Package ‘stabs’

January 31, 2026
Title Stability Selection with Error Control
Version 0.7-1
Date 2026-01-30

Description Resampling procedures to assess the stability of selected variables
with additional finite sample error control for high-dimensional variable
selection procedures such as Lasso or boosting. Both, standard stability
selection (Meinshausen & Buhlmann, 2010, <doi:10.1111/§.1467-9868.2010.00740.x>)
and complementary pairs stability selection with improved error bounds
(Shah & Samworth, 2013, <doi:10.1111/j.1467-9868.2011.01034.x>) are
implemented. The package can be combined with arbitrary user specified
variable selection approaches.

VignetteBuilder knitr
Depends R (>=2.14.0), methods, stats, parallel
Imports graphics, grDevices, utils

Suggests glmnet, lars, mboost (> 2.3-0), gamboostLSS (>= 1.2-0),
TH.data, hdi, testthat, knitr, rmarkdown

License GPL-2
URL https://github.com/hofnerb/stabs

BugReports https://github.com/hofnerb/stabs/issues
NeedsCompilation no

Author Benjamin Hofner [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2810-3186>),
Torsten Hothorn [aut] (ORCID: <https://orcid.org/0000-0001-8301-0471>)

Maintainer Benjamin Hofner <benjamin.hofner@pei.de>
Repository CRAN
Date/Publication 2026-01-31 15:50:02 UTC

https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://github.com/hofnerb/stabs
https://github.com/hofnerb/stabs/issues
https://orcid.org/0000-0003-2810-3186
https://orcid.org/0000-0001-8301-0471

2

check_folds

Contents
check_folds e 2
Fitting Functions e 3
PATaAMeterso e e e e e 5
plot.stabsel 5
run_stabsel . .. L L 8
selected 9
stabsel 10
stabsel.stabsel 15
stabsel_parameters L. e e e e e e e e e 16
subsample L L e e e 18

Index 20

check_folds Check if folds result from subsampling with p = 0.5
Description

(Internal) function that checks if folds result from subsampling with p = 0.5 and adds complemen-
tary pairs if needed.

Usage

check_folds(folds, B, n, sampling.type)

Arguments
folds a weight matrix that represents the subsamples.
B number of subsampling replicates.
n the number of observations; needed for internal checks.

sampling.type sampling type to be used.

Details

This is an internal function used to check if folds are specified correctly. For details (e.g. on
arguments) see stabsel.

Value

A matrix containing the folds, possibly after adding the complementary pairs.

References

B. Hofner, L. Boccuto and M. Goeker (2015), Controlling false discoveries in high-dimensional
situations: Boosting with stability selection. BMC Bioinformatics, 16:144.
doi:10.1186/51285901505753.

https://doi.org/10.1186/s12859-015-0575-3

Fitting Functions 3

See Also

For details see stabsel.

Fitting Functions Fit Functions for Stability Selection

Description

Functions that fit a model until ¢ variables are selected and that returns the indices (and names) of
the selected variables.

Usage
package lars:
lars.lasso(x, y, q, ...)
lars.stepwise(x, y, q, ...)

package glmnet:

glmnet.lasso(x, y, q, type = c("conservative”, "anticonservative"”), ...)
glmnet.lasso_maxCoef(x, y, q, ...)
Arguments
X a matrix containing the predictors or an object of class "mboost”.
y a vector or matrix containing the outcome.
q number of (unique) selected variables (or groups of variables depending on the

model) that are selected on each subsample.

type a charachter vector specifying if the number of selected variables per subsample
is < q (type = "conservative") or > ¢ (type = "anticonservative"”). The
conservative version ensures that the PFER is controlled.

additional arguments passed to the underlying fitting function. See the exam-
ple on glmnet.lasso_maxCoef in stabsel for the specification of additional
arguments via stabsel.

