Package ‘spatstat.geom’

January 20, 2026
Version 3.7-0
Date 2026-01-20
Title Geometrical Functionality of the 'spatstat' Family
Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>=3.5.0), spatstat.data (>= 3.1-9), spatstat.univar (>=
3.1-5.002), stats, graphics, grDevices, utils, methods

Imports spatstat.utils (>= 3.2-1), deldir (>= 1.0-2), polyclip (>=
1.10)

Suggests spatstat.random (>= 3.4-3), spatstat.explore (>= 3.6),
spatstat.model (>= 3.5), spatstat.linnet (>= 3.4), spatial,
fftwtools (>= 0.9-8), spatstat (>= 3.5)

Description Defines spatial data types and supports geometrical operations
on them. Data types include point patterns, windows (domains),
pixel images, line segment patterns, tessellations and hyperframes.
Capabilities include creation and manipulation of data
(using command line or graphical interaction),
plotting, geometrical operations (rotation, shift, rescale,
affine transformation), convex hull, discretisation and
pixellation, Dirichlet tessellation, Delaunay triangulation,
pairwise distances, nearest-neighbour distances,
distance transform, morphological operations
(erosion, dilation, closing, opening), quadrat counting,
geometrical measurement, geometrical covariance,
colour maps, calculus on spatial domains,

Gaussian blur, level sets of images, transects of images,
intersections between objects, minimum distance matching.
(Excludes spatial data on a network, which are supported by
the package 'spatstat.linnet'.)

License GPL (>=2)

URL http://spatstat.org/
NeedsCompilation yes

ByteCompile true

http://spatstat.org/

BugReports https://github.com/spatstat/spatstat.geom/issues

Author Adrian Baddeley [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-9499-8382>),
Rolf Turner [aut, cph] (ORCID: <https://orcid.org/0000-0001-5521-5218>),
Ege Rubak [aut, cph] (ORCID: <https://orcid.org/0000-0002-6675-533X>),
Warick Brown [ctb],
Tilman Davies [ctb],
Ute Hahn [ctb],
Martin Hazelton [ctb],
Abdollah Jalilian [ctb],
Greg McSwiggan [ctb, cph],
Sebastian Meyer [ctb, cph],
Jens Oehlschlaegel [ctb, cph],
Suman Rakshit [ctb],
Dominic Schuhmacher [ctb],
Rasmus Waagepetersen [ctb]

Repository CRAN
Date/Publication 2026-01-20 09:50:03 UTC

Contents

spatstat.geom-packagel e
add.texture L
affine e

affine.ppp
affine.psp
affine.tess e e
angles.psp e e e
anylist e
anyNA.IM L e
append.psp . . . e e e e e e e e e
applynbd
ArCAOWIN L . e e e e e
areaGain L e
arealosso
asboX3 ..
ASDOXX . . e e e
as.colourmap e e e e e e
as.data.frame.hyperframe
asdataframedmo
as.dataframe.owin L oL
as.dataframe.ppp oL
as.dataframe.psp
as.dataframe.tess L.
as.functiondm L L e

Contents

https://github.com/spatstat/spatstat.geom/issues
https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0001-5521-5218
https://orcid.org/0000-0002-6675-533X

Contents

3
asfunction.owin e 51
asfunction.tess L e 52
ashyperframe L 53
as.hyperframe.ppx L. 54
ASAM . . . o e 56
asdayered 61
as.mask ..o 63
as.MatriXdm e e e e 66
ASMATIX.OWIN .« . L o v o ot e e e e e e e e e e e e e e 67
ASOWIN . . . L oot e e 68
as.polygonal e 71
ASPPP -+ v e e e e e e e e e e e e e 72
ASPSP - v e e e e e e e e e e e e e e e e 75
asrectangle L L 77
as.SOlISt L e e 79
AS.ESS . . e e e e e e e e e 80
bdist.pixels 81
bdist.points e e e e e e e 83
bdist.tiles e 84
beachcolours L 85
border 86
bounding.boX.Xy e e e e e 87
boundingbox L 88
boundingcircle 90
boX3 . . 91
DOXX . . e 92
bufftess 93
bydm . . .o 95
DY.PPD -« o o e e e e 96
cbind-hyperframe Lo 98
Centroid.OWIN e e e e 99
ChOP.LESS . . . o o e e e e 100
clickboX e e 101
clickdist 102
clickpoly e 103
Cickppp . . . o e e 104
clipinfline 105
CloSepairs e 106
closepairs.pp3 e e e e e e 108
closetriples 110
closing 111
colourmap e e e e e e e 113
COlOUTOULPULS o ot e e e e e e 115
colourtools e 117
commonGrid 119
compatible e 120
compatible.dm oL e 121

complement.owin e e e e e 122

Contents

COMCALXY « « v v v v v e 123
connected e e 124
CoNNECLEd.PPP - - - -« v e e e e e e 127
connected.tesso e e e e 128
COMOULIMM « . o v v v v v i e it e e e e e e e e e e e e e e e e e e 129
contourdmliSt L. e e e e e e e e e 131
convexhull e 132
convexhull.Xxy e 133
convexify oL 134
CONVEXMELIIC . . . v v v vt ot e 135
CONVOIVEM oot e e 137
COOTdS e 138
COMMETS .+ v v v v v e 140
COVEIING . .« . o v v vt e e e e e e e e 141
Crossdist L e e e e e 142
crossdist.default e 143
crossdist.pp3 L 144
CrossAiSt.PPD -« v v v e e e e e e e e e e e e e 145
CrossdiSt.pPX . . o o . o e e e e e e e 146
CrossdiSt.psSp .« . o o . . 147
CIOSSINZ.PSP « « « v v v v e e e e e e e e e e e e e e e e 149
CULIM oo o e e 150
CULDPPD « « v v o o e e e e e e e e 151
default.colourmap 153
default.dummy e 155
default.image.colours 156
default.symbolmap 157
default.symbolmap.ppp 158
delaunay e 162
delaunayDistance 163
deltametric e 164
diameter e 165
diameter.box3 L L 166
diameter.boXX e e e e 167
diameter.owin e e 169
dilated.areas 170
dilation L L e e e e e 171
dirichlet 172
dirichletAreas e e e 173
dirichletVertices e e e e e e 174
dirichletWeights 175
disC . .. e 177
discpartarea L e e e e e 179
disCretise e e e e 180
diSCS . . . L e 181
distfun L e 183
distmap e 185

distmap.owin e e 186

Contents

5
diStMap.pPPP - -+« v e e e e e e e e e e e e e e e 188
distmap.psp e e e e e e 190
domain 191
duplicated.ppp o o 193
dgeS . . . e e 195
edges2triangles L 196
edges2Vees e e e 197
edithyperframe e 198
dit.PPP . . . e 199
ellipse e 200
endpointS. PSP e e e 201
eroded.areasl 202
EIOSION . .« o o v v it e e e e e e e 203
EIOSIONANY o o e 205
evalim Lo e 206
Extractanylist L. e 207
Extract.hyperframe 208
Extract.im e 211
Extract.layered e 214
Extract.listof 215
EXtract.owin L e e 217
EXtract.ppp . - . .« o o e e 218
EXtract.ppX oo e e e 221
EXtract.psp oo e e e 223
Extract.quad e e e e 224
Extract.solist e 225
EXtract.splitppp -« . o 227
EXtract.tess o o e e 228
eXIrapolate.psp e e e e e e e e e 229
fardist e 230
fillholes.owin L 231
lipXy . . o e e e 232
fourierbasis e 233
Frame e 234
framedist.pixels 235
funxy . . .o e e e 237
gridcentres L L e e e e e e e 238
gridweights 239
SIOW.DOXX © v v v ot e e e e e e e e e e e 240
growrectangleo L L oL e 241
harmonise L 243
harmonise.dm e 244
harmonise.owin L e 245
harmoniseLevels 246
has.close e 247
headtail 248
hextess e e e 250

histfunxy e 251

Contents

histim oL 252
hyperframe e 253
identify.ppp e 256
identify.psp 257
identify.tess L e e e 258
M .o e 259
IMapply o e 261
IMODJECT o o e e e e e e e e e e 263
IMCOV . . v v o e e e e e e e e e 264
incircle L 265
infline 267
inside.boXX e 268
inside.owin 269
integraldim e 271
integral.tessfun oL L 272
INteNSIty L e 273
IEENSILY.PPP « -« v o v v e e e e e e e e e e e e e e e 274
INENSIEY.PPX + + v v v v o e 276
INENSILY.PSP + « « v v o o e 277
intensity.quadratcount L. L 278
interp.colourmap e 279
INETPAM o o o o e e e e e e e e e 280
INLErsect.DOXX e e e 281
INEErSECL.OWIN o o vttt s e e e e e e e 282
INEEISECLIESS « « . . v v v e e e e e e e e e e e e e e e e 284
invoke.metric e 286
invoke.symbolmap 287
ISSDOXX . . o o e 288
iscconnected L. 289
iscconnected.pppo e 290
ISCCONVEX . o v v v v vt e e e e e e e e e e e 291
ISLBMPLY . o v v v o e e e e e e e e e e e e e e e e e e e 292
ISAM . Lo e e e e 293
is.linim ... 293
is.linnet . ..o 294
ISdPD . o e e e 295
issmarked 295
ismarked.ppp 296
IS.MUltitype e e e e e e e e 297
IS.multitype.ppp - . - . . . o o 298
isma.hyperframe 299
1S.na.SOlist L 300
isS.NAobject e e 301
ISOWINL . . . o o oo 302
ISPPD -« o o e e e e e e 303
ISrectangle e e e e e e 304
IS.SUDSELOWIN o o o e e e e e e 305

layered L 306

Contents

7
layerplotarg@s e e e e e e e 307
layout.boxes e 308
lengths_psp e 309
levelset e 310
levelset.distfun 312
Tut . . e 313
marks e 315
markS.psp e e e e 317
markS.tess L. e e e 318
markstat e 319
matchingdist L e 321
Mathim e 323
Mathamlist oL 325
maxnndiSt L 327
MEANAM . . . o oot v e e e e e e e e e e e 328
mergelevels 329
methods.box3 331
methods.boxX 332
methods.distfun 333
methods.funxy 335
methods.Jayered 336
methods.pp3 L e e 337
methods.ppX 339
methods.unitname Lo 340
Metric.obJeCt e e e e e e e e 341
MIdpoIntS. PSP o o o e e e e e e e e 342
MinkowskiSum 343
multiplicity.ppp - - - - .« o o 345
NAObJECt o e e e e 346
nearest.raster.pOiNto e e e e e e 347
NEArESISEZMENT o v vt i e e e e e e e e e 348
nearestValue 349
nestsplit L 350
INCTOSS « « v v e v v e 351
NNCTOSS.PP3 « ¢ o o o e e e e e e e e e e 354
NNCTOSS.PPX + « ¢ v v e 357
nndist e e e e e 359
nndist.pp3 . .. L e 362
NNAISLPPX « . v o o e e e e e e e e e e 364
NNAISLPSP .« « . . oo e e e e e 366
nnfun e 367
107110 F: Yo RO 369
nnmark . ..o 371
nnwhich 373
nnwhich.pp3 e 375
nnwhich.ppX e e 377
NObJECES L e 378

