Package ‘tabnet’

January 31, 2026

Title Fit "TabNet' Models for Classification and Regression
Version 0.8.0

Description Implements the "TabNet' model by Sercan O. Arik et al. (2019)
<doi:10.48550/arXiv.1908.07442> with 'Coherent Hierarchical Multi-label
Classification Networks' by Giunchiglia et al. <doi:10.48550/arXiv.2010.10151> and
provides a consistent interface for fitting and creating predictions.

It's also fully compatible with the 'tidymodels' ecosystem.

License MIT + file LICENSE

URL https://mlverse.github.io/tabnet/,
https://github.com/mlverse/tabnet

BugReports https://github.com/mlverse/tabnet/issues
Depends R (>=3.6)

Imports coro, data.tree, dials, dplyr, ggplot2, hardhat (>= 1.3.0),
magrittr, Matrix, methods, parsnip, progress, purtr, rlang,
stats, stringr, tibble, tidyr, torch (>= 0.4.0), tune, utils,
vetrs, withr, zeallot

Suggests cli, knitr, modeldata, patchwork, quarto, recipes, rmarkdown,
rsample, spelling, testthat (>= 3.0.0), tidymodels, tidyverse,
vip, visdat, workflows, xgboost, yardstick

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel false
Config/testthat/start-first interface, explain, params
Encoding UTF-8

RoxygenNote 7.3.3

Language en-US

NeedsCompilation no

Author Daniel Falbel [aut],
RStudio [cph],
Christophe Regouby [cre, ctb],

https://doi.org/10.48550/arXiv.1908.07442
https://doi.org/10.48550/arXiv.2010.10151
https://mlverse.github.io/tabnet/
https://github.com/mlverse/tabnet
https://github.com/mlverse/tabnet/issues

Egill Fridgeirsson [ctb],
Philipp Haarmeyer [ctb],
Sven Verweij [ctb] (ORCID: <https://orcid.org/0000-0002-5573-3952>)

Maintainer Christophe Regouby <christophe.regouby@free.fr>
Repository CRAN
Date/Publication 2026-01-31 15:40:02 UTC

attention_width

Contents
attention_width L e 2
autoplot.tabnet_explain 3
autoplot.tabnet_fit L 4
cat_emb_dim e 5
check_compliant_node 6
ENEMAX . . o . v v v e e e e e e e e e e e e e e e 7
GEL AU L e e e e e e e 8
nN_aum_lOSS e e e e 8
nn_prune_head.tabnet_fit L o 9
node_to_df e 10
SPAISEIMIAX . « . v v v v e 11
tabnet L e e e 12
tabnet_config L e e 15
tabnet_explain L L e e e 18
tabnet_fit L e e 19
tabnet NN e 22
tabnet_pretrain L. L. e e e e e e 24

Index 27

attention_width Parameters for the tabnet model
Description

Parameters for the tabnet model

Usage

attention_width(range = c(8L, 64L), trans = NULL)

decision_width(range = c(8L, 64L), trans = NULL)

feature_reusage(range = c(1, 2), trans = NULL)

momentum(range = c(0.01, 0.4), trans = NULL)

https://orcid.org/0000-0002-5573-3952

autoplot.tabnet_explain

mask_type(values = c("sparsemax”, "entmax"))

num_independent(range = c(1L, 5L), trans = NULL)

num_shared(range = c(1L, 5L), trans = NULL)

num_steps(range = c(3L, 10L), trans = NULL)

Arguments
range the default range for the parameter value
trans whether to apply a transformation to the parameter
values possible values for factor parameters
These functions are used with tune grid functions to generate candidates.
Value

A dials parameter to be used when tuning TabNet models.

Examples

model <- tabnet(attention_width = tune(), feature_reusage = tune(),
momentum = tune(), penalty = tune(), rate_step_size = tune()) %>%
parsnip::set_mode("regression”) %>%
parsnip::set_engine("torch”)

