
Package ‘stochtree’
January 28, 2026

Title Stochastic Tree Ensembles (XBART and BART) for Supervised
Learning and Causal Inference

Version 0.3.0

Copyright Copyright details for stochtree's C++ dependencies, which
are vendored along with the core stochtree source code, are
detailed in inst/COPYRIGHTS

Description Flexible stochastic tree ensemble software.
Robust implementations of Bayesian Additive Regression Trees (BART)
Chipman, George, McCulloch (2010) <doi:10.1214/09-AOAS285>
for supervised learning and Bayesian Causal Forests (BCF)
Hahn, Murray, Carvalho (2020) <doi:10.1214/19-BA1195>
for causal inference. Enables model serialization and parallel sampling
and provides a low-level interface for custom stochastic forest samplers.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

LinkingTo cpp11, BH

Suggests testthat (>= 3.0.0),

SystemRequirements C++17

Imports R6, stats

URL https://stochtree.ai/, https://github.com/StochasticTree/stochtree

BugReports https://github.com/StochasticTree/stochtree/issues

Config/testthat/edition 3

NeedsCompilation yes

Author Drew Herren [aut, cre] (ORCID: <https://orcid.org/0000-0003-4109-6611>),
Richard Hahn [aut],
Jared Murray [aut],
Carlos Carvalho [aut],
Jingyu He [aut],
Pedro Lima [ctb],
stochtree contributors [cph],

1

https://doi.org/10.1214/09-AOAS285
https://doi.org/10.1214/19-BA1195
https://stochtree.ai/
https://github.com/StochasticTree/stochtree
https://github.com/StochasticTree/stochtree/issues
https://orcid.org/0000-0003-4109-6611

2 Contents

Eigen contributors [cph] (C++ source uses the Eigen library for matrix
operations, see inst/COPYRIGHTS),

xgboost contributors [cph] (C++ tree code and related operations
include or are inspired by code from the xgboost library, see
inst/COPYRIGHTS),

treelite contributors [cph] (C++ tree code and related operations
include or are inspired by code from the treelite library, see
inst/COPYRIGHTS),

Microsoft Corporation [cph] (C++ I/O and various project structure code
include or are inspired by code from the LightGBM library, which is
a copyright of Microsoft, see inst/COPYRIGHTS),

Niels Lohmann [cph] (C++ source uses the JSON for Modern C++ library
for JSON operations, see inst/COPYRIGHTS),

Daniel Lemire [cph] (C++ source uses the fast_double_parser library
internally, see inst/COPYRIGHTS),

Victor Zverovich [cph] (C++ source uses the fmt library internally, see
inst/COPYRIGHTS)

Maintainer Drew Herren <drewherrenopensource@gmail.com>

Repository CRAN

Date/Publication 2026-01-28 00:50:02 UTC

Contents
stochtree-package . 4
bart . 5
bcf . 11
calibrateInverseGammaErrorVariance . 19
computeForestLeafIndices . 20
computeForestLeafVariances . 22
computeForestMaxLeafIndex . 23
compute_bart_posterior_interval . 24
compute_bcf_posterior_interval . 26
compute_contrast_bart_model . 27
compute_contrast_bcf_model . 29
convertPreprocessorToJson . 32
CppJson . 33
CppRNG . 39
createBARTModelFromCombinedJson . 40
createBARTModelFromCombinedJsonString . 41
createBARTModelFromJson . 42
createBARTModelFromJsonFile . 43
createBARTModelFromJsonString . 44
createBCFModelFromCombinedJson . 45
createBCFModelFromCombinedJsonString . 46
createBCFModelFromJson . 48
createBCFModelFromJsonFile . 50
createBCFModelFromJsonString . 52

Contents 3

createCppJson . 53
createCppJsonFile . 54
createCppJsonString . 55
createCppRNG . 55
createForest . 56
createForestDataset . 57
createForestModel . 57
createForestModelConfig . 58
createForestSamples . 60
createGlobalModelConfig . 61
createOutcome . 62
createPreprocessorFromJson . 62
createPreprocessorFromJsonString . 63
createRandomEffectSamples . 64
createRandomEffectsDataset . 65
createRandomEffectsModel . 65
createRandomEffectsTracker . 66
extract_parameter . 67
extract_parameter.bartmodel . 68
extract_parameter.bcfmodel . 69
Forest . 71
ForestDataset . 76
ForestModel . 78
ForestModelConfig . 82
ForestSamples . 89
getRandomEffectSamples . 102
getRandomEffectSamples.bartmodel . 103
getRandomEffectSamples.bcfmodel . 104
GlobalModelConfig . 106
loadForestContainerCombinedJson . 107
loadForestContainerCombinedJsonString . 108
loadForestContainerJson . 109
loadRandomEffectSamplesCombinedJson . 109
loadRandomEffectSamplesCombinedJsonString . 110
loadRandomEffectSamplesJson . 111
loadScalarJson . 112
loadVectorJson . 113
Outcome . 113
plot.bartmodel . 115
plot.bcfmodel . 116
predict.bartmodel . 116
predict.bcfmodel . 118
preprocessPredictionData . 120
preprocessTrainData . 121
print.bartmodel . 122
print.bcfmodel . 122
RandomEffectSamples . 123
RandomEffectsDataset . 126

4 stochtree-package

RandomEffectsModel . 129
RandomEffectsTracker . 132
resetActiveForest . 132
resetForestModel . 133
resetRandomEffectsModel . 135
resetRandomEffectsTracker . 136
rootResetRandomEffectsModel . 138
rootResetRandomEffectsTracker . 139
sampleGlobalErrorVarianceOneIteration . 140
sampleLeafVarianceOneIteration . 141
sample_bart_posterior_predictive . 142
sample_bcf_posterior_predictive . 143
sample_without_replacement . 145
saveBARTModelToJson . 146
saveBARTModelToJsonFile . 147
saveBARTModelToJsonString . 148
saveBCFModelToJson . 149
saveBCFModelToJsonFile . 150
saveBCFModelToJsonString . 152
savePreprocessorToJsonString . 154
summary.bartmodel . 155
summary.bcfmodel . 155

Index 156

stochtree-package stochtree: Stochastic Tree Ensembles (XBART and BART) for Super-
vised Learning and Causal Inference

Description

Flexible stochastic tree ensemble software. Robust implementations of Bayesian Additive Re-
gression Trees (BART) Chipman, George, McCulloch (2010) doi:10.1214/09AOAS285 for super-
vised learning and Bayesian Causal Forests (BCF) Hahn, Murray, Carvalho (2020) doi:10.1214/
19BA1195 for causal inference. Enables model serialization and parallel sampling and provides a
low-level interface for custom stochastic forest samplers.

Author(s)

Maintainer: Drew Herren <drewherrenopensource@gmail.com> (ORCID)

Authors:

• Richard Hahn

• Jared Murray

• Carlos Carvalho

• Jingyu He

https://doi.org/10.1214/09-AOAS285
https://doi.org/10.1214/19-BA1195
https://doi.org/10.1214/19-BA1195
https://orcid.org/0000-0003-4109-6611

bart 5

Other contributors:

• Pedro Lima [contributor]

• stochtree contributors [copyright holder]

• Eigen contributors (C++ source uses the Eigen library for matrix operations, see inst/COPYRIGHTS)
[copyright holder]

• xgboost contributors (C++ tree code and related operations include or are inspired by code
from the xgboost library, see inst/COPYRIGHTS) [copyright holder]

• treelite contributors (C++ tree code and related operations include or are inspired by code
from the treelite library, see inst/COPYRIGHTS) [copyright holder]

• Microsoft Corporation (C++ I/O and various project structure code include or are inspired by
code from the LightGBM library, which is a copyright of Microsoft, see inst/COPYRIGHTS)
[copyright holder]

• Niels Lohmann (C++ source uses the JSON for Modern C++ library for JSON operations, see
inst/COPYRIGHTS) [copyright holder]

• Daniel Lemire (C++ source uses the fast_double_parser library internally, see inst/COPYRIGHTS)
[copyright holder]

• Victor Zverovich (C++ source uses the fmt library internally, see inst/COPYRIGHTS) [copy-
right holder]

See Also

Useful links:

• https://stochtree.ai/

• https://github.com/StochasticTree/stochtree

• Report bugs at https://github.com/StochasticTree/stochtree/issues

bart Run BART for Supervised Learning

Description

Run the BART algorithm for supervised learning.

Usage

bart(
X_train,
y_train,
leaf_basis_train = NULL,
rfx_group_ids_train = NULL,
rfx_basis_train = NULL,
X_test = NULL,
leaf_basis_test = NULL,

https://stochtree.ai/
https://github.com/StochasticTree/stochtree
https://github.com/StochasticTree/stochtree/issues

6 bart

rfx_group_ids_test = NULL,
rfx_basis_test = NULL,
num_gfr = 5,
num_burnin = 0,
num_mcmc = 100,
previous_model_json = NULL,
previous_model_warmstart_sample_num = NULL,
general_params = list(),
mean_forest_params = list(),
variance_forest_params = list(),
random_effects_params = list()

)

Arguments

X_train Covariates used to split trees in the ensemble. May be provided either as a
dataframe or a matrix. Matrix covariates will be assumed to be all numeric. Co-
variates passed as a dataframe will be preprocessed based on the variable types
(e.g. categorical columns stored as unordered factors will be one-hot encoded,
categorical columns stored as ordered factors will passed as integers to the core
algorithm, along with the metadata that the column is ordered categorical).

y_train Outcome to be modeled by the ensemble.
leaf_basis_train

(Optional) Bases used to define a regression model y ~ W in each leaf of each
regression tree. By default, BART assumes constant leaf node parameters, im-
plicitly regressing on a constant basis of ones (i.e. y ~ 1).

rfx_group_ids_train

(Optional) Group labels used for an additive random effects model.
rfx_basis_train

(Optional) Basis for "random-slope" regression in an additive random effects
model. If rfx_group_ids_train is provided with a regression basis, an intercept-
only random effects model will be estimated.

X_test (Optional) Test set of covariates used to define "out of sample" evaluation data.
May be provided either as a dataframe or a matrix, but the format of X_test
must be consistent with that of X_train.

leaf_basis_test

(Optional) Test set of bases used to define "out of sample" evaluation data. While
a test set is optional, the structure of any provided test set must match that of the
training set (i.e. if both X_train and leaf_basis_train are provided, then a
test set must consist of X_test and leaf_basis_test with the same number of
columns).

rfx_group_ids_test

(Optional) Test set group labels used for an additive random effects model. We
do not currently support (but plan to in the near future), test set evaluation for
group labels that were not in the training set.

rfx_basis_test (Optional) Test set basis for "random-slope" regression in additive random ef-
fects model.

bart 7

num_gfr Number of "warm-start" iterations run using the grow-from-root algorithm (He
and Hahn, 2021). Default: 5.

num_burnin Number of "burn-in" iterations of the MCMC sampler. Default: 0.

num_mcmc Number of "retained" iterations of the MCMC sampler. Default: 100.
previous_model_json

(Optional) JSON string containing a previous BART model. This can be used to
"continue" a sampler interactively after inspecting the samples or to run parallel
chains "warm-started" from existing forest samples. Default: NULL.

previous_model_warmstart_sample_num

(Optional) Sample number from previous_model_json that will be used to
warmstart this BART sampler. One-indexed (so that the first sample is used
for warm-start by setting previous_model_warmstart_sample_num = 1). De-
fault: NULL. If num_chains in the general_params list is > 1, then each succes-
sive chain will be initialized from a different sample, counting backwards from
previous_model_warmstart_sample_num. That is, if previous_model_warmstart_sample_num
= 10 and num_chains = 4, then chain 1 will be initialized from sample 10, chain
2 from sample 9, chain 3 from sample 8, and chain 4 from sample 7. If previous_model_json
is provided but previous_model_warmstart_sample_num is NULL, the last
sample in the previous model will be used to initialize the first chain, counting
backwards as noted before. If more chains are requested than there are samples
in previous_model_json, a warning will be raised and only the last sample
will be used.

general_params (Optional) A list of general (non-forest-specific) model parameters, each of
which has a default value processed internally, so this argument list is optional.

• cutpoint_grid_size Maximum size of the "grid" of potential cutpoints to
consider in the GFR algorithm. Default: 100.

• standardize Whether or not to standardize the outcome (and store the
offset / scale in the model object). Default: TRUE.

• sample_sigma2_global Whether or not to update the sigma^2 global error
variance parameter based on IG(sigma2_global_shape, sigma2_global_scale).
Default: TRUE.

• sigma2_global_init Starting value of global error variance parameter.
Calibrated internally as 1.0*var(y_train), where y_train is the possibly
standardized outcome, if not set.

• sigma2_global_shape Shape parameter in the IG(sigma2_global_shape,
sigma2_global_scale) global error variance model. Default: 0.

• sigma2_global_scale Scale parameter in the IG(sigma2_global_shape,
sigma2_global_scale) global error variance model. Default: 0.

• variable_weights Numeric weights reflecting the relative probability of
splitting on each variable. Does not need to sum to 1 but cannot be negative.
Defaults to rep(1/ncol(X_train), ncol(X_train)) if not set here. Note
that if the propensity score is included as a covariate in either forest, its
weight will default to 1/ncol(X_train).

• random_seed Integer parameterizing the C++ random number generator.
If not specified, the C++ random number generator is seeded according to
std::random_device.

8 bart

• keep_burnin Whether or not "burnin" samples should be included in the
stored samples of forests and other parameters. Default FALSE. Ignored if
num_mcmc = 0.

• keep_gfr Whether or not "grow-from-root" samples should be included in
the stored samples of forests and other parameters. Default FALSE. Ignored
if num_mcmc = 0.

• keep_every How many iterations of the burned-in MCMC sampler should
be run before forests and parameters are retained. Default 1. Setting keep_every
<- k for some k > 1 will "thin" the MCMC samples by retaining every k-th
sample, rather than simply every sample. This can reduce the autocorrela-
tion of the MCMC samples.

• num_chains How many independent MCMC chains should be sampled. If
num_mcmc = 0, this is ignored. If num_gfr = 0, then each chain is run from
root for num_mcmc * keep_every + num_burnin iterations, with num_mcmc
samples retained. If num_gfr > 0, each MCMC chain will be initialized
from a separate GFR ensemble, with the requirement that num_gfr >= num_chains.
Default: 1. Note that if num_chains > 1, the returned model object will
contain samples from all chains, stored consecutively. That is, if there are
4 chains with 100 samples each, the first 100 samples will be from chain 1,
the next 100 samples will be from chain 2, etc... For more detail on working
with multi-chain BART models, see the multi chain vignette.

• verbose Whether or not to print progress during the sampling loops. De-
fault: FALSE.

• probit_outcome_model Whether or not the outcome should be modeled as
explicitly binary via a probit link. If TRUE, y must only contain the values 0
and 1. Default: FALSE.

• num_threads Number of threads to use in the GFR and MCMC algorithms,
as well as prediction. If OpenMP is not available on a user’s setup, this will
default to 1, otherwise to the maximum number of available threads.

mean_forest_params

(Optional) A list of mean forest model parameters, each of which has a default
value processed internally, so this argument list is optional.

• num_trees Number of trees in the ensemble for the conditional mean model.
Default: 200. If num_trees = 0, the conditional mean will not be modeled
using a forest, and the function will only proceed if num_trees > 0 for the
variance forest.

• alpha Prior probability of splitting for a tree of depth 0 in the mean model.
Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 0.95.

• beta Exponent that decreases split probabilities for nodes of depth > 0 in
the mean model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 2.

• min_samples_leaf Minimum allowable size of a leaf, in terms of training
samples, in the mean model. Default: 5.

• max_depth Maximum depth of any tree in the ensemble in the mean model.
Default: 10. Can be overridden with -1 which does not enforce any depth
limits on trees.

https://stochtree.ai/R_docs/pkgdown/articles/MultiChain.html

bart 9

• sample_sigma2_leaf Whether or not to update the leaf scale variance pa-
rameter based on IG(sigma2_leaf_shape, sigma2_leaf_scale). Can-
not (currently) be set to true if ncol(leaf_basis_train)>1. Default:
FALSE.

• sigma2_leaf_init Starting value of leaf node scale parameter. Calibrated
internally as 1/num_trees if not set here.

• sigma2_leaf_shape Shape parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale)
leaf node parameter variance model. Default: 3.

• sigma2_leaf_scale Scale parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale)
leaf node parameter variance model. Calibrated internally as 0.5/num_trees
if not set here.

• keep_vars Vector of variable names or column indices denoting variables
that should be included in the forest. Default: NULL.

• drop_vars Vector of variable names or column indices denoting variables
that should be excluded from the forest. Default: NULL. If both drop_vars
and keep_vars are set, drop_vars will be ignored.

• num_features_subsample How many features to subsample when grow-
ing each tree for the GFR algorithm. Defaults to the number of features in
the training dataset.

variance_forest_params

(Optional) A list of variance forest model parameters, each of which has a de-
fault value processed internally, so this argument list is optional.

• num_trees Number of trees in the ensemble for the conditional variance
model. Default: 0. Variance is only modeled using a tree / forest if num_trees
> 0.

• alpha Prior probability of splitting for a tree of depth 0 in the variance
model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 0.95.

• beta Exponent that decreases split probabilities for nodes of depth > 0 in
the variance model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 2.

• min_samples_leaf Minimum allowable size of a leaf, in terms of training
samples, in the variance model. Default: 5.

• max_depth Maximum depth of any tree in the ensemble in the variance
model. Default: 10. Can be overridden with -1 which does not enforce any
depth limits on trees.

• leaf_prior_calibration_param Hyperparameter used to calibrate the
IG(var_forest_prior_shape, var_forest_prior_scale) conditional er-
ror variance model. If var_forest_prior_shape and var_forest_prior_scale
are not set below, this calibration parameter is used to set these values to
num_trees / leaf_prior_calibration_param^2 + 0.5 and num_trees /
leaf_prior_calibration_param^2, respectively. Default: 1.5.

• var_forest_leaf_init Starting value of root forest prediction in con-
ditional (heteroskedastic) error variance model. Calibrated internally as
log(0.6*var(y_train))/num_trees, where y_train is the possibly stan-
dardized outcome, if not set.

10 bart

• var_forest_prior_shape Shape parameter in the IG(var_forest_prior_shape,
var_forest_prior_scale) conditional error variance model (which is only
sampled if num_trees > 0). Calibrated internally as num_trees / leaf_prior_calibration_param^2
+ 0.5 if not set.

• var_forest_prior_scale Scale parameter in the IG(var_forest_prior_shape,
var_forest_prior_scale) conditional error variance model (which is only
sampled if num_trees > 0). Calibrated internally as num_trees / leaf_prior_calibration_param^2
if not set.

• keep_vars Vector of variable names or column indices denoting variables
that should be included in the forest. Default: NULL.

• drop_vars Vector of variable names or column indices denoting variables
that should be excluded from the forest. Default: NULL. If both drop_vars
and keep_vars are set, drop_vars will be ignored.

• num_features_subsample How many features to subsample when grow-
ing each tree for the GFR algorithm. Defaults to the number of features in
the training dataset.

random_effects_params

(Optional) A list of random effects model parameters, each of which has a de-
fault value processed internally, so this argument list is optional.

• model_spec Specification of the random effects model. Options are "cus-
tom" and "intercept_only". If "custom" is specified, then a user-provided
basis must be passed through rfx_basis_train. If "intercept_only" is
specified, a random effects basis of all ones will be dispatched internally
at sampling and prediction time. If "intercept_plus_treatment" is specified,
a random effects basis that combines an "intercept" basis of all ones with
the treatment variable (Z_train) will be dispatched internally at sampling
and prediction time. Default: "custom". If "intercept_only" is specified,
rfx_basis_train and rfx_basis_test (if provided) will be ignored.

• working_parameter_prior_mean Prior mean for the random effects "work-
ing parameter". Default: NULL. Must be a vector whose dimension matches
the number of random effects bases, or a scalar value that will be expanded
to a vector.

• group_parameters_prior_mean Prior mean for the random effects "group
parameters." Default: NULL. Must be a vector whose dimension matches the
number of random effects bases, or a scalar value that will be expanded to
a vector.

• working_parameter_prior_cov Prior covariance matrix for the random
effects "working parameter." Default: NULL. Must be a square matrix whose
dimension matches the number of random effects bases, or a scalar value
that will be expanded to a diagonal matrix.

• group_parameter_prior_cov Prior covariance matrix for the random ef-
fects "group parameters." Default: NULL. Must be a square matrix whose
dimension matches the number of random effects bases, or a scalar value
that will be expanded to a diagonal matrix.

• variance_prior_shape Shape parameter for the inverse gamma prior on
the variance of the random effects "group parameter." Default: 1.

bcf 11

• variance_prior_scale Scale parameter for the inverse gamma prior on
the variance of the random effects "group parameter." Default: 1.

Value

List of sampling outputs and a wrapper around the sampled forests (which can be used for in-
memory prediction on new data, or serialized to JSON on disk).

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]

bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10)

bcf Run BCF for Causal Effect Estimation

Description

Run the Bayesian Causal Forest (BCF) algorithm for regularized causal effect estimation.

Usage

bcf(
X_train,
Z_train,
y_train,
propensity_train = NULL,
rfx_group_ids_train = NULL,

12 bcf

rfx_basis_train = NULL,
X_test = NULL,
Z_test = NULL,
propensity_test = NULL,
rfx_group_ids_test = NULL,
rfx_basis_test = NULL,
num_gfr = 5,
num_burnin = 0,
num_mcmc = 100,
previous_model_json = NULL,
previous_model_warmstart_sample_num = NULL,
general_params = list(),
prognostic_forest_params = list(),
treatment_effect_forest_params = list(),
variance_forest_params = list(),
random_effects_params = list()

)

Arguments

X_train Covariates used to split trees in the ensemble. May be provided either as a
dataframe or a matrix. Matrix covariates will be assumed to be all numeric. Co-
variates passed as a dataframe will be preprocessed based on the variable types
(e.g. categorical columns stored as unordered factors will be one-hot encoded,
categorical columns stored as ordered factors will passed as integers to the core
algorithm, along with the metadata that the column is ordered categorical).

Z_train Vector of (continuous or binary) treatment assignments.
y_train Outcome to be modeled by the ensemble.
propensity_train

(Optional) Vector of propensity scores. If not provided, this will be estimated
from the data.

rfx_group_ids_train

(Optional) Group labels used for an additive random effects model.
rfx_basis_train

(Optional) Basis for "random-slope" regression in an additive random effects
model. If rfx_group_ids_train is provided with a regression basis, an intercept-
only random effects model will be estimated.

X_test (Optional) Test set of covariates used to define "out of sample" evaluation data.
May be provided either as a dataframe or a matrix, but the format of X_test
must be consistent with that of X_train.

Z_test (Optional) Test set of (continuous or binary) treatment assignments.
propensity_test

(Optional) Vector of propensity scores. If not provided, this will be estimated
from the data.

rfx_group_ids_test

(Optional) Test set group labels used for an additive random effects model. We
do not currently support (but plan to in the near future), test set evaluation for
group labels that were not in the training set.

bcf 13

rfx_basis_test (Optional) Test set basis for "random-slope" regression in additive random ef-
fects model.

num_gfr Number of "warm-start" iterations run using the grow-from-root algorithm (He
and Hahn, 2021). Default: 5.

num_burnin Number of "burn-in" iterations of the MCMC sampler. Default: 0.

num_mcmc Number of "retained" iterations of the MCMC sampler. Default: 100.
previous_model_json

(Optional) JSON string containing a previous BCF model. This can be used to
"continue" a sampler interactively after inspecting the samples or to run parallel
chains "warm-started" from existing forest samples. Default: NULL.

previous_model_warmstart_sample_num

(Optional) Sample number from previous_model_json that will be used to
warmstart this BCF sampler. One-indexed (so that the first sample is used for
warm-start by setting previous_model_warmstart_sample_num = 1). Default:
NULL. If num_chains in the general_params list is > 1, then each succes-
sive chain will be initialized from a different sample, counting backwards from
previous_model_warmstart_sample_num. That is, if previous_model_warmstart_sample_num
= 10 and num_chains = 4, then chain 1 will be initialized from sample 10, chain
2 from sample 9, chain 3 from sample 8, and chain 4 from sample 7. If previous_model_json
is provided but previous_model_warmstart_sample_num is NULL, the last
sample in the previous model will be used to initialize the first chain, counting
backwards as noted before. If more chains are requested than there are samples
in previous_model_json, a warning will be raised and only the last sample
will be used.

general_params (Optional) A list of general (non-forest-specific) model parameters, each of
which has a default value processed internally, so this argument list is optional.