Details

All fitting functions are named after the package and the type of model that is fitted: package_name.model,
e.g., glmnet. lasso stands for a lasso model that is fitted using the package glmnet.

glmnet.lasso_maxCoef fits a lasso model with a given penalty parameter and returns the q vari-
ables with the largest (absolute) coefficients. If one wants to use glmnet.lasso_maxCoef, one must
specify the penalty parameter 1ambda (via the . . . argument) or in stabsel viaargs.fitfun(lambda
=). Note that usually, the penalty parameter cannot be specified but is chosen such that q variables
are selected. For an example on how to use glmnet.lasso_maxCoef see stabsel.

4 Fitting Functions

Value

A named list with elements

selected logical. A vector that indicates which variable was selected.

path logical. A matrix that indicates which variable was selected in which step. Each
row represents one variable, the columns represent the steps.

See Also

stabsel for stability selection itself.

Examples

if (require(”"TH.data")) {
make data set available
data("bodyfat”, package = "TH.data")
} else {
simulate some data if TH.data not available.
Note that results are nonsense with this data.
bodyfat <- matrix(rnorm(720), nrow = 72, ncol = 10)
}

if (require(”lars”)) {
selected variables
lars.lasso(bodyfat[, -2], bodyfat[,2], q = 3)$selected
lars.stepwise(bodyfat[, -2], bodyfat[,2], g = 3)$selected

if (require("glmnet")) {

glmnet.lasso(bodyfat[, -2], bodyfat[,2], q = 3)$selected
selection path
glmnet.lasso(bodyfat[, -21, bodyfat[,2], q = 3)$path

Using the anticonservative glmnet.lasso (see args.fitfun):
stab.glmnet <- stabsel(x = bodyfat[, -2], y = bodyfat[, 2],
fitfun = glmnet.lasso,
args.fitfun = list(type = "anticonservative”),
cutoff = @.75, PFER = 1)

Using glmnet.lasso_maxCoef with penalty parameter specified via args.fitfun:
stab.maxcoef <- stabsel(x = bodyfat[, -2]1, y = bodyfat[,2],
cutoff = 0.75, PFER = 1, fitfun = glmnet.lasso_maxCoef,
args.fitfun = list(lambda = 0.3))
this selectes the g variables with the largest (abolute) effects rather
than the first q variables which are selected in the lasso model
hence leading to a very different selection

parameters

parameters Method to Extract Parameters

Description

Extract stability selection parameters, i.e., tuning parameters, from a stabsel object.

Usage
parameters(object)

extract parameters from a stabsel model

(same as parameters(p))
S3 method for class 'stabsel'

stabsel_parameters(p, ...)

Arguments
object an object of class "stabsel” or "stabsel_parameters”.
p an object of class "stabsel”.

additional arguments, currently not used.

Value

An object of class stabsel_parameters with a special print method. See there for details.

See Also

stabsel to run stability selection and stabsel_parameters for details on the parameters.

plot.stabsel Plot and Print Methods for Stability Selection

Description

Display results of stability selection.

Usage

S3 method for class 'stabsel'

plot(x, main = deparse(x$call), type = c("maxsel”, "paths"),
xlab = NULL, ylab = NULL, col = NULL, ymargin = 10, np = sum(x$max > Q),
labels = NULL, ...)

S3 method for class 'stabsel'

print(x, decreasing = FALSE, print.all = TRUE, ...)

Arguments

X
main

type
xlab, ylab

col

ymargin

np

labels

decreasing

print.all

Details

plot.stabsel

object of class stabsel.
main title for the plot.

plot type; either stability paths ("paths”) or a plot of the maximum selection
frequency ("maxsel”).

labels for the x- and y-axis of the plot. Per default, sensible labels are used
depending on the type of the plot.

a vector of colors; Typically, one can specify a single color or one color for each
variable. Per default, colors depend on the maximal selection frequency of the
variable and range from grey to red.