autoplot.tabnet_explain
Plot tabnet_explain mask importance heatmap

Description

Plot tabnet_explain mask importance heatmap

Usage

autoplot.tabnet_explain(
object,
type = c("mask_agg", "steps"),
quantile = 1,

4 autoplot.tabnet_fit
Arguments
object A tabnet_explain object as a result of tabnet_explain().
type a character value. Either "mask_agg" the default, for a single heatmap of ag-
gregated mask importance per predictor along the dataset, or "steps” for one
heatmap at each mask step.
quantile numerical value between 0 and 1. Provides quantile clipping of the mask values
not used.
Details
Plot the tabnet_explain object mask importance per variable along the predicted dataset. type="mask_agg"
output a single heatmap of mask aggregated values, type="steps” provides a plot faceted along
the n_steps mask present in the model. quantile=.995 may be used for strong outlier clipping,
in order to better highlight low values. quantile=1, the default, do not clip any values.
Value
A ggplot object.
Examples
Not run:
library(ggplot2)
data("attrition”, package = "modeldata")
Single-outcome binary classification of “Attrition™ in “attrition™ dataset
attrition_fit <- tabnet_fit(Attrition ~. , data=attrition, epoch=11)
attrition_explain <- tabnet_explain(attrition_fit, attrition)
Plot the model aggregated mask interpretation heatmap
autoplot(attrition_explain)
Multi-outcome regression on ~Sale_Price” and “Pool_Area™ in “ames” dataset,
data("ames”, package = "modeldata”)
x <- ames[,-which(names(ames) %in% c("Sale_Price"”, "Pool_Area"))]
y <- ames[, c("Sale_Price"”, "Pool_Area")]
ames_fit <- tabnet_fit(x, y, epochs = 1, verbose=TRUE)
ames_explain <- tabnet_explain(ames_fit, x)
autoplot(ames_explain, quantile = 0.99)
End(Not run)
autoplot.tabnet_fit Plot tabnet_fit model loss along epochs
Description

Plot tabnet_fit model loss along epochs

I

cat_emb_dim 5

Usage
autoplot.tabnet_fit(object, ...)
autoplot.tabnet_pretrain(object, ...)
Arguments
object A tabnet_fit or tabnet_pretrain object as a result of tabnet_fit() or
tabnet_pretrain().
not used.
Details

Plot the training loss along epochs, and validation loss along epochs if any. A dot is added on
epochs where model snapshot is available, helping the choice of from_epoch value for later model
training resume.

Value

A ggplot object.

Examples
Not run:
library(ggplot2)
data("attrition”, package = "modeldata")
attrition_fit <- tabnet_fit(Attrition ~. , data=attrition, valid_split=0.2, epoch=11)

Plot the model loss over epochs
autoplot(attrition_fit)

End(Not run)

cat_emb_dim Non-tunable parameters for the tabnet model

Description

Non-tunable parameters for the tabnet model

Usage
cat_emb_dim(range = NULL, trans = NULL)

checkpoint_epochs(range = NULL, trans = NULL)

drop_last(range = NULL, trans = NULL)

6 check_compliant_node

encoder_activation(range = NULL, trans = NULL)
1r_scheduler(range = NULL, trans = NULL)
mlp_activation(range = NULL, trans = NULL)
mlp_hidden_multiplier(range = NULL, trans = NULL)

num_independent_decoder(range = NULL, trans = NULL)

num_shared_decoder(range = NULL, trans = NULL)

optimizer(range = NULL, trans = NULL)

penalty(range = NULL, trans = NULL)

verbose(range = NULL, trans = NULL)

virtual_batch_size(range = NULL, trans = NULL)

Arguments
range unused
trans unused

check_compliant_node Check that Node object names are compliant

Description

Check that Node object names are compliant

Usage

check_compliant_node(node)

Arguments

node the Node object, or a dataframe ready to be parsed by data.tree: :as.Node()

Value

node if it is compliant, else an Error with the column names to fix

entmax

Examples

library(dplyr)

library(data. tree)

data(starwars)

starwars_tree <- starwars %>%
mutate(pathString = paste("tree”, species, homeworld, “name>, sep = "/"))

pre as.Node() check
try(check_compliant_node(starwars_tree))

post as.Node() check
check_compliant_node(as.Node(starwars_tree))

entmax

Alpha-entmax

Description

With alpha = 1.5 and normalizing sparse transform (a la softmax).

Usage

entmax(dim

entmax15(dim

Arguments
dim

k

Details

_‘I>

-1L, k = NULL)

The dimension along which to apply 1.5-entmax.

The number of largest elements to partial-sort input over. For optimal perfor-
mance, should be slightly bigger than the expected number of non-zeros in the
solution. If the solution is more than k-sparse, this function is recursively called
with a 2*k schedule. If NULL, full sorting is performed from the beginning.

Solves the optimization problem: max, < input, P > —Hy 5(P)s.t. P > 0,> (P) == 1 where
H, 5(P) is the Tsallis alpha-entropy with o = 1.5.

Value

The projection result P of the same shape as input, such that) ;. P = 1Vdim elementwise.