• cutpoint_grid_size Maximum size of the "grid" of potential cutpoints to
consider in the GFR algorithm. Default: 100.

• standardize Whether or not to standardize the outcome (and store the
offset / scale in the model object). Default: TRUE.

• sample_sigma2_global Whether or not to update the sigma^2 global error
variance parameter based on IG(sigma2_global_shape, sigma2_global_scale).
Default: TRUE.

• sigma2_global_init Starting value of global error variance parameter.
Calibrated internally as 1.0*var((y_train-mean(y_train))/sd(y_train))
if not set.

• sigma2_global_shape Shape parameter in the IG(sigma2_global_shape,
sigma2_global_scale) global error variance model. Default: 0.

• sigma2_global_scale Scale parameter in the IG(sigma2_global_shape,
sigma2_global_scale) global error variance model. Default: 0.

• variable_weights Numeric weights reflecting the relative probability of
splitting on each variable. Does not need to sum to 1 but cannot be nega-
tive. Defaults to rep(1/ncol(X_train), ncol(X_train)) if not set here.
Note that if the propensity score is included as a covariate in either forest,
its weight will default to 1/ncol(X_train). A workaround if you wish
to provide a custom weight for the propensity score is to include it as a

14 bcf

column in X_train and then set propensity_covariate to 'none' adjust
keep_vars accordingly for the prognostic or treatment_effect forests.

• propensity_covariate Whether to include the propensity score as a co-
variate in either or both of the forests. Enter "none" for neither, "prognostic"
for the prognostic forest, "treatment_effect" for the treatment forest,
and "both" for both forests. If this is not "none" and a propensity score is
not provided, it will be estimated from (X_train, Z_train) using stochtree::bart().
Default: "mu".

• adaptive_coding Whether or not to use an "adaptive coding" scheme in
which a binary treatment variable is not coded manually as (0,1) or (-1,1)
but learned via parameters b_0 and b_1 that attach to the outcome model
[b_0 (1-Z) + b_1 Z] tau(X). This is ignored when Z is not binary.
Default: TRUE.

• control_coding_init Initial value of the "control" group coding parame-
ter. This is ignored when Z is not binary. Default: -0.5.

• treated_coding_init Initial value of the "treatment" group coding pa-
rameter. This is ignored when Z is not binary. Default: 0.5.

• rfx_prior_var Prior on the (diagonals of the) covariance of the additive
group-level random regression coefficients. Must be a vector of length
ncol(rfx_basis_train). Default: rep(1, ncol(rfx_basis_train))

• random_seed Integer parameterizing the C++ random number generator.
If not specified, the C++ random number generator is seeded according to
std::random_device.

• keep_burnin Whether or not "burnin" samples should be included in the
stored samples of forests and other parameters. Default FALSE. Ignored if
num_mcmc = 0.

• keep_gfr Whether or not "grow-from-root" samples should be included in
the stored samples of forests and other parameters. Default FALSE. Ignored
if num_mcmc = 0.

• keep_every How many iterations of the burned-in MCMC sampler should
be run before forests and parameters are retained. Default 1. Setting keep_every
<- k for some k > 1 will "thin" the MCMC samples by retaining every k-th
sample, rather than simply every sample. This can reduce the autocorrela-
tion of the MCMC samples.

• num_chains How many independent MCMC chains should be sampled. If
num_mcmc = 0, this is ignored. If num_gfr = 0, then each chain is run from
root for num_mcmc * keep_every + num_burnin iterations, with num_mcmc
samples retained. If num_gfr > 0, each MCMC chain will be initialized
from a separate GFR ensemble, with the requirement that num_gfr >= num_chains.
Default: 1. Note that if num_chains > 1, the returned model object will
contain samples from all chains, stored consecutively. That is, if there are
4 chains with 100 samples each, the first 100 samples will be from chain 1,
the next 100 samples will be from chain 2, etc... For more detail on working
with multi-chain BCF models, see the multi chain vignette.

• verbose Whether or not to print progress during the sampling loops. De-
fault: FALSE.

https://stochtree.ai/R_docs/pkgdown/articles/MultiChain.html

bcf 15

• probit_outcome_model Whether or not the outcome should be modeled as
explicitly binary via a probit link. If TRUE, y must only contain the values 0
and 1. Default: FALSE.

• num_threads Number of threads to use in the GFR and MCMC algorithms,
as well as prediction. If OpenMP is not available on a user’s setup, this will
default to 1, otherwise to the maximum number of available threads.

prognostic_forest_params

(Optional) A list of prognostic forest model parameters, each of which has a
default value processed internally, so this argument list is optional.

• num_trees Number of trees in the ensemble for the prognostic forest. De-
fault: 250. Must be a positive integer.

• alpha Prior probability of splitting for a tree of depth 0 in the prognostic
forest. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 0.95.

• beta Exponent that decreases split probabilities for nodes of depth > 0
in the prognostic forest. Tree split prior combines alpha and beta via
alpha*(1+node_depth)^-beta. Default: 2.

• min_samples_leaf Minimum allowable size of a leaf, in terms of training
samples, in the prognostic forest. Default: 5.

• max_depth Maximum depth of any tree in the ensemble in the prognostic
forest. Default: 10. Can be overridden with -1 which does not enforce any
depth limits on trees.

• variable_weights Numeric weights reflecting the relative probability of
splitting on each variable in the prognostic forest. Does not need to sum to 1
but cannot be negative. Defaults to rep(1/ncol(X_train), ncol(X_train))
if not set here.

• sample_sigma2_leaf Whether or not to update the leaf scale variance pa-
rameter based on IG(sigma2_leaf_shape, sigma2_leaf_scale).

• sigma2_leaf_init Starting value of leaf node scale parameter. Calibrated
internally as 1/num_trees if not set here.

• sigma2_leaf_shape Shape parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale)
leaf node parameter variance model. Default: 3.

• sigma2_leaf_scale Scale parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale)
leaf node parameter variance model. Calibrated internally as 0.5/num_trees
if not set here.

• keep_vars Vector of variable names or column indices denoting variables
that should be included in the forest. Default: NULL.

• drop_vars Vector of variable names or column indices denoting variables
that should be excluded from the forest. Default: NULL. If both drop_vars
and keep_vars are set, drop_vars will be ignored.

• num_features_subsample How many features to subsample when grow-
ing each tree for the GFR algorithm. Defaults to the number of features in
the training dataset.

treatment_effect_forest_params

(Optional) A list of treatment effect forest model parameters, each of which has
a default value processed internally, so this argument list is optional.

16 bcf

• num_trees Number of trees in the ensemble for the treatment effect forest.
Default: 50. Must be a positive integer.

• alpha Prior probability of splitting for a tree of depth 0 in the treatment ef-
fect forest. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 0.25.

• beta Exponent that decreases split probabilities for nodes of depth > 0 in
the treatment effect forest. Tree split prior combines alpha and beta via
alpha*(1+node_depth)^-beta. Default: 3.

• min_samples_leaf Minimum allowable size of a leaf, in terms of training
samples, in the treatment effect forest. Default: 5.

• max_depth Maximum depth of any tree in the ensemble in the treatment
effect forest. Default: 5. Can be overridden with -1 which does not enforce
any depth limits on trees.

• variable_weights Numeric weights reflecting the relative probability of
splitting on each variable in the treatment effect forest. Does not need
to sum to 1 but cannot be negative. Defaults to rep(1/ncol(X_train),
ncol(X_train)) if not set here.

• sample_sigma2_leaf Whether or not to update the leaf scale variance pa-
rameter based on IG(sigma2_leaf_shape, sigma2_leaf_scale). Can-
not (currently) be set to true if ncol(Z_train)>1. Default: FALSE.

• sigma2_leaf_init Starting value of leaf node scale parameter. Calibrated
internally as 1/num_trees if not set here.

• sigma2_leaf_shape Shape parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale)
leaf node parameter variance model. Default: 3.

• sigma2_leaf_scale Scale parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale)
leaf node parameter variance model. Calibrated internally as 0.5/num_trees
if not set here.

• delta_max Maximum plausible conditional distributional treatment effect
(i.e. P(Y(1) = 1 | X) - P(Y(0) = 1 | X)) when the outcome is binary. Only
used when the outcome is specified as a probit model in general_params.
Must be > 0 and < 1. Default: 0.9. Ignored if sigma2_leaf_init is set
directly, as this parameter is used to calibrate sigma2_leaf_init.

• keep_vars Vector of variable names or column indices denoting variables
that should be included in the forest. Default: NULL.

• drop_vars Vector of variable names or column indices denoting variables
that should be excluded from the forest. Default: NULL. If both drop_vars
and keep_vars are set, drop_vars will be ignored.

• num_features_subsample How many features to subsample when grow-
ing each tree for the GFR algorithm. Defaults to the number of features in
the training dataset.

variance_forest_params

(Optional) A list of variance forest model parameters, each of which has a de-
fault value processed internally, so this argument list is optional.

• num_trees Number of trees in the ensemble for the conditional variance
model. Default: 0. Variance is only modeled using a tree / forest if num_trees
> 0.

bcf 17

• alpha Prior probability of splitting for a tree of depth 0 in the variance
model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 0.95.

• beta Exponent that decreases split probabilities for nodes of depth > 0 in
the variance model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
Default: 2.

• min_samples_leaf Minimum allowable size of a leaf, in terms of training
samples, in the variance model. Default: 5.

• max_depth Maximum depth of any tree in the ensemble in the variance
model. Default: 10. Can be overridden with -1 which does not enforce any
depth limits on trees.

• leaf_prior_calibration_param Hyperparameter used to calibrate the
IG(var_forest_prior_shape, var_forest_prior_scale) conditional er-
ror variance model. If var_forest_prior_shape and var_forest_prior_scale
are not set below, this calibration parameter is used to set these values to
num_trees / leaf_prior_calibration_param^2 + 0.5 and num_trees /
leaf_prior_calibration_param^2, respectively. Default: 1.5.

• variance_forest_init Starting value of root forest prediction in con-
ditional (heteroskedastic) error variance model. Calibrated internally as
log(0.6*var((y_train-mean(y_train))/sd(y_train)))/num_trees if
not set.

• var_forest_prior_shape Shape parameter in the IG(var_forest_prior_shape,
var_forest_prior_scale) conditional error variance model (which is only
sampled if num_trees > 0). Calibrated internally as num_trees / 1.5^2 +
0.5 if not set.

• var_forest_prior_scale Scale parameter in the IG(var_forest_prior_shape,
var_forest_prior_scale) conditional error variance model (which is only
sampled if num_trees > 0). Calibrated internally as num_trees / 1.5^2 if
not set.

• keep_vars Vector of variable names or column indices denoting variables
that should be included in the forest. Default: NULL.

• drop_vars Vector of variable names or column indices denoting variables
that should be excluded from the forest. Default: NULL. If both drop_vars
and keep_vars are set, drop_vars will be ignored.

• num_features_subsample How many features to subsample when grow-
ing each tree for the GFR algorithm. Defaults to the number of features in
the training dataset.

random_effects_params

(Optional) A list of random effects model parameters, each of which has a de-
fault value processed internally, so this argument list is optional.

• model_spec Specification of the random effects model. Options are "cus-
tom", "intercept_only", and "intercept_plus_treatment". If "custom" is spec-
ified, then a user-provided basis must be passed through rfx_basis_train.
If "intercept_only" is specified, a random effects basis of all ones will be
dispatched internally at sampling and prediction time. If "intercept_plus_treatment"
is specified, a random effects basis that combines an "intercept" basis of

18 bcf

all ones with the treatment variable (Z_train) will be dispatched inter-
nally at sampling and prediction time. Default: "custom". If either "inter-
cept_only" or "intercept_plus_treatment" is specified, rfx_basis_train
and rfx_basis_test (if provided) will be ignored.

• working_parameter_prior_mean Prior mean for the random effects "work-
ing parameter". Default: NULL. Must be a vector whose dimension matches
the number of random effects bases, or a scalar value that will be expanded
to a vector.

• group_parameters_prior_mean Prior mean for the random effects "group
parameters." Default: NULL. Must be a vector whose dimension matches the
number of random effects bases, or a scalar value that will be expanded to
a vector.

• working_parameter_prior_cov Prior covariance matrix for the random
effects "working parameter." Default: NULL. Must be a square matrix whose
dimension matches the number of random effects bases, or a scalar value
that will be expanded to a diagonal matrix.

• group_parameter_prior_cov Prior covariance matrix for the random ef-
fects "group parameters." Default: NULL. Must be a square matrix whose
dimension matches the number of random effects bases, or a scalar value
that will be expanded to a diagonal matrix.

• variance_prior_shape Shape parameter for the inverse gamma prior on
the variance of the random effects "group parameter." Default: 1.

• variance_prior_scale Scale parameter for the inverse gamma prior on
the variance of the random effects "group parameter." Default: 1.

Value

List of sampling outputs and a wrapper around the sampled forests (which can be used for in-
memory prediction on new data, or serialized to JSON on disk).

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +

calibrateInverseGammaErrorVariance 19

((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
noise_sd <- 1
y <- mu_x + tau_x*Z + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train, X_test = X_test, Z_test = Z_test,
propensity_test = pi_test, num_gfr = 10,
num_burnin = 0, num_mcmc = 10)

calibrateInverseGammaErrorVariance

Calibrate Inverse Gamma Prior

Description

Calibrate the scale parameter on an inverse gamma prior for the global error variance as in Chipman
et al (2022)

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Chipman, H., George, E., Hahn, R., McCulloch, R., Pratola, M. and Sparapani, R. (2022). Bayesian
Additive Regression Trees, Computational Approaches. In Wiley StatsRef: Statistics Reference
Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels).
https://doi.org/10.1002/9781118445112.stat08288

Usage

calibrateInverseGammaErrorVariance(
y,

20 computeForestLeafIndices

X,
W = NULL,
nu = 3,
quant = 0.9,
standardize = TRUE

)

Arguments

y Outcome to be modeled using BART, BCF or another nonparametric ensemble
method.

X Covariates to be used to partition trees in an ensemble or series of ensemble.

W (Optional) Basis used to define a "leaf regression" model for each decision tree.
The "classic" BART model assumes a constant leaf parameter, which is equiv-
alent to a "leaf regression" on a basis of all ones, though it is not necessary to
pass a vector of ones, here or to the BART function. Default: NULL.

nu The shape parameter for the global error variance’s IG prior. The scale parame-
ter in the Sparapani et al (2021) parameterization is defined as nu*lambda where
lambda is the output of this function. Default: 3.

quant (Optional) Quantile of the inverse gamma prior distribution represented by a
linear-regression-based overestimate of sigma^2. Default: 0.9.

standardize (Optional) Whether or not outcome should be standardized ((y-mean(y))/sd(y))
before calibration of lambda. Default: TRUE.

Value

Value of lambda which determines the scale parameter of the global error variance prior (sigma^2
~ IG(nu,nu*lambda))

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
y <- 10*X[,1] - 20*X[,2] + rnorm(n)
nu <- 3
lambda <- calibrateInverseGammaErrorVariance(y, X, nu = nu)
sigma2hat <- mean(resid(lm(y~X))^2)
mean(var(y)/rgamma(100000, nu, rate = nu*lambda) < sigma2hat)

computeForestLeafIndices

Query Forest Leaf Indices

computeForestLeafIndices 21

Description

Compute and return a vector representation of a forest’s leaf predictions for every observation in a
dataset.

The vector has a "row-major" format that can be easily re-represented as as a CSR sparse matrix:
elements are organized so that the first n elements correspond to leaf predictions for all n observa-
tions in a dataset for the first tree in an ensemble, the next n elements correspond to predictions for
the second tree and so on. The "data" for each element corresponds to a uniquely mapped column
index that corresponds to a single leaf of a single tree (i.e. if tree 1 has 3 leaves, its column indices
range from 0 to 2, and then tree 2’s leaf indices begin at 3, etc...).

Usage

computeForestLeafIndices(
model_object,
covariates,
forest_type = NULL,
propensity = NULL,
forest_inds = NULL

)

Arguments

model_object Object of type bartmodel, bcfmodel, or ForestSamples corresponding to a
BART / BCF model with at least one forest sample, or a low-level ForestSamples
object.

covariates Covariates to use for prediction. Must have the same dimensions / column types
as the data used to train a forest.

forest_type Which forest to use from model_object. Valid inputs depend on the model
type, and whether or not a given forest was sampled in that model.
1. BART

• 'mean': Extracts leaf indices for the mean forest
• 'variance': Extracts leaf indices for the variance forest

2. BCF

• 'prognostic': Extracts leaf indices for the prognostic forest
• 'treatment': Extracts leaf indices for the treatment effect forest
• 'variance': Extracts leaf indices for the variance forest

3. ForestSamples

• NULL: It is not necessary to disambiguate when this function is called di-
rectly on a ForestSamples object. This is the default value of this

propensity (Optional) Propensities used for prediction (BCF-only).

forest_inds (Optional) Indices of the forest sample(s) for which to compute leaf indices. If
not provided, this function will return leaf indices for every sample of a for-
est. This function uses 0-indexing, so the first forest sample corresponds to
forest_num = 0, and so on.

22 computeForestLeafVariances

Value

Vector of size num_obs * num_trees, where num_obs = nrow(covariates) and num_trees is the
number of trees in the relevant forest of model_object.

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
computeForestLeafIndices(bart_model, X, "mean")
computeForestLeafIndices(bart_model, X, "mean", 0)
computeForestLeafIndices(bart_model, X, "mean", c(1,3,9))

computeForestLeafVariances

Query Forest Leaf Scale Parameters

Description

Return each forest’s leaf node scale parameters.

If leaf scale is not sampled for the forest in question, throws an error that the leaf model does not
have a stochastic scale parameter.

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

computeForestLeafVariances(model_object, forest_type, forest_inds = NULL)

Arguments

model_object Object of type bartmodel or bcfmodel corresponding to a BART / BCF model
with at least one forest sample

forest_type Which forest to use from model_object. Valid inputs depend on the model
type, and whether or not a given forest was sampled in that model.
1. BART

• 'mean': Extracts leaf indices for the mean forest
• 'variance': Extracts leaf indices for the variance forest

2. BCF
• 'prognostic': Extracts leaf indices for the prognostic forest
• 'treatment': Extracts leaf indices for the treatment effect forest
• 'variance': Extracts leaf indices for the variance forest

computeForestMaxLeafIndex 23

forest_inds (Optional) Indices of the forest sample(s) for which to compute leaf indices. If
not provided, this function will return leaf indices for every sample of a for-
est. This function uses 0-indexing, so the first forest sample corresponds to
forest_num = 0, and so on.

Value

Vector of size length(forest_inds) with the leaf scale parameter for each requested forest.

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
computeForestLeafVariances(bart_model, "mean")
computeForestLeafVariances(bart_model, "mean", 0)
computeForestLeafVariances(bart_model, "mean", c(1,3,5))

computeForestMaxLeafIndex

Query Forest Max Leaf Index

Description

Compute and return the largest possible leaf index computable by computeForestLeafIndices for
the forests in a designated forest sample container.

Usage

computeForestMaxLeafIndex(model_object, forest_type = NULL, forest_inds = NULL)

Arguments

model_object Object of type bartmodel, bcfmodel, or ForestSamples corresponding to a
BART / BCF model with at least one forest sample, or a low-level ForestSamples
object.

forest_type Which forest to use from model_object. Valid inputs depend on the model
type, and whether or not a
1. BART

• 'mean': Extracts leaf indices for the mean forest
• 'variance': Extracts leaf indices for the variance forest

2. BCF
• 'prognostic': Extracts leaf indices for the prognostic forest
• 'treatment': Extracts leaf indices for the treatment effect forest
• 'variance': Extracts leaf indices for the variance forest

3. ForestSamples

24 compute_bart_posterior_interval

• NULL: It is not necessary to disambiguate when this function is called di-
rectly on a ForestSamples object. This is the default value of this

forest_inds (Optional) Indices of the forest sample(s) for which to compute max leaf indices.
If not provided, this function will return max leaf indices for every sample of a
forest. This function uses 0-indexing, so the first forest sample corresponds to
forest_num = 0, and so on.

Value

Vector containing the largest possible leaf index computable by computeForestLeafIndices for
the forests in a designated forest sample container.

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
computeForestMaxLeafIndex(bart_model, "mean")
computeForestMaxLeafIndex(bart_model, "mean", 0)
computeForestMaxLeafIndex(bart_model, "mean", c(1,3,9))

compute_bart_posterior_interval

Compute BART Posterior Credible Intervals

Description

Compute posterior credible intervals for specified terms from a fitted BART model. Supports inter-
vals for mean functions, variance functions, random effects, and overall outcome predictions.

Usage

compute_bart_posterior_interval(
model_object,
terms,
level = 0.95,
scale = "linear",
X = NULL,
leaf_basis = NULL,
rfx_group_ids = NULL,
rfx_basis = NULL

)

compute_bart_posterior_interval 25

Arguments

model_object A fitted BART or BCF model object of class bartmodel.

terms A character string specifying the model term(s) for which to compute intervals.
Options for BART models are "mean_forest", "variance_forest", "rfx", or
"y_hat".

level A numeric value between 0 and 1 specifying the credible interval level (default
is 0.95 for a 95% credible interval).

scale (Optional) Scale of mean function predictions. Options are "linear", which re-
turns predictions on the original scale of the mean forest / RFX terms, and "prob-
ability", which transforms predictions into a probability of observing y == 1.
"probability" is only valid for models fit with a probit outcome model. Default:
"linear".

X A matrix or data frame of covariates at which to compute the intervals. Required
if the requested term depends on covariates (e.g., mean forest, variance forest,
or overall predictions).

leaf_basis An optional matrix of basis function evaluations for mean forest models with
regression defined in the leaves. Required for "leaf regression" models.

rfx_group_ids An optional vector of group IDs for random effects. Required if the requested
term includes random effects.

rfx_basis An optional matrix of basis function evaluations for random effects. Required if
the requested term includes random effects.

Value

A list containing the lower and upper bounds of the credible interval for the specified term. If
multiple terms are requested, a named list with intervals for each term is returned.

Examples

n <- 100
p <- 5
X <- matrix(rnorm(n * p), nrow = n, ncol = p)
y <- 2 * X[,1] + rnorm(n)
bart_model <- bart(y_train = y, X_train = X)
intervals <- compute_bart_posterior_interval(
model_object = bart_model,
terms = c("mean_forest", "y_hat"),
X = X,
level = 0.90

)

26 compute_bcf_posterior_interval

compute_bcf_posterior_interval

Compute BCF Posterior Credible Intervals

Description

Compute posterior credible intervals for specified terms from a fitted BCF model. Supports intervals
for prognostic forests, CATE forests, variance forests, random effects, and overall mean outcome
predictions.