NPOINES . . .« o v v v vt e e e e e e e 379

Contents

NSEEMENLS .+ . v v v v v v e 380
NVEITICES o o v o e e e e e e e e 381
OPENMING .+« o v v v e e e e e e e e e 382
overlap.owin e e 384
OWIN . . . o L L 385
owin.object 387
owin2mask 389
padimage e e e e e e 391
pairdist L e 392
pairdist.default 393
pairdist.pp3 395
PATAISLPPD - .« .« o e e e e e 396
pairdiSt.ppX L e 398
PardiSt.pSPp e e 399
PEIIMELET o e e e e e e e e e e e 400
periodify e 401
PEISPAM L e e 403
PEISPPPP « « « o v e 405
perspPointso L e e 408
pHeolourmap e 410
PIXelcentres 411
pixellate L e e e e 412
pixellate.owin 413
pixellate.ppp . . - . . . o 414
pixellate.psp e e e e 416
pixelquad e 418
plotanylist 419
plot.colourmap L. 422
plothyperframe e 424
plotimo 426
plotimlist e 433
plotlayered e e e e 435
plotlistof e 437
plotonearrow L. 440
plotowin 442
PlOLPD3 . . e e e 445
PIOLPDD - - o o o o e e e e 447
plot.pppmatching 454
PIOLDSD .« o o o o e e e e e e 455
plot.quad e 459
plot.quadratcounto 460
PIOLSOLISt e e e e e e e e e 461
PIOLSPLILPPD - .« « o o o o e e e e 464
plot.symbolmap e 466
PIOLLESS 468
PIOLLIEXISIIING o o o o e e e e e e e e e e 470
PIOLIEXTUrEMAD o . . e e e e e e e e e e e 471

plotyardstick 473

Contents

9
pointsOnLines L e e e e e e 475
polartess e e e 476
PP3 - o e e 477
PPP -« o e e e e e e 478
PPP-ODJECE . . o o o e e e e e 482
PPPAiSt. . . . e 483
pppmatching 487
pppmatching.object 488
PPX o o e 490
Printim e 491
PriNL.OWIN oo o e e e e 492
PUNLDDD - o o o o e e e e e e e 493
PHNLPSD « « ¢ o o o et e e e e e e 494
print.quad L 495
PIrOZIESSTEPOTL . . . v v v v o o e e i e e e e e e e e e e e e e e e e e e 496
Project2segmento e e e 498
PrOJECt2SEet e e e 499
PSP -« v o e e e e e e e e e e e e 500
PSP-ODJECt . . o o e e e e 502
PSP2mask e e 503
quad.object L e 504
quadratcount L. e e e e e e e e e e e 506
quadrats L e e 508
quadscheme L 510
quadscheme.dogi L e 512
QUANEESS .+« o v v o e 514
quantiledm e 516
quantilefun.m oL 517
quasirandom L. e e e e e e e e e e e 519
TASEEL.X .« ¢ v v v et e e e e e e e e e e e e e e e e e e 520
rectdistmap L 522
reflect L e 523
regularpolygon e 524
relevel.im 525
Replacedim e 526
TEQUITEVETSION o v v v v e i e e e e e e e e e e e e e e e e 528
rescale e 529
rescale.dm 530
rescale.Owin e 532
rescale.ppp 533
rescale.psp e e 534
rescue.rectangle L L L 535
restrict.colourmap L. e e e e 536
TEV.COloUrMap oo e e e e e e 537
rexplode L 538
Ebim . . L e e e e 540
TIPIAS .« . . o ot e e e e e e e 541

CHEET . . o o o e e e 543

10

Contents
rlinegrid e e e 545
0] 546
rotatedm e e 546
rotatednfline oL 547
TOtAtE.OWIN o o e e e 549
TOLALE.PPD « « « v v v o e e e e e e e e e 550
TOLALE.PSP v ¢ v v v o e e e e e e e e e e e e e e e e e e 551
TOUNAPPD « -« o o v e e e e e e e e e e e e e e 552
rounding.ppp e 553
rQuasi e 554
TSYSE © o o e e e e e e e 555
run.simplepanel L 556
runifrect e e 559
scalardilate L 560
scaletointervalo e 561
SCANPD « « « v v v e e e e e e e e e e e e e e e e 562
SElfCrosSING.PSP . . . v v o . e 564
SElfCUt.pSp e e e e 565
sessionlibso e 566
SEICOV & . v v e e e e e e e e e e e 567
shift . . . L e 568
shiftim oo e 569
shift.owin L e 570
Shift.ppp - . . . o 571
Shift.ppX . . . o o e e e e 572
Shiftpsp o o e 574
sidelengths.owin 575
simplepanel L. 576
simplify.owin e e e 579
solapply e 581
SOLISE . . o v o 582
SOIULIONSEL e e 583
spatdimo L e 584
SPatStat.Options e 585
splithyperframe 590
SPlitim . . . L e e e e 591
SPLLPPD - -« o . e e 592
SPLELPPX . . o o e 595
SPOKES . . v o o e e e e e e 597
SQUATE . . v v v v e e e e e e e e e e e e e e e e e e 598
stratrand 599
subset.hyperframe e 601
SUDSELPDPD « « v v v v e e e e e e e e e e e e e e e e e e 602
SUDSELPSP « « v v o e e e e e e e e e e e e e e e 604
summary.anylist 606
summary.distfuno e 607
SUMMATY.IM oot v bt e e e e e 608

summary.listof e 609

Contents 11

SUMMATY.OWIN .« o v v v v v v e 610
SUMMATY.PPP « « ¢« o v v v e e e e e e e e e e e e e e e e e 611
SUIMMATY.PSP « « v v v o v v e e e e e e e e e e e e e e e 612
summary.quad e e e e e e e e e e e e e e 613
summary.Solist 614
SumMMmary.Splitppp - - . - . . . e 615
SUPETIMPOSE « . v v v v v o e 616
symbolmap e e e e e e e 618
TESS o v e e e e e 622
teSL.CTOSSING.PSP « - -« v v v o e e e e e e e e e e e e e e e 624
EEXEPPD « v v e e e e e e e e e e e e e e e e e e 625
EXTUICINAD « « v v v v e e e e e e e e e e e e e e e e e e 626
textureplot L L 627
tile.areas L e 629
tile.centroids e 630
tileindex L L 631
tilenames L e e 632
tiles . . .o e 633
tileS.empty e 634
timed e 635
timeTaken L 636
transSmat e e e e e e e e e 637
triangulate.owin L L. L e 639
trimrectangle L L 640
tweak.colourmap e e e e e 641
union.quad L. L e 642
UNIQUE.PPP - -+ v v v e e oo e e e e e e e e e e e e 643
UNIQUEMAP.PPP - -« « « v v e e v e e e e e e e e e e e e e e e e e e e 644
UNITNAIME o v vt e e e e e e e e e e e e e 645
unmark ... e e 647
UNSEACK.PPD - - - v o e e e e 648
unstack.solist L. L 649
update.symbolmap L. 650
VENILEESS « « v v v v v e 651
VEIHICES . . . o o o o e e e e e 652
volume e 654
where.max 655
whichhalfplane o 656
Window L e 657
WIndow.tess o . e e 659
with.hyperframe 660
vardstick L e e 661
zapsmallim e e e 663

Index 664

12 spatstat.geom-package

spatstat.geom-package The spatstat.geom Package

Description

The spatstat.geom package belongs to the spatstat family of packages. It defines classes of ge-
ometrical objects such as windows and point patterns, and provides functionality for geometrical
operations on them.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space.

The original spatstat package has now been split into several sub-packages.

This sub-package spatstat.geom defines the main classes of geometrical objects (such as windows,
point patterns, line segment patterns, pixel images) and supports geometrical operations (such as
shifting and rotating, measuring areas and distances, finding nearest neighbours in a point pattern).

Functions for performing statistical analysis and modelling are in the separate sub-packages spat-
stat.explore and spatstat.model.

Functions for linear networks are in the separate sub-package spatstat.linnet.

For an overview of all the functions available in the spatstat family, see the help file for spatstat in
the spatstat package.

Structure of the spatstat family
The original spatstat package grew to be very large, and CRAN requested that the package be

divided into several sub-packages. Currently the sub-packages are:
* spatstat.utils containing basic utilities
* spatstat.data containing datasets
* spatstat.sparse containing linear algebra utilities

* spatstat.univar containing functions for estimating probability distributions of random vari-
ables

* spatstat.geom containing geometrical objects and geometrical operations
* spatstat.random containing code for generating random spatial patterns

* spatstat.explore containing the main functionality for exploratory and non-parametric analy-
sis of spatial data

* spatstat.model containing the main functionality for statistical modelling and inference for
spatial data

* spatstat.linnet containing functions for spatial data on a linear network

* spatstat, which simply loads the other sub-packages listed above, and provides documenta-
tion.

spatstat.geom-package 13

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat
package by typing library(spatstat), the other sub-packages listed above will automatically be
loaded or imported. For an overview of all the functions available in these sub-packages, see the
help file for spatstat in the spatstat package,

Additionally there are several extension packages:

* spatstat.gui for interactive graphics

* spatstat.local for local likelihood (including geographically weighted regression)

* spatstat.Knet for additional, computationally efficient code for linear networks

* spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the
earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have
separate documentation.

OVERVIEW OF CAPABILITIES

Following is an overview of the capabilities of the spatstat.geom sub-package.
Types of spatial data:
The main types of spatial data supported by spatstat.geom are:

ppp point pattern

owin window (spatial region)

im pixel image

psp line segment pattern

tess tessellation

pp3 three-dimensional point pattern

ppx point pattern in any number of dimensions

Additional data types are supported in spatstat.linnet.

To create a point pattern:

ppp create a point pattern from (2, y) and window information
ppp(x, y, x1im, ylim) for rectangular window
ppp(x, y, poly) for polygonal window
ppp(x, y, mask) for binary image window

as.ppp convert other types of data to a ppp object

clickppp interactively add points to a plot

marks<-, %mark% attach/reassign marks to a point pattern

To simulate a random point pattern:

Most of the methods for generating random data are provided in spatstat.random. The following
basic methods are supplied in spatstat.geom:

runifrect generate n independent uniform random points in a rectangle

spatstat.geom-package

rsyst systematic random sample of points
rjitter apply random displacements to points in a pattern

Standard point pattern datasets:
Datasets installed in the spatstat family are provided in the sub-package spatstat.data.

To manipulate a point pattern:

plot.ppp plot a point pattern (e.g. plot(X))
spatstat.gui::iplot plot a point pattern interactively

persp.ppp perspective plot of marked point pattern

edit.ppp interactive text editor

L.ppp extract or replace a subset of a point pattern
pplsubset] or pp[subwindow]

subset.ppp extract subset of point pattern satisfying a condition

superimpose combine several point patterns

by . ppp apply a function to sub-patterns of a point pattern

cut.ppp classify the points in a point pattern

split.ppp divide pattern into sub-patterns

unmark remove marks

npoints count the number of points

coords extract coordinates, change coordinates

marks extract marks, change marks or attach marks

rotate rotate pattern

shift translate pattern

flipxy swap x and y coordinates

reflect reflect in the origin

periodify make several translated copies

affine apply affine transformation

scalardilate apply scalar dilation

nnmark mark value of nearest data point

identify.ppp interactively identify points

unique.ppp remove duplicate points

duplicated.ppp

uniquemap.ppp
connected. ppp

determine which points are duplicates
map duplicated points to unique points
find clumps of points

dirichlet compute Dirichlet-Voronoi tessellation
delaunay compute Delaunay triangulation
delaunayDistance graph distance in Delaunay triangulation
convexhull compute convex hull

discretise discretise coordinates

pixellate.ppp approximate point pattern by pixel image
as.im.ppp approximate point pattern by pixel image

See spatstat.options to control plotting behaviour.
To create a window:

An object of class "owin" describes a spatial region (a window of observation).

spatstat.geom-package

owin

Window
Frame
as.owin
square
disc
ellipse
ripras
convexhull
letterR
clickpoly
clickbox

Create a window object

owin(xlim, ylim) for rectangular window

owin(poly) for polygonal window

owin(mask) for binary image window

Extract window of another object

Extract the containing rectangle ("frame’) of another object
Convert other data to a window object

make a square window

make a circular window

make an elliptical window

Ripley-Rasson estimator of window, given only the points
compute convex hull of something

polygonal window in the shape of the R logo
interactively draw a polygonal window

interactively draw a rectangle

To manipulate a window:

plot.owin plot a window.
plot (W)
boundingbox Find a tight bounding box for the window
erosion erode window by a distance r
dilation dilate window by a distance r
closing close window by a distance r
opening open window by a distance r
border difference between window and its erosion/dilation
complement.owin invert (swap inside and outside)
simplify.owin approximate a window by a simple polygon
rotate rotate window
flipxy swap x and y coordinates
shift translate window
periodify make several translated copies
affine apply affine transformation

as.data.frame

Digital approximations:

as.mask
as.im.owin
pixellate.owin
commonGrid

.owin convert window to data frame

Make a discrete pixel approximation of a given window

convert window to pixel image
convert window to pixel image
find common pixel grid for windows

nearest.raster.point map continuous coordinates to raster locations

raster.x
raster.y
raster.xy
as.polygonal

raster X coordinates

raster y coordinates

raster X and y coordinates

convert pixel mask to polygonal window

See spatstat.options to control the approximation

15

edges
intersect.owin
union.owin
setminus.owin
inside.owin
area.owin
perimeter
diameter.owin
incircle
inradius
connected.owin
eroded. areas
dilated.areas
bdist.points
bdist.pixels
bdist.tiles
distmap.owin
distfun.owin
centroid.owin
is.subset.owin
is.convex
convexhull

triangulate.owin

as.mask
as.polygonal
is.rectangle
is.polygonal
is.mask
setcov
pixelcentres
clickdist

im

as.im
pixellate
as.matrix.im

as.data.frame.im

as.function.im
plot.im
contour.im
persp.im

rgbim

hsvim

spatstat.geom-package

Geometrical computations with windows:

extract boundary edges

intersection of two windows

union of two windows

set subtraction of two windows

determine whether a point is inside a window
compute area

compute perimeter length

compute diameter

find largest circle inside a window

radius of incircle

find connected components of window

compute areas of eroded windows

compute areas of dilated windows

compute distances from data points to window boundary
compute distances from all pixels to window boundary
boundary distance for each tile in tessellation
distance transform image

distance transform

compute centroid (centre of mass) of window
determine whether one window contains another
determine whether a window is convex

compute convex hull

decompose into triangles

pixel approximation of window

polygonal approximation of window

test whether window is a rectangle

test whether window is polygonal

test whether window is a mask

spatial covariance function of window

extract centres of pixels in mask

measure distance between two points clicked by user

Pixel images: An object of class "im" represents a pixel image. Such objects are returned by some
of the functions in spatstat including Kmeasure, setcov and density.ppp.