8 nn_aum_loss

Examples

Not run:

input <- torch::torch_randn(10,5, requires_grad = TRUE)
create a top3 alpha=1.5 entmax on last input dimension
nn_entmax <- entmax15(dim=-1L, k = 3)

result <- nn_entmax(input)

End(Not run)

get_tau Optimal threshold (tau) computation for 1.5-entmax

Description

Optimal threshold (tau) computation for 1.5-entmax

Usage

get_tau(input, dim = -1L, k = NULL)

Arguments
input The input tensor to compute thresholds over.
dim The dimension along which to apply 1.5-entmax. Default is -1.
k The number of largest elements to partial-sort over. For optimal performance,
should be slightly bigger than the expected number of non-zeros in the solution.
If the solution is more than k-sparse, this function is recursively called with a
2*k schedule. If NULL, full sorting is performed from the beginning. Default is
NULL.
Value

The threshold value for each vector, with all but the dim dimension intact.

nn_aum_loss AUM loss

Description

Creates a criterion that measures the Area under the Min(FPR, FNR) (AUM) between each
element in the input pred.ensor and target label.ensor.

Usage

nn_aum_loss()

nn_prune_head.tabnet_fit 9

Details

This is used for measuring the error of a binary reconstruction within highly unbalanced dataset,
where the goal is optimizing the ROC curve. Note that the targets label.ensor should be factor
level of the binary outcome, i.e. with values 1L and 2L.

Examples

loss <- nn_aum_loss()

input <- torch::torch_randn(4, 6, requires_grad = TRUE)
target <- input > 1.5

output <- loss(input, target)

output$backward()

nn_prune_head. tabnet_fit
Prune top layer(s) of a tabnet network

Description
Prune head_size last layers of a tabnet network in order to use the pruned module as a sequential
embedding module.

Usage

S3 method for class 'tabnet_fit'
nn_prune_head(x, head_size)

S3 method for class 'tabnet_pretrain'
nn_prune_head(x, head_size)

Arguments

X nn_network to prune

head_size number of nn_layers to prune, should be less than 2
Value

a tabnet network with the top nn_layer removed

Examples
data("ames", package = "modeldata")
x <- ames[,-which(names(ames) == "Sale_Price")]

y <- ames$Sale_Price

pretrain a tabnet model on ames dataset

ames_pretrain <- tabnet_pretrain(x, y, epoch = 2, checkpoint_epochs = 1)
prune classification head to get an embedding model

10 node_to_df

pruned_pretrain <- torch::nn_prune_head(ames_pretrain, 1)

node_to_df Turn a Node object into predictor and outcome.

Description

Turn a Node object into predictor and outcome.

Usage

node_to_df(x, drop_last_level = TRUE)

Arguments

X Node object

drop_last_level
TRUE unused

Value

a named list of x and y, being respectively the predictor data-frame and the outcomes data-frame,
as expected inputs for hardhat: :mold() function.

Examples

library(dplyr)

library(data.tree)

data(starwars)

starwars_tree <- starwars %>%
mutate(pathString = paste(”tree”, species, homeworld, “name~, sep = "/")) %>%
as.Node()

node_to_df (starwars_tree)$x %>% head()

node_to_df (starwars_tree)$y %>% head()

sparsemax 11

sparsemax Sparsemax

Description

Normalizing sparse transform (a la softmax).

Usage

sparsemax(dim = -1L)

sparsemax15(dim = -1L, k = NULL)

Arguments

dim The dimension along which to apply sparsemax.

k The number of largest elements to partial-sort input over. For optimal perfor-
mance, k should be slightly bigger than the expected number of non-zeros in the
solution. If the solution is more than k-sparse, this function is recursively called
with a 2*k schedule. If NULL, full sorting is performed from the beginning.

Details

Solves the projection:

minp ||input — Pl|as.t. P >0,)(P) ==1

Value

The projection result, such that) - ,. P = 1Vdim elementwise.

Examples

Not run:

input <- torch::torch_randn(10, 5, requires_grad = TRUE)

create a top3 alpha=1.5 sparsemax on last input dimension
nn_sparsemax <- sparsemax15(dim=1, k=3)

result <- nn_sparsemax(input)

print(result)

End(Not run)

12

tabnet

tabnet

Parsnip compatible tabnet model

Description

Parsnip compatible tabnet model

Usage

tabnet(
mode = "unknown",
cat_emb_dim = NULL,
decision_width = NULL,
attention_width = NULL,
num_steps = NULL,
mask_type = NULL,
mask_topk = NULL,
num_independent = NULL,
num_shared = NULL,
num_independent_decoder = NULL,
num_shared_decoder = NULL,
penalty = NULL,
feature_reusage = NULL,
momentum = NULL,
epochs = NULL,
batch_size = NULL,
virtual_batch_size = NULL,
learn_rate = NULL,
optimizer = NULL,
loss = NULL,
clip_value = NULL,
drop_last = NULL,
1r_scheduler = NULL,
rate_decay = NULL,
rate_step_size = NULL,
checkpoint_epochs = NULL,
verbose = NULL,
importance_sample_size = NULL,
early_stopping_monitor = NULL,

early_stopping_tolerance = NULL,

early_stopping_patience = NULL,
skip_importance = NULL,
tabnet_model = NULL,

from_epoch = NULL

tabnet

Arguments

mode

cat_emb_dim

decision_width

attention_width

num_steps

mask_type

mask_topk

num_independent

num_shared

13

A single character string for the type of model. Possible values for this model

non

are "unknown", "regression", or "classification".