Usage

compute_bcf_posterior_interval(
model_object,
terms,
level = 0.95,
scale = "linear",
X = NULL,
Z = NULL,
propensity = NULL,
rfx_group_ids = NULL,
rfx_basis = NULL

)

Arguments

model_object A fitted BCF model object of class bcfmodel.

terms A character string specifying the model term(s) for which to compute inter-
vals. Options for BCF models are "prognostic_function", "mu", "cate",
"tau", "variance_forest", "rfx", or "y_hat". Note that "mu" is only differ-
ent from "prognostic_function" if random effects are included with a model
spec of "intercept_only" or "intercept_plus_treatment" and "tau" is
only different from "cate" if random effects are included with a model spec of
"intercept_plus_treatment".

level A numeric value between 0 and 1 specifying the credible interval level (default
is 0.95 for a 95% credible interval).

scale (Optional) Scale of mean function predictions. Options are "linear", which re-
turns predictions on the original scale of the mean forest / RFX terms, and "prob-
ability", which transforms predictions into a probability of observing y == 1.
"probability" is only valid for models fit with a probit outcome model. Default:
"linear".

X (Optional) A matrix or data frame of covariates at which to compute the in-
tervals. Required if the requested term depends on covariates (e.g., prognostic
forest, CATE forest, variance forest, or overall predictions).

Z (Optional) A vector or matrix of treatment assignments. Required if the re-
quested term is "y_hat" (overall predictions).

compute_contrast_bart_model 27

propensity (Optional) A vector or matrix of propensity scores. Required if the underlying
model depends on user-provided propensities.

rfx_group_ids An optional vector of group IDs for random effects. Required if the requested
term includes random effects.

rfx_basis An optional matrix of basis function evaluations for random effects. Required if
the requested term includes random effects.

Value

A list containing the lower and upper bounds of the credible interval for the specified term. If
multiple terms are requested, a named list with intervals for each term is returned.

Examples

n <- 100
p <- 5
X <- matrix(rnorm(n * p), nrow = n, ncol = p)
pi_X <- pnorm(0.5 * X[,1])
Z <- rbinom(n, 1, pi_X)
mu_X <- X[,1]
tau_X <- 0.25 * X[,2]
y <- mu_X + tau_X * Z + rnorm(n)
bcf_model <- bcf(X_train = X, Z_train = Z, y_train = y,

propensity_train = pi_X)
intervals <- compute_bcf_posterior_interval(
model_object = bcf_model,
terms = c("prognostic_function", "cate"),
X = X,
Z = Z,
propensity = pi_X,
level = 0.90

)

compute_contrast_bart_model

Compute Contrast for BART Model

Description

Compute a contrast using a BART model by making two sets of outcome predictions and taking their
difference. This function provides the flexibility to compute any contrast of interest by specifying
covariates, leaf basis, and random effects bases / IDs for both sides of a two term contrast. For
simplicity, we refer to the subtrahend of the contrast as the "control" or Y0 term and the minuend of
the contrast as the Y1 term, though the requested contrast need not match the "control vs treatment"
terminology of a classic two-treatment causal inference problem. We mirror the function calls and
terminology of the predict.bartmodel function, labeling each prediction data term with a 1 to
denote its contribution to the treatment prediction of a contrast and 0 to denote inclusion in the
control prediction.

Only valid when there is either a mean forest or a random effects term in the BART model.

28 compute_contrast_bart_model

Usage

compute_contrast_bart_model(
object,
X_0,
X_1,
leaf_basis_0 = NULL,
leaf_basis_1 = NULL,
rfx_group_ids_0 = NULL,
rfx_group_ids_1 = NULL,
rfx_basis_0 = NULL,
rfx_basis_1 = NULL,
type = "posterior",
scale = "linear"

)

Arguments

object Object of type bart containing draws of a regression forest and associated sam-
pling outputs.

X_0 Covariates used for prediction in the "control" case. Must be a matrix or dataframe.

X_1 Covariates used for prediction in the "treatment" case. Must be a matrix or
dataframe.

leaf_basis_0 (Optional) Bases used for prediction in the "control" case (by e.g. dot product
with leaf values). Default: NULL.

leaf_basis_1 (Optional) Bases used for prediction in the "treatment" case (by e.g. dot product
with leaf values). Default: NULL.

rfx_group_ids_0

(Optional) Test set group labels used for prediction from an additive random
effects model in the "control" case. We do not currently support (but plan to in
the near future), test set evaluation for group labels that were not in the training
set. Must be a vector.

rfx_group_ids_1

(Optional) Test set group labels used for prediction from an additive random
effects model in the "treatment" case. We do not currently support (but plan
to in the near future), test set evaluation for group labels that were not in the
training set. Must be a vector.

rfx_basis_0 (Optional) Test set basis for used for prediction from an additive random effects
model in the "control" case. Must be a matrix or vector.

rfx_basis_1 (Optional) Test set basis for used for prediction from an additive random effects
model in the "treatment" case. Must be a matrix or vector.

type (Optional) Aggregation level of the contrast. Options are "mean", which aver-
ages the contrast evaluations over every draw of a BART model, and "posterior",
which returns the entire matrix of posterior contrast estimates. Default: "poste-
rior".

scale (Optional) Scale of the contrast. Options are "linear", which returns a contrast
on the original scale of the mean forest / RFX terms, and "probability", which

compute_contrast_bcf_model 29

transforms each contrast term into a probability of observing y == 1 before tak-
ing their difference. "probability" is only valid for models fit with a probit out-
come model. Default: "linear".

Value

Contrast matrix or vector, depending on whether type = "mean" or "posterior".

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
W <- matrix(runif(n*1), ncol = 1)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5*W[,1]) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5*W[,1]) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5*W[,1]) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5*W[,1])

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
W_test <- W[test_inds,]
W_train <- W[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, leaf_basis_train = W_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
contrast_test <- compute_contrast_bart_model(

bart_model,
X_0 = X_test,
X_1 = X_test,
leaf_basis_0 = matrix(0, nrow = n_test, ncol = 1),
leaf_basis_1 = matrix(1, nrow = n_test, ncol = 1),
type = "posterior",
scale = "linear"

)

compute_contrast_bcf_model

Compute Contrast for BCF Model

30 compute_contrast_bcf_model

Description

Compute a contrast using a BCF model by making two sets of outcome predictions and taking their
difference. For simple BCF models with binary treatment, this will yield the same prediction as
requesting terms = "cate" in the predict.bcfmodel function. For more general models, such as
models with continuous / multivariate treatments or an additive random effects term with a coef-
ficient on the treatment, this function provides the flexibility to compute a any contrast of interest
by specifying covariates, treatment, and random effects bases and IDs for both sides of a two term
contrast. For simplicity, we refer to the subtrahend of the contrast as the "control" or Y0 term and
the minuend of the contrast as the Y1 term, though the requested contrast need not match the "con-
trol vs treatment" terminology of a classic two-arm experiment. We mirror the function calls and
terminology of the predict.bcfmodel function, labeling each prediction data term with a 1 to de-
note its contribution to the treatment prediction of a contrast and 0 to denote inclusion in the control
prediction.

Usage

compute_contrast_bcf_model(
object,
X_0,
X_1,
Z_0,
Z_1,
propensity_0 = NULL,
propensity_1 = NULL,
rfx_group_ids_0 = NULL,
rfx_group_ids_1 = NULL,
rfx_basis_0 = NULL,
rfx_basis_1 = NULL,
type = "posterior",
scale = "linear"

)

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model
and associated sampling outputs.

X_0 Covariates used for prediction in the "control" case. Must be a matrix or dataframe.

X_1 Covariates used for prediction in the "treatment" case. Must be a matrix or
dataframe.

Z_0 Treatments used for prediction in the "control" case. Must be a matrix or vector.

Z_1 Treatments used for prediction in the "treatment" case. Must be a matrix or
vector.

propensity_0 (Optional) Propensities used for prediction in the "control" case. Must be a
matrix or vector.

propensity_1 (Optional) Propensities used for prediction in the "treatment" case. Must be a
matrix or vector.

compute_contrast_bcf_model 31

rfx_group_ids_0

(Optional) Test set group labels used for prediction from an additive random
effects model in the "control" case. We do not currently support (but plan to in
the near future), test set evaluation for group labels that were not in the training
set. Must be a vector.

rfx_group_ids_1

(Optional) Test set group labels used for prediction from an additive random
effects model in the "treatment" case. We do not currently support (but plan
to in the near future), test set evaluation for group labels that were not in the
training set. Must be a vector.

rfx_basis_0 (Optional) Test set basis for used for prediction from an additive random effects
model in the "control" case. Must be a matrix or vector.

rfx_basis_1 (Optional) Test set basis for used for prediction from an additive random effects
model in the "treatment" case. Must be a matrix or vector.

type (Optional) Aggregation level of the contrast. Options are "mean", which aver-
ages the contrast evaluations over every draw of a BCF model, and "posterior",
which returns the entire matrix of posterior contrast estimates. Default: "poste-
rior".

scale (Optional) Scale of the contrast. Options are "linear", which returns a contrast
on the original scale of the mean forest / RFX terms, and "probability", which
transforms each contrast term into a probability of observing y == 1 before tak-
ing their difference. "probability" is only valid for models fit with a probit out-
come model. Default: "linear".

Value

List of prediction matrices or single prediction matrix / vector, depending on the terms requested.

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

32 convertPreprocessorToJson

)
Z <- rbinom(n, 1, pi_x)
noise_sd <- 1
y <- mu_x + tau_x*Z + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train, num_gfr = 10,
num_burnin = 0, num_mcmc = 10)

tau_hat_test <- compute_contrast_bcf_model(
bcf_model, X_0=X_test, X_1=X_test, Z_0=rep(0, n_test), Z_1=rep(1, n_test),
propensity_0 = pi_test, propensity_1 = pi_test

)

convertPreprocessorToJson

Convert Covariate Preprocessor to CppJson

Description

Convert the persistent aspects of a covariate preprocessor to (in-memory) C++ JSON object

Usage

convertPreprocessorToJson(object)

Arguments

object List containing information on variables, including train set categories for cate-
gorical variables

Value

wrapper around in-memory C++ JSON object

CppJson 33

Examples

cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json <- convertPreprocessorToJson(preprocess_list$metadata)

CppJson JSON C++ Object Wrapper

Description

Wrapper around a C++ nlohmann::json object

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

json_ptr External pointer to a C++ nlohmann::json object

num_forests Number of forests in the nlohmann::json object

forest_labels Names of forest objects in the overall nlohmann::json object

num_rfx Number of random effects terms in the nlohman::json object

rfx_container_labels Names of rfx container objects in the overall nlohmann::json object

rfx_mapper_labels Names of rfx label mapper objects in the overall nlohmann::json object

rfx_groupid_labels Names of rfx group id objects in the overall nlohmann::json object

Methods

Public methods:
• CppJson$new()

• CppJson$add_forest()

• CppJson$add_random_effects()

• CppJson$add_scalar()

• CppJson$add_integer()

• CppJson$add_boolean()

• CppJson$add_string()

• CppJson$add_vector()

• CppJson$add_integer_vector()

• CppJson$add_string_vector()

• CppJson$add_list()

• CppJson$add_string_list()

• CppJson$get_scalar()

34 CppJson

• CppJson$get_integer()

• CppJson$get_boolean()

• CppJson$get_string()

• CppJson$get_vector()

• CppJson$get_integer_vector()

• CppJson$get_string_vector()

• CppJson$get_numeric_list()

• CppJson$get_string_list()

• CppJson$return_json_string()

• CppJson$save_file()

• CppJson$load_from_file()

• CppJson$load_from_string()

Method new(): Create a new CppJson object.

Usage:
CppJson$new()

Returns: A new CppJson object.

Method add_forest(): Convert a forest container to json and add to the current CppJson object

Usage:
CppJson$add_forest(forest_samples)

Arguments:
forest_samples ForestSamples R class

Returns: None

Method add_random_effects(): Convert a random effects container to json and add to the
current CppJson object

Usage:
CppJson$add_random_effects(rfx_samples)

Arguments:
rfx_samples RandomEffectSamples R class

Returns: None

Method add_scalar(): Add a scalar to the json object under the name "field_name" (with
optional subfolder "subfolder_name")

Usage:
CppJson$add_scalar(field_name, field_value, subfolder_name = NULL)

Arguments:
field_name The name of the field to be added to json
field_value Numeric value of the field to be added to json
subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

CppJson 35

Method add_integer(): Add a scalar to the json object under the name "field_name" (with
optional subfolder "subfolder_name")

Usage:
CppJson$add_integer(field_name, field_value, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json
field_value Integer value of the field to be added to json
subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_boolean(): Add a boolean value to the json object under the name "field_name"
(with optional subfolder "subfolder_name")

Usage:
CppJson$add_boolean(field_name, field_value, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json
field_value Numeric value of the field to be added to json
subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_string(): Add a string value to the json object under the name "field_name" (with
optional subfolder "subfolder_name")

Usage:
CppJson$add_string(field_name, field_value, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json
field_value Numeric value of the field to be added to json
subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_vector(): Add a vector to the json object under the name "field_name" (with
optional subfolder "subfolder_name")

Usage:
CppJson$add_vector(field_name, field_vector, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json
field_vector Vector to be stored in json
subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_integer_vector(): Add an integer vector to the json object under the name
"field_name" (with optional subfolder "subfolder_name")

36 CppJson

Usage:
CppJson$add_integer_vector(field_name, field_vector, subfolder_name = NULL)

Arguments:
field_name The name of the field to be added to json
field_vector Vector to be stored in json
subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_string_vector(): Add an array to the json object under the name "field_name"
(with optional subfolder "subfolder_name")

Usage:
CppJson$add_string_vector(field_name, field_vector, subfolder_name = NULL)

Arguments:
field_name The name of the field to be added to json
field_vector Character vector to be stored in json
subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_list(): Add a list of vectors (as an object map of arrays) to the json object under
the name "field_name"

Usage:
CppJson$add_list(field_name, field_list)

Arguments:
field_name The name of the field to be added to json
field_list List to be stored in json

Returns: None

Method add_string_list(): Add a list of vectors (as an object map of arrays) to the json
object under the name "field_name"

Usage:
CppJson$add_string_list(field_name, field_list)

Arguments:
field_name The name of the field to be added to json
field_list List to be stored in json

Returns: None

Method get_scalar(): Retrieve a scalar value from the json object under the name "field_name"
(with optional subfolder "subfolder_name")

Usage:
CppJson$get_scalar(field_name, subfolder_name = NULL)

Arguments:
field_name The name of the field to be accessed from json

CppJson 37

subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored

Returns: None

Method get_integer(): Retrieve a integer value from the json object under the name "field_name"
(with optional subfolder "subfolder_name")

Usage:
CppJson$get_integer(field_name, subfolder_name = NULL)

Arguments:

field_name The name of the field to be accessed from json
subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored

Returns: None

Method get_boolean(): Retrieve a boolean value from the json object under the name "field_name"
(with optional subfolder "subfolder_name")

Usage:
CppJson$get_boolean(field_name, subfolder_name = NULL)

Arguments:

field_name The name of the field to be accessed from json
subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored

Returns: None

Method get_string(): Retrieve a string value from the json object under the name "field_name"
(with optional subfolder "subfolder_name")

Usage:
CppJson$get_string(field_name, subfolder_name = NULL)

Arguments:

field_name The name of the field to be accessed from json
subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored

Returns: None

Method get_vector(): Retrieve a vector from the json object under the name "field_name"
(with optional subfolder "subfolder_name")

Usage:
CppJson$get_vector(field_name, subfolder_name = NULL)

Arguments:

field_name The name of the field to be accessed from json
subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored

Returns: None

Method get_integer_vector(): Retrieve an integer vector from the json object under the
name "field_name" (with optional subfolder "subfolder_name")

Usage:

38 CppJson

CppJson$get_integer_vector(field_name, subfolder_name = NULL)

Arguments:
field_name The name of the field to be accessed from json
subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored

Returns: None

Method get_string_vector(): Retrieve a character vector from the json object under the name
"field_name" (with optional subfolder "subfolder_name")

Usage:
CppJson$get_string_vector(field_name, subfolder_name = NULL)

Arguments:
field_name The name of the field to be accessed from json
subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored

Returns: None

Method get_numeric_list(): Reconstruct a list of numeric vectors from the json object stored
under "field_name"

Usage:
CppJson$get_numeric_list(field_name, key_names)

Arguments:
field_name The name of the field to be added to json
key_names Vector of names of list elements (each of which is a vector)

Returns: None

Method get_string_list(): Reconstruct a list of string vectors from the json object stored
under "field_name"

Usage:
CppJson$get_string_list(field_name, key_names)

Arguments:
field_name The name of the field to be added to json
key_names Vector of names of list elements (each of which is a vector)

Returns: None

Method return_json_string(): Convert a JSON object to in-memory string

Usage:
CppJson$return_json_string()

Returns: JSON string

Method save_file(): Save a json object to file

Usage:
CppJson$save_file(filename)

Arguments:

CppRNG 39

filename String of filepath, must end in ".json"

Returns: None

Method load_from_file(): Load a json object from file

Usage:
CppJson$load_from_file(filename)

Arguments:
filename String of filepath, must end in ".json"

Returns: None

Method load_from_string(): Load a json object from string

Usage:
CppJson$load_from_string(json_string)

Arguments:
json_string JSON string dump

Returns: None

CppRNG Random Number Generator C++ Wrapper

Description

Wrapper around a C++ random number generator object (for reproducibility). The class persists a
C++ random number generator throughout an R session to ensure a given seed generates the same
outputs (on the same OS). If no seed is provided, the C++ random number generator is initialized
using std::random_device.

Public fields

rng_ptr External pointer to a C++ std::mt19937 class

Methods

Public methods:
• CppRNG$new()

Method new(): Create a new CppRNG object.

Usage:
CppRNG$new(random_seed = -1)

Arguments:
random_seed (Optional) random seed for sampling

Returns: A new CppRNG object.

40 createBARTModelFromCombinedJson

createBARTModelFromCombinedJson

Convert JSON List to Single BART Model

Description

Convert a list of (in-memory) JSON representations of a BART model to a single combined BART
model object which can be used for prediction, etc...

Usage

createBARTModelFromCombinedJson(json_object_list)

Arguments

json_object_list

List of objects of type CppJson containing Json representation of a BART model

Value

Object of type bartmodel

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json <- list(saveBARTModelToJson(bart_model))
bart_model_roundtrip <- createBARTModelFromCombinedJson(bart_json)

createBARTModelFromCombinedJsonString 41

createBARTModelFromCombinedJsonString

Convert JSON String List to Single BART Model

Description

Convert a list of (in-memory) JSON strings that represent BART models to a single combined BART
model object which can be used for prediction, etc...

Usage

createBARTModelFromCombinedJsonString(json_string_list)

Arguments

json_string_list

List of JSON strings which can be parsed to objects of type CppJson containing
Json representation of a BART model

Value

Object of type bartmodel

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json_string_list <- list(saveBARTModelToJsonString(bart_model))
bart_model_roundtrip <- createBARTModelFromCombinedJsonString(bart_json_string_list)

42 createBARTModelFromJson

createBARTModelFromJson

Convert JSON to BART Model

Description

Convert an (in-memory) JSON representation of a BART model to a BART model object which can
be used for prediction, etc...

Usage

createBARTModelFromJson(json_object)

Arguments

json_object Object of type CppJson containing Json representation of a BART model

Value

Object of type bartmodel

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json <- saveBARTModelToJson(bart_model)
bart_model_roundtrip <- createBARTModelFromJson(bart_json)

createBARTModelFromJsonFile 43

createBARTModelFromJsonFile

Convert JSON File to BART Model

Description

Convert a JSON file containing sample information on a trained BART model to a BART model
object which can be used for prediction, etc...

Usage

createBARTModelFromJsonFile(json_filename)

Arguments

json_filename String of filepath, must end in ".json"

Value

Object of type bartmodel

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
tmpjson <- tempfile(fileext = ".json")
saveBARTModelToJsonFile(bart_model, file.path(tmpjson))
bart_model_roundtrip <- createBARTModelFromJsonFile(file.path(tmpjson))
unlink(tmpjson)

44 createBARTModelFromJsonString

createBARTModelFromJsonString

Convert JSON String to BART Model

Description

Convert a JSON string containing sample information on a trained BART model to a BART model
object which can be used for prediction, etc...

Usage

createBARTModelFromJsonString(json_string)

Arguments

json_string JSON string dump

Value

Object of type bartmodel

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json <- saveBARTModelToJsonString(bart_model)
bart_model_roundtrip <- createBARTModelFromJsonString(bart_json)
y_hat_mean_roundtrip <- rowMeans(predict(bart_model_roundtrip, X=X_train)$y_hat)

createBCFModelFromCombinedJson 45

createBCFModelFromCombinedJson

Convert JSON List to BCF Model

Description

Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF
model object which can be used for prediction, etc...

Usage

createBCFModelFromCombinedJson(json_object_list)

Arguments

json_object_list

List of objects of type CppJson containing Json representation of a BCF model

Value

Object of type bcfmodel

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)

46 createBCFModelFromCombinedJsonString

rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10)

bcf_json_list <- list(saveBCFModelToJson(bcf_model))
bcf_model_roundtrip <- createBCFModelFromCombinedJson(bcf_json_list)

createBCFModelFromCombinedJsonString

Convert JSON String List to BCF Model

Description

Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF
model object which can be used for prediction, etc...

Usage

createBCFModelFromCombinedJsonString(json_string_list)

createBCFModelFromCombinedJsonString 47

Arguments

json_string_list

List of JSON strings which can be parsed to objects of type CppJson containing
Json representation of a BCF model

Value

Object of type bcfmodel

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]

48 createBCFModelFromJson

y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10)

bcf_json_string_list <- list(saveBCFModelToJsonString(bcf_model))
bcf_model_roundtrip <- createBCFModelFromCombinedJsonString(bcf_json_string_list)

createBCFModelFromJson

Convert JSON to BCF Model

Description

Convert an (in-memory) JSON representation of a BCF model to a BCF model object which can be
used for prediction, etc...

Usage

createBCFModelFromJson(json_object)

Arguments

json_object Object of type CppJson containing Json representation of a BCF model

Value

Object of type bcfmodel

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +

createBCFModelFromJson 49

((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
mu_params <- list(sample_sigma2_leaf = TRUE)
tau_params <- list(sample_sigma2_leaf = FALSE)
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,

50 createBCFModelFromJsonFile

Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10,
prognostic_forest_params = mu_params,
treatment_effect_forest_params = tau_params)

bcf_json <- saveBCFModelToJson(bcf_model)
bcf_model_roundtrip <- createBCFModelFromJson(bcf_json)

createBCFModelFromJsonFile

Convert JSON File to BCF Model

Description

Convert a JSON file containing sample information on a trained BCF model to a BCF model object
which can be used for prediction, etc...

Usage

createBCFModelFromJsonFile(json_filename)

Arguments

json_filename String of filepath, must end in ".json"

Value

Object of type bcfmodel

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +

createBCFModelFromJsonFile 51

((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
mu_params <- list(sample_sigma2_leaf = TRUE)
tau_params <- list(sample_sigma2_leaf = FALSE)
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10,
prognostic_forest_params = mu_params,
treatment_effect_forest_params = tau_params)

tmpjson <- tempfile(fileext = ".json")
saveBCFModelToJsonFile(bcf_model, file.path(tmpjson))
bcf_model_roundtrip <- createBCFModelFromJsonFile(file.path(tmpjson))
unlink(tmpjson)

52 createBCFModelFromJsonString

createBCFModelFromJsonString

Convert JSON String to BCF Model

Description

Convert a JSON string containing sample information on a trained BCF model to a BCF model
object which can be used for prediction, etc...

Usage

createBCFModelFromJsonString(json_string)

Arguments

json_string JSON string dump

Value

Object of type bcfmodel

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))

createCppJson 53

rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10)

bcf_json <- saveBCFModelToJsonString(bcf_model)
bcf_model_roundtrip <- createBCFModelFromJsonString(bcf_json)

createCppJson Create CppJson Object

Description

Create a new (empty) C++ Json object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createCppJson()

54 createCppJsonFile

Value

CppJson object

Examples

example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)

createCppJsonFile Create CppJson Object from File

Description

Create a C++ Json object from a Json file

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createCppJsonFile(json_filename)

Arguments

json_filename Name of file to read. Must end in .json.