create a pixel image

convert other data to a pixel image
convert other data to a pixel image
convert pixel image to matrix

convert pixel image to data frame
convert pixel image to function

plot a pixel image on screen as a digital image
draw contours of a pixel image

draw perspective plot of a pixel image
create colour-valued pixel image
create colour-valued pixel image

spatstat.geom-package

[.im

[<-.im
rotate.im
shift.im
affine.im

X

summary (X)
hist.im
mean.im
integral.im
quantile.im
cut.im

is.im
interp.im
connected.im
compatible.im
harmonise.im
commonGrid
eval.im
im.apply
scaletointerval
zapsmall.im
levelset
solutionset
imcov
convolve.im
pixelcentres
transmat

Line segment patterns

extract a subset of a pixel image

replace a subset of a pixel image

rotate pixel image

apply vector shift to pixel image

apply affine transformation to image
print very basic information about image X
summary of image X

histogram of image

mean pixel value of image

integral of pixel values

quantiles of image

convert numeric image to factor image
test whether an object is a pixel image
interpolate a pixel image

find connected components

test whether two images have compatible dimensions
make images compatible

find a common pixel grid for images
evaluate any expression involving images
evaluate a function of several images
rescale pixel values

set very small pixel values to zero

level set of an image

region where an expression is true

spatial covariance function of image
spatial convolution of images

extract centres of pixels

convert matrix of pixel values

to a different indexing convention

An object of class "psp"” represents a pattern of straight line segments.

psp

as.psp
edges
is.psp
plot.psp
print.psp
summary . psp
L.psp
subset.psp
as.data.frame.psp
marks.psp
marks<-.psp
unmark.psp

midpoints.psp
endpoints.psp

create a line segment pattern

convert other data into a line segment pattern
extract edges of a window

determine whether a dataset has class "psp”
plot a line segment pattern

print basic information

print summary information

extract a subset of a line segment pattern
extract subset of line segment pattern
convert line segment pattern to data frame
extract marks of line segments

assign new marks to line segments

delete marks from line segments

compute the midpoints of line segments
extract the endpoints of line segments

17

18

lengths_psp
angles.psp
superimpose
flipxy
rotate.psp
shift.psp
periodify
affine.psp
pixellate.psp
as.mask.psp
distmap.psp
distfun.psp
selfcrossing.psp
selfcut.psp
crossing.psp
extrapolate.psp
nncross
nearestsegment
project2segment
pointsOnLines
rlinegrid

Tessellations

tess
quadrats
hextess
polartess
quantess
venn. tess
dirichlet
delaunay
as.tess
plot.tess
tiles
[.tess
[<-.tess

spatstat.geom-package

compute the lengths of line segments

compute the orientation angles of line segments
combine several line segment patterns

swap x and y coordinates

rotate a line segment pattern

shift a line segment pattern

make several shifted copies

apply an affine transformation

approximate line segment pattern by pixel image
approximate line segment pattern by binary mask
compute the distance map of a line segment pattern
compute the distance map of a line segment pattern
find crossing points between line segments

cut segments where they cross

find crossing points between two line segment patterns
extrapolate line segments to infinite lines

find distance to nearest line segment from a given point
find line segment closest to a given point

find location along a line segment closest to a given point
generate points evenly spaced along line segment
generate a random array of parallel lines through a window

An object of class "tess” represents a tessellation.

create a tessellation

create a tessellation of rectangles

create a tessellation of hexagons
tessellation using polar coordinates
quantile tessellation

Venn diagram tessellation

compute Dirichlet-Voronoi tessellation of points
compute Delaunay triangulation of points
convert other data to a tessellation

plot a tessellation

extract all the tiles of a tessellation
extract some tiles of a tessellation

change some tiles of a tessellation

intersect.tess intersect two tessellations

chop. tess
tile.areas

or restrict a tessellation to a window
subdivide a tessellation by a line
area of each tile in tessellation

bdist.tiles
connected. tess
shift.tess
rotate. tess
reflect.tess
flipxy.tess

boundary distance for each tile in tessellation
find connected components of tiles

shift a tessellation

rotate a tessellation

reflect about the origin

reflect about the diagonal

spatstat.geom-package 19

affine.tess apply affine transformation

Functions which are constant on each tile of a tessellation:

as.function.tess convert tessellation to function
plot.tessfun plot the function
integral.tessfun integrate the function
as.tess.tessfun retrieve the original tessellation

Three-dimensional point patterns

An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box
is represented by an object of class "box3".

pp3 create a 3-D point pattern
plot.pp3 plot a 3-D point pattern

coords extract coordinates

as.hyperframe extract coordinates

subset.pp3 extract subset of 3-D point pattern
unitname.pp3 name of unit of length

npoints count the number of points

box3 create a 3-D rectangular box
as.box3 convert data to 3-D rectangular box

unitname.box3 name of unit of length
diameter.box3 diameter of box
volume.box3 volume of box
shortside.box3 shortest side of box
eroded.volumes volumes of erosions of box

Multi-dimensional space-time point patterns

An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

ppXx create a multidimensional space-time point pattern
coords extract coordinates

as.hyperframe extract coordinates

subset.ppx extract subset

unitname.ppx name of unit of length

npoints count the number of points

boxx define multidimensional box

diameter.boxx diameter of box

volume.boxx volume of box

shortside.boxx shortest side of box

eroded.volumes.boxx volumes of erosions of box

Linear networks

An object of class "linnet"” represents a linear network (for example, a road network). This is
supported in the sub-package spatstat.linnet.

20

spatstat.geom-package

An object of class "1pp” represents a point pattern on a linear network (for example, road accidents
on a road network).

Hyperframes

A hyperframe is like a data frame, except that the entries may be objects of any kind.

hyperframe create a hyperframe
as.hyperframe convert data to hyperframe
plot.hyperframe plot hyperframe
with.hyperframe evaluate expression using each row of hyperframe
cbind.hyperframe combine hyperframes by columns
rbind.hyperframe combine hyperframes by rows
as.data.frame.hyperframe convert hyperframe to data frame
subset.hyperframe method for subset
head.hyperframe first few rows of hyperframe
tail.hyperframe last few rows of hyperframe
Layered objects

A layered object represents data that should be plotted in successive layers, for example, a back-
ground and a foreground.

layered create layered object
plot.layered plotlayered object
[.layered extract subset of layered object

Colour maps

A colour map is a mechanism for associating colours with data. It can be regarded as a function,
mapping data to colours. Using a colourmap object in a plot command ensures that the mapping
from numbers to colours is the same in different plots.

colourmap create a colour map

plot.colourmap plot the colour map only
tweak.colourmap alter individual colour values
interp.colourmap make a smooth transition between colours
beachcolourmap one special colour map

Inspection of data:

summary (X) print useful summary of point pattern X
X print basic description of point pattern X
any(duplicated(X)) check for duplicated points in pattern X
intensity Mean intensity
quadratcount Quadrat counts

Distances in a point pattern:

spatstat.geom-package 21

nndist nearest neighbour distances

nnwhich find nearest neighbours

pairdist distances between all pairs of points
crossdist distances between points in two patterns

nNcross nearest neighbours between two point patterns
exactdt distance from any location to nearest data point
distmap distance map image

distfun distance map function

nnmap nearest point image

nnfun nearest point function

Programming tools:

applynbd apply function to every neighbourhood in a point pattern
markstat apply function to the marks of neighbours in a point pattern
pppdist find the optimal match between two point patterns

Distances in a three-dimensional point pattern:

pairdist.pp3 distances between all pairs of points
crossdist.pp3 distances between points in two patterns
nndist.pp3 nearest neighbour distances
nnwhich.pp3 find nearest neighbours

nncross.pp3 find nearest neighbours in another pattern

Distances in multi-dimensional point pattern:

These are for multi-dimensional space-time point pattern objects (class ppx).

pairdist.ppx distances between all pairs of points
crossdist.ppx distances between points in two patterns
nndist.ppx nearest neighbour distances

nnwhich. ppx find nearest neighbours

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Ottmar Cronie, Tilman Davies, Yongtao Guan, Ute Hahn, Abdol-
lah Jalilian, Marie-Colette van Lieshout, Greg McSwiggan, Tuomas Rajala, Suman Rakshit, Do-
minic Schuhmacher, Rasmus Waagepetersen and Hangsheng Wang made substantial contributions
of code.

Additional contributions and suggestions from Monsuru Adepeju, Corey Anderson, Ang Qi Wei,
Ryan Arellano, Jens Astrém, Robert Aue, Marcel Austenfeld, Sandro Azaele, Guy Bayegnak, Colin
Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bernhardt, Andrew Bevan, Brad Biggerstaff, An-
ders Bilgrau, Leanne Bischof, Christophe Biscio, Roger Bivand, Jose M. Blanco Moreno, Florent

22

add.texture

Bonneu, Jordan Brown, Ian Buller, Julian Burgos, Simon Byers, Ya-Mei Chang, Jianbao Chen,
Igor Chernayavsky, Y.C. Chin, Bjarke Christensen, Lucia Cobo Sanchez, Jean-Francois Coeurjolly,
Kim Colyvas, Hadrien Commenges, Rochelle Constantine, Robin Corria Ainslie, Richard Cot-
ton, Marcelino de la Cruz, Peter Dalgaard, Mario D’ Antuono, Sourav Das, Peter Diggle, Patrick
Donnelly, Ian Dryden, Stephen Eglen, Ahmed El-Gabbas, Belarmain Fandohan, Olivier Flores,
David Ford, Peter Forbes, Shane Frank, Janet Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes
Gault, Jonas Geldmann, Marc Genton, Shaaban Ghalandarayeshi, Julian Gilbey, Jason Goldstick,
Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Martin Bggsted Hansen, Martin Hazel-
ton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Maximilian Hesselbarth, Paul Hewson,
Hamidreza Heydarian, Kassel Hingee, Kurt Hornik, Philipp Hunziker, Jack Hywood, Ross Thaka,
Cenk Icos, Aruna Jammalamadaka, Robert John-Chandran, Devin Johnson, Mahdieh Khanmo-
hammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn, Jeff Laake, Robert
Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee, George Leser, An-
gela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben Madin, Martin Maech-
ler, Kiran Marchikanti, Jeff Marcus, Robert Mark, Peter McCullagh, Monia Mahling, Jorge Ma-
teu Mahiques, Ulf Mehlig, Frederico Mestre, Sebastian Wastl Meyer, Mi Xiangcheng, Lore De
Middeleer, Robin Milne, Enrique Miranda, Jesper Mgller, Annie Mollié, Ines Moncada, Mehdi
Moradi, Virginia Morera Pujol, Erika Mudrak, Gopalan Nair, Nader Najari, Nicoletta Nava, Linda
Stougaard Nielsen, Felipe Nunes, Jens Randel Nyengaard, Jens Oehlschlédgel, Thierry Onkelinx,
Sean O’Riordan, Evgeni Parilov, Jeff Picka, Nicolas Picard, Tim Pollington, Mike Porter, Sergiy
Protsiv, Adrian Raftery, Suman Rakshit, Ben Ramage, Pablo Ramon, Xavier Raynaud, Nicholas
Read, Matt Reiter, Ian Renner, Tom Richardson, Brian Ripley, Ted Rosenbaum, Barry Rowling-
son, Jason Rudokas, Tyler Rudolph, John Rudge, Christopher Ryan, Farzaneh Safavimanesh, Aila
Sarkkid, Cody Schank, Katja Schladitz, Sebastian Schutte, Bryan Scott, Olivia Semboli, Francois
Sémécurbe, Vadim Shcherbakov, Shen Guochun, Shi Peijian, Harold-Jeffrey Ship, Tammy L Silva,
Ida-Maria Sintorn, Yong Song, Malte Spiess, Mark Stevenson, Kaspar Stucki, Jan Sulavik, Michael
Sumner, P. Surovy, Ben Taylor, Thordis Linda Thorarinsdottir, Leigh Torres, Berwin Turlach, Tor-
ben Tvedebrink, Kevin Ummer, Medha Uppala, Malissa Usher, Andrew van Burgel, Tobias Ver-
beke, Mikko Vihtakari, Alexendre Villers, Fabrice Vinatier, Maximilian Vogtland, Sasha Voss, Sven
Wagner, Hao Wang, H. Wendrock, Jan Wild, Carl G. Witthoft, Selene Wong, Maxime Woringer,
Luke Yates, Mike Zamboni and Achim Zeileis.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

add. texture Fill Plot With Texture

Description

Draws a simple texture inside a region on the plot.