(temporarily) specifies the y margin of of the plot in lines (see argument "mar"
of function par). This only affects the right margin for type = "paths” and the
left margin for type = "maxsel”. Explicit user specified margins are kept and
are not overwritten.

number of variables to plot for the maximum selection frequency plot (type =
"maxsel”); the first np variables with highest selection frequency are plotted.

variable labels for the plot; one label per variable / effect must be specified. Per
default, the names of x$max are used.

logical. Should the selection frequencies be printed in descending order (TRUE)
or in ascending order (FALSE)?

logical. Should all selection frequencies be displayed or only those that are
greater than zero?

additional arguments to plot and print functions.

This function implements the stability selection procedure by Meinshausen and Buehlmann (2010)
and the improved error bounds by Shah and Samworth (2013).

Two of the three arguments cutoff, g and PFER must be specified. The per-family error rate (PFER),
i.e., the expected number of false positives F(V'), where V' is the number of false positives, is
bounded by the argument PFER.

As controlling the PFER is more conservative as controlling the family-wise error rate (FWER),
the procedure also controlls the FWER, i.e., the probability of selecting at least one non-influential
variable (or model component) is less than PFER.

Value

An object of class stabsel with a special print method. The object has the following elements:

phat
selected
max

cutoff
q

selection probabilities.

elements with maximal selection probability greater cutoff.
maximum of selection probabilities.

cutoff used.

average number of selected variables used.

plot.stabsel 7

PFER per-family error rate.
sampling.type the sampling type used for stability selection.

assumption the assumptions made on the selection probabilities.
call the call.
References

B. Hofner, L. Boccuto and M. Goeker (2015), Controlling false discoveries in high-dimensional
situations: Boosting with stability selection. BMC Bioinformatics, 16:144.
doi:10.1186/s1285901505753.

N. Meinshausen and P. Buehlmann (2010), Stability selection. Journal of the Royal Statistical
Society, Series B, 72, 417-473.

R.D. Shah and R.J. Samworth (2013), Variable selection with error control: another look at stability
selection. Journal of the Royal Statistical Society, Series B, 75, 55-80.

See Also

stabsel

Examples

if (require(”TH.data")) {
make data set available
data("bodyfat”, package = "TH.data")
} else {
simulate some data if TH.data not available.
Note that results are nonsense with this data.
bodyfat <- matrix(rnorm(720), nrow = 72, ncol = 10)
}

set seed
set.seed(1234)

SR AR A
using stability selection with Lasso methods:

if (require(”lars”)) {
(stab.lasso <- stabsel(x = bodyfat[, -2]1, y = bodyfat[,2],
fitfun = lars.lasso, cutoff = 0.75,
PFER = 1, mc.cores = 1L))
set mc.cores = 1L only to avoid parallelization on CRAN;
In practice you usually do not need set this value unless you want to
avoid parallelization via mclapply or restrict it to a specific number
of available cores. See documentation of mclapply for more details.

par(mfrow = c(2, 1))

plot(stab.lasso, ymargin = 6)

opar <- par(mai = par("mai”) x c(1, 1, 1, 2.7))
plot(stab.lasso, type = "paths”)

https://doi.org/10.1186/s12859-015-0575-3

8 run_stabsel
run_stabsel Run Stability Selection
Description
(Internal) function that is used to run stability selection (i.e. to apply the fit-function to the subsam-
ples. This function is not intended to be directly called.
Usage
run_stabsel(fitter, args.fitter, n, p, cutoff, q, PFER, folds, B, assumption,
sampling.type, papply, verbose, FWER, eval, names,
mc.preschedule = FALSE, ...)
Arguments

fitter

args.fitter

n
p
cutoff

q

PFER

folds

B

assumption
sampling. type
papply
verbose

FWER

eval

names

mc.preschedule

a function to fit the model on subsamples. See argument fitfun of stabsel for
details.

a named list containing additional arguments that are passed to fitter. See
argument args.fitfun stabsel for details.

the number of observations; needed for internal checks.
number of possible predictors (including intercept if applicable).
cutoff between 0.5 and 1 or q/p and 1 in case of r-concavity.

number of (unique) selected variables (or groups of variables depending on the
model) that are selected on each subsample.

upper bound for the per-family error rate.

a weight matrix that represents the subsamples.

number of subsampling replicates.

distributional assumption.

sampling type to be used.