Value

CppJson object

Examples

example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)
tmpjson <- tempfile(fileext = ".json")
example_json$save_file(file.path(tmpjson))
example_json_roundtrip <- createCppJsonFile(file.path(tmpjson))
unlink(tmpjson)

createCppJsonString 55

createCppJsonString Create CppJson Object from String

Description

Create a C++ Json object from a Json string

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createCppJsonString(json_string)

Arguments

json_string JSON string dump

Value

CppJson object

Examples

example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)
example_json_string <- example_json$return_json_string()
example_json_roundtrip <- createCppJsonString(example_json_string)

createCppRNG Create CppRNG Object

Description

Create an R class that wraps a C++ random number generator

Usage

createCppRNG(random_seed = -1)

Arguments

random_seed (Optional) random seed for sampling

56 createForest

Value

CppRng object

Examples

rng <- createCppRNG(1234)
rng <- createCppRNG()

createForest Create Forest Object

Description

Create a forest

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createForest(
num_trees,
leaf_dimension = 1,
is_leaf_constant = FALSE,
is_exponentiated = FALSE

)

Arguments

num_trees Number of trees in the forest
leaf_dimension Dimensionality of the outcome model
is_leaf_constant

Whether leaf is constant
is_exponentiated

Whether forest predictions should be exponentiated before being returned

Value

Forest object

Examples

num_trees <- 100
leaf_dimension <- 2
is_leaf_constant <- FALSE
is_exponentiated <- FALSE
forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)

createForestDataset 57

createForestDataset Create ForestDataset Object

Description

Create a forest dataset object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createForestDataset(covariates, basis = NULL, variance_weights = NULL)

Arguments

covariates Matrix of covariates

basis (Optional) Matrix of bases used to define a leaf regression
variance_weights

(Optional) Vector of observation-specific variance weights

Value

ForestDataset object

Examples

covariate_matrix <- matrix(runif(10*100), ncol = 10)
basis_matrix <- matrix(rnorm(3*100), ncol = 3)
weight_vector <- rnorm(100)
forest_dataset <- createForestDataset(covariate_matrix)
forest_dataset <- createForestDataset(covariate_matrix, basis_matrix)
forest_dataset <- createForestDataset(covariate_matrix, basis_matrix, weight_vector)

createForestModel Create ForestModel Object

Description

Create a forest model object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

58 createForestModelConfig

Usage

createForestModel(forest_dataset, forest_model_config, global_model_config)

Arguments

forest_dataset ForestDataset object, used to initialize forest sampling data structures
forest_model_config

ForestModelConfig object containing forest model parameters and settings
global_model_config

GlobalModelConfig object containing global model parameters and settings

Value

ForestModel object

Examples

num_trees <- 100
n <- 100
p <- 10
alpha <- 0.95
beta <- 2.0
min_samples_leaf <- 2
max_depth <- 10
feature_types <- as.integer(rep(0, p))
X <- matrix(runif(n*p), ncol = p)
forest_dataset <- createForestDataset(X)
forest_model_config <- createForestModelConfig(feature_types=feature_types,

num_trees=num_trees, num_features=p,
num_observations=n, alpha=alpha, beta=beta,

min_samples_leaf=min_samples_leaf,
max_depth=max_depth, leaf_model_type=1)

global_model_config <- createGlobalModelConfig(global_error_variance=1.0)
forest_model <- createForestModel(forest_dataset, forest_model_config, global_model_config)

createForestModelConfig

Create ForestModelConfig Object

Description

Create a forest model config object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

createForestModelConfig 59

Usage

createForestModelConfig(
feature_types = NULL,
sweep_update_indices = NULL,
num_trees = NULL,
num_features = NULL,
num_observations = NULL,
variable_weights = NULL,
leaf_dimension = 1,
alpha = 0.95,
beta = 2,
min_samples_leaf = 5,
max_depth = -1,
leaf_model_type = 1,
leaf_model_scale = NULL,
variance_forest_shape = 1,
variance_forest_scale = 1,
cutpoint_grid_size = 100,
num_features_subsample = NULL

)

Arguments

feature_types Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered
categorical, 2 = unordered categorical)

sweep_update_indices

Vector of (0-indexed) indices of trees to update in a sweep

num_trees Number of trees in the forest being sampled

num_features Number of features in training dataset
num_observations

Number of observations in training dataset
variable_weights

Vector specifying sampling probability for all p covariates in ForestDataset

leaf_dimension Dimension of the leaf model (default: 1)

alpha Root node split probability in tree prior (default: 0.95)

beta Depth prior penalty in tree prior (default: 2.0)
min_samples_leaf

Minimum number of samples in a tree leaf (default: 5)

max_depth Maximum depth of any tree in the ensemble in the model. Setting to -1 does
not enforce any depth limits on trees. Default: -1.

leaf_model_type

Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf
regression, 2 = multivariate leaf regression). Default: 0.

leaf_model_scale

Scale parameter used in Gaussian leaf models (can either be a scalar or a q
x q matrix, where q is the dimensionality of the basis and is only >1 when

60 createForestSamples

leaf_model_int = 2). Calibrated internally as 1/num_trees, propagated along
diagonal if needed for multivariate leaf models.

variance_forest_shape

Shape parameter for IG leaf models (applicable when leaf_model_type = 3).
Default: 1.

variance_forest_scale

Scale parameter for IG leaf models (applicable when leaf_model_type = 3).
Default: 1.

cutpoint_grid_size

Number of unique cutpoints to consider (default: 100)
num_features_subsample

Number of features to subsample for the GFR algorithm

Value

ForestModelConfig object

Examples

config <- createForestModelConfig(num_trees = 10, num_features = 5, num_observations = 100)

createForestSamples Create ForestSamples Object

Description

Create a container of forest samples

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createForestSamples(
num_trees,
leaf_dimension = 1,
is_leaf_constant = FALSE,
is_exponentiated = FALSE

)

Arguments

num_trees Number of trees
leaf_dimension Dimensionality of the outcome model
is_leaf_constant

Whether leaf is constant
is_exponentiated

Whether forest predictions should be exponentiated before being returned

createGlobalModelConfig 61

Value

ForestSamples object

Examples

num_trees <- 100
leaf_dimension <- 2
is_leaf_constant <- FALSE
is_exponentiated <- FALSE
forest_samples <- createForestSamples(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)

createGlobalModelConfig

Create GlobalModelConfig Object

Description

Create a global model config object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createGlobalModelConfig(global_error_variance = 1)

Arguments

global_error_variance

Global error variance parameter (default: 1.0)

Value

GlobalModelConfig object

Examples

config <- createGlobalModelConfig(global_error_variance = 100)

62 createPreprocessorFromJson

createOutcome Create Outcome Object

Description

Create an outcome object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createOutcome(outcome)

Arguments

outcome Vector of outcome values

Value

Outcome object

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
outcome <- createOutcome(y)

createPreprocessorFromJson

Reload Covariate Preprocessor from JSON String

Description

Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor

Usage

createPreprocessorFromJson(json_object)

Arguments

json_object in-memory wrapper around JSON C++ object containing covariate preprocessor
metadata

createPreprocessorFromJsonString 63

Value

Preprocessor object that can be used with the preprocessPredictionData function

Examples

cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json <- convertPreprocessorToJson(preprocess_list$metadata)
preprocessor_roundtrip <- createPreprocessorFromJson(preprocessor_json)

createPreprocessorFromJsonString

Reload Covariate Preprocessor from JSON String

Description

Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor

Usage

createPreprocessorFromJsonString(json_string)

Arguments

json_string in-memory JSON string containing covariate preprocessor metadata

Value

Preprocessor object that can be used with the preprocessPredictionData function

Examples

cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json_string <- savePreprocessorToJsonString(preprocess_list$metadata)
preprocessor_roundtrip <- createPreprocessorFromJsonString(preprocessor_json_string)

64 createRandomEffectSamples

createRandomEffectSamples

Create RandomEffectSamples Object

Description

Create a RandomEffectSamples object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createRandomEffectSamples(num_components, num_groups, random_effects_tracker)

Arguments

num_components Number of "components" or bases defining the random effects regression

num_groups Number of random effects groups

random_effects_tracker

Object of type RandomEffectsTracker

Value

RandomEffectSamples object

Examples

n <- 100
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)

createRandomEffectsDataset 65

createRandomEffectsDataset

Create RandomEffectsDataset Object

Description

Create a random effects dataset object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createRandomEffectsDataset(group_labels, basis, variance_weights = NULL)

Arguments

group_labels Vector of group labels
basis Matrix of bases used to define the random effects regression (for an intercept-

only model, pass an array of ones)
variance_weights

(Optional) Vector of observation-specific variance weights

Value

RandomEffectsDataset object

Examples

rfx_group_ids <- sample(1:2, size = 100, replace = TRUE)
rfx_basis <- matrix(rnorm(3*100), ncol = 3)
weight_vector <- rnorm(100)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis, weight_vector)

createRandomEffectsModel

Create RandomEffectsModel Object

Description

Create a RandomEffectsModel object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

66 createRandomEffectsTracker

Usage

createRandomEffectsModel(num_components, num_groups)

Arguments

num_components Number of "components" or bases defining the random effects regression

num_groups Number of random effects groups

Value

RandomEffectsModel object

Examples

n <- 100
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)

createRandomEffectsTracker

Create RandomEffectsTracker Object

Description

Create a RandomEffectsTracker object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

createRandomEffectsTracker(rfx_group_indices)

Arguments

rfx_group_indices

Integer indices indicating groups used to define random effects

Value

RandomEffectsTracker object

extract_parameter 67

Examples

n <- 100
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)

extract_parameter Extract Parameter Samples Generic Function

Description

Generic function for extracting parameter samples from a model object (BCF, BART, etc...)

Usage

extract_parameter(object, term)

Arguments

object Fitted model object from which to extract parameter samples

term Name of the parameter to extract (e.g., "sigma2", "y_hat_train", etc.)

Value

Parameter sample array

Examples

n <- 100
p <- 10
X <- matrix(runif(n*p), ncol = p)
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- rep(1.0, n)
y <- (-5 + 10*(X[,1] > 0.5)) + (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
bart_model <- bart(X_train=X, y_train=y, rfx_group_ids_train=rfx_group_ids,

rfx_basis_train = rfx_basis, num_gfr=0, num_mcmc=10)
sigma2_samples <- extract_parameter(bart_model, "sigma2")

68 extract_parameter.bartmodel

extract_parameter.bartmodel

Extract BART Parameter Samples.

Description

Extract a vector, matrix or array of parameter samples from a BART model by name. Random
effects are handled by a separate getRandomEffectSamples function due to the complexity of the
random effects parameters. If the requested model term is not found, an error is thrown. The
following conventions are used for parameter names:

• Global error variance: "sigma2", "global_error_scale", "sigma2_global"

• Leaf scale: "sigma2_leaf", "leaf_scale"

• In-sample mean function predictions: "y_hat_train"

• Test set mean function predictions: "y_hat_test"

• In-sample variance forest predictions: "sigma2_x_train", "var_x_train"

• Test set variance forest predictions: "sigma2_x_test", "var_x_test"

Usage

S3 method for class 'bartmodel'
extract_parameter(object, term)

Arguments

object Object of type bartmodel containing draws of a BART model and associated
sampling outputs.

term Name of the parameter to extract (e.g., "sigma2", "y_hat_train", etc.)

Value

Array of parameter samples. If the underlying parameter is a scalar, this will be a vector of length
num_samples. If the underlying parameter is vector-valued, this will be (parameter_dimension x
num_samples) matrix, and if the underlying parameter is multidimensional, this will be an array of
dimension (parameter_dimension_1 x parameter_dimension_2 x ... x num_samples).

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

extract_parameter.bcfmodel 69

)
snr <- 3
group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[group_ids,] * rfx_basis)
E_y <- f_XW + rfx_term
y <- E_y + rnorm(n, 0, 1)*(sd(E_y)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
rfx_group_ids_test <- group_ids[test_inds]
rfx_group_ids_train <- group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test,

rfx_group_ids_train = rfx_group_ids_train,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_train = rfx_basis_train,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10)

sigma2_samples <- extract_parameter(bart_model, "sigma2")

extract_parameter.bcfmodel

Extract BCF Parameter Samples

Description

Extract a vector, matrix or array of parameter samples from a BCF model by name. Random effects
are handled by a separate getRandomEffectSamples function due to the complexity of the random
effects parameters. If the requested model term is not found, an error is thrown. The following
conventions are used for parameter names:

• Global error variance: "sigma2", "global_error_scale", "sigma2_global"

• Prognostic forest leaf scale: "sigma2_leaf_mu", "leaf_scale_mu", "mu_leaf_scale"

• Treatment effect forest leaf scale: "sigma2_leaf_tau", "leaf_scale_tau", "tau_leaf_scale"

• Adaptive coding parameters: "adaptive_coding" (returns both the control and treated pa-
rameters jointly, with control in the first row and treated in the second row)

• In-sample mean function predictions: "y_hat_train"

70 extract_parameter.bcfmodel

• Test set mean function predictions: "y_hat_test"

• In-sample treatment effect forest predictions: "tau_hat_train"

• Test set treatment effect forest predictions: "tau_hat_test"

• In-sample variance forest predictions: "sigma2_x_train", "var_x_train"

• Test set variance forest predictions: "sigma2_x_test", "var_x_test"

Usage

S3 method for class 'bcfmodel'
extract_parameter(object, term)

Arguments

object Object of type bcfmodel containing draws of a BCF model and associated sam-
pling outputs.

term Name of the parameter to extract (e.g., "sigma2", "y_hat_train", etc.)

Value

Array of parameter samples. If the underlying parameter is a scalar, this will be a vector of length
num_samples. If the underlying parameter is vector-valued, this will be (parameter_dimension x
num_samples) matrix, and if the underlying parameter is multidimensional, this will be an array of
dimension (parameter_dimension_1 x parameter_dimension_2 x ... x num_samples).

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3

Forest 71

rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
bcf_model <- bcf(X_train = X, y_train = y, Z_train = Z,

rfx_group_ids_train = rfx_group_ids,
rfx_basis_train = rfx_basis,
num_gfr = 10, num_burnin = 0, num_mcmc = 10)

sigma2_samples <- extract_parameter(bcf_model, "sigma2")

Forest Forest C++ Wrapper

Description

Wrapper around a C++ class that stores a single ensemble of decision trees (often treated as the
"active forest" / current state of a forest term in a sampling loop in R)

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

forest_ptr External pointer to a C++ TreeEnsemble class

internal_forest_is_empty Whether the forest has not yet been "initialized" such that its predict
function can be called.

Methods

Public methods:
• Forest$new()

• Forest$merge_forest()

• Forest$add_constant()

• Forest$multiply_constant()

• Forest$predict()

• Forest$predict_raw()

• Forest$set_root_leaves()

• Forest$prepare_for_sampler()

• Forest$adjust_residual()

• Forest$num_trees()

• Forest$leaf_dimension()

• Forest$is_constant_leaf()

• Forest$is_exponentiated()

72 Forest

• Forest$add_numeric_split_tree()

• Forest$get_tree_leaves()

• Forest$get_tree_split_counts()

• Forest$get_forest_split_counts()

• Forest$tree_max_depth()

• Forest$average_max_depth()

• Forest$is_empty()

Method new(): Create a new Forest object.

Usage:
Forest$new(
num_trees,
leaf_dimension = 1,
is_leaf_constant = FALSE,
is_exponentiated = FALSE

)

Arguments:

num_trees Number of trees in the forest
leaf_dimension Dimensionality of the outcome model
is_leaf_constant Whether leaf is constant
is_exponentiated Whether forest predictions should be exponentiated before being returned

Returns: A new Forest object.

Method merge_forest(): Create a larger forest by merging the trees of this forest with those
of another forest

Usage:
Forest$merge_forest(forest)

Arguments:

forest Forest to be merged into this forest

Method add_constant(): Add a constant value to every leaf of every tree in an ensemble. If
leaves are multi-dimensional, constant_value will be added to every dimension of the leaves.

Usage:
Forest$add_constant(constant_value)

Arguments:

constant_value Value that will be added to every leaf of every tree

Method multiply_constant(): Multiply every leaf of every tree by a constant value. If leaves
are multi-dimensional, constant_multiple will be multiplied through every dimension of the
leaves.

Usage:
Forest$multiply_constant(constant_multiple)

Arguments:

Forest 73

constant_multiple Value that will be multiplied by every leaf of every tree

Method predict(): Predict forest on every sample in forest_dataset

Usage:
Forest$predict(forest_dataset)

Arguments:

forest_dataset ForestDataset R class

Returns: vector of predictions with as many rows as in forest_dataset

Method predict_raw(): Predict "raw" leaf values (without being multiplied by basis) for every
sample in forest_dataset

Usage:
Forest$predict_raw(forest_dataset)

Arguments:

forest_dataset ForestDataset R class

Returns: Array of predictions for each observation in forest_dataset and each sample in the
ForestSamples class with each prediction having the dimensionality of the forests’ leaf model.
In the case of a constant leaf model or univariate leaf regression, this array is a vector (length is
the number of observations). In the case of a multivariate leaf regression, this array is a matrix
(number of observations by leaf model dimension, number of samples).

Method set_root_leaves(): Set a constant predicted value for every tree in the ensemble.
Stops program if any tree is more than a root node.

Usage:
Forest$set_root_leaves(leaf_value)

Arguments:

leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num.
Can be either a single number or a vector, depending on the forest’s leaf dimension.

Method prepare_for_sampler(): Set a constant predicted value for every tree in the ensemble.
Stops program if any tree is more than a root node.

Usage:
Forest$prepare_for_sampler(
dataset,
outcome,
forest_model,
leaf_model_int,
leaf_value

)

Arguments:

dataset ForestDataset Dataset class (covariates, basis, etc...)
outcome Outcome Outcome class (residual / partial residual)
forest_model ForestModel object storing tracking structures used in training / sampling

74 Forest

leaf_model_int Integer value encoding the leaf model type (0 = constant gaussian, 1 = uni-
variate gaussian, 2 = multivariate gaussian, 3 = log linear variance).

leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num.
Can be either a single number or a vector, depending on the forest’s leaf dimension.

Method adjust_residual(): Adjusts residual based on the predictions of a forest
This is typically run just once at the beginning of a forest sampling algorithm. After trees are
initialized with constant root node predictions, their root predictions are subtracted out of the
residual.

Usage:
Forest$adjust_residual(dataset, outcome, forest_model, requires_basis, add)

Arguments:

dataset ForestDataset object storing the covariates and bases for a given forest
outcome Outcome object storing the residuals to be updated based on forest predictions
forest_model ForestModel object storing tracking structures used in training / sampling
requires_basis Whether or not a forest requires a basis for prediction
add Whether forest predictions should be added to or subtracted from residuals

Method num_trees(): Return number of trees in each ensemble of a Forest object

Usage:
Forest$num_trees()

Returns: Tree count

Method leaf_dimension(): Return output dimension of trees in a Forest object

Usage:
Forest$leaf_dimension()

Returns: Leaf node parameter size

Method is_constant_leaf(): Return constant leaf status of trees in a Forest object

Usage:
Forest$is_constant_leaf()

Returns: TRUE if leaves are constant, FALSE otherwise

Method is_exponentiated(): Return exponentiation status of trees in a Forest object

Usage:
Forest$is_exponentiated()

Returns: TRUE if leaf predictions must be exponentiated, FALSE otherwise

Method add_numeric_split_tree(): Add a numeric (i.e. X[,i] <= c) split to a given tree in
the ensemble

Usage:

Forest 75

Forest$add_numeric_split_tree(
tree_num,
leaf_num,
feature_num,
split_threshold,
left_leaf_value,
right_leaf_value

)

Arguments:

tree_num Index of the tree to be split
leaf_num Leaf to be split
feature_num Feature that defines the new split
split_threshold Value that defines the cutoff of the new split
left_leaf_value Value (or vector of values) to assign to the newly created left node
right_leaf_value Value (or vector of values) to assign to the newly created right node

Method get_tree_leaves(): Retrieve a vector of indices of leaf nodes for a given tree in a
given forest

Usage:
Forest$get_tree_leaves(tree_num)

Arguments:

tree_num Index of the tree for which leaf indices will be retrieved

Method get_tree_split_counts(): Retrieve a vector of split counts for every training set
variable in a given tree in the forest

Usage:
Forest$get_tree_split_counts(tree_num, num_features)

Arguments:

tree_num Index of the tree for which split counts will be retrieved
num_features Total number of features in the training set

Method get_forest_split_counts(): Retrieve a vector of split counts for every training set
variable in the forest

Usage:
Forest$get_forest_split_counts(num_features)

Arguments:

num_features Total number of features in the training set

Method tree_max_depth(): Maximum depth of a specific tree in the forest

Usage:
Forest$tree_max_depth(tree_num)

Arguments:

tree_num Tree index within forest

76 ForestDataset

Returns: Maximum leaf depth

Method average_max_depth(): Average the maximum depth of each tree in the forest

Usage:
Forest$average_max_depth()

Returns: Average maximum depth

Method is_empty(): When a forest object is created, it is "empty" in the sense that none of its
component trees have leaves with values. There are two ways to "initialize" a Forest object. First,
the set_root_leaves() method simply initializes every tree in the forest to a single node carry-
ing the same (user-specified) leaf value. Second, the prepare_for_sampler() method initializes
every tree in the forest to a single node with the same value and also propagates this informa-
tion through to a ForestModel object, which must be synchronized with a Forest during a forest
sampler loop.

Usage:
Forest$is_empty()

Returns: TRUE if a Forest has not yet been initialized with a constant root value, FALSE otherwise
if the forest has already been initialized / grown.

ForestDataset Forest Dataset C++ Wrapper

Description

Wrapper around a C++ dataset class used to sample a forest. A dataset consists of three matrices
/ vectors: covariates, bases, and variance weights. Both the basis vector and variance weights are
optional.

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

data_ptr External pointer to a C++ ForestDataset class

Methods

Public methods:
• ForestDataset$new()

• ForestDataset$update_basis()

• ForestDataset$update_variance_weights()

• ForestDataset$num_observations()

• ForestDataset$num_covariates()

ForestDataset 77

• ForestDataset$num_basis()

• ForestDataset$get_covariates()

• ForestDataset$get_basis()

• ForestDataset$get_variance_weights()

• ForestDataset$has_basis()

• ForestDataset$has_variance_weights()

Method new(): Create a new ForestDataset object.

Usage:
ForestDataset$new(covariates, basis = NULL, variance_weights = NULL)

Arguments:
covariates Matrix of covariates
basis (Optional) Matrix of bases used to define a leaf regression
variance_weights (Optional) Vector of observation-specific variance weights

Returns: A new ForestDataset object.

Method update_basis(): Update basis matrix in a dataset

Usage:
ForestDataset$update_basis(basis)

Arguments:
basis Updated matrix of bases used to define a leaf regression

Method update_variance_weights(): Update variance_weights in a dataset

Usage:
ForestDataset$update_variance_weights(variance_weights, exponentiate = F)

Arguments:
variance_weights Updated vector of variance weights used to define individual variance /

case weights
exponentiate Whether or not input vector should be exponentiated before being written to the

Dataset’s variance weights. Default: F.