Usage

add. texture(W, texture = 4, spacing = NULL, ...)

affine 23

Arguments
W Window (object of class "owin") inside which the texture should be drawn.
texture Integer from 1 to 8 identifying the type of texture. See Details.
spacing Spacing between elements of the texture, in units of the current plot.
Further arguments controlling the plot colour, line width etc.
Details

The chosen texture, confined to the window W, will be added to the current plot. The available
textures are:

texture=1: Small crosses arranged in a square grid.

texture=2: Parallel vertical lines.

texture=3: Parallel horizontal lines.

texture=4: Parallel diagonal lines at 45 degrees from the horizontal.

texture=5: Parallel diagonal lines at 135 degrees from the horizontal.

texture=6: Grid of horizontal and vertical lines.

texture=7: Grid of diagonal lines at 45 and 135 degrees from the horizontal.

texture=8: Grid of hexagons.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

owin, plot.owin, textureplot, texturemap.

Examples

W <- Window(chorley)
plot(W, main="")
add. texture(W, 7)

affine Apply Affine Transformation

Description
Applies any affine transformation of the plane (linear transformation plus vector shift) to a plane
geometrical object, such as a point pattern or a window.
Usage
affine(X, ...)

24 affine.im

Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"”), a line segment pattern (object of class "psp"”), a
window (object of class "owin") or a pixel image (object of class "im").
Arguments determining the affine transformation.
Details

This is generic. Methods are provided for point patterns (affine. ppp) and windows (affine.owin).

Value

Another object of the same type, representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

affine.ppp, affine.psp, affine.owin, affine.im, flipxy, reflect, rotate, shift

affine.im Apply Affine Transformation To Pixel Image

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a pixel

image.

Usage
S3 method for class 'im'

affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)
Arguments

X Pixel image (object of class "im").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

Optional arguments passed to as.mask controlling the pixel resolution of the
transformed image.

affine.owin 25

Details

The image is subjected first to the linear transformation represented by mat (multiplying on the left
by mat), and then the result is translated by the vector vec.

The argument mat must be a nonsingular 2 X 2 matrix.

This is a method for the generic function affine.

Value

Another pixel image (of class "im") representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

affine, affine.ppp, affine.psp, affine.owin, rotate, shift

Examples

X <- setcov(owin())

stretch <- diag(c(2,3))

Y <- affine(X, mat=stretch)

shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(X, mat=shear)

affine.owin Apply Affine Transformation To Window

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a window.

Usage
S3 method for class 'owin'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ..., rescue=TRUE)
Arguments
X Window (object of class "owin").
mat Matrix representing a linear transformation.
vec Vector of length 2 representing a translation.
rescue Logical. If TRUE, the transformed window will be processed by rescue.rectangle.

Optional arguments passed to as.mask controlling the pixel resolution of the
transformed window, if X is a binary pixel mask.

26 affine.ppp

Details

The window is subjected first to the linear transformation represented by mat (multiplying on the
left by mat), and then the result is translated by the vector vec.

The argument mat must be a nonsingular 2 x 2 matrix.

This is a method for the generic function affine.

Value

Another window (of class "owin") representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

affine, affine.ppp, affine.psp, affine.im, rotate, shift

Examples

shear transformation

shear <- matrix(c(1,0,0.6,1),ncol=2)

X <- affine(owin(), shear)
if(interactive()) plot(X)

affine(letterR, shear, c(@, 0.5))
affine(as.mask(letterR), shear, c(0@, 0.5))

affine.ppp Apply Affine Transformation To Point Pattern

Description
Applies any affine transformation of the plane (linear transformation plus vector shift) to a point
pattern.

Usage

S3 method for class 'ppp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

Arguments
X Point pattern (object of class "ppp").
mat Matrix representing a linear transformation.
vec Vector of length 2 representing a translation.

Arguments passed to affine.owin affecting the handling of the observation
window, if it is a binary pixel mask.

affine.psp 27

Details

The point pattern, and its window, are subjected first to the linear transformation represented by mat
(multiplying on the left by mat), and are then translated by the vector vec.

The argument mat must be a nonsingular 2 x 2 matrix.

This is a method for the generic function affine.

Value

Another point pattern (of class "ppp") representing the result of applying the affine transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

affine, affine.owin, affine.psp, affine.im, flipxy, rotate, shift

Examples

shear transformation
X <- affine(cells, matrix(c(1,0,0.6,1),ncol=2))
if(interactive()) {
plot(X)
rescale y coordinates by factor 1.3
plot(affine(cells, diag(c(1,1.3))))
}

affine.psp Apply Affine Transformation To Line Segment Pattern

Description

Applies any affine transformation of the plane (linear transformation plus vector shift) to a line

segment pattern.
Usage
S3 method for class 'psp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)
Arguments
X Line Segment pattern (object of class "psp").
mat Matrix representing a linear transformation.
vec Vector of length 2 representing a translation.

Arguments passed to affine.owin affecting the handling of the observation
window, if it is a binary pixel mask.

28 affine.tess

Details
The line segment pattern, and its window, are subjected first to the linear transformation represented
by mat (multiplying on the left by mat), and are then translated by the vector vec.
The argument mat must be a nonsingular 2 X 2 matrix.

This is a method for the generic function affine.

Value

Another line segment pattern (of class "psp”) representing the result of applying the affine trans-
formation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

affine, affine.owin, affine.ppp, affine.im, flipxy, rotate, shift

Examples

oldpar <- par(mfrow=c(2,1))

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, main="original")

shear transformation

Y <- affine(X, matrix(c(1,0,0.6,1),ncol=2))

plot(Y, main="transformed")

par(oldpar)

#

rescale y coordinates by factor 0.2

affine(X, diag(c(1,0.2)))

affine.tess Apply Geometrical Transformation To Tessellation

Description

Apply various geometrical transformations of the plane to each tile in a tessellation.

Usage
S3 method for class 'tess'
reflect(X)

S3 method for class 'tess'
flipxy(X)

affine.tess 29

S3 method for class 'tess'
shift(X, ...)

S3 method for class 'tess'
rotate(X, angle=pi/2, ..., centre=NULL)

S3 method for class 'tess'
scalardilate(X, f, ...)

S3 method for class 'tess'

affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)
Arguments
X Tessellation (object of class "tess").
angle Rotation angle in radians (positive values represent anticlockwise rotations).
mat Matrix representing a linear transformation.
vec Vector of length 2 representing a translation.
f Positive number giving scale factor.

Arguments passed to other methods.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid”, "midpoint” or "bottomleft"”). The default is the
coordinate origin c(0,0).

Details

These are method for the generic functions reflect, flipxy, shift, rotate, scalardilate,
affine for tessellations (objects of class "tess").

The individual tiles of the tessellation, and the window containing the tessellation, are all subjected
to the same geometrical transformation.

The transformations are performed by the corresponding method for windows (class "owin") or
images (class "im") depending on the type of tessellation.

If the argument originisused in shif't. tess itis interpreted as applying to the window containing
the tessellation. Then all tiles are shifted by the same vector.

Value
Another tessellation (of class "tess") representing the result of applying the geometrical transfor-
mation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

30 angles.psp

See Also

Generic functions reflect, shift, rotate, scalardilate, affine.
Methods for windows: reflect.default, shift.owin, rotate.owin, scalardilate.owin, affine.owin.

Methods for images: reflect.im, shift.im, rotate.im, scalardilate.im, affine.im.

Examples

live <- interactive()
if(live) {
H <- hextess(letterR, 0.2)
plot(H)
plot(reflect(H))
plot(rotate(H, pi/3))
} else H <- hextess(letterR, 0.6)

shear transformation

shear <- matrix(c(1,0,0.6,1),2,2)
sH <- affine(H, shear)

if(live) plot(sH)

angles.psp Orientation Angles of Line Segments

Description

Computes the orientation angle of each line segment in a line segment pattern.

Usage

angles.psp(x, directed=FALSE)

Arguments
X A line segment pattern (object of class "psp”).
directed Logical flag. See details.

Details

For each line segment, the angle of inclination to the x-axis (in radians) is computed, and the angles
are returned as a numeric vector.

If directed=TRUE, the directed angle of orientation is computed. The angle respects the sense of
direction from (x@,y®@) to (x1,y1). The values returned are angles in the full range from —7 to 7.
The angle is computed as atan2(y1-y0,x1-x@). See atan2.

If directed=FALSE, the undirected angle of orientation is computed. Angles differing by 7 are
regarded as equivalent. The values returned are angles in the range from 0 to 7. These angles are
computed by first computing the directed angle, then adding 7 to any negative angles.

anylist 31

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

psp, marks.psp, summary.psp, midpoints.psp, lengths_psp, endpoints.psp, extrapolate.psp.

Examples

a <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- angles.psp(a)

anylist List of Objects

Description

Make a list of objects of any type.

Usage

anylist(...)
as.anylist(x)

Arguments
Any number of arguments of any type.
X A list.
Details

An object of class "anylist” is a list of objects that the user intends to treat in a similar fashion.

For example it may be desired to plot each of the objects side-by-side: this can be done using the
function plot.anylist.

The objects can belong to any class; they may or may not all belong to the same class.

In the spatstat package, various functions produce an object of class "anylist”.

Value

A list, belonging to the class "anylist"”, containing the original objects.

32 anyNA.im

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

solist, as.solist, anylapply.

Examples

if(require(spatstat.explore)) {
anylist(cells, intensity(cells), Kest(cells))

} else {
anylist(cells, intensity(cells))
}
anylist()
anyNA.im Check Whether Image Contains NA Values
Description

Checks whether any pixel values in a pixel image are NA (meaning that the pixel lies outside the
domain of definition of the image).

Usage

S3 method for class 'im'
anyNA(x, recursive = FALSE)

Arguments
X A pixel image (object of class "im").
recursive Ignored.

Details

The function anyNA is generic: anyNA(x) is a faster alternative to any(is.na(x)).

This function anyNA. im is a method for the generic anyNA defined for pixel images. It returns the
value TRUE if any of the pixel values in x are NA, and and otherwise returns FALSE.

Value

A single logical value.

append.psp 33

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im.object

Examples

anyNA(as.im(letterR))

append. psp Combine Two Line Segment Patterns

Description

Combine two line segment patterns into a single pattern.

Usage
append.psp(A, B)

Arguments

A B Line segment patterns (objects of class "psp”).

Details

This function is used to superimpose two line segment patterns A and B.

The two patterns must have identical windows. If one pattern has marks, then the other must also
have marks of the same type. It the marks are data frames then the number of columns of these data
frames, and the names of the columns must be identical.

(To combine two point patterns, see superimpose).

If one of the arguments is NULL, it will be ignored and the other argument will be returned.

Value

Another line segment pattern (object of class "psp”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp, as.psp, superimpose,

34

Examples

applynbd

X <= psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <= psp(runif(5), runif(5), runif(5), runif(5), window=owin())

append.psp(X,Y)

applynbd

Apply Function to Every Neighbourhood in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and apply a given function to them.

Usage
applynbd(X, FUN, N=NULL, R=NULL, criterion=NULL, exclude=FALSE, ...)
Arguments

X Point pattern. An object of class "ppp”, or data which can be converted into this
format by as. ppp.

FUN Function to be applied to each neighbourhood. The arguments of FUN are de-
scribed under Details.

N Integer. If this argument is present, the neighbourhood of a point of X is defined
to consist of the N points of X which are closest to it.

R Nonnegative numeric value. If this argument is present, the neighbourhood of a
point of X is defined to consist of all points of X which lie within a distance R of
it.

criterion Function. If this argument is present, the neighbourhood of a point of X is deter-
mined by evaluating this function. See under Details.

exclude Logical. If TRUE then the point currently being visited is excluded from its own
neighbourhood.
extra arguments passed to the function FUN. They must be given in the form
name=value.

Details

This is an analogue of apply for point patterns. It visits each point in the point pattern X, de-
termines which points of X are “neighbours” of the current point, applies the function FUN to this
neighbourhood, and collects the values returned by FUN.

The definition of “neighbours” depends on the arguments N, R and criterion. Also the argument
exclude determines whether the current point is excluded from its own neighbourhood.

 If Nis given, then the neighbours of the current point are the N points of X which are closest to
the current point (including the current point itself unless exclude=TRUE).

applynbd 35

» If R is given, then the neighbourhood of the current point consists of all points of X which lie
closer than a distance R from the current point.

e If criterion is given, then it must be a function with two arguments dist and drank which
will be vectors of equal length. The interpretation is that dist[i] will be the distance of a
point from the current point, and drank[i] will be the rank of that distance (the three points
closest to the current point will have rank 1, 2 and 3). This function must return a logical
vector of the same length as dist and drank whose i-th entry is TRUE if the corresponding
point should be included in the neighbourhood. See the examples below.

* If more than one of the arguments N, R and criterion is given, the neighbourhood is defined
as the intersection of the neighbourhoods specified by these arguments. For example if N=3
and R=5 then the neighbourhood is formed by finding the 3 nearest neighbours of current point,
and retaining only those neighbours which lie closer than 5 units from the current point.