Size of the embedding of categorical features. If int, all categorical features will
have same embedding size, if list of int, every corresponding feature will have
specific embedding size.

(int) Width of the decision prediction layer. Bigger values gives more capacity
to the model with the risk of overfitting. Values typically range from 8 to 64.

(int) Width of the attention embedding for each mask. According to the paper
n_d =n_a is usually a good choice. (default=8)

(int) Number of steps in the architecture (usually between 3 and 10)

(character) Final layer of feature selector in the attentive_transformer block, ei-

non

ther "sparsemax”, "entmax” or "entmax15".Defaults to "sparsemax”.

(int) mask sparsity top-k for sparsemax15 and entmax15. See entmax15() for
detail.

Number of independent Gated Linear Units layers at each step of the encoder.
Usual values range from 1 to 5.

Number of shared Gated Linear Units at each step of the encoder. Usual values
at each step of the decoder. range from 1 to 5

num_independent_decoder

For pretraining, number of independent Gated Linear Units layers Usual values
range from 1 to 5.

num_shared_decoder

penalty

feature_reusage

momentum
epochs

batch_size

For pretraining, number of shared Gated Linear Units at each step of the decoder.
Usual values range from 1 to 5.

This is the extra sparsity loss coefficient as proposed in the original paper. The
bigger this coefficient is, the sparser your model will be in terms of feature se-
lection. Depending on the difficulty of your problem, reducing this value could
help (default le-3).

(num) This is the coefficient for feature reusage in the masks. A value close to
1 will make mask selection least correlated between layers. Values range from
1 to 2.

Momentum for batch normalization, typically ranges from 0.01 to 0.4 (default=0.02)
(int) Number of training epochs.

(int) Number of examples per batch, large batch sizes are recommended. (de-
fault: 102472)

virtual_batch_size

learn_rate

optimizer

(int) Size of the mini batches used for "Ghost Batch Normalization" (default=256"2)
initial learning rate for the optimizer.

the optimization method. currently only "adam” is supported, you can also pass
any torch optimizer function.

14 tabnet
loss (character or function) Loss function for training (default to mse for regression
and cross entropy for classification)
clip_value If a num is given this will clip the gradient at clip_value. Pass NULL to not clip.
drop_last (logical) Whether to drop last batch if not complete during training
1r_scheduler if NULL, no learning rate decay is used. If "step" decays the learning rate by
1r_decay every step_size epochs. If "reduce_on_plateau" decays the learning
rate by 1r_decay when no improvement after step_size epochs. It can also be
a torch::Ir_scheduler function that only takes the optimizer as parameter. The
step method is called once per epoch.
rate_decay multiplies the initial learning rate by rate_decay every rate_step_size epochs.
Unused if 1r_scheduler is a torch: :1r_scheduler or NULL.
rate_step_size the learning rate scheduler step size. Unused if 1r_schedulerisa torch: :1r_scheduler
or NULL.
checkpoint_epochs
checkpoint model weights and architecture every checkpoint_epochs. (default
is 10). This may cause large memory usage. Use 0 to disable checkpoints.
verbose (logical) Whether to print progress and loss values during training.
importance_sample_size
sample of the dataset to compute importance metrics. If the dataset is larger than
le5 obs we will use a sample of size 1e5 and display a warning.
early_stopping_monitor
Metric to monitor for early_stopping. One of "valid_loss", "train_loss" or "auto"
(defaults to "auto").
early_stopping_tolerance
Minimum relative improvement to reset the patience counter. 0.01 for 1% toler-
ance (default 0)
early_stopping_patience
Number of epochs without improving until stopping training. (default=5)
skip_importance
if feature importance calculation should be skipped (default: FALSE)
tabnet_model A previously fitted tabnet_model object to continue the fitting on. if NULL (the
default) a brand new model is initialized.
from_epoch When a tabnet_model is provided, restore the network weights from a specific
epoch. Default is last available checkpoint for restored model, or last epoch for
in-memory model.
Value
A TabNet parsnip instance. It can be used to fit tabnet models using parsnip machinery.
Threading

TabNet uses torch as its backend for computation and torch uses all available threads by default.