Method num_observations(): Return number of observations in a ForestDataset object

Usage:
ForestDataset$num_observations()

Returns: Observation count

Method num_covariates(): Return number of covariates in a ForestDataset object

Usage:
ForestDataset$num_covariates()

Returns: Covariate count

Method num_basis(): Return number of bases in a ForestDataset object

Usage:

78 ForestModel

ForestDataset$num_basis()

Returns: Basis count

Method get_covariates(): Return covariates as an R matrix

Usage:
ForestDataset$get_covariates()

Returns: Covariate data

Method get_basis(): Return bases as an R matrix

Usage:
ForestDataset$get_basis()

Returns: Basis data

Method get_variance_weights(): Return variance weights as an R vector

Usage:
ForestDataset$get_variance_weights()

Returns: Variance weight data

Method has_basis(): Whether or not a dataset has a basis matrix

Usage:
ForestDataset$has_basis()

Returns: True if basis matrix is loaded, false otherwise

Method has_variance_weights(): Whether or not a dataset has variance weights

Usage:
ForestDataset$has_variance_weights()

Returns: True if variance weights are loaded, false otherwise

ForestModel Forest Model C++ Wrapper

Description

Wraps the C++ data structures needed to sample an ensemble of decision trees and exposes func-
tionality to run a forest sampler (using either MCMC or the grow-from-root algorithm).

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

tracker_ptr External pointer to a C++ ForestTracker class

tree_prior_ptr External pointer to a C++ TreePrior class

ForestModel 79

Methods

Public methods:
• ForestModel$new()

• ForestModel$sample_one_iteration()

• ForestModel$get_cached_forest_predictions()

• ForestModel$propagate_basis_update()

• ForestModel$propagate_residual_update()

• ForestModel$update_alpha()

• ForestModel$update_beta()

• ForestModel$update_min_samples_leaf()

• ForestModel$update_max_depth()

• ForestModel$get_alpha()

• ForestModel$get_beta()

• ForestModel$get_min_samples_leaf()

• ForestModel$get_max_depth()

Method new(): Create a new ForestModel object.

Usage:
ForestModel$new(
forest_dataset,
feature_types,
num_trees,
n,
alpha,
beta,
min_samples_leaf,
max_depth = -1

)

Arguments:

forest_dataset ForestDataset object, used to initialize forest sampling data structures
feature_types Feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = un-

ordered categorical)
num_trees Number of trees in the forest being sampled
n Number of observations in forest_dataset

alpha Root node split probability in tree prior
beta Depth prior penalty in tree prior
min_samples_leaf Minimum number of samples in a tree leaf
max_depth Maximum depth that any tree can reach

Returns: A new ForestModel object.

Method sample_one_iteration(): Run a single iteration of the forest sampling algorithm
(MCMC or GFR)

Usage:

80 ForestModel

ForestModel$sample_one_iteration(
forest_dataset,
residual,
forest_samples,
active_forest,
rng,
forest_model_config,
global_model_config,
num_threads = -1,
keep_forest = TRUE,
gfr = TRUE

)

Arguments:
forest_dataset Dataset used to sample the forest
residual Outcome used to sample the forest
forest_samples Container of forest samples
active_forest "Active" forest updated by the sampler in each iteration
rng Wrapper around C++ random number generator
forest_model_config ForestModelConfig object containing forest model parameters and set-

tings
global_model_config GlobalModelConfig object containing global model parameters and

settings
num_threads Number of threads to use in the GFR and MCMC algorithms, as well as predic-

tion. If OpenMP is not available on a user’s system, this will default to 1, otherwise to the
maximum number of available threads.

keep_forest (Optional) Whether the updated forest sample should be saved to forest_samples.
Default: TRUE.

gfr (Optional) Whether or not the forest should be sampled using the "grow-from-root" (GFR)
algorithm. Default: TRUE.

Method get_cached_forest_predictions(): Extract an internally-cached prediction of a
forest on the training dataset in a sampler.

Usage:
ForestModel$get_cached_forest_predictions()

Returns: Vector with as many elements as observations in the training dataset

Method propagate_basis_update(): Propagates basis update through to the (full/partial)
residual by iteratively (a) adding back in the previous prediction of each tree, (b) recomputing
predictions for each tree (caching on the C++ side), (c) subtracting the new predictions from the
residual.
This is useful in cases where a basis (for e.g. leaf regression) is updated outside of a tree sampler
(as with e.g. adaptive coding for binary treatment BCF). Once a basis has been updated, the
overall "function" represented by a tree model has changed and this should be reflected through
to the residual before the next sampling loop is run.

Usage:
ForestModel$propagate_basis_update(dataset, outcome, active_forest)

ForestModel 81

Arguments:
dataset ForestDataset object storing the covariates and bases for a given forest
outcome Outcome object storing the residuals to be updated based on forest predictions
active_forest "Active" forest updated by the sampler in each iteration

Method propagate_residual_update(): Update the current state of the outcome (i.e. partial
residual) data by subtracting the current predictions of each tree. This function is run after the
Outcome class’s update_data method, which overwrites the partial residual with an entirely new
stream of outcome data.

Usage:
ForestModel$propagate_residual_update(residual)

Arguments:
residual Outcome used to sample the forest

Returns: None

Method update_alpha(): Update alpha in the tree prior

Usage:
ForestModel$update_alpha(alpha)

Arguments:
alpha New value of alpha to be used

Returns: None

Method update_beta(): Update beta in the tree prior

Usage:
ForestModel$update_beta(beta)

Arguments:
beta New value of beta to be used

Returns: None

Method update_min_samples_leaf(): Update min_samples_leaf in the tree prior

Usage:
ForestModel$update_min_samples_leaf(min_samples_leaf)

Arguments:
min_samples_leaf New value of min_samples_leaf to be used

Returns: None

Method update_max_depth(): Update max_depth in the tree prior

Usage:
ForestModel$update_max_depth(max_depth)

Arguments:
max_depth New value of max_depth to be used

Returns: None

82 ForestModelConfig

Method get_alpha(): Update alpha in the tree prior

Usage:
ForestModel$get_alpha()

Returns: Value of alpha in the tree prior

Method get_beta(): Update beta in the tree prior

Usage:
ForestModel$get_beta()

Returns: Value of beta in the tree prior

Method get_min_samples_leaf(): Query min_samples_leaf in the tree prior

Usage:
ForestModel$get_min_samples_leaf()

Returns: Value of min_samples_leaf in the tree prior

Method get_max_depth(): Query max_depth in the tree prior

Usage:
ForestModel$get_max_depth()

Returns: Value of max_depth in the tree prior

ForestModelConfig Forest Model Configuration Object

Description

Object used to get / set parameters and other model configuration options for a forest model in
the "low-level" stochtree interface. The "low-level" stochtree interface enables a high degreee of
sampler customization, in which users employ R wrappers around C++ objects like ForestDataset,
Outcome, CppRng, and ForestModel to run the Gibbs sampler of a BART model with custom
modifications. ForestModelConfig allows users to specify / query the parameters of a forest model
they wish to run.

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Value

Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered categorical, 2 =
unordered categorical)

Vector of (0-indexed) indices of trees to update in a sweep

Vector specifying sampling probability for all p covariates in ForestDataset

Number of trees in a forest

ForestModelConfig 83

Number of features in a forest model training set

Number of observations in a forest model training set

Root node split probability in tree prior

Depth prior penalty in tree prior

Minimum number of samples in a tree leaf

Maximum depth of any tree in the ensemble in the model

Integer coded leaf model type

Scale parameter used in Gaussian leaf models

Shape parameter for IG leaf models

Scale parameter for IG leaf models

Number of unique cutpoints to consider

Number of features to subsample for the GFR algorithm

Public fields

feature_types Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered
categorical, 2 = unordered categorical)

sweep_update_indices Vector of trees to update in a sweep

num_trees Number of trees in the forest being sampled

num_features Number of features in training dataset

num_observations Number of observations in training dataset

leaf_dimension Dimension of the leaf model

alpha Root node split probability in tree prior

beta Depth prior penalty in tree prior

min_samples_leaf Minimum number of samples in a tree leaf

max_depth Maximum depth of any tree in the ensemble in the model. Setting to -1 does not
enforce any depth limits on trees.

leaf_model_type Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf
regression, 2 = multivariate leaf regression)

leaf_model_scale Scale parameter used in Gaussian leaf models

variable_weights Vector specifying sampling probability for all p covariates in ForestDataset

variance_forest_shape Shape parameter for IG leaf models (applicable when leaf_model_type
= 3)

variance_forest_scale Scale parameter for IG leaf models (applicable when leaf_model_type
= 3)

cutpoint_grid_size Number of unique cutpoints to consider

num_features_subsample Number of features to subsample for the GFR algorithm Create a new
ForestModelConfig object.

84 ForestModelConfig

Methods

Public methods:
• ForestModelConfig$new()

• ForestModelConfig$update_feature_types()

• ForestModelConfig$update_sweep_indices()

• ForestModelConfig$update_variable_weights()

• ForestModelConfig$update_alpha()

• ForestModelConfig$update_beta()

• ForestModelConfig$update_min_samples_leaf()

• ForestModelConfig$update_max_depth()

• ForestModelConfig$update_leaf_model_scale()

• ForestModelConfig$update_variance_forest_shape()

• ForestModelConfig$update_variance_forest_scale()

• ForestModelConfig$update_cutpoint_grid_size()

• ForestModelConfig$update_num_features_subsample()

• ForestModelConfig$get_feature_types()

• ForestModelConfig$get_sweep_indices()

• ForestModelConfig$get_variable_weights()

• ForestModelConfig$get_num_trees()

• ForestModelConfig$get_num_features()

• ForestModelConfig$get_num_observations()

• ForestModelConfig$get_alpha()

• ForestModelConfig$get_beta()

• ForestModelConfig$get_min_samples_leaf()

• ForestModelConfig$get_max_depth()

• ForestModelConfig$get_leaf_model_type()

• ForestModelConfig$get_leaf_model_scale()

• ForestModelConfig$get_variance_forest_shape()

• ForestModelConfig$get_variance_forest_scale()

• ForestModelConfig$get_cutpoint_grid_size()

• ForestModelConfig$get_num_features_subsample()

Method new():
Usage:
ForestModelConfig$new(
feature_types = NULL,
sweep_update_indices = NULL,
num_trees = NULL,
num_features = NULL,
num_observations = NULL,
variable_weights = NULL,
leaf_dimension = 1,
alpha = 0.95,

ForestModelConfig 85

beta = 2,
min_samples_leaf = 5,
max_depth = -1,
leaf_model_type = 1,
leaf_model_scale = NULL,
variance_forest_shape = 1,
variance_forest_scale = 1,
cutpoint_grid_size = 100,
num_features_subsample = NULL

)

Arguments:

feature_types Vector of integer-coded feature types (where 0 = numeric, 1 = ordered cate-
gorical, 2 = unordered categorical)

sweep_update_indices Vector of (0-indexed) indices of trees to update in a sweep
num_trees Number of trees in the forest being sampled
num_features Number of features in training dataset
num_observations Number of observations in training dataset
variable_weights Vector specifying sampling probability for all p covariates in ForestDataset
leaf_dimension Dimension of the leaf model (default: 1)
alpha Root node split probability in tree prior (default: 0.95)
beta Depth prior penalty in tree prior (default: 2.0)
min_samples_leaf Minimum number of samples in a tree leaf (default: 5)
max_depth Maximum depth of any tree in the ensemble in the model. Setting to -1 does not

enforce any depth limits on trees. Default: -1.
leaf_model_type Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf

regression, 2 = multivariate leaf regression). Default: 0.
leaf_model_scale Scale parameter used in Gaussian leaf models (can either be a scalar or a q

x q matrix, where q is the dimensionality of the basis and is only >1 when leaf_model_int
= 2). Calibrated internally as 1/num_trees, propagated along diagonal if needed for multi-
variate leaf models.

variance_forest_shape Shape parameter for IG leaf models (applicable when leaf_model_type
= 3). Default: 1.

variance_forest_scale Scale parameter for IG leaf models (applicable when leaf_model_type
= 3). Default: 1.

cutpoint_grid_size Number of unique cutpoints to consider (default: 100)
num_features_subsample Number of features to subsample for the GFR algorithm

Returns: A new ForestModelConfig object.

Method update_feature_types(): Update feature types

Usage:
ForestModelConfig$update_feature_types(feature_types)

Arguments:

feature_types Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered
categorical, 2 = unordered categorical)

86 ForestModelConfig

Method update_sweep_indices(): Update sweep update indices

Usage:
ForestModelConfig$update_sweep_indices(sweep_update_indices)

Arguments:
sweep_update_indices Vector of (0-indexed) indices of trees to update in a sweep

Method update_variable_weights(): Update variable weights

Usage:
ForestModelConfig$update_variable_weights(variable_weights)

Arguments:
variable_weights Vector specifying sampling probability for all p covariates in ForestDataset

Method update_alpha(): Update root node split probability in tree prior

Usage:
ForestModelConfig$update_alpha(alpha)

Arguments:
alpha Root node split probability in tree prior

Method update_beta(): Update depth prior penalty in tree prior

Usage:
ForestModelConfig$update_beta(beta)

Arguments:
beta Depth prior penalty in tree prior

Method update_min_samples_leaf(): Update minimum number of samples per leaf node in
the tree prior

Usage:
ForestModelConfig$update_min_samples_leaf(min_samples_leaf)

Arguments:
min_samples_leaf Minimum number of samples in a tree leaf

Method update_max_depth(): Update max depth in the tree prior

Usage:
ForestModelConfig$update_max_depth(max_depth)

Arguments:
max_depth Maximum depth of any tree in the ensemble in the model

Method update_leaf_model_scale(): Update scale parameter used in Gaussian leaf models

Usage:
ForestModelConfig$update_leaf_model_scale(leaf_model_scale)

Arguments:
leaf_model_scale Scale parameter used in Gaussian leaf models

ForestModelConfig 87

Method update_variance_forest_shape(): Update shape parameter for IG leaf models

Usage:
ForestModelConfig$update_variance_forest_shape(variance_forest_shape)

Arguments:
variance_forest_shape Shape parameter for IG leaf models

Method update_variance_forest_scale(): Update scale parameter for IG leaf models

Usage:
ForestModelConfig$update_variance_forest_scale(variance_forest_scale)

Arguments:
variance_forest_scale Scale parameter for IG leaf models

Method update_cutpoint_grid_size(): Update number of unique cutpoints to consider

Usage:
ForestModelConfig$update_cutpoint_grid_size(cutpoint_grid_size)

Arguments:
cutpoint_grid_size Number of unique cutpoints to consider

Method update_num_features_subsample(): Update number of features to subsample for the
GFR algorithm

Usage:
ForestModelConfig$update_num_features_subsample(num_features_subsample)

Arguments:
num_features_subsample Number of features to subsample for the GFR algorithm

Method get_feature_types(): Query feature types for this ForestModelConfig object

Usage:
ForestModelConfig$get_feature_types()

Method get_sweep_indices(): Query sweep update indices for this ForestModelConfig object

Usage:
ForestModelConfig$get_sweep_indices()

Method get_variable_weights(): Query variable weights for this ForestModelConfig object

Usage:
ForestModelConfig$get_variable_weights()

Method get_num_trees(): Query number of trees

Usage:
ForestModelConfig$get_num_trees()

Method get_num_features(): Query number of features

Usage:
ForestModelConfig$get_num_features()

88 ForestModelConfig

Method get_num_observations(): Query number of observations

Usage:
ForestModelConfig$get_num_observations()

Method get_alpha(): Query root node split probability in tree prior for this ForestModelConfig
object

Usage:
ForestModelConfig$get_alpha()

Method get_beta(): Query depth prior penalty in tree prior for this ForestModelConfig object

Usage:
ForestModelConfig$get_beta()

Method get_min_samples_leaf(): Query root node split probability in tree prior for this
ForestModelConfig object

Usage:
ForestModelConfig$get_min_samples_leaf()

Method get_max_depth(): Query root node split probability in tree prior for this ForestModel-
Config object

Usage:
ForestModelConfig$get_max_depth()

Method get_leaf_model_type(): Query (integer-coded) type of leaf model

Usage:
ForestModelConfig$get_leaf_model_type()

Method get_leaf_model_scale(): Query scale parameter used in Gaussian leaf models for
this ForestModelConfig object

Usage:
ForestModelConfig$get_leaf_model_scale()

Method get_variance_forest_shape(): Query shape parameter for IG leaf models for this
ForestModelConfig object

Usage:
ForestModelConfig$get_variance_forest_shape()

Method get_variance_forest_scale(): Query scale parameter for IG leaf models for this
ForestModelConfig object

Usage:
ForestModelConfig$get_variance_forest_scale()

Method get_cutpoint_grid_size(): Query number of unique cutpoints to consider for this
ForestModelConfig object

Usage:
ForestModelConfig$get_cutpoint_grid_size()

ForestSamples 89

Method get_num_features_subsample(): Query number of features to subsample for the
GFR algorithm

Usage:
ForestModelConfig$get_num_features_subsample()

ForestSamples Forest Container C++ Wrapper

Description

Wrapper around a C++ class that stores draws from an random ensemble of decision trees.

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

forest_container_ptr External pointer to a C++ ForestContainer class

Methods

Public methods:
• ForestSamples$new()

• ForestSamples$collapse()

• ForestSamples$combine_forests()

• ForestSamples$add_to_forest()

• ForestSamples$multiply_forest()

• ForestSamples$load_from_json()

• ForestSamples$append_from_json()

• ForestSamples$load_from_json_string()

• ForestSamples$append_from_json_string()

• ForestSamples$predict()

• ForestSamples$predict_raw()

• ForestSamples$predict_raw_single_forest()

• ForestSamples$predict_raw_single_tree()

• ForestSamples$set_root_leaves()

• ForestSamples$prepare_for_sampler()

• ForestSamples$adjust_residual()

• ForestSamples$save_json()

• ForestSamples$load_json()

• ForestSamples$num_samples()

• ForestSamples$num_trees()

90 ForestSamples

• ForestSamples$leaf_dimension()

• ForestSamples$is_constant_leaf()

• ForestSamples$is_exponentiated()

• ForestSamples$add_forest_with_constant_leaves()

• ForestSamples$add_numeric_split_tree()

• ForestSamples$get_tree_leaves()

• ForestSamples$get_tree_split_counts()

• ForestSamples$get_forest_split_counts()

• ForestSamples$get_aggregate_split_counts()

• ForestSamples$get_granular_split_counts()

• ForestSamples$ensemble_tree_max_depth()

• ForestSamples$average_ensemble_max_depth()

• ForestSamples$average_max_depth()

• ForestSamples$num_forest_leaves()

• ForestSamples$sum_leaves_squared()

• ForestSamples$is_leaf_node()

• ForestSamples$is_numeric_split_node()

• ForestSamples$is_categorical_split_node()

• ForestSamples$parent_node()

• ForestSamples$left_child_node()

• ForestSamples$right_child_node()

• ForestSamples$node_depth()

• ForestSamples$node_split_index()

• ForestSamples$node_split_threshold()

• ForestSamples$node_split_categories()

• ForestSamples$node_leaf_values()

• ForestSamples$num_nodes()

• ForestSamples$num_leaves()

• ForestSamples$num_leaf_parents()

• ForestSamples$num_split_nodes()

• ForestSamples$nodes()

• ForestSamples$leaves()

• ForestSamples$delete_sample()

Method new(): Create a new ForestContainer object.

Usage:
ForestSamples$new(
num_trees,
leaf_dimension = 1,
is_leaf_constant = FALSE,
is_exponentiated = FALSE

)

Arguments:

ForestSamples 91

num_trees Number of trees
leaf_dimension Dimensionality of the outcome model
is_leaf_constant Whether leaf is constant
is_exponentiated Whether forest predictions should be exponentiated before being returned

Returns: A new ForestContainer object.

Method collapse(): Collapse forests in this container by a pre-specified batch size. For ex-
ample, if we have a container of twenty 10-tree forests, and we specify a batch_size of 5, then
this method will yield four 50-tree forests. "Excess" forests remaining after the size of a forest
container is divided by batch_size will be pruned from the beginning of the container (i.e. ear-
lier sampled forests will be deleted). This method has no effect if batch_size is larger than the
number of forests in a container.

Usage:
ForestSamples$collapse(batch_size)

Arguments:

batch_size Number of forests to be collapsed into a single forest

Method combine_forests(): Merge specified forests into a single forest

Usage:
ForestSamples$combine_forests(forest_inds)

Arguments:

forest_inds Indices of forests to be combined (0-indexed)

Method add_to_forest(): Add a constant value to every leaf of every tree of a given forest

Usage:
ForestSamples$add_to_forest(forest_index, constant_value)

Arguments:

forest_index Index of forest whose leaves will be modified (0-indexed)
constant_value Value to add to every leaf of every tree of the forest at forest_index

Method multiply_forest(): Multiply every leaf of every tree of a given forest by constant
value

Usage:
ForestSamples$multiply_forest(forest_index, constant_multiple)

Arguments:

forest_index Index of forest whose leaves will be modified (0-indexed)
constant_multiple Value to multiply through by every leaf of every tree of the forest at

forest_index

Method load_from_json(): Create a new ForestContainer object from a json object

Usage:
ForestSamples$load_from_json(json_object, json_forest_label)

Arguments:

92 ForestSamples

json_object Object of class CppJson
json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json

hierarchy

Returns: A new ForestContainer object.

Method append_from_json(): Append to a ForestContainer object from a json object

Usage:
ForestSamples$append_from_json(json_object, json_forest_label)

Arguments:
json_object Object of class CppJson
json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json

hierarchy

Returns: None

Method load_from_json_string(): Create a new ForestContainer object from a json object

Usage:
ForestSamples$load_from_json_string(json_string, json_forest_label)

Arguments:
json_string JSON string which parses into object of class CppJson
json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json

hierarchy

Returns: A new ForestContainer object.

Method append_from_json_string(): Append to a ForestContainer object from a json
object

Usage:
ForestSamples$append_from_json_string(json_string, json_forest_label)

Arguments:
json_string JSON string which parses into object of class CppJson
json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json

hierarchy

Returns: None

Method predict(): Predict every tree ensemble on every sample in forest_dataset

Usage:
ForestSamples$predict(forest_dataset)

Arguments:
forest_dataset ForestDataset R class

Returns: matrix of predictions with as many rows as in forest_dataset and as many columns as
samples in the ForestContainer

Method predict_raw(): Predict "raw" leaf values (without being multiplied by basis) for every
tree ensemble on every sample in forest_dataset

ForestSamples 93

Usage:
ForestSamples$predict_raw(forest_dataset)

Arguments:

forest_dataset ForestDataset R class

Returns: Array of predictions for each observation in forest_dataset and each sample in
the ForestSamples class with each prediction having the dimensionality of the forests’ leaf
model. In the case of a constant leaf model or univariate leaf regression, this array is two-
dimensional (number of observations, number of forest samples). In the case of a multivariate
leaf regression, this array is three-dimension (number of observations, leaf model dimension,
number of samples).

Method predict_raw_single_forest(): Predict "raw" leaf values (without being multiplied
by basis) for a specific forest on every sample in forest_dataset

Usage:
ForestSamples$predict_raw_single_forest(forest_dataset, forest_num)

Arguments:

forest_dataset ForestDataset R class
forest_num Index of the forest sample within the container

Returns: matrix of predictions with as many rows as in forest_dataset and as many columns as
dimensions in the leaves of trees in ForestContainer

Method predict_raw_single_tree(): Predict "raw" leaf values (without being multiplied by
basis) for a specific tree in a specific forest on every observation in forest_dataset

Usage:
ForestSamples$predict_raw_single_tree(forest_dataset, forest_num, tree_num)

Arguments:

forest_dataset ForestDataset R class
forest_num Index of the forest sample within the container
tree_num Index of the tree to be queried

Returns: matrix of predictions with as many rows as in forest_dataset and as many columns
as dimensions in the leaves of trees in ForestContainer

Method set_root_leaves(): Set a constant predicted value for every tree in the ensemble.
Stops program if any tree is more than a root node.

Usage:
ForestSamples$set_root_leaves(forest_num, leaf_value)

Arguments:

forest_num Index of the forest sample within the container.
leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num.