When applynbd is executed, each point of X is visited, and the following happens for each point:

* the neighbourhood of the current point is determined according to the chosen rule, and stored
as a point pattern Y;

¢ the function FUN is called as:
FUN(Y=Y, current=current, dists=dists, dranks=dranks, ...)

where current is the location of the current point (in a format explained below), dists is
a vector of distances from the current point to each of the points in Y, dranks is a vector of
the ranks of these distances with respect to the full point pattern X, and . . . are the arguments
passed from the call to applynbd;

¢ The result of the call to FUN is stored.

The results of each call to FUN are collected and returned according to the usual rules for apply and
its relatives. See the Value section of this help file.

The format of the argument current is as follows. If X is an unmarked point pattern, then current
is a list of length 2 with entries current$x and current$y containing the coordinates of the cur-
rent point. If X is marked, then current is a point pattern containing exactly one point, so that
current$x is its x-coordinate and current$marks is its mark value. In either case, the coordinates
of the current point can be referred to as current$x and current$y.

Note that FUN will be called exactly as described above, with each argument named explicitly. Care
is required when writing the function FUN to ensure that the arguments will match up. See the
Examples.

See markstat for a common use of this function.

To simply tabulate the marks in every R-neighbourhood, use marktable.

Value

Similar to the result of apply. If each call to FUN returns a single numeric value, the result is a
vector of dimension npoints(X), the number of points in X. If each call to FUN returns a vector of
the same length m, then the result is a matrix of dimensions c(m,n); note the transposition of the
indices, as usual for the family of apply functions. If the calls to FUN return vectors of different
lengths, the result is a list of length npoints(X).

36 applynbd

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, apply, markstat, marktable

Examples
redwood
count the number of points within radius 0.2 of each point of X
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...){npoints(Y)-13})
equivalent to:
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...){npoints(Y)}, exclude=TRUE)

compute the distance to the second nearest neighbour of each point
secondnndist <- applynbd(redwood, N = 2,
function(dists, ...){max(dists)},
exclude=TRUE)

marked point pattern
trees <- longleaf

compute the median of the marks of all neighbours of a point
(see also 'markstat')
dbh.med <- applynbd(trees, R=90, exclude=TRUE,

function(Y, ...) { median(marks(Y))})

ANIMATION explaining the definition of the K function
(arguments ~fullpicture' and 'rad' are passed to FUN)

if(interactive()) {
showoffK <- function(Y, current, dists, dranks, fullpicture,rad) {
plot(fullpicture, main="")
points(Y, cex=2)
ux <- current[["x"]1]
uy <- current[["y"]1]
points(ux, uy, pch="+" 6 cex=3)
theta <- seq(@,2*pi,length=100)
polygon(ux + rad * cos(theta), uytrad*sin(theta))
text(ux + rad/3, uy + rad/2,npoints(Y),cex=3)
if(interactive()) Sys.sleep(if(runif(1) < 0.1) 1.5 else 0.3)
return(npoints(Y))
}
applynbd(redwood, R=0.2, showoffK, fullpicture=redwood, rad=0.2, exclude=TRUE)

animation explaining the definition of the G function

showoffG <- function(Y, current, dists, dranks, fullpicture) {
plot(fullpicture, main="")

area.owin 37

points(Y, cex=2)
u <- current
points(ul[1],ul2],pch="+", cex=3)
v <- c(Y$x[11,Y$y[1D)
segments(ul1],ul2],v[1],v[2],1wd=2)
w<- (u+v)/2
nnd <- dists[1]
text(w[1]1,w[2],round(nnd, 3),cex=2)
if(interactive()) Sys.sleep(if(runif(1) < 0.1) 1.5 else 0.3)
return(nnd)

}

applynbd(cells, N=1, showoffG, exclude=TRUE, fullpicture=cells)
}

area.owin Area of a Window

Description

Computes the area of a window

Usage

area(w)

S3 method for class 'owin'
area(w)

Default S3 method:
area(w)

S3 method for class 'owin'

volume(x)
Arguments
w A window, whose area will be computed. This should be an object of class owin,
or can be given in any format acceptable to as.owin().
X Object of class owin
Details

If the window w is of type "rectangle” or "polygonal”, the area of this rectangular window is
computed by analytic geometry. If w is of type "mask” the area of the discrete raster approximation
of the window is computed by summing the binary image values and adjusting for pixel size.

The function volume.owin is identical to area.owin except for the argument name. It is a method
for the generic function volume.

38 areaGain

Value

A numerical value giving the area of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

perimeter, diameter.owin, owin.object, as.owin

Examples

w <- unit.square()
area(w)
returns 1.00000

k <- 6
theta <- 2 * pi * (0:(k-1))/k
co <- cos(theta)
si <- sin(theta)
mas <- owin(c(-1,1), c(-1,1), poly=list(x=co, y=si))
area(mas)
returns approx area of k-gon

mas <- as.mask(square(2), eps=0.01)
X <- raster.x(mas)
Y <- raster.y(mas)
mas$m <= ((X = 1)*2 + (Y - 1)*2 <= 1)
area(mas)

returns 3.14 approx

areaGain Difference of Disc Areas

Description

Computes the area of that part of a disc that is not covered by other discs.

Usage

areaGain(u, X, r, ..., W=as.owin(X), exact=FALSE,
ngrid=spatstat.options(”"ngrid.disc"))

areaGain 39

Arguments
u Coordinates of the centre of the disc of interest. A vector of length 2. Alterna-
tively, a point pattern (object of class "ppp").
X Locations of the centres of other discs. A point pattern (object of class "ppp").
r Disc radius, or vector of disc radii.
Arguments passed to distmap to determine the pixel resolution, when exact=FALSE.
W Window (object of class "owin") in which the area should be computed.
exact Choice of algorithm. If exact=TRUE, areas are computed exactly using analytic
geometry. If exact=FALSE then a faster algorithm is used to compute a discrete
approximation to the areas.
ngrid Integer. Number of points in the square grid used to compute the discrete ap-
proximation, when exact=FALSE.
Details

This function computes the area of that part of the disc of radius r centred at the location u that
is not covered by any of the discs of radius r centred at the points of the pattern X. This area is
important in some calculations related to the area-interaction model AreaInter.

If u is a point pattern and r is a vector, the result is a matrix, with one row for each point in u and
one column for each entry of r. The [i,j] entry in the matrix is the area of that part of the disc
of radius r[j] centred at the location u[i] that is not covered by any of the discs of radius r[j]
centred at the points of the pattern X.

If Wis not NULL, then the areas are computed only inside the window W.

Value

A matrix with one row for each point in u and one column for each value in r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Arealnter, arealoss

Examples

u <- ¢c(0.5,0.5)
areaGain(u, cells, 0.1)

40 arealoss

arealoss Difference of Disc Areas

Description

Computes the area of that part of a disc that is not covered by other discs.

Usage
areaLoss(X, r, ..., W=as.owin(X), subset=NULL,
exact=FALSE,
ngrid=spatstat.options(”ngrid.disc"))
Arguments
X Locations of the centres of discs. A point pattern (object of class "ppp").
r Disc radius, or vector of disc radii.
Ignored.
W Optional. Window (object of class "owin") inside which the area should be
calculated.
subset Optional. Index identifying a subset of the points of X for which the area differ-
ence should be computed.
exact Choice of algorithm. If exact=TRUE, areas are computed exactly using analytic
geometry. If exact=FALSE then a faster algorithm is used to compute a discrete
approximation to the areas.
ngrid Integer. Number of points in the square grid used to compute the discrete ap-
proximation, when exact=FALSE.
Details

This function computes, for each point X[i] in X and for each radius r, the area of that part of the
disc of radius r centred at the location X[1] that is not covered by any of the other discs of radius r
centred at the points X[j] for j not equal to i. This area is important in some calculations related
to the area-interaction model Arealnter.

The result is a matrix, with one row for each point in X and one column for each entry of r.

Value

A matrix with one row for each point in X (or X[subset]) and one column for each value in r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

as.box3 41

See Also

Arealnter, areaGain, dilated. areas

Examples

arealLoss(cells, 0.1)

as.box3 Convert Data to Three-Dimensional Box

Description

Interprets data as the dimensions of a three-dimensional box.

Usage
as.box3(...)
Arguments
Data that can be interpreted as giving the dimensions of a three-dimensional
box. See Details.
Details

This function converts data in various formats to an object of class "box3" representing a three-
dimensional box (see box3). The arguments . .. may be

* an object of class "box3"
* arguments acceptable to box3
* anumeric vector of length 6, interpreted as c(xrange[1], xrange[2],yrange[1],yrange[2],zrange[1],zrange[2]

* an object of class "pp3" representing a three-dimensional point pattern contained in a box.

Value

Object of class "box3".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

box3, pp3

42 as.boxx

Examples

X <- c(0,10,0,10,0,5)

as.box3(X)
X <= pp3(runif(42),runif(42),runif(42), box3(c(0,1)))
as.box3(X)
as.boxx Convert Data to Multi-Dimensional Box
Description

Interprets data as the dimensions of a multi-dimensional box.

Usage
as.boxx(..., warn.owin = TRUE)

Arguments
Data that can be interpreted as giving the dimensions of a multi-dimensional
box. See Details.

warn.owin Logical value indicating whether to print a warning if a non-rectangular window

(object of class "owin") is supplied.

Details

Either a single argument should be provided which is one of the following:

* an object of class "boxx"
* an object of class "box3"
* an object of class "owin”

* a numeric vector of even length, specifying the corners of the box. See Examples

or a list of arguments acceptable to boxx.

Value

A "boxx" object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

as.colourmap 43

Examples

Convert unit square to two dimensional box.
W <= owin()
as.boxx (W)

Make three dimensional box [0,1]x[@,11x[0,1] from numeric vector
as.boxx(c(0,1,0,1,0,1))

as.colourmap Convert to Colour Map

Description

Convert some other kind of data to a colour map.
Usage
as.colourmap(x, ...)

S3 method for class 'colourmap'
as.colourmap(x, ...)

S3 method for class 'symbolmap'

as.colourmap(x, ..., warn=TRUE)
Arguments
X Data to be converted to a colour map. An object of class "symbolmap”, "colourmap”

or some other kind of suitable data.
Other arguments passed to methods.

warn Logical value specifying whether to issue a warning if x does not contain any
colour map information.

Details

If x contains colour map information, it will be extracted and returned as a colour map object.
Otherwise, NULL will be returned (and a warning will be issued if warn=TRUE, the default).

Value

A colour map (object of class "colourmap”) or NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

44 as.data.frame.hyperframe

See Also

colourmap

Examples

m <- pHcolourmap(c(3,8))

g <- symbolmap(pch=21, bg=m, size=function(x){ 1.1 * x }, range=c(3,8))
opa <- par(mfrow=c(1,2))

plot(g, vertical=TRUE)

plot(as.colourmap(g), vertical=TRUE)

par (opa)

as.data.frame.hyperframe
Coerce Hyperframe to Data Frame

Description

Converts a hyperframe to a data frame.

Usage

S3 method for class 'hyperframe'

as.data.frame(x, row.names = NULL,
optional = FALSE, ...,
discard=TRUE, warn=TRUE)

Arguments
X Hyperframe (object of class "hyperframe").
row.names Optional character vector of row names.
optional Argument passed to as.data. frame controlling what happens to row names.
Ignored.
discard Logical. Whether to discard columns of the hyperframe that do not contain
atomic data. See Details.
warn Logical. Whether to issue a warning when columns are discarded.
Details

This is a method for the generic function as.data. frame for the class of hyperframes (see hyperframe.
If discard=TRUE, any columns of the hyperframe that do not contain atomic data will be removed
(and a warning will be issued if warn=TRUE). If discard=FALSE, then such columns are converted

to strings indicating what class of data they originally contained.

Value

A data frame.

as.data.frame.im 45

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

Examples

h <- hyperframe(X=1:3, Y=letters[1:3], f=list(sin, cos, tan))
as.data.frame(h, discard=TRUE, warn=FALSE)
as.data.frame(h, discard=FALSE)

as.data.frame.im Convert Pixel Image to Data Frame

Description

Convert a pixel image to a data frame

Usage
S3 method for class 'im'
as.data.frame(x, ...)
Arguments
X A pixel image (object of class "im").

Further arguments passed to as.data.frame.default to determine the row
names and other features.

Details

This function takes the pixel image x and returns a data frame with three columns containing the
pixel coordinates and the pixel values.

The data frame entries are automatically sorted in increasing order of the x coordinate (and in
increasing order of y within x).

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

46 as.data.frame.owin

Examples

artificial image
Z <- setcov(square(1))

Y <- as.data.frame(2)

head(Y)

as.data.frame.owin Convert Window to Data Frame

Description

Converts a window object to a data frame.

Usage

S3 method for class 'owin'
as.data.frame(x, ..., drop=TRUE)

Arguments

X Window (object of class "owin").