(parallel) apply function.

logical (default: TRUE) that determines wether warnings should be issued.
deprecated. Only for compatibility with older versions, use PFER instead.
logical. Determines whether stability selection is evaluated.

variable names that are used to label the results.

preschedule tasks?

additional arguments to be passed to next function.

selected 9

Details

This is an internal function that fits the actual models to the subsamples, i.e., this is the work horse
that runs stability selection. Usually, one should use stabsel, which internally calls run_stabsel.

run_stabsel can be used by expert users to implement stability selection methods for new model
types.
For details (e.g. on arguments) see stabsel.

Value

An object of class stabsel with the following elements:

phat selection probabilities.

selected elements with maximal selection probability greater cutoff.
max maximum of selection probabilities.

cutoff cutoff used.

q average number of selected variables used.

PFER per-family error rate.

p the number of effects subject to selection.

sampling.type the sampling type used for stability selection.

assumption the assumptions made on the selection probabilities.

References

B. Hofner, L. Boccuto and M. Goeker (2015), Controlling false discoveries in high-dimensional
situations: Boosting with stability selection. BMC Bioinformatics, 16:144.
doi:10.1186/s1285901505753.

See Also

For details see stabsel.

selected Method to Extract Selected Variables

Description

Extract selected variables from a stabsel object.

Usage

selected(object, ...)
S3 method for class 'stabsel'
selected(object, ...)

https://doi.org/10.1186/s12859-015-0575-3

10 stabsel

Arguments
object an object of class "stabsel”.
additional arguments passed to specific selected methods.
Details

The ids of variables selected during the stability selection process can be extracted using selected().

stabsel Stability Selection

Description

Selection of influential variables or model components with error control.

Usage

generic stability selection funcion
stabsel(x, ...)

a method to fit models with stability selection

S3 method for class 'matrix'

stabsel(x, y, fitfun = lars.lasso,
args.fitfun = list(), cutoff, q, PFER,
folds = subsample(rep(1, nrow(x)), B = B),
B = ifelse(sampling.type == "MB", 100, 50),
assumption = c("unimodal”, "r-concave”, "none"),
sampling.type = c("SS", "MB"),
papply = mclapply, mc.preschedule = FALSE,
verbose = TRUE, FWER, eval = TRUE, ...)

essentially a wrapper for data.frames (see details)
S3 method for class 'data.frame'

stabsel(x, vy, intercept = FALSE, ...)
Arguments
X amatrix or a data.frame containing the predictors.
y a vector or matrix containing the outcome.
intercept logical. If x is a data.frame, this argument determines if the resulting model

matrix should contain a separate intercept or not.

fitfun a function that takes the arguments x, y as above, and additionally the number
of variables to include in each model q. The function then needs to fit the model
and to return a logical vector that indicates which variable was selected (among
the q selected variables).

stabsel 11

args.fitfun a named list containing additional arguments that are passed to the fitting func-
tion; see also argument args in do.call.
cutoff cutoff between 0.5 and 1. Preferably a value between 0.6 and 0.9 should be

used. If assumption = "r-concave” the cutoff can be below 0.5 but needs to
be larger than q/p.

q number of (unique) selected variables (or groups of variables depending on the
model) that are selected on each subsample.

PFER upper bound for the per-family error rate. This specifies the amount of falsely
selected base-learners, which is tolerated. See details.

folds a weight matrix with number of rows equal to the number of observations, see
subsample. Usually one should not change the default here as subsampling with
a fraction of 1/2 is needed for the error bounds to hold. One usage scenario
where specifying the folds by hand might be the case when one has dependent
data (e.g. clusters) and thus wants to draw clusters (i.e., multiple rows together)
not individuals.

assumption Defines the type of assumptions on the distributions of the selection probabilities
and simultaneous selection probabilities. Only applicable for sampling.type =
"SS". Per default, "unimodality” is assumed. For sampling.type = "MB" we
always use "none”.

sampling.type use sampling scheme of of Shah & Samworth (2013), i.e., with complemen-
tarty pairs (sampling.type = "SS"), or the original sampling scheme of Mein-
shausen & Buehlmann (2010).