Can be either a single number or a vector, depending on the forest’s leaf dimension.

Method prepare_for_sampler(): Set a constant predicted value for every tree in the ensemble.
Stops program if any tree is more than a root node.

94 ForestSamples

Usage:
ForestSamples$prepare_for_sampler(
dataset,
outcome,
forest_model,
leaf_model_int,
leaf_value

)

Arguments:
dataset ForestDataset Dataset class (covariates, basis, etc...)
outcome Outcome Outcome class (residual / partial residual)
forest_model ForestModel object storing tracking structures used in training / sampling
leaf_model_int Integer value encoding the leaf model type (0 = constant gaussian, 1 = uni-

variate gaussian, 2 = multivariate gaussian, 3 = log linear variance).
leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num.

Can be either a single number or a vector, depending on the forest’s leaf dimension.

Method adjust_residual(): Adjusts residual based on the predictions of a forest
This is typically run just once at the beginning of a forest sampling algorithm. After trees are
initialized with constant root node predictions, their root predictions are subtracted out of the
residual.

Usage:
ForestSamples$adjust_residual(
dataset,
outcome,
forest_model,
requires_basis,
forest_num,
add

)

Arguments:
dataset ForestDataset object storing the covariates and bases for a given forest
outcome Outcome object storing the residuals to be updated based on forest predictions
forest_model ForestModel object storing tracking structures used in training / sampling
requires_basis Whether or not a forest requires a basis for prediction
forest_num Index of forest used to update residuals
add Whether forest predictions should be added to or subtracted from residuals

Method save_json(): Store the trees and metadata of ForestDataset class in a json file

Usage:
ForestSamples$save_json(json_filename)

Arguments:
json_filename Name of output json file (must end in ".json")

Method load_json(): Load trees and metadata for an ensemble from a json file. Note that any
trees and metadata already present in ForestDataset class will be overwritten.

ForestSamples 95

Usage:
ForestSamples$load_json(json_filename)

Arguments:

json_filename Name of model input json file (must end in ".json")

Method num_samples(): Return number of samples in a ForestContainer object

Usage:
ForestSamples$num_samples()

Returns: Sample count

Method num_trees(): Return number of trees in each ensemble of a ForestContainer object

Usage:
ForestSamples$num_trees()

Returns: Tree count

Method leaf_dimension(): Return output dimension of trees in a ForestContainer object

Usage:
ForestSamples$leaf_dimension()

Returns: Leaf node parameter size

Method is_constant_leaf(): Return constant leaf status of trees in a ForestContainer ob-
ject

Usage:
ForestSamples$is_constant_leaf()

Returns: TRUE if leaves are constant, FALSE otherwise

Method is_exponentiated(): Return exponentiation status of trees in a ForestContainer
object

Usage:
ForestSamples$is_exponentiated()

Returns: TRUE if leaf predictions must be exponentiated, FALSE otherwise

Method add_forest_with_constant_leaves(): Add a new all-root ensemble to the container,
with all of the leaves set to the value / vector provided

Usage:
ForestSamples$add_forest_with_constant_leaves(leaf_value)

Arguments:

leaf_value Value (or vector of values) to initialize root nodes in tree

Method add_numeric_split_tree(): Add a numeric (i.e. X[,i] <= c) split to a given tree in
the ensemble

Usage:

96 ForestSamples

ForestSamples$add_numeric_split_tree(
forest_num,
tree_num,
leaf_num,
feature_num,
split_threshold,
left_leaf_value,
right_leaf_value

)

Arguments:
forest_num Index of the forest which contains the tree to be split
tree_num Index of the tree to be split
leaf_num Leaf to be split
feature_num Feature that defines the new split
split_threshold Value that defines the cutoff of the new split
left_leaf_value Value (or vector of values) to assign to the newly created left node
right_leaf_value Value (or vector of values) to assign to the newly created right node

Method get_tree_leaves(): Retrieve a vector of indices of leaf nodes for a given tree in a
given forest

Usage:
ForestSamples$get_tree_leaves(forest_num, tree_num)

Arguments:
forest_num Index of the forest which contains tree tree_num

tree_num Index of the tree for which leaf indices will be retrieved

Method get_tree_split_counts(): Retrieve a vector of split counts for every training set
variable in a given tree in a given forest

Usage:
ForestSamples$get_tree_split_counts(forest_num, tree_num, num_features)

Arguments:
forest_num Index of the forest which contains tree tree_num

tree_num Index of the tree for which split counts will be retrieved
num_features Total number of features in the training set

Method get_forest_split_counts(): Retrieve a vector of split counts for every training set
variable in a given forest

Usage:
ForestSamples$get_forest_split_counts(forest_num, num_features)

Arguments:
forest_num Index of the forest for which split counts will be retrieved
num_features Total number of features in the training set

Method get_aggregate_split_counts(): Retrieve a vector of split counts for every training
set variable in a given forest, aggregated across ensembles and trees

ForestSamples 97

Usage:
ForestSamples$get_aggregate_split_counts(num_features)

Arguments:

num_features Total number of features in the training set

Method get_granular_split_counts(): Retrieve a vector of split counts for every training
set variable in a given forest, reported separately for each ensemble and tree

Usage:
ForestSamples$get_granular_split_counts(num_features)

Arguments:

num_features Total number of features in the training set

Method ensemble_tree_max_depth(): Maximum depth of a specific tree in a specific ensem-
ble in a ForestSamples object

Usage:
ForestSamples$ensemble_tree_max_depth(ensemble_num, tree_num)

Arguments:

ensemble_num Ensemble number
tree_num Tree index within ensemble ensemble_num

Returns: Maximum leaf depth

Method average_ensemble_max_depth(): Average the maximum depth of each tree in a given
ensemble in a ForestSamples object

Usage:
ForestSamples$average_ensemble_max_depth(ensemble_num)

Arguments:

ensemble_num Ensemble number

Returns: Average maximum depth

Method average_max_depth(): Average the maximum depth of each tree in each ensemble in
a ForestContainer object

Usage:
ForestSamples$average_max_depth()

Returns: Average maximum depth

Method num_forest_leaves(): Number of leaves in a given ensemble in a ForestSamples
object

Usage:
ForestSamples$num_forest_leaves(forest_num)

Arguments:

forest_num Index of the ensemble to be queried

Returns: Count of leaves in the ensemble stored at forest_num

98 ForestSamples

Method sum_leaves_squared(): Sum of squared (raw) leaf values in a given ensemble in a
ForestSamples object

Usage:
ForestSamples$sum_leaves_squared(forest_num)

Arguments:
forest_num Index of the ensemble to be queried

Returns: Average maximum depth

Method is_leaf_node(): Whether or not a given node of a given tree in a given forest in the
ForestSamples is a leaf

Usage:
ForestSamples$is_leaf_node(forest_num, tree_num, node_id)

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: TRUE if node is a leaf, FALSE otherwise

Method is_numeric_split_node(): Whether or not a given node of a given tree in a given
forest in the ForestSamples is a numeric split node

Usage:
ForestSamples$is_numeric_split_node(forest_num, tree_num, node_id)

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: TRUE if node is a numeric split node, FALSE otherwise

Method is_categorical_split_node(): Whether or not a given node of a given tree in a
given forest in the ForestSamples is a categorical split node

Usage:
ForestSamples$is_categorical_split_node(forest_num, tree_num, node_id)

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: TRUE if node is a categorical split node, FALSE otherwise

Method parent_node(): Parent node of given node of a given tree in a given forest in a
ForestSamples object

Usage:
ForestSamples$parent_node(forest_num, tree_num, node_id)

ForestSamples 99

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Integer ID of the parent node

Method left_child_node(): Left child node of given node of a given tree in a given forest in
a ForestSamples object

Usage:
ForestSamples$left_child_node(forest_num, tree_num, node_id)

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Integer ID of the left child node

Method right_child_node(): Right child node of given node of a given tree in a given forest
in a ForestSamples object

Usage:
ForestSamples$right_child_node(forest_num, tree_num, node_id)

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Integer ID of the right child node

Method node_depth(): Depth of given node of a given tree in a given forest in a ForestSamples
object, with 0 depth for the root node.

Usage:
ForestSamples$node_depth(forest_num, tree_num, node_id)

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Integer valued depth of the node

Method node_split_index(): Split index of given node of a given tree in a given forest in a
ForestSamples object. Returns -1 is node is a leaf.

Usage:
ForestSamples$node_split_index(forest_num, tree_num, node_id)

Arguments:
forest_num Index of the forest to be queried

100 ForestSamples

tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Integer valued depth of the node

Method node_split_threshold(): Threshold that defines a numeric split for a given node of
a given tree in a given forest in a ForestSamples object. Returns Inf if the node is a leaf or a
categorical split node.

Usage:
ForestSamples$node_split_threshold(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Threshold defining a split for the node

Method node_split_categories(): Array of category indices that define a categorical split
for a given node of a given tree in a given forest in a ForestSamples object. Returns c(Inf) if
the node is a leaf or a numeric split node.

Usage:
ForestSamples$node_split_categories(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Categories defining a split for the node

Method node_leaf_values(): Leaf node value(s) for a given node of a given tree in a given
forest in a ForestSamples object. Values are stale if the node is a split node.

Usage:
ForestSamples$node_leaf_values(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried
node_id Index of the node to be queried

Returns: Vector (often univariate) of leaf values

Method num_nodes(): Number of nodes in a given tree in a given forest in a ForestSamples
object.

Usage:
ForestSamples$num_nodes(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried

ForestSamples 101

tree_num Index of the tree to be queried

Returns: Count of total tree nodes

Method num_leaves(): Number of leaves in a given tree in a given forest in a ForestSamples
object.

Usage:
ForestSamples$num_leaves(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

Returns: Count of total tree leaves

Method num_leaf_parents(): Number of leaf parents (split nodes with two leaves as children)
in a given tree in a given forest in a ForestSamples object.

Usage:
ForestSamples$num_leaf_parents(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

Returns: Count of total tree leaf parents

Method num_split_nodes(): Number of split nodes in a given tree in a given forest in a
ForestSamples object.

Usage:
ForestSamples$num_split_nodes(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

Returns: Count of total tree split nodes

Method nodes(): Array of node indices in a given tree in a given forest in a ForestSamples
object.

Usage:
ForestSamples$nodes(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

Returns: Indices of tree nodes

Method leaves(): Array of leaf indices in a given tree in a given forest in a ForestSamples
object.

Usage:

102 getRandomEffectSamples

ForestSamples$leaves(forest_num, tree_num)

Arguments:
forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

Returns: Indices of leaf nodes

Method delete_sample(): Modify the ForestSamples object by removing the forest sample
indexed by ‘forest_num

Usage:
ForestSamples$delete_sample(forest_num)

Arguments:
forest_num Index of the forest to be removed

getRandomEffectSamples

Extract Random Effect Samples Generic Function

Description

Generic function for extracting random effect samples from a model object (BCF, BART, etc...)

Usage

getRandomEffectSamples(object, ...)

Arguments

object Fitted model object from which to extract random effects

... Other parameters to be used in random effects extraction

Value

List of random effect samples

Examples

n <- 100
p <- 10
X <- matrix(runif(n*p), ncol = p)
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- rep(1.0, n)
y <- (-5 + 10*(X[,1] > 0.5)) + (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
bart_model <- bart(X_train=X, y_train=y, rfx_group_ids_train=rfx_group_ids,

rfx_basis_train = rfx_basis, num_gfr=0, num_mcmc=10)
rfx_samples <- getRandomEffectSamples(bart_model)

getRandomEffectSamples.bartmodel 103

getRandomEffectSamples.bartmodel

Extract Random Effects Samples

Description

Extract raw sample values for each of the random effect parameter terms.

Usage

S3 method for class 'bartmodel'
getRandomEffectSamples(object, ...)

Arguments

object Object of type bartmodel containing draws of a BART model and associated
sampling outputs.

... Other parameters to be used in random effects extraction

Value

List of arrays. The alpha array has dimension (num_components, num_samples) and is simply a
vector if num_components = 1. The xi and beta arrays have dimension (num_components, num_groups,
num_samples) and is simply a matrix if num_components = 1. The sigma array has dimension
(num_components, num_samples) and is simply a vector if num_components = 1.

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
snr <- 3
group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[group_ids,] * rfx_basis)
E_y <- f_XW + rfx_term
y <- E_y + rnorm(n, 0, 1)*(sd(E_y)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]

104 getRandomEffectSamples.bcfmodel

X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
rfx_group_ids_test <- group_ids[test_inds]
rfx_group_ids_train <- group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test,

rfx_group_ids_train = rfx_group_ids_train,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_train = rfx_basis_train,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10)

rfx_samples <- getRandomEffectSamples(bart_model)

getRandomEffectSamples.bcfmodel

Extract Random Effect Samples from BCF Model

Description

Extract raw sample values for each of the random effect parameter terms.

Usage

S3 method for class 'bcfmodel'
getRandomEffectSamples(object, ...)

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model
and associated sampling outputs.

... Other parameters to be used in random effects extraction

Value

List of arrays. The alpha array has dimension (num_components, num_samples) and is simply a
vector if num_components = 1. The xi and beta arrays have dimension (num_components, num_groups,
num_samples) and is simply a matrix if num_components = 1. The sigma array has dimension
(num_components, num_samples) and is simply a vector if num_components = 1.

getRandomEffectSamples.bcfmodel 105

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]

106 GlobalModelConfig

rfx_term_train <- rfx_term[train_inds]
mu_params <- list(sample_sigma2_leaf = TRUE)
tau_params <- list(sample_sigma2_leaf = FALSE)
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10,
prognostic_forest_params = mu_params,
treatment_effect_forest_params = tau_params)

rfx_samples <- getRandomEffectSamples(bcf_model)

GlobalModelConfig Global Model Configuration Object

Description

Object used to get / set global parameters and other global model configuration options in the "low-
level" stochtree interface. The "low-level" stochtree interface enables a high degreee of sampler
customization, in which users employ R wrappers around C++ objects like ForestDataset, Outcome,
CppRng, and ForestModel to run the Gibbs sampler of a BART model with custom modifications.
GlobalModelConfig allows users to specify / query the global parameters of a model they wish to
run.

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Value

Global error variance parameter

Public fields

global_error_variance Global error variance parameter Create a new GlobalModelConfig ob-
ject.

Methods

Public methods:
• GlobalModelConfig$new()

• GlobalModelConfig$update_global_error_variance()

• GlobalModelConfig$get_global_error_variance()

Method new():

loadForestContainerCombinedJson 107

Usage:
GlobalModelConfig$new(global_error_variance = 1)

Arguments:
global_error_variance Global error variance parameter (default: 1.0)

Returns: A new GlobalModelConfig object.

Method update_global_error_variance(): Update global error variance parameter

Usage:
GlobalModelConfig$update_global_error_variance(global_error_variance)

Arguments:
global_error_variance Global error variance parameter

Method get_global_error_variance(): Query global error variance parameter for this Glob-
alModelConfig object

Usage:
GlobalModelConfig$get_global_error_variance()

loadForestContainerCombinedJson

Combine JSON Model Objects into ForestSamples

Description

Combine multiple JSON model objects containing forests (with the same hierarchy / schema) into
a single forest_container

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

loadForestContainerCombinedJson(json_object_list, json_forest_label)

Arguments

json_object_list

List of objects of class CppJson
json_forest_label

Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy
(must exist in every json object in the list)

Value

ForestSamples object

108 loadForestContainerCombinedJsonString

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
bart_json <- list(saveBARTModelToJson(bart_model))
mean_forest <- loadForestContainerCombinedJson(bart_json, "forest_0")

loadForestContainerCombinedJsonString

Combine JSON Strings into ForestSamples

Description

Combine multiple JSON strings representing model objects containing forests (with the same hier-
archy / schema) into a single forest_container

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

loadForestContainerCombinedJsonString(json_string_list, json_forest_label)

Arguments

json_string_list

List of strings that parse into objects of type CppJson

json_forest_label

Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy
(must exist in every json object in the list)

Value

ForestSamples object

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
bart_json_string <- list(saveBARTModelToJsonString(bart_model))
mean_forest <- loadForestContainerCombinedJsonString(bart_json_string, "forest_0")

loadForestContainerJson 109

loadForestContainerJson

Load Forest Samples from JSON

Description

Load a container of forest samples from json

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

loadForestContainerJson(json_object, json_forest_label)

Arguments

json_object Object of class CppJson
json_forest_label

Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy

Value

ForestSamples object

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
bart_json <- saveBARTModelToJson(bart_model)
mean_forest <- loadForestContainerJson(bart_json, "forest_0")

loadRandomEffectSamplesCombinedJson

Combine JSON Model Objects into RandomEffectSamples

Description

Combine multiple JSON model objects containing random effects (with the same hierarchy / schema)
into a single container

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

110 loadRandomEffectSamplesCombinedJsonString

Usage

loadRandomEffectSamplesCombinedJson(json_object_list, json_rfx_num)

Arguments

json_object_list

List of objects of class CppJson

json_rfx_num Integer index indicating the position of the random effects term to be unpacked

Value

RandomEffectSamples object

Examples

n <- 100
p <- 10
X <- matrix(runif(n*p), ncol = p)
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- rep(1.0, n)
y <- (-5 + 10*(X[,1] > 0.5)) + (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
bart_model <- bart(X_train=X, y_train=y, rfx_group_ids_train=rfx_group_ids,

rfx_basis_train = rfx_basis, num_gfr=0, num_mcmc=10)
bart_json <- list(saveBARTModelToJson(bart_model))
rfx_samples <- loadRandomEffectSamplesCombinedJson(bart_json, 0)

loadRandomEffectSamplesCombinedJsonString

Combine JSON Strings into RandomEffectSamples

Description

Combine multiple JSON strings representing model objects containing random effects (with the
same hierarchy / schema) into a single container

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

loadRandomEffectSamplesCombinedJsonString(json_string_list, json_rfx_num)

Arguments

json_string_list

List of objects of class CppJson

json_rfx_num Integer index indicating the position of the random effects term to be unpacked

loadRandomEffectSamplesJson 111

Value

RandomEffectSamples object

Examples

n <- 100
p <- 10
X <- matrix(runif(n*p), ncol = p)
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- rep(1.0, n)
y <- (-5 + 10*(X[,1] > 0.5)) + (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
bart_model <- bart(X_train=X, y_train=y, rfx_group_ids_train=rfx_group_ids,

rfx_basis_train = rfx_basis, num_gfr=0, num_mcmc=10)
bart_json_string <- list(saveBARTModelToJsonString(bart_model))
rfx_samples <- loadRandomEffectSamplesCombinedJsonString(bart_json_string, 0)

loadRandomEffectSamplesJson

Load Random Effect Samples from JSON

Description

Load a container of random effect samples from json

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

loadRandomEffectSamplesJson(json_object, json_rfx_num)

Arguments

json_object Object of class CppJson

json_rfx_num Integer index indicating the position of the random effects term to be unpacked

Value

RandomEffectSamples object

112 loadScalarJson

Examples

n <- 100
p <- 10
X <- matrix(runif(n*p), ncol = p)
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- rep(1.0, n)
y <- (-5 + 10*(X[,1] > 0.5)) + (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
bart_model <- bart(X_train=X, y_train=y, rfx_group_ids_train=rfx_group_ids,

rfx_basis_train = rfx_basis, num_gfr=0, num_mcmc=10)
bart_json <- saveBARTModelToJson(bart_model)
rfx_samples <- loadRandomEffectSamplesJson(bart_json, 0)

loadScalarJson Load Scalar from JSON

Description

Load a scalar from json

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

loadScalarJson(json_object, json_scalar_label, subfolder_name = NULL)

Arguments

json_object Object of class CppJson
json_scalar_label

Label referring to a particular scalar / string value (i.e. "num_samples") in the
overall json hierarchy

subfolder_name (Optional) Name of the subfolder / hierarchy under which vector sits

Value

R vector

Examples

example_scalar <- 5.4
example_json <- createCppJson()
example_json$add_scalar("myscalar", example_scalar)
roundtrip_scalar <- loadScalarJson(example_json, "myscalar")

loadVectorJson 113

loadVectorJson Load Vector from JSON

Description

Load a vector from json

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

loadVectorJson(json_object, json_vector_label, subfolder_name = NULL)

Arguments

json_object Object of class CppJson
json_vector_label

Label referring to a particular vector (i.e. "sigma2_global_samples") in the over-
all json hierarchy

subfolder_name (Optional) Name of the subfolder / hierarchy under which vector sits

Value

R vector

Examples

example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)
roundtrip_vec <- loadVectorJson(example_json, "myvec")

Outcome Outcome Data C++ Wrapper

Description

Outcome / partial residual used to sample an additive model. The outcome class is wrapper around
a vector of (mutable) outcomes for ML tasks (supervised learning, causal inference). When an
additive tree ensemble is sampled, the outcome used to sample a specific model term is the "partial
residual" consisting of the outcome minus the predictions of every other model term (trees, group
random effects, etc...).

114 Outcome

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

data_ptr External pointer to a C++ Outcome class

Methods

Public methods:
• Outcome$new()

• Outcome$get_data()

• Outcome$add_vector()

• Outcome$subtract_vector()

• Outcome$update_data()

Method new(): Create a new Outcome object.

Usage:
Outcome$new(outcome)

Arguments:
outcome Vector of outcome values

Returns: A new Outcome object.

Method get_data(): Extract raw data in R from the underlying C++ object

Usage:
Outcome$get_data()

Returns: R vector containing (copy of) the values in Outcome object

Method add_vector(): Update the current state of the outcome (i.e. partial residual) data by
adding the values of update_vector

Usage:
Outcome$add_vector(update_vector)

Arguments:
update_vector Vector to be added to outcome

Returns: None

Method subtract_vector(): Update the current state of the outcome (i.e. partial residual) data
by subtracting the values of update_vector

Usage:
Outcome$subtract_vector(update_vector)

Arguments:
update_vector Vector to be subtracted from outcome

plot.bartmodel 115

Returns: None

Method update_data(): Update the current state of the outcome (i.e. partial residual) data by
replacing each element with the elements of new_vector

Usage:

Outcome$update_data(new_vector)

Arguments:

new_vector Vector from which to overwrite the current data

Returns: None

plot.bartmodel Plot BART Model Fit.

Description

Plot the BART model fit and any relevant sampled quantities. This will default to a traceplot of the
global error scale and the in-sample mean forest predictions for the first train set observation. Since
stochtree::bart() is flexible and it’s possible to sample a model with a fixed global error scale
and no mean forest, this procedure is adaptive and will attempt to plot a trace of whichever model
terms are included if these two default terms are omitted.

Usage

S3 method for class 'bartmodel'
plot(x, ...)

Arguments

x The BART model object

... Additional arguments

Value

BART model object unchanged after summarizing

116 predict.bartmodel

plot.bcfmodel Plot BCF Model

Description

Plot the BCF model fit and any relevant sampled quantities. This will default to a traceplot of the
global error scale and the in-sample mean forest predictions for the first train set observation. Since
stochtree::bcf() is flexible and it’s possible to sample a model with a fixed global error scale
and no mean forest, this procedure will throw an error if these two default terms are omitted.

Usage

S3 method for class 'bcfmodel'
plot(x, ...)

Arguments

x The BCF model object

... Additional arguments

Value

BCF model object unchanged after summarizing

predict.bartmodel Predict From a BART Model

Description

Predict from a sampled BART model on new data

Usage

S3 method for class 'bartmodel'
predict(
object,
X,
leaf_basis = NULL,
rfx_group_ids = NULL,
rfx_basis = NULL,
type = "posterior",
terms = "all",
scale = "linear",
...

)

predict.bartmodel 117

Arguments

object Object of type bart containing draws of a regression forest and associated sam-
pling outputs.