Further arguments passed to as.data.frame.default to determine the row
names and other features.

drop Logical value indicating whether to discard pixels that are outside the window,
when x is a binary mask.

Details

This function returns a data frame specifying the coordinates of the window.

If x is a binary mask window, the result is a data frame with columns x and y containing the spatial
coordinates of each pixel. If drop=TRUE (the default), only pixels inside the window are retained. If
drop=FALSE, all pixels are retained, and the data frame has an extra column inside containing the
logical value of each pixel (TRUE for pixels inside the window, FALSE for outside).

If x is a rectangle or a polygonal window, the result is a data frame with columns x and y containing
the spatial coordinates of the vertices of the window. If the boundary consists of several polygons,
the data frame has additional columns id, identifying which polygon is being traced, and sign,
indicating whether the polygon is an outer or inner boundary (sign=1 and sign=-1 respectively).

Value

A data frame with columns named x and y, and possibly other columns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

as.data.frame.ppp 47

See Also

as.data.frame.im, as.owin.data.frame

Examples

as.data.frame(square(1))

holey <- owin(poly=list(
list(x=c(0,10,0), y=c(0,0,10)),
list(x=c(2,2,4,4), y=c(2,4,4,2))))
as.data.frame(holey)

M <- as.mask(holey, eps=0.5)
Mdf <- as.data.frame(M)

as.data.frame.ppp Coerce Point Pattern to a Data Frame

Description

Extracts the coordinates of the points in a point pattern, and their marks if any, and returns them in
a data frame.

Usage
S3 method for class 'ppp'
as.data.frame(x, row.names = NULL, ...)
Arguments
X Point pattern (object of class "ppp").
row.names Optional character vector of row names.
Ignored.
Details

This is a method for the generic function as.data. frame for the class "ppp"” of point patterns.

It extracts the coordinates of the points in the point pattern, and returns them as columns named x
and y in a data frame. If the points were marked, the marks are returned as a column named marks
with the same type as in the point pattern dataset.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

48 as.data.frame.psp

Examples

df <- as.data.frame(amacrine)
df[1:5,]

as.data.frame.psp Coerce Line Segment Pattern to a Data Frame

Description

Extracts the coordinates of the endpoints in a line segment pattern, and their marks if any, and
returns them in a data frame.

Usage
S3 method for class 'psp'
as.data.frame(x, row.names = NULL, ...)
Arguments
X Line segment pattern (object of class "psp").
row.names Optional character vector of row names.
Ignored.
Details

This is a method for the generic function as.data.frame for the class "psp” of line segment
patterns.

It extracts the coordinates of the endpoints of the line segments, and returns them as columns named
X9, y0, x1 and y1 in a data frame. If the line segments were marked, the marks are appended as an
extra column or columns to the data frame which is returned. If the marks are a vector then a single
column named marks is appended. in the data frame, with the same type as in the line segment
pattern dataset. If the marks are a data frame, then the columns of this data frame are appended
(retaining their names).

Value

A data frame with 4 or 5 columns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

Examples

df <- as.data.frame(copper$Lines)

as.data.frame.tess 49

as.data.frame. tess Convert Tessellation to Data Frame

Description

Converts a spatial tessellation object to a data frame.

Usage
S3 method for class 'tess'
as.data.frame(x, ...)

Arguments
X Tessellation (object of class "tess").

Further arguments passed to as.data.frame.owin or as.data.frame.im and
ultimately to as.data.frame.default to determine the row names and other
features.

Details

This function converts the tessellation x to a data frame.

If x is a pixel image tessellation (a pixel image with factor values specifying the tile membership
of each pixel) then this pixel image is converted to a data frame by as.data. frame.im. The result
is a data frame with columns x and y giving the pixel coordinates, and Tile identifying the tile
containing the pixel.

If x is a tessellation consisting of a rectangular grid of tiles or a list of polygonal tiles, then each tile
is converted to a data frame by as.data.frame.owin, and these data frames are joined together,
yielding a single large data frame containing columns X, y giving the coordinates of vertices of the
polygons, and Tile identifying the tile.

Value

A data frame with columns named x, y, Tile, and possibly other columns.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.data.frame.owin, as.data.frame.im

Examples

Z <- as.data.frame(dirichlet(cells))
head(Z, 10)

50 as.function.im

as.function.im Convert Pixel Image to Function of Coordinates

Description

Converts a pixel image to a function of the x and y coordinates.

Usage
S3 method for class 'im'
as.function(x, ...)
Arguments
X Pixel image (object of class "im").
Ignored.
Details

This command converts a pixel image (object of class "im") to a function(x,y) where the ar-
guments x and y are (vectors of) spatial coordinates. This function returns the pixel values at the
specified locations.

Value

A function in the R language, also belonging to the class "funxy".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

[.im

Examples

d <- setcov(square(1))
f <- as.function(d)
f(e.1, 0.3)

as.function.owin 51

as.function.owin Convert Window to Indicator Function

Description

Converts a spatial window to a function of the x and y coordinates returning the value 1 inside the
window and 0 outside.

Usage
S3 method for class 'owin'
as.function(x, ...)
Arguments
X Pixel image (object of class "owin").
Ignored.
Details

This command converts a spatial window (object of class "owin") to a function(x,y) where the
arguments x and y are (vectors of) spatial coordinates. This is the indicator function of the window:
it returns the value 1 for locations inside the window, and returns O for values outside the window.

Value

A function in the R language with arguments x,y. It also belongs to the class "indicfun” which
has methods for plot and print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.im.owin

Examples

W <- Window(humberside)

f <- as.function(W)

.F

£(5000, 4500)

£(123456, 78910)

X <= runifrect(5, Frame(humberside))
f(X)

plot(f)

52 as.function.tess

as.function.tess Convert a Tessellation to a Function

Description

Convert a tessellation into a function of the = and y coordinates. The default function values are
factor levels specifying which tile of the tessellation contains the point (z, y).

Usage
S3 method for class 'tess'

as.function(x,...,values=NULL)
Arguments

X A tessellation (object of class "tess").

values Optional. A vector giving the values of the function for each tile of x.

Ignored.

Details

This command converts a tessellation (object of class "tess”) to a function(x,y) where the ar-
guments x and y are (vectors of) spatial coordinates. The corresponding function values are factor
levels identifying which tile of the tessellation contains each point. Values are NA if the correspond-
ing point lies outside the tessellation.

If the argument values is given, then it determines the value of the function in each tile of x.

Value

A function in the R language, also belonging to the class "funxy"” and "tessfun”.

The class "tessfun” has methods for plot, print, as.tess and integral.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

integral. tessfun for integration of the function.
tileindex for the low-level calculation of tile index.

cut.ppp and split.ppp to divide up the points of a point pattern according to a tessellation.

as.hyperframe 53

Examples

X <= runifrect(7)
V <- dirichlet(X)
f <- as.function(V)
f(e.1, 0.4)

plot(f)

as.hyperframe Convert Data to Hyperframe

Description

Converts data from any suitable format into a hyperframe.
Usage
as.hyperframe(x, ...)

Default S3 method:
as.hyperframe(x, ...)

S3 method for class 'data.frame'
as.hyperframe(x, ..., stringsAsFactors=FALSE)

S3 method for class 'hyperframe'
as.hyperframe(x, ...)

S3 method for class 'listof'
as.hyperframe(x, ...)

S3 method for class 'anylist'

as.hyperframe(x, ...)
Arguments
X Data in some other format.

e Optional arguments passed to hyperframe.

stringsAsFactors
Logical. If TRUE, any column of the data frame x that contains character strings
will be converted to a factor. If FALSE, no such conversion will occur.

Details

A hyperframe is like a data frame, except that its entries can be objects of any kind.

The generic function as. hyperframe converts any suitable kind of data into a hyperframe.

54 as.hyperframe.ppx

There are methods for the classes data. frame, listof, anylist and a default method, all of which
convert data that is like a hyperframe into a hyperframe object. (The method for the class 1istof
and anylist converts a list of objects, of arbitrary type, into a hyperframe with one column.) These
methods do not discard any information.

There are also methods for other classes (see as.hyperframe.ppx) which extract the coordinates
from a spatial dataset. These methods do discard some information.

Value

An object of class "hyperframe"” created by hyperframe.

Conversion of Strings to Factors

Note that as.hyperframe.default will convert a character vector to a factor. It behaves like
as.data.frame.

However as.hyperframe.data. frame does not convert strings to factors; it respects the structure
of the data frame x.

The behaviour can be changed using the argument stringsAsFactors.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

hyperframe, as.hyperframe.ppx

Examples

df <- data.frame(x=runif(4),y=letters[1:4])
as.hyperframe(df)

sims <- replicate(3, runifrect(10), simplify=FALSE)
as.hyperframe(as.listof(sims))
as.hyperframe(as.solist(sims))

as.hyperframe.ppx Extract coordinates and marks of multidimensional point pattern

Description

Given any kind of spatial or space-time point pattern, extract the coordinates and marks of the
points.

as.hyperframe.ppx 55

Usage

S3 method for class 'ppx'
as.hyperframe(x, ...)

S3 method for class 'ppx
as.data.frame(x, ...)

S3 method for class 'ppx
as.matrix(x, ...)

Arguments

X A general multidimensional space-time point pattern (object of class "ppx").

Ignored.

Details

An object of class "ppx" (see ppx) represents a marked point pattern in multidimensional space
and/or time. There may be any number of spatial coordinates, any number of temporal coordinates,
and any number of mark variables. The individual marks may be atomic (numeric values, factor
values, etc) or objects of any kind.

The function as.hyperframe.ppx extracts the coordinates and the marks as a "hyperframe” (see
hyperframe) with one row of data for each point in the pattern. This is a method for the generic
function as.hyperframe.

The function as.data. frame.ppx discards those mark variables which are not atomic values, and
extracts the coordinates and the remaining marks as a data. frame with one row of data for each
point in the pattern. This is a method for the generic function as.data. frame.

Finally as.matrix(x) is equivalent to as.matrix(as.data.frame(x)) for an object of class
"ppx". Be warned that, if there are any columns of non-numeric data (i.e. if there are mark variables
that are factors), the result will be a matrix of character values.

Value

A hyperframe, data.frame or matrix as appropriate.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppx, hyperframe, as.hyperframe.

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4))
X <- ppx(data=df, coord.type=c("s","s","t"))
as.data.frame(X)

56

ppx with marks which are point patterns
val <- runif(4, max=10)

num <- sapply(val, rpois, n=1)

E <- lapply(num, runifrect)

hf <- hyperframe(t=val, e=as.listof(E))

Z <- ppx(data=hf, domain=c(0,10))

convert ppx to a hyperframe
as.hyperframe(Z)
as.data.frame(Z)

as.im

Convert to Pixel Image

Description

Usage

Converts various kinds of data to a pixel image

as.im(X, ...)

S3 method for class 'im'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
rule.eps=c("adjust.eps”, "grow.frame", "shrink.frame"),
na.replace=NULL)

S3 method for class 'owin'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
rule.eps=c("adjust.eps”, "grow.frame"”, "shrink.frame"),
na.replace=NULL, value=1)

S3 method for class 'matrix'
as.im(X, W=NULL, ...)

S3 method for class 'tess'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,

rule.eps=c("adjust.eps”, "grow.frame", "shrink.frame"),
rule.tile = c("sample”, "majority"),

na.replace=NULL, values=NULL)

S3 method for class 'function'
as.im(X, W=NULL, ...,

eps=NULL, dimyx=NULL, xy=NULL,
rule.eps=c("adjust.eps”, "grow.frame"”, "shrink.frame"),

as.im 57
na.replace=NULL,
stringsAsFactors=NULL,
strict=FALSE, drop=TRUE)
S3 method for class 'funxy'
as.im(X, W=Window(X), ...)
S3 method for class 'expression'
as.im(X, W=NULL, ...)

S3 method for class 'distfun'
as.im(X, W=NULL, ...,
eps=NULL, dimyx=NULL, xy=NULL,
rule.eps=c("adjust.eps”, "grow.frame", "shrink.frame"),
na.replace=NULL, approx=TRUE)

S3 method for class 'nnfun’
as.im(X, W=NULL, ...,
eps=NULL, dimyx=NULL, xy=NULL,
rule.eps=c("adjust.eps”, "grow.frame", "shrink.frame"),
na.replace=NULL, approx=TRUE)

S3 method for class 'data.frame'

as.im(X,

., step, fatal=TRUE, drop=TRUE)

Default S3 method:
as.im(X, W=NULL, ...,
eps=NULL, dimyx=NULL, xy=NULL,
rule.eps=c("adjust.eps”, "grow.frame", "shrink.frame"),
na.replace=NULL)

Arguments

X
W

Data to be converted to a pixel image.
Window object which determines the spatial domain and pixel array geometry.