B number of subsampling replicates. Per default, we use 50 complementary pairs
for the error bounds of Shah & Samworth (2013) and 100 for the error bound
derived in Meinshausen & Buehlmann (2010). As we use B complementray
pairs in the former case this leads to 2B subsamples.

papply (parallel) apply function, defaults to mclapply. Alternatively, parLapply can
be used. In the latter case, usually more setup is needed (see example of cvrisk
for some details).

mc.preschedule preschedule tasks if papply = mclapply (default: mc.preschedule = FALSE)?
For details see mclapply.

verbose logical (default: TRUE) that determines wether warnings should be issued.
FWER deprecated. Only for compatibility with older versions, use PFER instead.
eval logical. Determines whether stability selection is evaluated (eval = TRUE; de-

fault) or if only the parameter combination is returned.

additional arguments to parallel apply methods such as mclapply.

Details

This function implements the stability selection procedure by Meinshausen and Buehlmann (2010)
and the improved error bounds by Shah and Samworth (2013). For details see also Hofner et al.
(2014). The error bounds are implemented in the function stabsel_parameters. Two of the
three arguments cutoff, q and PFER must be specified. The per-family error rate (PFER), i.e., the
expected number of false positives E(V'), where V' is the number of false positives, is bounded by
the argument PFER.

12 stabsel

As controlling the PFER is more conservative as controlling the family-wise error rate (FWER),
the procedure also controlls the FWER, i.e., the probability of selecting at least one non-influential
variable (or model component) is less than PFER.

Predefined fitfuns functions exist but more can be easily implemented. Note that stepwise regres-
sion methods are usually not advised as they tend to be relatively unstable. See example below.

The function stabsel for data.frames is essentially just a wrapper to the matrix function with
the same argments. The only difference is that in a pre-processing step, the data set is converted to a
model matrix using the function model.matrix. The additional argument intercept determines if
an explicit intercept should be added to the model matrix. This is often not neccessary but depends
on the fitfun.

Value

An object of class stabsel with a special print method. The object has the following elements:

phat selection probabilities.

selected elements with maximal selection probability greater cutoff.
max maximum of selection probabilities.

cutoff cutoff used.

q average number of selected variables used.

PFER (realized) upper bound for the per-family error rate.

specifiedPFER specified upper bound for the per-family error rate.
p the number of effects subject to selection.
B the number of subsamples.

sampling.type the sampling type used for stability selection.

assumption the assumptions made on the selection probabilities.
call the call.
References

B. Hofner, L. Boccuto and M. Goeker (2015), Controlling false discoveries in high-dimensional
situations: Boosting with stability selection. BMC Bioinformatics, 16:144.
doi:10.1186/s1285901505753.

N. Meinshausen and P. Buehlmann (2010), Stability selection. Journal of the Royal Statistical
Society, Series B, 72, 417-473.

R.D. Shah and R.J. Samworth (2013), Variable selection with error control: another look at stability
selection. Journal of the Royal Statistical Society, Series B, 75, 55-80.

See Also

stabsel_parameters for the computation of error bounds, stabsel.stabsel for the fast re-
computation of parameters of a fitted stabsel object, fitfun for available fitting functions and
plot.stabsel for available plot functions

https://doi.org/10.1186/s12859-015-0575-3

stabsel 13

Examples

if (require(”"TH.data")) {
make data set available
data("bodyfat”, package = "TH.data")
} else {
simulate some data if TH.data not available.
Note that results are nonsense with this data.
bodyfat <- matrix(rnorm(720), nrow = 72, ncol = 10)

set seed
set.seed(1234)

HHHH AR AR
using stability selection with Lasso methods:

if (require(”lars")) {
(stab.lasso <- stabsel(x = bodyfat[, -2], y = bodyfat[,2],
fitfun = lars.lasso, cutoff = 0.75,
PFER = 1, , mc.cores = 1L))
set mc.cores = 1L only to avoid parallelization on CRAN;
In practice you usually do not need set this value unless you want to
avoid parallelization via mclapply or restrict it to a specific number
of available cores. See documentation of mclapply for more details.