X Covariates used to determine tree leaf predictions for each observation. Must be
passed as a matrix or dataframe.

leaf_basis (Optional) Bases used for prediction (by e.g. dot product with leaf values).
Default: NULL.

rfx_group_ids (Optional) Test set group labels used for an additive random effects model. We
do not currently support (but plan to in the near future), test set evaluation for
group labels that were not in the training set.

rfx_basis (Optional) Test set basis for "random-slope" regression in additive random ef-
fects model.

type (Optional) Type of prediction to return. Options are "mean", which averages the
predictions from every draw of a BART model, and "posterior", which returns
the entire matrix of posterior predictions. Default: "posterior".

terms (Optional) Which model terms to include in the prediction. This can be a single
term or a list of model terms. Options include "y_hat", "mean_forest", "rfx",
"variance_forest", or "all". If a model doesn’t have mean forest, random effects,
or variance forest predictions, but one of those terms is request, the request will
simply be ignored. If none of the requested terms are present in a model, this
function will return NULL along with a warning. Default: "all".

scale (Optional) Scale of mean function predictions. Options are "linear", which re-
turns predictions on the original scale of the mean forest / RFX terms, and "prob-
ability", which transforms predictions into a probability of observing y == 1.
"probability" is only valid for models fit with a probit outcome model. Default:
"linear".

... (Optional) Other prediction parameters.

Value

List of prediction matrices or single prediction matrix / vector, depending on the terms requested.

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)

118 predict.bcfmodel

n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
y_hat_test <- predict(bart_model, X=X_test)$y_hat

predict.bcfmodel Predict From BCF Model

Description

Predict from a sampled BCF model on new data

Usage

S3 method for class 'bcfmodel'
predict(
object,
X,
Z,
propensity = NULL,
rfx_group_ids = NULL,
rfx_basis = NULL,
type = "posterior",
terms = "all",
scale = "linear",
...

)

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model
and associated sampling outputs.

X Covariates used to determine tree leaf predictions for each observation. Must be
passed as a matrix or dataframe.

Z Treatments used for prediction.

propensity (Optional) Propensities used for prediction.

rfx_group_ids (Optional) Test set group labels used for an additive random effects model. We
do not currently support (but plan to in the near future), test set evaluation for
group labels that were not in the training set.

predict.bcfmodel 119

rfx_basis (Optional) Test set basis for "random-slope" regression in additive random ef-
fects model. If the model was sampled with a random effects model_spec of
"intercept_only" or "intercept_plus_treatment", this is optional, but if it is pro-
vided, it will be used.

type (Optional) Type of prediction to return. Options are "mean", which averages the
predictions from every draw of a BCF model, and "posterior", which returns the
entire matrix of posterior predictions. Default: "posterior".

terms (Optional) Which model terms to include in the prediction. This can be a single
term or a list of model terms. Options include "y_hat", "prognostic_function",
"mu", "cate", "tau", "rfx", "variance_forest", or "all". If a model doesn’t have
random effects or variance forest predictions, but one of those terms is request,
the request will simply be ignored. If a model has random effects fit with ei-
ther "intercept_only" or "intercept_plus_treatment" model_spec, then "prognos-
tic_function" refers to the predictions of the prognostic forest plus the random
intercept and "cate" refers to the predictions of the treatment effect forest plus
the random slope on the treatment variable. For these models, the forest predic-
tions alone can be requested via "mu" (prognostic forest) and "tau" (treatment
effect forest). In all other cases, "mu" will return exactly the same result as
"prognostic_function" and "tau" will return exactly the same result as "cate". If
none of the requested terms are present in a model, this function will return NULL
along with a warning. Default: "all".

scale (Optional) Scale of mean function predictions. Options are "linear", which re-
turns predictions on the original scale of the mean forest / RFX terms, and "prob-
ability", which transforms predictions into a probability of observing y == 1.
"probability" is only valid for models fit with a probit outcome model. Default:
"linear".

... (Optional) Other prediction parameters.

Value

List of prediction matrices or single prediction matrix / vector, depending on the terms requested.

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)

120 preprocessPredictionData

tau_x <- (
((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
noise_sd <- 1
y <- mu_x + tau_x*Z + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train, num_gfr = 10,
num_burnin = 0, num_mcmc = 10)

preds <- predict(bcf_model, X_test, Z_test, pi_test)

preprocessPredictionData

Preprocess Covariates for Model Prediction

Description

Preprocess covariates for use in a ForestDataset at prediction time. DataFrames will be prepro-
cessed based on their column types. Matrices will be passed through assuming all columns are
numeric.

Usage

preprocessPredictionData(input_data, metadata)

Arguments

input_data Covariates, provided as either a dataframe or a matrix

metadata List containing information on variables, including train set categories for cate-
gorical variables

preprocessTrainData 121

Value

Preprocessed data with categorical variables appropriately handled

Examples

cov_df <- data.frame(x1 = 1:5, x2 = 5:1, x3 = 6:10)
metadata <- list(num_ordered_cat_vars = 0, num_unordered_cat_vars = 0,

num_numeric_vars = 3, numeric_vars = c("x1", "x2", "x3"))
X_preprocessed <- preprocessPredictionData(cov_df, metadata)

preprocessTrainData Preprocess Covariates for Model Training

Description

Preprocess covariates for use in a ForestDataset at train time. DataFrames will be preprocessed
based on their column types. Matrices will be passed through assuming all columns are numeric.

Usage

preprocessTrainData(input_data)

Arguments

input_data Covariates, provided as either a dataframe or a matrix

Value

List with preprocessed (unmodified) data and details on the number of each type of variable, unique
categories associated with categorical variables, and the vector of feature types needed for calls to
BART and BCF.

Examples

cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
X <- preprocess_list$X

122 print.bcfmodel

print.bartmodel Summarize a BART Model

Description

Prints a summary of the BART model, including the model terms and their specifications.

Usage

S3 method for class 'bartmodel'
print(x, ...)

Arguments

x The BART model object

... Additional arguments

Value

BART model object unchanged after printing summary

print.bcfmodel Print Summary of BCF Model

Description

Prints a summary of the BCF model, including the model terms and their specifications.

Usage

S3 method for class 'bcfmodel'
print(x, ...)

Arguments

x The BCF model object

... Additional arguments (currently unused)

Value

BCF model object unchanged after printing summary

RandomEffectSamples 123

RandomEffectSamples Random Effect Container C++ Wrapper

Description

Class that wraps the "persistent" aspects of a C++ random effects model, including draws of the
parameters and a map from the original label indices to the 0-indexed label numbers used to place
group samples in memory (i.e. the first label is stored in column 0 of the sample matrix, the second
label is store in column 1 of the sample matrix, etc...)

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Coordinates various C++ random effects classes and persists those needed for prediction / serializa-
tion

Public fields

rfx_container_ptr External pointer to a C++ StochTree::RandomEffectsContainer class

label_mapper_ptr External pointer to a C++ StochTree::LabelMapper class

training_group_ids Unique vector of group IDs that were in the training dataset

Methods

Public methods:
• RandomEffectSamples$new()

• RandomEffectSamples$load_in_session()

• RandomEffectSamples$load_from_json()

• RandomEffectSamples$append_from_json()

• RandomEffectSamples$load_from_json_string()

• RandomEffectSamples$append_from_json_string()

• RandomEffectSamples$predict()

• RandomEffectSamples$extract_parameter_samples()

• RandomEffectSamples$delete_sample()

• RandomEffectSamples$extract_label_mapping()

Method new(): Create a new RandomEffectSamples object.

Usage:
RandomEffectSamples$new()

Returns: A new RandomEffectSamples object.

Method load_in_session(): Construct RandomEffectSamples object from other "in-session"
R objects

124 RandomEffectSamples

Usage:
RandomEffectSamples$load_in_session(
num_components,
num_groups,
random_effects_tracker

)

Arguments:
num_components Number of "components" or bases defining the random effects regression
num_groups Number of random effects groups
random_effects_tracker Object of type RandomEffectsTracker

Returns: None

Method load_from_json(): Construct RandomEffectSamples object from a json object

Usage:
RandomEffectSamples$load_from_json(
json_object,
json_rfx_container_label,
json_rfx_mapper_label,
json_rfx_groupids_label

)

Arguments:
json_object Object of class CppJson
json_rfx_container_label Label referring to a particular rfx sample container (i.e. "ran-

dom_effect_container_0") in the overall json hierarchy
json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0")

in the overall json hierarchy
json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "ran-

dom_effect_groupids_0") in the overall json hierarchy

Returns: A new RandomEffectSamples object.

Method append_from_json(): Append random effect draws to RandomEffectSamples object
from a json object

Usage:
RandomEffectSamples$append_from_json(
json_object,
json_rfx_container_label,
json_rfx_mapper_label,
json_rfx_groupids_label

)

Arguments:
json_object Object of class CppJson
json_rfx_container_label Label referring to a particular rfx sample container (i.e. "ran-

dom_effect_container_0") in the overall json hierarchy
json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0")

in the overall json hierarchy

RandomEffectSamples 125

json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "ran-
dom_effect_groupids_0") in the overall json hierarchy

Returns: None

Method load_from_json_string(): Construct RandomEffectSamples object from a json ob-
ject

Usage:
RandomEffectSamples$load_from_json_string(
json_string,
json_rfx_container_label,
json_rfx_mapper_label,
json_rfx_groupids_label

)

Arguments:
json_string JSON string which parses into object of class CppJson
json_rfx_container_label Label referring to a particular rfx sample container (i.e. "ran-

dom_effect_container_0") in the overall json hierarchy
json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0")

in the overall json hierarchy
json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "ran-

dom_effect_groupids_0") in the overall json hierarchy

Returns: A new RandomEffectSamples object.

Method append_from_json_string(): Append random effect draws to RandomEffectSamples
object from a json object

Usage:
RandomEffectSamples$append_from_json_string(
json_string,
json_rfx_container_label,
json_rfx_mapper_label,
json_rfx_groupids_label

)

Arguments:
json_string JSON string which parses into object of class CppJson
json_rfx_container_label Label referring to a particular rfx sample container (i.e. "ran-

dom_effect_container_0") in the overall json hierarchy
json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0")

in the overall json hierarchy
json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "ran-

dom_effect_groupids_0") in the overall json hierarchy

Returns: None

Method predict(): Predict random effects for each observation implied by rfx_group_ids
and rfx_basis. If a random effects model is "intercept-only" the rfx_basis will be a vector of
ones of size length(rfx_group_ids).

126 RandomEffectsDataset

Usage:
RandomEffectSamples$predict(rfx_group_ids, rfx_basis = NULL)

Arguments:
rfx_group_ids Indices of random effects groups in a prediction set
rfx_basis (Optional) Basis used for random effects prediction
Returns: Matrix with as many rows as observations provided and as many columns as samples
drawn of the model.

Method extract_parameter_samples(): Extract the random effects parameters sampled.
With the "redundant parameterization" of Gelman et al (2008), this includes four parameters:
alpha (the "working parameter" shared across every group), xi (the "group parameter" sampled
separately for each group), beta (the product of alpha and xi, which corresponds to the overall
group-level random effects), and sigma (group-independent prior variance for each component of
xi).

Usage:
RandomEffectSamples$extract_parameter_samples()

Returns: List of arrays. The alpha array has dimension (num_components, num_samples) and
is simply a vector if num_components = 1. The xi and beta arrays have dimension (num_components,
num_groups, num_samples) and are simply matrices if num_components = 1. The sigma array
has dimension (num_components, num_samples) and is simply a vector if num_components =
1.

Method delete_sample(): Modify the RandomEffectsSamples object by removing the pa-
rameter samples index by sample_num.

Usage:
RandomEffectSamples$delete_sample(sample_num)

Arguments:
sample_num Index of the RFX sample to be removed

Method extract_label_mapping(): Convert the mapping of group IDs to random effect com-
ponents indices from C++ to R native format

Usage:
RandomEffectSamples$extract_label_mapping()

Returns: List mapping group ID to random effect components.

RandomEffectsDataset Random Effects Dataset C++ Wrapper

Description

Dataset used to sample a random effects model. A random effects dataset consists of three matrices
/ vectors: group labels, bases, and variance weights. Variance weights are optional.

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

RandomEffectsDataset 127

Public fields

data_ptr External pointer to a C++ RandomEffectsDataset class

Methods

Public methods:
• RandomEffectsDataset$new()

• RandomEffectsDataset$update_basis()

• RandomEffectsDataset$update_variance_weights()

• RandomEffectsDataset$num_observations()

• RandomEffectsDataset$num_basis()

• RandomEffectsDataset$get_group_labels()

• RandomEffectsDataset$get_basis()

• RandomEffectsDataset$get_variance_weights()

• RandomEffectsDataset$has_group_labels()

• RandomEffectsDataset$has_basis()

• RandomEffectsDataset$has_variance_weights()

Method new(): Create a new RandomEffectsDataset object.

Usage:
RandomEffectsDataset$new(group_labels, basis, variance_weights = NULL)

Arguments:
group_labels Vector of group labels
basis Matrix of bases used to define the random effects regression (for an intercept-only model,

pass an array of ones)
variance_weights (Optional) Vector of observation-specific variance weights

Returns: A new RandomEffectsDataset object.

Method update_basis(): Update basis matrix in a dataset

Usage:
RandomEffectsDataset$update_basis(basis)

Arguments:
basis Updated matrix of bases used to define random slopes / intercepts

Method update_variance_weights(): Update variance_weights in a dataset

Usage:
RandomEffectsDataset$update_variance_weights(
variance_weights,
exponentiate = F

)

Arguments:
variance_weights Updated vector of variance weights used to define individual variance /

case weights

128 RandomEffectsDataset

exponentiate Whether or not input vector should be exponentiated before being written to the
RandomEffectsDataset’s variance weights. Default: F.

Method num_observations(): Return number of observations in a RandomEffectsDataset
object

Usage:
RandomEffectsDataset$num_observations()

Returns: Observation count

Method num_basis(): Return dimension of the basis matrix in a RandomEffectsDataset ob-
ject

Usage:
RandomEffectsDataset$num_basis()

Returns: Basis vector count

Method get_group_labels(): Return group labels as an R vector

Usage:
RandomEffectsDataset$get_group_labels()

Returns: Group label data

Method get_basis(): Return bases as an R matrix

Usage:
RandomEffectsDataset$get_basis()

Returns: Basis data

Method get_variance_weights(): Return variance weights as an R vector

Usage:
RandomEffectsDataset$get_variance_weights()

Returns: Variance weight data

Method has_group_labels(): Whether or not a dataset has group label indices

Usage:
RandomEffectsDataset$has_group_labels()

Returns: True if group label vector is loaded, false otherwise

Method has_basis(): Whether or not a dataset has a basis matrix

Usage:
RandomEffectsDataset$has_basis()

Returns: True if basis matrix is loaded, false otherwise

Method has_variance_weights(): Whether or not a dataset has variance weights

Usage:
RandomEffectsDataset$has_variance_weights()

Returns: True if variance weights are loaded, false otherwise

RandomEffectsModel 129

RandomEffectsModel Random Effects Model C++ Wrapper

Description

The core "model" class for sampling random effects. Stores current model state, prior parameters,
and procedures for sampling from the conditional posterior of each parameter.

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

rfx_model_ptr External pointer to a C++ StochTree::RandomEffectsModel class

num_groups Number of groups in the random effects model

num_components Number of components (i.e. dimension of basis) in the random effects model

Methods

Public methods:

• RandomEffectsModel$new()

• RandomEffectsModel$sample_random_effect()

• RandomEffectsModel$predict()

• RandomEffectsModel$set_working_parameter()

• RandomEffectsModel$set_group_parameters()

• RandomEffectsModel$set_working_parameter_cov()

• RandomEffectsModel$set_group_parameter_cov()

• RandomEffectsModel$set_variance_prior_shape()

• RandomEffectsModel$set_variance_prior_scale()

Method new(): Create a new RandomEffectsModel object.

Usage:
RandomEffectsModel$new(num_components, num_groups)

Arguments:

num_components Number of "components" or bases defining the random effects regression
num_groups Number of random effects groups

Returns: A new RandomEffectsModel object.

Method sample_random_effect(): Sample from random effects model.

Usage:

130 RandomEffectsModel

RandomEffectsModel$sample_random_effect(
rfx_dataset,
residual,
rfx_tracker,
rfx_samples,
keep_sample,
global_variance,
rng

)

Arguments:
rfx_dataset Object of type RandomEffectsDataset

residual Object of type Outcome

rfx_tracker Object of type RandomEffectsTracker

rfx_samples Object of type RandomEffectSamples

keep_sample Whether sample should be retained in rfx_samples. If FALSE, the state of
rfx_tracker will be updated, but the parameter values will not be added to the sample
container. Samples are commonly discarded due to burn-in or thinning.

global_variance Scalar global variance parameter
rng Object of type CppRNG

Returns: None

Method predict(): Predict from (a single sample of a) random effects model.

Usage:
RandomEffectsModel$predict(rfx_dataset, rfx_tracker)

Arguments:
rfx_dataset Object of type RandomEffectsDataset

rfx_tracker Object of type RandomEffectsTracker

Returns: Vector of predictions with size matching number of observations in rfx_dataset

Method set_working_parameter(): Set value for the "working parameter." This is typically
used for initialization, but could also be used to interrupt or override the sampler.

Usage:
RandomEffectsModel$set_working_parameter(value)

Arguments:
value Parameter input

Returns: None

Method set_group_parameters(): Set value for the "group parameters." This is typically used
for initialization, but could also be used to interrupt or override the sampler.

Usage:
RandomEffectsModel$set_group_parameters(value)

Arguments:
value Parameter input

RandomEffectsModel 131

Returns: None

Method set_working_parameter_cov(): Set value for the working parameter covariance.
This is typically used for initialization, but could also be used to interrupt or override the sampler.

Usage:

RandomEffectsModel$set_working_parameter_cov(value)

Arguments:

value Parameter input

Returns: None

Method set_group_parameter_cov(): Set value for the group parameter covariance. This is
typically used for initialization, but could also be used to interrupt or override the sampler.

Usage:

RandomEffectsModel$set_group_parameter_cov(value)

Arguments:

value Parameter input

Returns: None

Method set_variance_prior_shape(): Set shape parameter for the group parameter variance
prior.

Usage:

RandomEffectsModel$set_variance_prior_shape(value)

Arguments:

value Parameter input

Returns: None

Method set_variance_prior_scale(): Set shape parameter for the group parameter variance
prior.

Usage:

RandomEffectsModel$set_variance_prior_scale(value)

Arguments:

value Parameter input

Returns: None

132 resetActiveForest

RandomEffectsTracker Random Effects Tracker C++ Wrapper

Description

Class that defines a "tracker" for random effects models, most notably storing the data indices
available in each group for quicker posterior computation and sampling of random effects terms.
The class stores a mapping from every observation to its group index, a mapping from group indices
to the training sample observations available in that group, and predictions for each observation.

This class is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Public fields

rfx_tracker_ptr External pointer to a C++ StochTree::RandomEffectsTracker class

Methods

Public methods:

• RandomEffectsTracker$new()

Method new(): Create a new RandomEffectsTracker object.

Usage:
RandomEffectsTracker$new(rfx_group_indices)

Arguments:

rfx_group_indices Integer indices indicating groups used to define random effects

Returns: A new RandomEffectsTracker object.

resetActiveForest Reset Active Forest

Description

Reset an active forest, either from a specific forest in a ForestContainer or to an ensemble of
single-node (i.e. root) trees

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

resetForestModel 133

Usage

resetActiveForest(active_forest, forest_samples = NULL, forest_num = NULL)

Arguments

active_forest Current active forest

forest_samples (Optional) Container of forest samples from which to re-initialize active forest.
If not provided, active forest will be reset to an ensemble of single-node (i.e.
root) trees.

forest_num (Optional) Index of forest samples from which to initialize active forest. If not
provided, active forest will be reset to an ensemble of single-node (i.e. root)
trees.

Value

None

Examples

num_trees <- 100
leaf_dimension <- 1
is_leaf_constant <- TRUE
is_exponentiated <- FALSE
active_forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
forest_samples <- createForestSamples(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
forest_samples$add_forest_with_constant_leaves(0.0)
forest_samples$add_numeric_split_tree(0, 0, 0, 0, 0.5, -1.0, 1.0)
forest_samples$add_numeric_split_tree(0, 1, 0, 1, 0.75, 3.4, 0.75)
active_forest$set_root_leaves(0.1)
resetActiveForest(active_forest, forest_samples, 0)
resetActiveForest(active_forest)

resetForestModel Reset Forest Model

Description

Re-initialize a forest model (tracking data structures) from a specific forest in a ForestContainer

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

resetForestModel(forest_model, forest, dataset, residual, is_mean_model)

134 resetForestModel

Arguments

forest_model Forest model with tracking data structures

forest Forest from which to re-initialize forest model

dataset Training dataset object

residual Residual which will also be updated

is_mean_model Whether the model being updated is a conditional mean model

Value

None

Examples

n <- 100
p <- 10
num_trees <- 100
leaf_dimension <- 1
is_leaf_constant <- TRUE
is_exponentiated <- FALSE
alpha <- 0.95
beta <- 2.0
min_samples_leaf <- 2
max_depth <- 10
feature_types <- as.integer(rep(0, p))
leaf_model <- 0
sigma2 <- 1.0
leaf_scale <- as.matrix(1.0)
variable_weights <- rep(1/p, p)
a_forest <- 1
b_forest <- 1
cutpoint_grid_size <- 100
X <- matrix(runif(n*p), ncol = p)
forest_dataset <- createForestDataset(X)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(n)
outcome <- createOutcome(y)
rng <- createCppRNG(1234)
global_model_config <- createGlobalModelConfig(global_error_variance=sigma2)
forest_model_config <- createForestModelConfig(feature_types=feature_types,

num_trees=num_trees, num_observations=n,
num_features=p, alpha=alpha, beta=beta,
min_samples_leaf=min_samples_leaf,
max_depth=max_depth,
variable_weights=variable_weights,
cutpoint_grid_size=cutpoint_grid_size,
leaf_model_type=leaf_model,
leaf_model_scale=leaf_scale)

forest_model <- createForestModel(forest_dataset, forest_model_config, global_model_config)
active_forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
forest_samples <- createForestSamples(num_trees, leaf_dimension,

is_leaf_constant, is_exponentiated)

resetRandomEffectsModel 135

active_forest$prepare_for_sampler(forest_dataset, outcome, forest_model, 0, 0.)
forest_model$sample_one_iteration(

forest_dataset, outcome, forest_samples, active_forest,
rng, forest_model_config, global_model_config,
keep_forest = TRUE, gfr = FALSE

)
resetActiveForest(active_forest, forest_samples, 0)
resetForestModel(forest_model, active_forest, forest_dataset, outcome, TRUE)

resetRandomEffectsModel

Reset RandomEffectsModel Object

Description

Reset a RandomEffectsModel object based on the parameters indexed by sample_num in a RandomEffectsSamples
object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

resetRandomEffectsModel(rfx_model, rfx_samples, sample_num, sigma_alpha_init)

Arguments

rfx_model Object of type RandomEffectsModel.

rfx_samples Object of type RandomEffectSamples.

sample_num Index of sample stored in rfx_samples from which to reset the state of a random
effects model. Zero-indexed, so resetting based on the first sample would require
setting sample_num = 0.

sigma_alpha_init

Initial value of the "working parameter" scale parameter.