Additional arguments passed to X when X is a function.

eps, dimyx, xy, rule.eps

rule.tile

na.replace
value

Optional parameters passed to as.mask which determine the pixel array geom-
etry. See as.mask.

String (partially matched) specifying how to determine, for each pixel, which
tile of the tessellation X covers the pixel. If rule.tile="sample"” (the default),
the tile covering the centre of the pixel is chosen. If rule.tile="majority",
the tile occupying the largest fraction of area in the pixel is chosen.

Optional value to replace NA entries in the output image.

Optional. The value to be assigned to pixels inside the window, if X is a window.
A single atomic value (numeric, integer, logical etc).

58 as.im
values Optional. Vector of values to be assigned to each tile of the tessellation, when X

is a tessellation. An atomic vector (numeric, integer, logical etc.)
strict Logical value indicating whether to match formal arguments of X when X is a

step

function. If strict=FALSE (the default), all the ... arguments are passed to X.
If strict=TRUE, only named arguments are passed, and only if they match the
names of formal arguments of X.

Optional. A single number, or numeric vector of length 2, giving the grid step
lengths in the = and y directions.

fatal Logical value indicating what to do if the resulting image would be too large for

drop

available memory. If fatal=TRUE (the default), an error occurs. If fatal=FALSE,
a warning is issued and NULL is returned.

Logical value indicating what to do if the result would normally be a list of
pixel images but the list contains only one image. If drop=TRUE (the default),
the pixel image is extracted and the result is a pixel image. If drop=FALSE, this
list is returned as the result.

stringsAsFactors

Logical value (passed to data.frame) specifying how to handle pixel values
which are character strings. If TRUE, character values are interpreted as factor
levels. If FALSE, they remain as character strings. The default depends on the
version of R. See section Handling Character Strings.

approx Logical value indicating whether to compute an approximate result at faster

Details

speed.

This function converts the data X into a pixel image object of class "im" (see im.object). The
function as. im is generic, with methods for the classes listed above.

Currently X may be any of the following:

a pixel image object, of class "im".

a window object, of class "owin" (see owin.object). The result is an image with all pixel
entries equal to value inside the window X, and NA outside.

a matrix.

a tessellation (object of class "tess”). By default, the result is a factor-valued image, with
one factor level corresponding to each tile of the tessellation. Pixels are classified according
to the tile of the tessellation into which they fall. If argument values is given, the result is a
pixel image in which every pixel inside the i-th tile of the tessellation has pixel value equal to
values[il.

a single number (or a single logical, complex, factor or character value). The result is an image
with all pixel entries equal to this constant value inside the window W (and NA outside, unless
the argument na.replace is given). Argument W is required.

a function of the form function(x, y, ...) which is to be evaluated to yield the image pixel
values. In this case, the additional argument W must be present. This window will be converted
to a binary image mask. Then the function X will be evaluated in the form X(x, y, ...) where
x and y are vectors containing the x and y coordinates of all the pixels in the image mask, and

. are any extra arguments given. This function must return a vector or factor of the same
length as the input vectors, giving the pixel values.

as.im

59

an object of class "funxy"” representing a function(x,y,...) defined in a spatial region.
The function will be evaluated as described above. The window W defaults to the domain of
definition of the function.

an object of class "funxy"” which also belongs to one of the following special classes. If
approx=TRUE (the default), the function will be evaluated approximately using a very fast
algorithm. If approx=FALSE, the function will be evaluated exactly at each grid location as
described above.

— an object of class "distfun” representing a distance function (created by the command
distfun). The fast approximation is the distance transform distmap.

— an object of class "nnfun” representing a nearest neighbour function (created by the
command nnfun). The fast approximation is nnmap.

— an object of class "densityfun” representing a kernel estimate of intensity (created by
the command densityfun). The fast approximation is the Fast Fourier Transform algo-
rithm in density. ppp.

— anobject of class "Smoothfun” representing kernel-smoothed values (created by the com-
mand Smoothfun). The fast approximation is the Fast Fourier Transform algorithm in
Smooth. ppp.

An expression involving the variables x and y representing the spatial coordinates, and pos-
sibly also involving other variables. The additional argument W must be present; it will be
converted to a binary image mask. The expression X will be evaluated in an environment
where x and y are vectors containing the spatial coordinates of all the pixels in the image
mask. Evaluation of the expression X must yield a vector or factor, of the same length as x and
y, giving the pixel values.

a list with entries x, y, z in the format expected by the standard R functions image.default
and contour.default. That is, z is a matrix of pixel values, x and y are vectors of x and y
coordinates respectively, and z[i, j] is the pixel value for the location (x[i],y[j]).

a point pattern (object of class "ppp"). See the separate documentation for as.im. ppp.

A data frame with at least three columns. Columns named X, y and z, if present, will be
assumed to contain the spatial coordinates and the pixel values, respectively. Otherwise the x
and y coordinates will be taken from the first two columns of the data frame, and any remaining
columns will be interpreted as pixel values.

The spatial domain (enclosing rectangle) of the pixel image is determined by the argument W. If W is
absent, the spatial domain is determined by X. When X is a function, a matrix, or a single numerical
value, W is required.

The pixel array dimensions of the final resulting image are determined by (in priority order)

* the argument eps, dimyx or xy if present;
* the pixel dimensions of the window W, if it is present and if it is a binary mask;
* the pixel dimensions of X if it is an image, a binary mask, or a list(x,y,z);

* the default pixel dimensions, controlled by spatstat.options.

Note that if eps, dimyx or xy is given, this will override the pixel dimensions of X if it has them.
Thus, as. im can be used to change an image’s pixel dimensions.

If the argument na. replace is given, then all NA entries in the image will be replaced by this value.
The resulting image is then defined everwhere on the full rectangular domain, instead of a smaller

60

as.im

window. Here na.replace should be a single value, of the same type as the other entries in the
image.

If X is a pixel image that was created by an older version of spatstat, the command X <- as.im(X)
will repair the internal format of X so that it conforms to the current version of spatstat.

If X is a data frame with m columns, then m-2 columns of data are interpreted as pixel values, yielding
m-2 pixel images. The result of as.im.data. frame is a list of pixel images, belonging to the class
"imlist”. If m= 3 and drop=TRUE (the default), then the result is a pixel image rather than a list
containing this image.

If X is a function(x,y) which returns a matrix of values, then as.im(X, W) will be a list of pixel
images.

Value

A pixel image (object of class "im"), or a list of pixel images, or NULL if the conversion failed.

Character-valued images

By default, if the pixel value data are character strings, they will be treated as levels of a factor,
and the resulting image will be factor-valued. To prevent the conversion of character strings to
factors, use the argument stringsAsFactors=FALSE, which is recognised by most of the methods
for as. im, or alternatively set options(stringsAsFactors=FALSE).

Handling Character Strings

The argument stringsAsFactors is a logical value (passed to data.frame) specifying how to
handle pixel values which are character strings. If TRUE, character values are interpreted as factor
levels. If FALSE, they remain as character strings. The default values of stringsAsFactors depends
on the version of R.

* In R versions < 4.1.0 the factory-fresh default is stringsAsFactors=FALSE and the default
can be changed by setting options(stringsAsFactors=FALSE).

* In R versions >=4.1.0 the default is stringsAsFactors=FALSE and there is no option to
change the default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

Separate documentation for as. im. ppp

Examples

window object

W <- Window(demopat)
plot (W)

Z <- as.im(W)

as.layered 61

image(Z)

function

Z <- as.im(function(x,y) {x*2 + y”*23}, unit.square())
image(Z)

or as an expression

Z <- as.im(expression(x*2+y*2), square(1))

function with extra arguments
f <- function(x, y, x0, y@) {
sqrt((x - x@)*2 + (y-y0)"2)

}
Z <- as.im(f, unit.square(), x0=0.5, y0=0.5)
image(Z)

Revisit the Sixties

Z <- as.im(f, letterR, x0=2.5, y0=2)

image(Z2)

usual convention in R

stuff <- list(x=1:10, y=1:10, z=matrix(1:100, nrow=10))
Z <- as.im(stuff)

convert to finer grid

Z <- as.im(Z, dimyx=256)

#' distance functions

d <- distfun(redwood)

Zapprox <- as.im(d)

Zexact <- as.im(d, approx=FALSE)
plot(solist(approx=Zapprox, exact=Zexact), main="")

pixellate the Dirichlet tessellation
Di <- dirichlet(redwood)
plot(as.im(Di))

plot(Di, add=TRUE, border="white")

as.im.data.frame is the reverse of as.data.frame.im

grad <- bei.extra$grad

slopedata <- as.data.frame(grad)

slope <- as.im(slopedata)

unitname(grad) <- unitname(slope) <- unitname(grad) # for compatibility
all.equal(slope, grad) # TRUE

handling of character values
as.im("a", W=letterR, na.replace="b")
as.im("a", W=letterR, na.replace="b", stringsAsFactors=FALSE)

as.layered Convert Data To Layered Object

Description

Converts spatial data into a layered object.

62

Usage

as.layered(X)

Default S3 method:

as.layered(X)

S3 method for class 'ppp'
as.layered(X)
S3 method for class 'splitppp’
as.layered(X)
S3 method for class 'solist'
as.layered(X)
S3 method for class 'listof'
as.layered(X)
Arguments
X Some kind of spatial data.
Details

This function converts the object X into an object of class "layered”.

as.layered

The argument X should contain some kind of spatial data such as a point pattern, window, or pixel

image.

If X is a simple object then it will be converted into a layered object containing only one layer
which is equivalent to X.

If X can be interpreted as consisting of multiple layers of data, then the result will be a layered

object consisting of these separate layers of data.

e if X is a list of class "listof"” or "solist"”, then as.layered(X) consists of several layers,
one for each entry in the list X;

* if X is a multitype point pattern, then as.layered(X) consists of several layers, each contain-

ing the sub-pattern consisting of points of one type;

* if X is a vector-valued measure, then as.layered(X) consists of several layers, each contain-
ing a scalar-valued measure.

Value

An object of class "layered” (see layered).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

as.mask 63

See Also

as.layered.msr, layered, split.ppp

Examples

as.layered(cells)
as.layered(amacrine)

as.mask Pixel Image Approximation of a Window

Description

Obtain a discrete (pixel image) approximation of a given window

Usage
as.mask(w, eps=NULL, dimyx=NULL, xy=NULL,
rule.eps=c("adjust.eps”, "grow.frame"”, "shrink.frame"))
Arguments
w A window (object of class "owin") or data acceptable to as.owin.
eps (optional) width and height of pixels. A single number, or a numeric vector of
length 2.
dimyx (optional) pixel array dimensions. A single integer, or an integer vector of length
2 giving dimensions in the y and x directions.
Xy (optional) data containing pixel coordinates, such as a pixel image (object of
class "im"), or a window of type "mask”. See Details.
rule.eps Character string (partially matched) specifying what to do when eps is not a
divisor of the frame size. Ignored if eps is missing or null. See Details.
Details

A ‘mask’ is a spatial window that is represented by a pixel image with binary values. It is an object
of class "owin" with type "mask”.

This function as.mask creates a representation of any spatial window w as a mask. It generates a
rectangular grid of locations in the plane, tests whether each of these locations lies inside w, and
stores the results as a mask.

The most common use of this function is to approximate the shape of a rectangular or polygonal
window w by a mask, for computational purposes. In this case, we will usually want to have a very
fine grid of pixels.

This function can also be used to generate a coarsely-spaced grid of locations inside a window, for
purposes such as subsampling and prediction.

64 as.mask

The argument w should be a window (object of class "owin™). If it is another kind of spatial data,
then the window information will be extracted using as.owin.

The grid spacing and location are controlled by the arguments eps, dimyx and xy, which are mutu-
ally incompatible.

If eps is given, then it specifies the desired grid spacing, that is, the desired size of the pixels. If eps
is a single number, it specifies that the desired grid spacing is eps in both the x and y directions,
that is, the desired pixels are squares with side length eps. If eps is a vector of length 2, it specifies
that the desired grid spacing is eps[1] in the x direction and eps[2] in the y direction. That is, the
desired pixels are rectangles of width eps[1] and height eps[2].

When eps is given, the argument rule.eps specifies what to do if pixels of the desired size would
not fit exactly into the rectangular frame of w.

* if rule.eps="adjust.eps” (the default), the rectangular frame will remain unchanged, and
the grid spacing (pixel size) eps will be reduced slightly so that an integer number of pixels
fits exactly into the frame.

* if rule.eps="grow.frame", the grid spacing (pixel size) eps will remain unchanged, and the
rectangular frame will be expanded slightly so that it consists of an integer number of pixels
in each direction.

e if rule.eps="shrink.frame", the grid spacing (pixel size) eps will remain unchanged, and
the rectangular frame will be contracted slightly so that it consists of an integer number of
pixels in each direction.

If dimyx is given, then the pixel grid will be an m x n rectangular grid where m, n are given by
dimyx[2], dimyx[1] respectively. Warning: dimyx[1] is the number of pixels in the y direction,
and dimyx[2] is the number in the x direction. The grid spacing (pixel size) is determined by the
frame size and the number of pixels.