You can control the number of threads used by torch with:

torch: :torch_set_num_threads(1)
torch: :torch_set_num_interop_threads(1)

tabnet_config

See Also
tabnet_fit
Examples
library(parsnip)
data("ames", package = "modeldata")

model <- tabnet() %>%
set_mode("regression”) %>%
set_engine("torch”)

model %>%

fit(Sale_Price ~ ., data = ames)
tabnet_config Configuration for TabNet models
Description

Configuration for TabNet models

Usage

tabnet_config(
batch_size = 10242,
penalty = 0.001,
clip_value = NULL,
loss = "auto”,
epochs = 5,
drop_last = FALSE,
decision_width = NULL,
attention_width = NULL,
num_steps = 3,
feature_reusage = 1.3,
mask_type = "sparsemax”,
mask_topk = NULL,
virtual_batch_size = 256"2,
valid_split = 0,
learn_rate = 0.02,
optimizer = "adam”,
1r_scheduler = NULL,
lr_decay = 0.1,
step_size = 30,
checkpoint_epochs = 10,
cat_emb_dim = 1,
num_independent = 2,
num_shared = 2,

16 tabnet_config

num_independent_decoder = 1,
num_shared_decoder = 1,
momentum = 0.02,
pretraining_ratio = 0.5,
verbose = FALSE,

device = "auto",
importance_sample_size = NULL,
early_stopping_monitor = "auto”,

early_stopping_tolerance = 0,
early_stopping_patience = 0L,
num_workers = 0L,
skip_importance = FALSE

)
Arguments

batch_size (int) Number of examples per batch, large batch sizes are recommended. (de-
fault: 1024/2)

penalty This is the extra sparsity loss coefficient as proposed in the original paper. The
bigger this coefficient is, the sparser your model will be in terms of feature se-
lection. Depending on the difficulty of your problem, reducing this value could
help (default 1e-3).

clip_value If a num is given this will clip the gradient at clip_value. Pass NULL to not clip.

loss (character or function) Loss function for training (default to mse for regression
and cross entropy for classification)

epochs (int) Number of training epochs.

drop_last (logical) Whether to drop last batch if not complete during training

decision_width (int) Width of the decision prediction layer. Bigger values gives more capacity
to the model with the risk of overfitting. Values typically range from 8 to 64.
attention_width
(int) Width of the attention embedding for each mask. According to the paper
n_d =n_a is usually a good choice. (default=8)
num_steps (int) Number of steps in the architecture (usually between 3 and 10)
feature_reusage

(num) This is the coefficient for feature reusage in the masks. A value close to
1 will make mask selection least correlated between layers. Values range from

1to 2.
mask_type (character) Final layer of feature selector in the attentive_transformer block, ei-
ther "sparsemax”, "entmax” or "entmax15"”.Defaults to "sparsemax”.
mask_topk (int) mask sparsity top-k for sparsemax15 and entmax15. See entmax15() for
detail.

virtual_batch_size
(int) Size of the mini batches used for "Ghost Batch Normalization" (default=256"2)

valid_split In [0, 1). The fraction of the dataset used for validation. (default = 0 means no
split)

tabnet_config

learn_rate

optimizer

lr_scheduler

1r_decay

step_size

17

initial learning rate for the optimizer.

the optimization method. currently only "adam” is supported, you can also pass
any torch optimizer function.

if NULL, no learning rate decay is used. If "step" decays the learning rate by
1r_decay every step_size epochs. If "reduce_on_plateau" decays the learning
rate by 1r_decay when no improvement after step_size epochs. It can also be
a torch::Ir_scheduler function that only takes the optimizer as parameter. The
step method is called once per epoch.

multiplies the initial learning rate by 1r_decay every step_size epochs. Un-
used if 1r_scheduler is a torch: :1r_scheduler or NULL.

the learning rate scheduler step size. Unused if 1r_schedulerisa torch::1r_scheduler
or NULL.

checkpoint_epochs

cat_emb_dim

num_independent

num_shared

checkpoint model weights and architecture every checkpoint_epochs. (default
is 10). This may cause large memory usage. Use 0 to disable checkpoints.

Size of the embedding of categorical features. If int, all categorical features will
have same embedding size, if list of int, every corresponding feature will have
specific embedding size.

Number of independent Gated Linear Units layers at each step of the encoder.
Usual values range from 1 to 5.

Number of shared Gated Linear Units at each step of the encoder. Usual values
at each step of the decoder. range from 1 to 5

num_independent_decoder

For pretraining, number of independent Gated Linear Units layers Usual values
range from 1 to 5.

num_shared_decoder

momentum

For pretraining, number of shared Gated Linear Units at each step of the decoder.
Usual values range from 1 to 5.