(stab.stepwise <- stabsel(x = bodyfat[, -2], y = bodyfat[, 2],

fitfun = lars.stepwise, cutoff = 0.75,

PFER = 1, , mc.cores = 1L))
set mc.cores = 1L only to avoid parallelization on CRAN;
In practice you usually do not need set this value unless you want to
avoid parallelization via mclapply or restrict it to a specific number
of available cores. See documentation of mclapply for more details.

par(mfrow = c(2, 1))

plot(stab.lasso, main = "Lasso")

plot(stab.stepwise, main = "Stepwise Selection”)

--> stepwise selection seems to be quite unstable even in this low
dimensional example!

3

set seed (again to make results comparable)
set.seed(1234)
if (require("glmnet")) {
(stab.glmnet <- stabsel(x = bodyfat[, -2], y = bodyfat[,2],
fitfun = glmnet.lasso, cutoff = 0.75,
PFER = 1, mc.cores = 1L))
set mc.cores = 1L only to avoid parallelization on CRAN;
In practice you usually do not need set this value unless you want to
avoid parallelization via mclapply or restrict it to a specific number
of available cores. See documentation of mclapply for more details.

par(mfrow = c(2, 1))

14

stabsel

plot(stab.glmnet, main = "Lasso (glmnet)")
if (exists(”"stab.lasso"))
plot(stab.lasso, main = "Lasso (lars)")

Select variables with maximum coefficients based on lasso estimate
set.seed(1234) # reset seed
if (require("glmnet")) {
use cross-validated lambda
lambda.min <- cv.glmnet(x = as.matrix(bodyfat[, -21), y = bodyfat[,2])$lambda.min
(stab.maxCoef <- stabsel(x = bodyfat[, -21, y = bodyfat[,2],
fitfun = glmnet.lasso_maxCoef,
specify additional parameters to fitfun
args.fitfun = list(lambda = lambda.min),
cutoff = 0.75, PFER = 1))

WARNING: Using a fixed penalty (lambda) is usually not permitted and
not sensible. See ?fitfun for details.

now compare standard lasso with "maximal parameter estimates” from lasso
par(mfrow = c(2, 1))

plot(stab.maxCoef, main = "Lasso (glmnet; Maximum Coefficients)")
plot(stab.glmnet, main = "Lasso (glmnet)")

--> very different results.

HHHHHHHHHHHEHHH AR
using stability selection directly on computed boosting models
from mboost

if (require("mboost”)) {
low-dimensional example
mod <- glmboost(DEXfat ~ ., data = bodyfat)

compute cutoff ahead of running stabsel to see if it is a sensible

parameter choice.

p = ncol(bodyfat) - 1 (= Outcome) + 1 (= Intercept)

stabsel_parameters(q = 3, PFER = 1, p = ncol(bodyfat) - 1 + 1,
sampling.type = "MB")

the same:

stabsel(mod, g = 3, PFER = 1, sampling.type = "MB", eval = FALSE)

now run stability selection

(sbody <- stabsel(mod, q = 3, PFER = 1, sampling.type = "MB"))
opar <- par(mai = par("mai”) x c(1, 1, 1, 2.7))

plot(sbody)

par(opar)

plot(sbody, type = "maxsel”, ymargin = 6)

stabsel.stabsel 15

stabsel.stabsel Change Parameters of Stability Selection

Description

Method to change the parameters cutoff, PFER and assumption of stability selection that can be
altered without the need to re-run the subsampling process.

Usage
S3 method for class 'stabsel'
stabsel(x, cutoff, PFER, assumption = x$assumption, ...)
Arguments
X an object that results from a call to stabsel.
cutoff cutoff between 0.5 and 1. Preferably a value between 0.6 and 0.9 should be

used. If assumption ="r-concave” the cutoff can be below 0.5 but needs to
be larger than q/p.

