"”, "url”, "timestamp”))
Arguments

wt webtrack data object.

vars character vector of variables. Defaults to c("panelist_id", "url”, "timestamp"”).
Value

A data.table object.

wt_dt 27

wt_dt An S3 class to store web tracking data

Description

An S3 class to store web tracking data

Convert a data.frame containing web tracking data to a wt_dt object

Usage

as.wt_dt(
X,
timestamp_format = "%Y-%m-%d %H:%M:%0S",
tz = "UTC",
varnames = c(panelist_id = "panelist_id", url = "url”, timestamp = "timestamp”)

is.wt_dt(x)

Arguments

X data.frame containing a necessary set of columns, namely panelist’s ID, visit
URL and visit timestamp.

timestamp_format
string. Specifies the raw timestamp’s formatting. Defaults to "%Y-%m-%d %H: %M: %0S".

tz timezone of date. defaults to UTC

varnames Named vector of column names, which contain the panelist’s ID (panelist_id),
the visit’s URL (url) and the visit’s timestamp (timestamp).
Details

A wt_dt table is a data.frame.

Value

a webtrack data object with at least columns panelist_id, url and timestamp

logical. TRUE if x is a webtrack data object and FALSE otherwise

Examples

data("testdt_tracking”)
wt <- as.wt_dt(testdt_tracking)
is.wt_dt(wt)

Index

+ datasets
bakshy, 9
domain_list, 14
fake_tracking, 18
news_types, 20
testdt_survey_1, 25
testdt_survey_w, 25
testdt_tracking, 26

add_duration, 2
add_next_visit, 4
add_panelist_data, 4
add_previous_visit, 5
add_referral, 6
add_session, 7
add_title, 8

as.wt_dt (wt_dt), 27
atkinson_index, 9

bakshy, 9

classify_visits, 10
create_urldummy, 11

deduplicate, 12
dissimilarity_index, 14
domain_list, 14
drop_query, 15

extract_domain, 16
extract_host, 17
extract_path, 17

fake_tracking, 18

is.wt_dt (wt_dt), 27
isolation_index, 19

news_types, 20

parse_path, 20

28

print.wt_dt, 21

sum_activity, 22
sum_durations, 23
sum_visits, 24

summary.wt_dt, 21

testdt_survey_1, 25
testdt_survey_w, 25
testdt_tracking, 26

utils: :URLdecode(), I8, 20
vars_exist, 26

wt_dt, 27

	add_duration
	add_next_visit
	add_panelist_data
	add_previous_visit
	add_referral
	add_session
	add_title
	atkinson_index
	bakshy
	classify_visits
	create_urldummy
	deduplicate
	dissimilarity_index
	domain_list
	drop_query
	extract_domain
	extract_host
	extract_path
	fake_tracking
	isolation_index
	news_types
	parse_path
	print.wt_dt
	summary.wt_dt
	sum_activity
	sum_durations
	sum_visits
	testdt_survey_l
	testdt_survey_w
	testdt_tracking
	vars_exist
	wt_dt
	Index