Momentum for batch normalization, typically ranges from 0.01 to 0.4 (default=0.02)

pretraining_ratio

verbose

device

Ratio of features to mask for reconstruction during pretraining. Ranges from 0
to 1 (default=0.5)

(logical) Whether to print progress and loss values during training.

the device to use for training. "cpu" or "cuda". The default ("auto") uses to
"cuda" if it’s available, otherwise uses "cpu".

importance_sample_size

sample of the dataset to compute importance metrics. If the dataset is larger than
1e5 obs we will use a sample of size 1e5 and display a warning.

early_stopping_monitor

non

Metric to monitor for early_stopping. One of "valid_loss", "train_loss" or "auto"
(defaults to "auto").

early_stopping_tolerance

Minimum relative improvement to reset the patience counter. 0.01 for 1% toler-
ance (default 0)

18 tabnet_explain

early_stopping_patience
Number of epochs without improving until stopping training. (default=5)

num_workers (int, optional): how many subprocesses to use for data loading. 0 means that the
data will be loaded in the main process. (default: 0)

skip_importance
if feature importance calculation should be skipped (default: FALSE)

Value

A named list with all hyperparameters of the TabNet implementation.
Examples
data("ames”, package = "modeldata”)

change the model config for an faster ignite optimizer
config <- tabnet_config(optimizer = torch::optim_ignite_adamw)

Single-outcome regression using formula specification

fit <- tabnet_fit(Sale_Price ~ ., data = ames, epochs = 1, config = config)
tabnet_explain Interpretation metrics from a TabNet model
Description

Interpretation metrics from a TabNet model

Usage

tabnet_explain(object, new_data)

Default S3 method:
tabnet_explain(object, new_data)

S3 method for class 'tabnet_fit'
tabnet_explain(object, new_data)

S3 method for class 'tabnet_pretrain'
tabnet_explain(object, new_data)

S3 method for class 'model_fit'
tabnet_explain(object, new_data)
Arguments

object a TabNet fit object

new_data a data.frame to obtain interpretation metrics.

tabnet_fit

Value
Returns a list with

* M_explain: the aggregated feature importance masks as detailed in TabNet’s paper.

» masks a list containing the masks for each step.

Examples

set.seed(2021)

n <- 256

x <- data.frame(
X = rnorm(n),
y = rnorm(n),
z = rnorm(n)

)
y <- x$x

fit <- tabnet_fit(x, y, epochs = 10,
num_steps = 1,
batch_size = 512,
attention_width = 1,
num_shared = 1,
num_independent = 1)

ex <- tabnet_explain(fit, x)

19

tabnet_fit Tabnet model

Description

Fits the TabNet: Attentive Interpretable Tabular Learning model

Usage
tabnet_fit(x, ...)

Default S3 method:
tabnet_fit(x, ...)

S3 method for class 'data.frame'
tabnet_fit(
X,

https://arxiv.org/abs/1908.07442

20 tabnet_fit

Yy,
tabnet_model = NULL,

config = tabnet_config(),
from_epoch = NULL,
weights = NULL

)

S3 method for class 'formula'
tabnet_fit(
formula,
data,
tabnet_model = NULL,
config = tabnet_config(),
from_epoch = NULL,
weights = NULL
)

S3 method for class 'recipe'
tabnet_fit(

X)

data,

tabnet_model = NULL,

config = tabnet_config(),

from_epoch = NULL,
weights = NULL
)

S3 method for class 'Node'
tabnet_fit(

X!

tabnet_model = NULL,

config = tabnet_config(),

from_epoch = NULL
)

Arguments

X Depending on the context:

* A data frame of predictors.
* A matrix of predictors.
* A recipe specifying a set of preprocessing steps created from recipes: :recipe().

¢ A Node where tree will be used as hierarchical outcome, and attributes will
be used as predictors.

tabnet_fit 21

The predictor data should be standardized (e.g. centered or scaled). The model
treats categorical predictors internally thus, you don’t need to make any treat-
ment. The model treats missing values internally thus, you don’t need to make
any treatment.

Model hyperparameters. Any hyperparameters set here will update those set by
the config argument. See tabnet_config() for a list of all possible hyperpa-
rameters.

y When x is a data frame or matrix, y is the outcome specified as:

* A data frame with 1 or many numeric column (regression) or 1 or many
categorical columns (classification) .

¢ A matrix with 1 column.

* A vector, either numeric or categorical.

tabnet_model A previously fitted tabnet_model object to continue the fitting on. if NULL (the
default) a brand new model is initialized.

config A set of hyperparameters created using the tabnet_config function. If no ar-
gument is supplied, this will use the default values in tabnet_config().

from_epoch When a tabnet_model is provided, restore the network weights from a specific
epoch. Default is last available checkpoint for restored model, or last epoch for
in-memory model.

weights Unused. Placeholder for hardhat::importance_weight() variables.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a recipe or formula is used, data is specified as:

* A data frame containing both the predictors and the outcome.

Value

A TabNet model object. It can be used for serialization, predictions, or further fitting.