PFER upper bound for the per-family error rate. This specifies the amount of falsely
selected base-learners, which is tolerated. See details.

assumption Defines the type of assumptions on the distributions of the selection probabilities
and simultaneous selection probabilities. Only applicable for sampling.type =
"SS". For sampling. type = "MB" we always use "none”.

additional arguments that are currently ignored.

Details

This function allows to alter the parameters cutoff, PFER and assumption of a fitted stability
selection result. All other parameters are re-used from the original stability selection results. The
missing paramter is computed and the selected variables are updated accordingly.

Value

An object of class stabsel. For details see there.

See Also

stabsel for the generic function, stabsel_parameters for the computation of error bounds,
fitfun for available fitting functions and plot.stabsel for available plot functions

16 stabsel_parameters

Examples

if (require(”TH.data")) {
make data set available
data("bodyfat"”, package = "TH.data")
} else {
simulate some data if TH.data not available.
Note that results are nonsense with this data.
bodyfat <- matrix(rnorm(720), nrow = 72, ncol = 10)
}

set seed
set.seed(1234)

HHHEHHHHHHEHHHAHAEHAEHHHAHHH AR
using stability selection with Lasso methods:

if (require(”"lars”)) {
(stab.lasso <- stabsel(x = bodyfat[, -21, y = bodyfat[,2],
fitfun = lars.lasso, cutoff = 0.75,
PFER = 1, mc.cores = 1L))
set mc.cores = 1L only to avoid parallelization on CRAN;
In practice you usually do not need set this value unless you want to
avoid parallelization via mclapply or restrict it to a specific number
of available cores. See documentation of mclapply for more details.

par(mfrow = c(2, 1))
plot(stab.lasso)

now change the PFER and the assumption:
(stab.lasso_cf0.93_rconc <- stabsel(stab.lasso, cutoff = 0.93,
assumption = "r-concave”, mc.cores = 1L))
In practice you usually do not need set this value unless you want to
avoid parallelization via mclapply or restrict it to a specific number
of available cores. See documentation of mclapply for more details.

plot(stab.lasso_cf@.93_rconc)
the cutoff did change and hence the PFER and the selected
variables

stabsel_parameters Compute Error Bounds for Stability Selection

Description

Compute the missing parameter from the two given parameters in order to assess suitability of the
parameter constellation

stabsel_parameters 17
Usage
stabsel_parameters(p, ...)

Default S3 method:
stabsel_parameters(p, cutoff, q, PFER,

B = ifelse(sampling.type == "MB", 100, 50),
assumption = c("unimodal”, "r-concave”, "none"),
sampling.type = c("SS", "MB"),

verbose = FALSE, FWER, ...)

S3 method for class 'stabsel_parameters'

print(x, heading = TRUE, ...)
Arguments
p number of possible predictors (including intercept if applicable).
cutoff cutoff between 0.5 and 1. Preferably a value between 0.6 and 0.9 should be
used. If assumption = "r-concave” the cutoff can be below 0.5 but needs to
be larger than q/p.
q number of (unique) selected variables (or groups of variables depending on the

model) that are selected on each subsample.

PFER upper bound for the per-family error rate. This specifies the amount of falsely
selected base-learners, which is tolerated. See details.

B number of subsampling replicates. Per default, we use 50 complementary pairs
for the error bounds of Shah & Samworth (2013) and 100 for the error bound
derived in Meinshausen & Buehlmann (2010). As we use B complementray
pairs in the former case this leads to 258 subsamples.

assumption Defines the type of assumptions on the distributions of the selection probabilities
and simultaneous selection probabilities. Only applicable for sampling.type =
"SS". For sampling.type = "MB"” we always use "none".

sampling.type use sampling scheme of of Shah & Samworth (2013), i.e., with complemen-
tarty pairs (sampling.type = "SS"), or the original sampling scheme of Mein-
shausen & Buehlmann (2010).

verbose logical (default: TRUE) that determines wether warnings should be issued.
FWER deprecated. Only for compatibility with older versions, use PFER instead.
X an object of class "stabsel_parameters”.

heading logical. Specifies if a heading line should be printed.

additional arguments to be passed to next function.