Value

None

Examples

n <- 100
p <- 10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)

136 resetRandomEffectsTracker

y <- (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)
alpha_init <- rep(1,num_components)
xi_init <- matrix(rep(alpha_init, num_groups),num_components,num_groups)
sigma_alpha_init <- diag(1,num_components,num_components)
sigma_xi_init <- diag(1,num_components,num_components)
sigma_xi_shape <- 1
sigma_xi_scale <- 1
rfx_model$set_working_parameter(alpha_init)
rfx_model$set_group_parameters(xi_init)
rfx_model$set_working_parameter_cov(sigma_alpha_init)
rfx_model$set_group_parameter_cov(sigma_xi_init)
rfx_model$set_variance_prior_shape(sigma_xi_shape)
rfx_model$set_variance_prior_scale(sigma_xi_scale)
for (i in 1:3) {

rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
keep_sample=TRUE, global_variance=1.0, rng=rng)

}
resetRandomEffectsModel(rfx_model, rfx_samples, 0, 1.0)

resetRandomEffectsTracker

Reset RandomEffectsTracker Object

Description

Reset a RandomEffectsTracker object based on the parameters indexed by sample_num in a
RandomEffectsSamples object

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

resetRandomEffectsTracker(
rfx_tracker,
rfx_model,
rfx_dataset,
residual,
rfx_samples

)

resetRandomEffectsTracker 137

Arguments

rfx_tracker Object of type RandomEffectsTracker.

rfx_model Object of type RandomEffectsModel.

rfx_dataset Object of type RandomEffectsDataset.

residual Object of type Outcome.

rfx_samples Object of type RandomEffectSamples.

Value

None

Examples

n <- 100
p <- 10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)
y <- (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)
alpha_init <- rep(1,num_components)
xi_init <- matrix(rep(alpha_init, num_groups),num_components,num_groups)
sigma_alpha_init <- diag(1,num_components,num_components)
sigma_xi_init <- diag(1,num_components,num_components)
sigma_xi_shape <- 1
sigma_xi_scale <- 1
rfx_model$set_working_parameter(alpha_init)
rfx_model$set_group_parameters(xi_init)
rfx_model$set_working_parameter_cov(sigma_alpha_init)
rfx_model$set_group_parameter_cov(sigma_xi_init)
rfx_model$set_variance_prior_shape(sigma_xi_shape)
rfx_model$set_variance_prior_scale(sigma_xi_scale)
for (i in 1:3) {

rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
keep_sample=TRUE, global_variance=1.0, rng=rng)

}
resetRandomEffectsModel(rfx_model, rfx_samples, 0, 1.0)
resetRandomEffectsTracker(rfx_tracker, rfx_model, rfx_dataset, outcome, rfx_samples)

138 rootResetRandomEffectsModel

rootResetRandomEffectsModel

Reset RandomEffectsModel Object to Default State

Description

Reset a RandomEffectsModel object to its "default" state

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

rootResetRandomEffectsModel(
rfx_model,
alpha_init,
xi_init,
sigma_alpha_init,
sigma_xi_init,
sigma_xi_shape,
sigma_xi_scale

)

Arguments

rfx_model Object of type RandomEffectsModel.

alpha_init Initial value of the "working parameter".

xi_init Initial value of the "group parameters".
sigma_alpha_init

Initial value of the "working parameter" scale parameter.

sigma_xi_init Initial value of the "group parameters" scale parameter.

sigma_xi_shape Shape parameter for the inverse gamma variance model on the group parameters.

sigma_xi_scale Scale parameter for the inverse gamma variance model on the group parameters.

Value

None

Examples

n <- 100
p <- 10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)

rootResetRandomEffectsTracker 139

y <- (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)
alpha_init <- rep(1,num_components)
xi_init <- matrix(rep(alpha_init, num_groups),num_components,num_groups)
sigma_alpha_init <- diag(1,num_components,num_components)
sigma_xi_init <- diag(1,num_components,num_components)
sigma_xi_shape <- 1
sigma_xi_scale <- 1
rfx_model$set_working_parameter(alpha_init)
rfx_model$set_group_parameters(xi_init)
rfx_model$set_working_parameter_cov(sigma_alpha_init)
rfx_model$set_group_parameter_cov(sigma_xi_init)
rfx_model$set_variance_prior_shape(sigma_xi_shape)
rfx_model$set_variance_prior_scale(sigma_xi_scale)
for (i in 1:3) {

rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
keep_sample=TRUE, global_variance=1.0, rng=rng)

}
rootResetRandomEffectsModel(rfx_model, alpha_init, xi_init, sigma_alpha_init,

sigma_xi_init, sigma_xi_shape, sigma_xi_scale)

rootResetRandomEffectsTracker

Reset RandomEffectsTracker Object to Default State

Description

Reset a RandomEffectsTracker object to its "default" state

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

rootResetRandomEffectsTracker(rfx_tracker, rfx_model, rfx_dataset, residual)

Arguments

rfx_tracker Object of type RandomEffectsTracker.

rfx_model Object of type RandomEffectsModel.

140 sampleGlobalErrorVarianceOneIteration

rfx_dataset Object of type RandomEffectsDataset.

residual Object of type Outcome.

Value

None

Examples

n <- 100
p <- 10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)
y <- (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)
alpha_init <- rep(1,num_components)
xi_init <- matrix(rep(alpha_init, num_groups),num_components,num_groups)
sigma_alpha_init <- diag(1,num_components,num_components)
sigma_xi_init <- diag(1,num_components,num_components)
sigma_xi_shape <- 1
sigma_xi_scale <- 1
rfx_model$set_working_parameter(alpha_init)
rfx_model$set_group_parameters(xi_init)
rfx_model$set_working_parameter_cov(sigma_alpha_init)
rfx_model$set_group_parameter_cov(sigma_xi_init)
rfx_model$set_variance_prior_shape(sigma_xi_shape)
rfx_model$set_variance_prior_scale(sigma_xi_scale)
for (i in 1:3) {

rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
keep_sample=TRUE, global_variance=1.0, rng=rng)

}
rootResetRandomEffectsModel(rfx_model, alpha_init, xi_init, sigma_alpha_init,

sigma_xi_init, sigma_xi_shape, sigma_xi_scale)
rootResetRandomEffectsTracker(rfx_tracker, rfx_model, rfx_dataset, outcome)

sampleGlobalErrorVarianceOneIteration

Sample Global Error Variance

sampleLeafVarianceOneIteration 141

Description

Sample one iteration of the (inverse gamma) global variance model

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

sampleGlobalErrorVarianceOneIteration(residual, dataset, rng, a, b)

Arguments

residual Outcome class

dataset ForestDataset class

rng C++ random number generator

a Global variance shape parameter

b Global variance scale parameter

Value

None

Examples

X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
y_std <- (y-mean(y))/sd(y)
forest_dataset <- createForestDataset(X)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
a <- 1.0
b <- 1.0
sigma2 <- sampleGlobalErrorVarianceOneIteration(outcome, forest_dataset, rng, a, b)

sampleLeafVarianceOneIteration

Sample Leaf Scale

Description

Sample one iteration of the leaf parameter variance model (only for univariate basis and constant
leaf!)

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

142 sample_bart_posterior_predictive

Usage

sampleLeafVarianceOneIteration(forest, rng, a, b)

Arguments

forest C++ forest

rng C++ random number generator

a Leaf variance shape parameter

b Leaf variance scale parameter

Value

None

Examples

num_trees <- 100
leaf_dimension <- 1
is_leaf_constant <- TRUE
is_exponentiated <- FALSE
active_forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
rng <- createCppRNG(1234)
a <- 1.0
b <- 1.0
tau <- sampleLeafVarianceOneIteration(active_forest, rng, a, b)

sample_bart_posterior_predictive

Sample BART Posterior Predictive

Description

Sample from the posterior predictive distribution for outcomes modeled by BART

Usage

sample_bart_posterior_predictive(
model_object,
X = NULL,
leaf_basis = NULL,
rfx_group_ids = NULL,
rfx_basis = NULL,
num_draws_per_sample = NULL

)

sample_bcf_posterior_predictive 143

Arguments

model_object A fitted BART model object of class bartmodel.

X A matrix or data frame of covariates. Required if the BART model depends on
covariates (e.g., contains a mean or variance forest).

leaf_basis A matrix of bases for mean forest models with regression defined in the leaves.
Required for "leaf regression" models.

rfx_group_ids A vector of group IDs for random effects model. Required if the BART model
includes random effects.

rfx_basis A matrix of bases for random effects model. Required if the BART model in-
cludes random effects.

num_draws_per_sample

The number of posterior predictive samples to draw for each posterior sample.
Defaults to a heuristic based on the number of samples in a BART model (i.e.
if the BART model has >1000 draws, we use 1 draw from the likelihood per
sample, otherwise we upsample to ensure intervals are based on at least 1000
posterior predictive draws).

Value

Array of posterior predictive samples with dimensions (num_observations, num_posterior_samples,
num_draws_per_sample) if num_draws_per_sample > 1, otherwise (num_observations, num_posterior_samples).

Examples

n <- 100
p <- 5
X <- matrix(rnorm(n * p), nrow = n, ncol = p)
y <- 2 * X[,1] + rnorm(n)
bart_model <- bart(y_train = y, X_train = X)
ppd_samples <- sample_bart_posterior_predictive(

model_object = bart_model, X = X
)

sample_bcf_posterior_predictive

Sample BCF Posterior Predictive

Description

Sample from the posterior predictive distribution for outcomes modeled by BCF

144 sample_bcf_posterior_predictive

Usage

sample_bcf_posterior_predictive(
model_object,
X = NULL,
Z = NULL,
propensity = NULL,
rfx_group_ids = NULL,
rfx_basis = NULL,
num_draws_per_sample = NULL

)

Arguments

model_object A fitted BCF model object of class bcfmodel.

X A matrix or data frame of covariates.

Z A vector or matrix of treatment assignments.

propensity (Optional) A vector or matrix of propensity scores. Required if the underlying
model depends on user-provided propensities.

rfx_group_ids (Optional) A vector of group IDs for random effects model. Required if the BCF
model includes random effects.

rfx_basis (Optional) A matrix of bases for random effects model. Required if the BCF
model includes random effects.

num_draws_per_sample

(Optional) The number of samples to draw from the likelihood for each draw
of the posterior. Defaults to a heuristic based on the number of samples in a
BCF model (i.e. if the BCF model has >1000 draws, we use 1 draw from the
likelihood per sample, otherwise we upsample to ensure at least 1000 posterior
predictive draws).

Value

Array of posterior predictive samples with dimensions (num_observations, num_posterior_samples,
num_draws_per_sample) if num_draws_per_sample > 1, otherwise (num_observations, num_posterior_samples).

Examples

n <- 100
p <- 5
X <- matrix(rnorm(n * p), nrow = n, ncol = p)
pi_X <- pnorm(X[,1] / 2)
Z <- rbinom(n, 1, pi_X)
y <- 2 * X[,2] + 0.5 * X[,2] * Z + rnorm(n)
bcf_model <- bcf(X_train = X, Z_train = Z, y_train = y, propensity_train = pi_X)
ppd_samples <- sample_bcf_posterior_predictive(

model_object = bcf_model, X = X,
Z = Z, propensity = pi_X

)

sample_without_replacement 145

sample_without_replacement

Sample Without Replacement

Description

Draw sample_size samples from population_vector without replacement, weighted by sampling_probabilities

This function is intended for advanced use cases in which users require detailed control of sampling
algorithms and data structures. Minimal input validation and error checks are performed – users are
responsible for providing the correct inputs. For tutorials on the "proper" usage of the stochtree’s
advanced workflow, we provide several vignettes at stochtree.ai

Usage

sample_without_replacement(
population_vector,
sampling_probabilities,
sample_size

)

Arguments

population_vector

Vector from which to draw samples.

sampling_probabilities

Vector of probabilities of drawing each element of population_vector.

sample_size Number of samples to draw from population_vector. Must be less than or
equal to length(population_vector)

Value

Vector of size sample_size

Examples

a <- as.integer(c(4,3,2,5,1,9,7))
p <- c(0.7,0.2,0.05,0.02,0.01,0.01,0.01)
num_samples <- 5
sample_without_replacement(a, p, num_samples)

146 saveBARTModelToJson

saveBARTModelToJson Convert BART Model to JSON

Description

Convert the persistent aspects of a BART model to (in-memory) JSON

Usage

saveBARTModelToJson(object)

Arguments

object Object of type bartmodel containing draws of a BART model and associated
sampling outputs.

Value

Object of type CppJson

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json <- saveBARTModelToJson(bart_model)

saveBARTModelToJsonFile 147

saveBARTModelToJsonFile

Save BART Model to JSON File

Description

Convert the persistent aspects of a BART model to (in-memory) JSON and save to a file

Usage

saveBARTModelToJsonFile(object, filename)

Arguments

object Object of type bartmodel containing draws of a BART model and associated
sampling outputs.

filename String of filepath, must end in ".json"

Value

None

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
tmpjson <- tempfile(fileext = ".json")
saveBARTModelToJsonFile(bart_model, file.path(tmpjson))
unlink(tmpjson)

148 saveBARTModelToJsonString

saveBARTModelToJsonString

Convert BART Model to JSON String

Description

Convert the persistent aspects of a BART model to (in-memory) JSON string

Usage

saveBARTModelToJsonString(object)

Arguments

object Object of type bartmodel containing draws of a BART model and associated
sampling outputs.

Value

in-memory JSON string

Examples

n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
y_test <- y[test_inds]
y_train <- y[train_inds]
bart_model <- bart(X_train = X_train, y_train = y_train,

num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json_string <- saveBARTModelToJsonString(bart_model)

saveBCFModelToJson 149

saveBCFModelToJson Convert BCF Model to JSON

Description

Convert the persistent aspects of a BCF model to (in-memory) JSON

Usage

saveBCFModelToJson(object)

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model
and associated sampling outputs.

Value

Object of type CppJson

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)

150 saveBCFModelToJsonFile

y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
mu_params <- list(sample_sigma2_leaf = TRUE)
tau_params <- list(sample_sigma2_leaf = FALSE)
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10,
prognostic_forest_params = mu_params,
treatment_effect_forest_params = tau_params)

bcf_json <- saveBCFModelToJson(bcf_model)

saveBCFModelToJsonFile

Save BCF Model to JSON File

Description

Convert the persistent aspects of a BCF model to (in-memory) JSON and save to a file

Usage

saveBCFModelToJsonFile(object, filename)

saveBCFModelToJsonFile 151

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model
and associated sampling outputs.

filename String of filepath, must end in ".json"

Value

in-memory JSON string

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]

152 saveBCFModelToJsonString

y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]
mu_params <- list(sample_sigma2_leaf = TRUE)
tau_params <- list(sample_sigma2_leaf = FALSE)
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10,
prognostic_forest_params = mu_params,
treatment_effect_forest_params = tau_params)

tmpjson <- tempfile(fileext = ".json")
saveBCFModelToJsonFile(bcf_model, file.path(tmpjson))
unlink(tmpjson)

saveBCFModelToJsonString

Convert BCF Model to JSON String

Description

Convert the persistent aspects of a BCF model to (in-memory) JSON string

Usage

saveBCFModelToJsonString(object)

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model
and associated sampling outputs.

Value

JSON string

saveBCFModelToJsonString 153

Examples

n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)

)
pi_x <- (

((0 <= X[,1]) & (0.25 > X[,1])) * (0.2) +
((0.25 <= X[,1]) & (0.5 > X[,1])) * (0.4) +
((0.5 <= X[,1]) & (0.75 > X[,1])) * (0.6) +
((0.75 <= X[,1]) & (1 > X[,1])) * (0.8)

)
tau_x <- (

((0 <= X[,2]) & (0.25 > X[,2])) * (0.5) +
((0.25 <= X[,2]) & (0.5 > X[,2])) * (1.0) +
((0.5 <= X[,2]) & (0.75 > X[,2])) * (1.5) +
((0.75 <= X[,2]) & (1 > X[,2])) * (2.0)

)
Z <- rbinom(n, 1, pi_x)
E_XZ <- mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)
y <- E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))
train_inds <- (1:n)[!((1:n) %in% test_inds)]
X_test <- X[test_inds,]
X_train <- X[train_inds,]
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]
Z_test <- Z[test_inds]
Z_train <- Z[train_inds]
y_test <- y[test_inds]
y_train <- y[train_inds]
mu_test <- mu_x[test_inds]
mu_train <- mu_x[train_inds]
tau_test <- tau_x[test_inds]
tau_train <- tau_x[train_inds]
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]

154 savePreprocessorToJsonString

rfx_term_train <- rfx_term[train_inds]
mu_params <- list(sample_sigma2_leaf = TRUE)
tau_params <- list(sample_sigma2_leaf = FALSE)
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,

propensity_train = pi_train,
rfx_group_ids_train = rfx_group_ids_train,
rfx_basis_train = rfx_basis_train, X_test = X_test,
Z_test = Z_test, propensity_test = pi_test,
rfx_group_ids_test = rfx_group_ids_test,
rfx_basis_test = rfx_basis_test,
num_gfr = 10, num_burnin = 0, num_mcmc = 10,
prognostic_forest_params = mu_params,
treatment_effect_forest_params = tau_params)

saveBCFModelToJsonString(bcf_model)

savePreprocessorToJsonString

Convert Covariate Preprocessor to JSON String

Description

Convert the persistent aspects of a covariate preprocessor to (in-memory) JSON string

Usage

savePreprocessorToJsonString(object)

Arguments

object List containing information on variables, including train set categories for cate-
gorical variables

Value

in-memory JSON string

Examples

cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json_string <- savePreprocessorToJsonString(preprocess_list$metadata)

summary.bartmodel 155

summary.bartmodel Summarize the BART model fit and sampled terms.

Description

Summarize the BART with a description of the model that was fit and numeric summaries of any
sampled quantities.

Usage

S3 method for class 'bartmodel'
summary(object, ...)

Arguments

object The BART model object

... Additional arguments

Value

BART model object unchanged after summarizing

summary.bcfmodel Summarize BCF Model

Description

Summarize the BCF with a description of the model that was fit and numeric summaries of any
sampled quantities.

Usage

S3 method for class 'bcfmodel'
summary(object, ...)

Arguments

object The BCF model object

... Additional arguments

Value

BCF model object unchanged after summarizing

Index

bart, 5
bcf, 11

calibrateInverseGammaErrorVariance, 19
compute_bart_posterior_interval, 24
compute_bcf_posterior_interval, 26
compute_contrast_bart_model, 27
compute_contrast_bcf_model, 29
computeForestLeafIndices, 20
computeForestLeafVariances, 22
computeForestMaxLeafIndex, 23
convertPreprocessorToJson, 32
CppJson, 33
CppRNG, 39
createBARTModelFromCombinedJson, 40
createBARTModelFromCombinedJsonString,

41
createBARTModelFromJson, 42
createBARTModelFromJsonFile, 43
createBARTModelFromJsonString, 44
createBCFModelFromCombinedJson, 45
createBCFModelFromCombinedJsonString,

46
createBCFModelFromJson, 48
createBCFModelFromJsonFile, 50
createBCFModelFromJsonString, 52
createCppJson, 53
createCppJsonFile, 54
createCppJsonString, 55
createCppRNG, 55
createForest, 56
createForestDataset, 57
createForestModel, 57
createForestModelConfig, 58
createForestSamples, 60
createGlobalModelConfig, 61
createOutcome, 62
createPreprocessorFromJson, 62
createPreprocessorFromJsonString, 63
createRandomEffectSamples, 64

createRandomEffectsDataset, 65
createRandomEffectsModel, 65
createRandomEffectsTracker, 66

extract_parameter, 67
extract_parameter.bartmodel, 68
extract_parameter.bcfmodel, 69

Forest, 71
ForestDataset, 76
ForestModel, 78
ForestModelConfig, 82
ForestSamples, 89

getRandomEffectSamples, 102
getRandomEffectSamples.bartmodel, 103
getRandomEffectSamples.bcfmodel, 104
GlobalModelConfig, 106

loadForestContainerCombinedJson, 107
loadForestContainerCombinedJsonString,

108
loadForestContainerJson, 109
loadRandomEffectSamplesCombinedJson,

109
loadRandomEffectSamplesCombinedJsonString,

110
loadRandomEffectSamplesJson, 111
loadScalarJson, 112
loadVectorJson, 113

Outcome, 113

plot.bartmodel, 115
plot.bcfmodel, 116
predict.bartmodel, 116
predict.bcfmodel, 118
preprocessPredictionData, 120
preprocessTrainData, 121
print.bartmodel, 122
print.bcfmodel, 122

156

INDEX 157

RandomEffectSamples, 123
RandomEffectsDataset, 126
RandomEffectsModel, 129
RandomEffectsTracker, 132
resetActiveForest, 132
resetForestModel, 133
resetRandomEffectsModel, 135
resetRandomEffectsTracker, 136
rootResetRandomEffectsModel, 138
rootResetRandomEffectsTracker, 139

sample_bart_posterior_predictive, 142
sample_bcf_posterior_predictive, 143
sample_without_replacement, 145
sampleGlobalErrorVarianceOneIteration,

140
sampleLeafVarianceOneIteration, 141
saveBARTModelToJson, 146
saveBARTModelToJsonFile, 147
saveBARTModelToJsonString, 148
saveBCFModelToJson, 149
saveBCFModelToJsonFile, 150
saveBCFModelToJsonString, 152
savePreprocessorToJsonString, 154
stochtree (stochtree-package), 4
stochtree-package, 4
summary.bartmodel, 155
summary.bcfmodel, 155

	stochtree-package
	bart
	bcf
	calibrateInverseGammaErrorVariance
	computeForestLeafIndices
	computeForestLeafVariances
	computeForestMaxLeafIndex
	compute_bart_posterior_interval
	compute_bcf_posterior_interval
	compute_contrast_bart_model
	compute_contrast_bcf_model
	convertPreprocessorToJson
	CppJson
	CppRNG
	createBARTModelFromCombinedJson
	createBARTModelFromCombinedJsonString
	createBARTModelFromJson
	createBARTModelFromJsonFile
	createBARTModelFromJsonString
	createBCFModelFromCombinedJson
	createBCFModelFromCombinedJsonString
	createBCFModelFromJson
	createBCFModelFromJsonFile
	createBCFModelFromJsonString
	createCppJson
	createCppJsonFile
	createCppJsonString
	createCppRNG
	createForest
	createForestDataset
	createForestModel
	createForestModelConfig
	createForestSamples
	createGlobalModelConfig
	createOutcome
	createPreprocessorFromJson
	createPreprocessorFromJsonString
	createRandomEffectSamples
	createRandomEffectsDataset
	createRandomEffectsModel
	createRandomEffectsTracker
	extract_parameter
	extract_parameter.bartmodel
	extract_parameter.bcfmodel
	Forest
	ForestDataset
	ForestModel
	ForestModelConfig
	ForestSamples
	getRandomEffectSamples
	getRandomEffectSamples.bartmodel
	getRandomEffectSamples.bcfmodel
	GlobalModelConfig
	loadForestContainerCombinedJson
	loadForestContainerCombinedJsonString
	loadForestContainerJson
	loadRandomEffectSamplesCombinedJson
	loadRandomEffectSamplesCombinedJsonString
	loadRandomEffectSamplesJson
	loadScalarJson
	loadVectorJson
	Outcome
	plot.bartmodel
	plot.bcfmodel
	predict.bartmodel
	predict.bcfmodel
	preprocessPredictionData
	preprocessTrainData
	print.bartmodel
	print.bcfmodel
	RandomEffectSamples
	RandomEffectsDataset
	RandomEffectsModel
	RandomEffectsTracker
	resetActiveForest
	resetForestModel
	resetRandomEffectsModel
	resetRandomEffectsTracker
	rootResetRandomEffectsModel
	rootResetRandomEffectsTracker
	sampleGlobalErrorVarianceOneIteration
	sampleLeafVarianceOneIteration
	sample_bart_posterior_predictive
	sample_bcf_posterior_predictive
	sample_without_replacement
	saveBARTModelToJson
	saveBARTModelToJsonFile
	saveBARTModelToJsonString
	saveBCFModelToJson
	saveBCFModelToJsonFile
	saveBCFModelToJsonString
	savePreprocessorToJsonString
	summary.bartmodel
	summary.bcfmodel
	Index