Fitting a pre-trained model

When providing a parent tabnet_model parameter, the model fitting resumes from that model
weights at the following epoch:

* last fitted epoch for a model already in torch context

 Last model checkpoint epoch for a model loaded from file

* the epoch related to a checkpoint matching or preceding the from_epoch value if provided
The model fitting metrics append on top of the parent metrics in the returned TabNet model.

Multi-outcome

TabNet allows multi-outcome prediction, which is usually named multi-label classification or multi-
output regression when outcomes are numerical. Multi-outcome currently expect outcomes to be
either all numeric or all categorical.

https://en.wikipedia.org/wiki/Multi-label_classification

22 tabnet_nn

Threading

TabNet uses torch as its backend for computation and torch uses all available threads by default.

You can control the number of threads used by torch with:

torch: :torch_set_num_threads(1)
torch::torch_set_num_interop_threads(1)

Examples

Not run:
data("ames", package = "modeldata")
data("attrition”, package = "modeldata")

Single-outcome regression using formula specification
fit <- tabnet_fit(Sale_Price ~ ., data = ames, epochs = 4)

Single-outcome classification using data-frame specification
attrition_x <- attrition[ids,-which(names(attrition) == "Attrition")]

fit <- tabnet_fit(attrition_x, attrition$Attrition, epochs = 4, verbose = TRUE)

Multi-outcome regression on ~Sale_Price” and “Pool_Area™ in “ames” dataset using formula,
ames_fit <- tabnet_fit(Sale_Price + Pool_Area ~ ., data = ames, epochs = 4, valid_split =0.2)

Multi-label classification on “Attrition™ and ~JobSatisfaction™ in

“attrition” dataset using recipe

library(recipes)

rec <- recipe(Attrition + JobSatisfaction ~ ., data = attrition) %>%
step_normalize(all_numeric(), -all_outcomes())

attrition_fit <- tabnet_fit(rec, data = attrition, epochs = 4, valid_split = 0.2)

Hierarchical classification on ~acme”
data(acme, package = "data.tree")

acme_fit <- tabnet_fit(acme, epochs = 4, verbose = TRUE)
Note: Model's number of epochs should be increased for publication-level results.

End(Not run)

tabnet_nn TabNet Model Architecture

Description

This is a nn_module representing the TabNet architecture from Attentive Interpretable Tabular Deep
Learning.

https://arxiv.org/abs/1908.07442
https://arxiv.org/abs/1908.07442

tabnet_nn

Usage

tabnet_nn(
input_dim,
output_dim,
n_d = 8,
n_a 8,
n_steps
gamma =
cat_idxs
cat_dims
cat_emb_dim
n_independent
n_shared = 2,

= 37
1.3,

cat_emb_dim

n_independent
n_shared
epsilon

23

C() ’
cO,

1,
:2,

epsilon = le-15,
virtual_batch_size = 128,
momentum = 0.02,
mask_type = "sparsemax”,
mask_topk = NULL
)
Arguments
input_dim Initial number of features.
output_dim Dimension of network output. Examples : one for regression, 2 for binary clas-
sification etc.. Vector of those dimensions in case of multi-output.
n_d Dimension of the prediction layer (usually between 4 and 64).
n_a Dimension of the attention layer (usually between 4 and 64).
n_steps Number of successive steps in the network (usually between 3 and 10).
gamma Scaling factor for attention updates (usually between 1 and 2).
cat_idxs Index of each categorical column in the dataset.
cat_dims Number of categories in each categorical column.

Size of the embedding of categorical features if int, all categorical features will
have same embedding size if list of int, every corresponding feature will have
specific size.

Number of independent GLU layer in each GLU block of the encoder.
Number of shared GLU layer in each GLU block of the encoder.
Avoid log(0), this should be kept very low.

virtual_batch_size

momentum

mask_type

mask_topk

Batch size for Ghost Batch Normalization.

Numerical value between 0 and 1 which will be used for momentum in all batch
norm.

non

Either "sparsemax",
use.

entmax" or "entmax15": the sparse masking function to

the mask top-k value for k-sparsity selection in the mask for sparsemax and
entmax15. defaults to 1/4 of last input_dim if NULL. See entmax 15 for details.

tabnet_pretrain

Pretrain the TabNet: Attentive Interpretable Tabular Learning model on the predictor data exclu-

24
tabnet_pretrain Tabnet model
Description
sively (unsupervised training).
Usage

tabnet_pretrain(x, ...)

Default S3 method:
tabnet_pretrain(x, ...)