Details

This function implements the error bounds for stability selection by Meinshausen and Buehlmann
(2010) and the improved error bounds by Shah and Samworth (2013). For details see also Hofner
etal. (2014).

18 subsample

Two of the three arguments cutoff, g and PFER must be specified. The per-family error rate (PFER),
i.e., the expected number of false positives E(V'), where V' is the number of false positives, is
bounded by the argument PFER.

For more details see also stabsel.

Value

An object of class stabsel_parameters with a special print method. The object has the following

elements:

cutoff cutoff used.

q average number of selected variables used.

PFER (realized) upper bound for the per-family error rate.

specifiedPFER specified upper bound for the per-family error rate.
p the number of effects subject to selection.

B the number of subsamples.

sampling.type the sampling type used for stability selection.

assumption the assumptions made on the selection probabilities.

References

B. Hofner, L. Boccuto and M. Goeker (2015), Controlling false discoveries in high-dimensional
situations: Boosting with stability selection. BMC Bioinformatics, 16:144.
doi:10.1186/51285901505753.

N. Meinshausen and P. Buehlmann (2010), Stability selection. Journal of the Royal Statistical
Society, Series B, 72, 417-473.

R.D. Shah and R.J. Samworth (2013), Variable selection with error control: another look at stability
selection. Journal of the Royal Statistical Society, Series B, 75, 55-80.

See Also

For more details see also stabsel.

subsample Draw Random Subsamples

Description

Set up weight matrix for subsampling with sample proportion 1/2 to be used with stabsel.

Usage

subsample(weights, B = 100, strata = NULL)

https://doi.org/10.1186/s12859-015-0575-3

subsample 19

Arguments
weights a numeric vector of weights for the model to be cross-validated.
B number of folds, per default 25 for bootstrap and subsampling and 10 for
kfold.
strata a factor of the same length as weights for stratification.
Details

The function subsample can be used to build an appropriate weight matrix to be used with stabsel.
See there for more details.

If strata is defined sampling is performed in each stratum separately thus preserving the distribu-
tion of the strata variable in each fold.

See Also

stabsel

Examples

just a low-dimensional example
subsample(weights = rep(1, 10), B = 50)

Index

* helper
check_folds, 2
run_stabsel, 8
stabsel_parameters, 16
+ methods
parameters, 5
selected, 9
* models
Fitting Functions, 3
+ nonlinear
Fitting Functions, 3
* nonparametric
Fitting Functions, 3
plot.stabsel, 5
stabsel, 10
stabsel.stabsel, 15
subsample, 18

check_folds, 2
cvrisk, 11

data.frame, 10, 12
do.call, 1/

fitfun, 12,15

fitfun (Fitting Functions), 3
fitfuns, 12

fitfuns (Fitting Functions), 3
Fitting Functions, 3

glmnet.lasso (Fitting Functions), 3
glmnet.lasso_maxCoef (Fitting
Functions), 3

lars.lasso (Fitting Functions), 3
lars.stepwise (Fitting Functions), 3

matrix, 10, 12

mclapply, 11
model.matrix, /2

20

par, 6

parameters, 5

plot (plot.stabsel), 5

plot.stabsel, 5, 12, 15

print.stabsel (plot.stabsel), 5

print.stabsel_parameters
(stabsel_parameters), 16

run_stabsel, 8

selected, 9
stabsel, 2-5, 7-9, 10, 15, 18, 19
stabsel.stabsel, 12, 15
stabsel_parameters, 5, 11, 12,15, 16
stabsel_parameters.stabsel

(parameters), 5
subsample, 11, 18

	check_folds
	Fitting Functions
	parameters
	plot.stabsel
	run_stabsel
	selected
	stabsel
	stabsel.stabsel
	stabsel_parameters
	subsample
	Index