S3 method for class 'data.frame'

tabnet_pretrain(
X!
Y,
tabnet_model = NULL,
config = tabnet_config(),
from_epoch = NULL

)

S3 method for class 'formula'
tabnet_pretrain(
formula,
data,
tabnet_model = NULL,
config = tabnet_config(),
from_epoch = NULL
)

S3 method for class 'recipe'
tabnet_pretrain(
X,
data,
tabnet_model = NULL,
config = tabnet_config(),
from_epoch = NULL
)

S3 method for class 'Node'
tabnet_pretrain(

https://arxiv.org/abs/1908.07442

tabnet_pretrain 25

X’
tabnet_model = NULL,
config = tabnet_config(),

L

from_epoch = NULL

)
Arguments
X Depending on the context:
* A data frame of predictors.
* A matrix of predictors.
» Arecipe specifying a set of preprocessing steps created from recipes: : recipe().
¢ A Node where tree leaves will be left out, and attributes will be used as
predictors.
The predictor data should be standardized (e.g. centered or scaled). The model
treats categorical predictors internally thus, you don’t need to make any treat-
ment. The model treats missing values internally thus, you don’t need to make
any treatment.
Model hyperparameters. Any hyperparameters set here will update those set by
the config argument. See tabnet_config() for a list of all possible hyperpa-
rameters.
y (optional) When x is a data frame or matrix, y is the outcome

tabnet_model A pretrained tabnet_model object to continue the fitting on. if NULL (the de-
fault) a brand new model is initialized.

config A set of hyperparameters created using the tabnet_config function. If no ar-
gument is supplied, this will use the default values in tabnet_config().

from_epoch When a tabnet_model is provided, restore the network weights from a specific
epoch. Default is last available checkpoint for restored model, or last epoch for
in-memory model.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a recipe or formula is used, data is specified as:

* A data frame containing both the predictors and the outcome.

Value

A TabNet model object. It can be used for serialization, predictions, or further fitting.

outcome

Outcome value are accepted here only for consistent syntax with tabnet_fit, but by design the
outcome, if present, is ignored during pre-training.

26 tabnet_pretrain

pre-training from a previous model

When providing a parent tabnet_model parameter, the model pretraining resumes from that model
weights at the following epoch:

* last pretrained epoch for a model already in torch context

 Last model checkpoint epoch for a model loaded from file

* the epoch related to a checkpoint matching or preceding the from_epoch value if provided
The model pretraining metrics append on top of the parent metrics in the returned TabNet
model.

Threading

TabNet uses torch as its backend for computation and torch uses all available threads by default.

You can control the number of threads used by torch with:

torch: :torch_set_num_threads(1)
torch: :torch_set_num_interop_threads(1)

Examples

data("ames"”, package = "modeldata")
pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1)

Index

attention_width, 2
autoplot.tabnet_explain, 3
autoplot.tabnet_fit, 4
autoplot.tabnet_pretrain
(autoplot.tabnet_fit), 4

cat_emb_dim, 5
check_compliant_node, 6
checkpoint_epochs (cat_emb_dim), 5

decision_width (attention_width), 2
drop_last (cat_emb_dim), 5

encoder_activation (cat_emb_dim), 5
entmax, 7

entmax15, 23

entmax15 (entmax), 7
entmax15(Q), 13, 16

feature_reusage (attention_width), 2
get_tau, 8
1r_scheduler (cat_emb_dim), 5

mask_type (attention_width), 2
mlp_activation (cat_emb_dim), 5

mlp_hidden_multiplier (cat_emb_dim), 5

momentum (attention_width), 2

nn_aum_loss, 8

nn_prune_head. tabnet_fit, 9

nn_prune_head. tabnet_pretrain
(nn_prune_head. tabnet_fit), 9

node_to_df, 10

num_independent (attention_width), 2

num_independent_decoder (cat_emb_dim), 5

num_shared (attention_width), 2
num_shared_decoder (cat_emb_dim), 5
num_steps (attention_width), 2

optimizer (cat_emb_dim), 5

penalty (cat_emb_dim), 5
recipes: :recipe(), 20, 25

sparsemax, 11
sparsemax15 (sparsemax), 11

tabnet, 12
tabnet_config, 15
tabnet_config(), 21, 25
tabnet_explain, 18
tabnet_explain(), 4
tabnet_fit, 19
tabnet_fit(), 5
tabnet_nn, 22
tabnet_pretrain, 24
tabnet_pretrain(), 5
torch::1r_scheduler, 14, 17

verbose (cat_emb_dim), 5
virtual_batch_size (cat_emb_dim), 5

	attention_width
	autoplot.tabnet_explain
	autoplot.tabnet_fit
	cat_emb_dim
	check_compliant_node
	entmax
	get_tau
	nn_aum_loss
	nn_prune_head.tabnet_fit
	node_to_df
	sparsemax
	tabnet
	tabnet_config
	tabnet_explain
	tabnet_fit
	tabnet_nn
	tabnet_pretrain
	Index