If xy is given, then this should be some kind of data specifing the coordinates of a pixel grid. It may
be

* a list or structure containing elements x and y which are numeric vectors of equal length.
These will be taken as x and y coordinates of the margins of the grid. The pixel coordinates
will be generated from these two vectors.

* apixel image (object of class "im").
* a window (object of class "owin") which is of type "mask” so that it contains pixel coordi-
nates.
If xy is given and is either a pixel image or a mask, then w may be omitted, and the window
information will be extracted from xy.
If neither eps nor dimyx nor xy is given, the pixel raster dimensions are obtained from spatstat.options(”"npixel”).

There is no inverse of this function. However, the function as. polygonal will compute a polygonal
approximation of a binary mask.

Value

A window (object of class "owin") of type "mask” representing a binary pixel image.

as.mask 65

Discretisation rule

The rule used in as.mask is that a pixel is part of the discretised window if and only if the centre
of the pixel falls in the original window. This is usually sufficient for most purposes, and is fast to
compute.

Other discretisation rules are possible; they are available using the function owin2mask.

Converting a spatial pattern to a mask

If the intention is to discretise or pixellate a spatial pattern, such as a point pattern, line segment
pattern or a linear network, then as.mask is not the appropriate function to use, because as.mask
extracts only the window information and converts this window to a mask.

To discretise a point pattern, use pixellate. ppp. To discretise a line segment pattern, use pixellate.psp
or psp2mask. To discretise a linear network, use pixellate.linnet.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

owin2mask.

owin.object, as.rectangle, as.polygonal, spatstat.options

Examples

w <- owin(c(@,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
m <- as.mask(w)
if(interactive()) {
plot(w)
plot(m)
}
x <- 1:9
y <- seq(@.25, 9.75, by=0.5)
m <- as.mask(w, xy=list(x=x, y=y))

B <- square(1)

as.mask(B, eps=0.3)

as.mask(B, eps=0.3, rule.eps="g")
as.mask(B, eps=0.3, rule.eps="s")

66 as.matrix.im

as.matrix.im Convert Pixel Image to Matrix or Array

Description

Converts a pixel image to a matrix or an array.

Usage
S3 method for class 'im'
as.matrix(x, ...)
S3 method for class 'im'
as.array(x, ...)
Arguments
X A pixel image (object of class "im").
See below.
Details

The function as.matrix.im converts the pixel image x into a matrix containing the pixel values. It
is handy when you want to extract a summary of the pixel values. See the Examples.

The function as. array . im converts the pixel image to an array. By default this is a three-dimensional
array of dimension n by m by 1. If the extra arguments . . . are given, they will be passed to array,
and they may change the dimensions of the array.

Value

A matrix or array.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

as.matrix.owin

Examples

artificial image
Z <- setcov(square(1))

M <- as.matrix(Z)

as.matrix.owin 67

median(M)

plot the cumulative distribution function of pixel values
plot(ecdf(as.matrix(2)))

as.matrix.owin Convert Pixel Image to Matrix

Description

Converts a pixel image to a matrix.

Usage
S3 method for class 'owin'
as.matrix(x, ...)
Arguments
X A window (object of class "owin").

Arguments passed to as.mask to control the pixel resolution.

Details

The function as.matrix.owin converts a window to a logical matrux.

It first converts the window x into a binary pixel mask using as.mask. It then extracts the pixel
entries as a logical matrix.

The resulting matrix has entries that are TRUE if the corresponding pixel is inside the window, and
FALSE if it is outside.

The function as.matrix is generic. The function as.matrix.owin is the method for windows
(objects of class "owin").

Use as. im to convert a window to a pixel image.

Value

A logical matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

as.matrix.im, as.im

68

Examples

m <- as.matrix(letterR)

as.owin

as.owin

Convert Data To Class owin

Description

Converts data specifying an observation window in any of several formats, into an object of class

"owin".

Usage

as.owin(W,

., fatal=TRUE)

Default S3 method:

as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

S3 method
as.owin(W,

., fatal=TRUE)

for class 'owin'
., fatal=TRUE)

for class 'ppp'
., fatal=TRUE)

for class 'psp'
., fatal=TRUE)

for class 'quad'
., fatal=TRUE)

for class 'quadratcount'
., fatal=TRUE)

for class 'tess'
., fatal=TRUE)

for class 'im'

., fatal=TRUE)

for class

for class

for class

'layered'’

., fatal=TRUE)

'data.frame'’

., step, fatal=TRUE)

'distfun'

., fatal=TRUE)

as.owin 69

S3 method for class 'nnfun'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'funxy'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'boxx'

as.owin(W, ..., fatal=TRUE)
Arguments

W Data specifying an observation window, in any of several formats described un-
der Details below.

fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.
Ignored.

step Optional. A single number, or numeric vector of length 2, giving the grid step

lengths in the x and y directions.

Details
The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The generic function as.owin converts data in any of several formats into an object of class "owin"
for use by the spatstat package. The function as. owin is generic, with methods for different classes
of objects, and a default method.

The argument W may be

* an object of class "owin"
* astructure with entries xrange, yrange specifying the and y dimensions of a rectangle

* a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y
dimensions of a rectangle. This will accept objects of class bbox in the sf package.

* a numeric vector of length 4 (interpreted as (xmin, xmax, ymin, ymax) in that order) speci-
fying the x and y dimensions of a rectangle

* astructure with entries named x1, xu, y1, yu (in any order) specifying the x and y dimensions
of a rectangle as (xmin, xmax) = (x1, xu) and (ymin, ymax) = (yl, yu). This will accept
objects of class spp used in the Venables and Ripley spatial package.

* an object of class "ppp"” representing a point pattern. In this case, the object’s window structure
will be extracted.

* an object of class "psp"” representing a line segment pattern. In this case, the object’s window
structure will be extracted.

* an object of class "tess"” representing a tessellation. In this case, the object’s window structure
will be extracted.

* an object of class "quad” representing a quadrature scheme. In this case, the window of the
data component will be extracted.

70 as.owin

* an object of class "im” representing a pixel image. In this case, a window of type "mask” will
be returned, with the same pixel raster coordinates as the image. An image pixel value of NA,
signifying that the pixel lies outside the window, is transformed into the logical value FALSE,
which is the corresponding convention for window masks.

n o n

* an object of class "ppm"”, "kppm”, "slrm" or "dppm” representing a fitted point process model.
In this case, if from="data" (the default), as.owin extracts the original point pattern data to
which the model was fitted, and returns the observation window of this point pattern. If
from="covariates"” then as.owin extracts the covariate images to which the model was
fitted, and returns a binary mask window that specifies the pixel locations.

 an object of class "1pp"” representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

* an object of class "1ppm"” representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

* A data.frame with exactly three columns. Each row of the data frame corresponds to one
pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating
whether the pixel lies inside the window.

* A data.frame with exactly two columns. Each row of the data frame contains the x and y
coordinates of a pixel that lies inside the window.

* an object of class "distfun”, "nnfun” or "funxy" representing a function of spatial location,
defined on a spatial domain. The spatial domain of the function will be extracted.

* an object of class "rmhmodel” representing a point process model that can be simulated using
rmh. The window (spatial domain) of the model will be extracted. The window may be NULL
in some circumstances (indicating that the simulation window has not yet been determined).
This is not treated as an error, because the argument fatal defaults to FALSE for this method.

* an object of class "layered” representing a list of spatial objects. See layered. In this case,
as.owin will be applied to each of the objects in the list, and the union of these windows will
be returned.

* an object of another suitable class from another package. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error
will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise,
the spacing will be guessed from the data.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

as.polygonal 71

See Also

as.owin.ppm, as.owin.rmhmodel, as.owin. 1lpp.
owin.object, owin.

Additional methods for as.owin may be provided by other packages outside the spatstat family.

Examples
w <- as.owin(c(0,1,0,1))
w <- as.owin(list(xrange=c(@,5),yrange=c(@,10)))
point pattern
w <- as.owin(demopat)
image
Z <- as.im(function(x,y) { x + 3}, unit.square())
w <- as.owin(Z)

Venables & Ripley 'spatial' package
spatialpath <- system.file(package="spatial”)
if(nchar(spatialpath) > @) {

require(spatial)

towns <- ppinit(”"towns.dat")

w <- as.owin(towns)

detach(package:spatial)
}

as.polygonal Convert a Window to a Polygonal Window

Description

Given a window W of any geometric type (rectangular, polygonal or binary mask), this function
returns a polygonal window that represents the same spatial domain.

Usage

as.polygonal (W, repair=FALSE)

Arguments
W A window (object of class "owin").
repair Logical value indicating whether to check the validity of the polygon data and

repair it, if W is already a polygonal window.

72 as.ppp

Details

Given a window W of any geometric type (rectangular, polygonal or binary mask), this function
returns a polygonal window that represents the same spatial domain.

If Wis a rectangle, it is converted to a polygon with 4 vertices.

If W is already polygonal, it is returned unchanged, by default. However if repair=TRUE then the
validity of the polygonal coordinates will be checked (for example to check the boundary is not
self-intersecting) and repaired if necessary, so that the result could be different from W.

If W is a binary mask, then each pixel in the mask is replaced by a small square or rectangle, and the
union of these squares or rectangles is computed. The result is a polygonal window that has only
horizontal and vertical edges. (Use simplify.owin to remove the staircase appearance, if desired).

Value

A polygonal window (object of class "owin” and of type "polygonal”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

owin, as.owin, as.mask, simplify.owin

Examples

m <- as.mask(letterR, dimyx=32)
p <- as.polygonal(m)
if(interactive()) {

plot(m)
plot(p, add=TRUE, lwd=2)
}
as.ppp Convert Data To Class ppp
Description

Tries to coerce any reasonable kind of data to a spatial point pattern (an object of class "ppp") for
use by the spatstat package).

as.ppp 73

Usage
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'ppp'
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'psp
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'quad'
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'matrix'
as.ppp(X, W=NULL, ..., fatal=TRUE)

S3 method for class 'data.frame'
as.ppp(X, W=NULL, ..., fatal=TRUE)

Default S3 method:

as.ppp(X, W=NULL, ..., fatal=TRUE)
Arguments
X Data which will be converted into a point pattern
W Data which define a window for the pattern, when X does not contain a window.

(Ignored if X contains window information.)
Ignored.

fatal Logical value specifying what to do if the data cannot be converted. See Details.

Details

Converts the dataset X to a point pattern (an object of class "ppp"; see ppp.object for an overview).

This function is normally used to convert an existing point pattern dataset, stored in another format,
to the "ppp"” format. To create a new point pattern from raw data such as x, y coordinates, it is
normally easier to use the creator function ppp.

The function as.ppp is generic, with methods for the classes "ppp”, "psp”, "quad”, "matrix”,
"data.frame” and a default method.

The dataset X may be:

* an object of class "ppp”

* an object of class "psp”

* a point pattern object created by the spatial library

* an object of class "quad” representing a quadrature scheme (see quad.object)
* a matrix or data frame with at least two columns

* a structure with entries x, y which are numeric vectors of equal length

74

as.ppp

* anumeric vector of length 2, interpreted as the coordinates of a single point.
In the last three cases, we need the second argument W which is converted to a window object by the
function as.owin. In the first four cases, W will be ignored.

If X is a line segment pattern (an object of class psp) the point pattern returned consists of the
endpoints of the segments. If X is marked then the point pattern returned will also be marked, the
mark associated with a point being the mark of the segment of which that point was an endpoint.

If X is a matrix or data frame, the first and second columns will be interpreted as the = and y
coordinates respectively. Any additional columns will be interpreted as marks.

The argument fatal indicates what to do when W is missing and X contains no information about the
window. If fatal=TRUE, a fatal error will be generated; if fatal=FALSE, the value NULL is returned.

In the spatial library, a point pattern is represented in either of the following formats:

* (in spatial versions 1 to 6) a structure with entries x, y x1, xu, y1, yu
* (in spatial version 7) a structure with entries x, y and area, where area is a structure with
entries x1, xu, y1, yu
where x and y are vectors of equal length giving the point coordinates, and x1, xu, yl, yu are
numbers giving the dimensions of a rectangular window.
Point pattern datasets can also be created by the function ppp.

Methods for as. ppp exist for some other classes of data; they are listed by methods(as.ppp).

Value

An object of class "ppp” (see ppp.object) describing the point pattern and its window of observa-
tion. The value NULL may also be returned; see Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppp, ppp.object, as.owin, owin.object.

Methods for as. ppp exist for some other classes of data; they are listed by methods(as.ppp).

Examples

xy <- matrix(runif(40), ncol=2)
pp <- as.ppp(xy, ¢(0,1,0,1))

Venables-Ripley format
check for 'spatial' package
spatialpath <- system.file(package="spatial")
if(nchar(spatialpath) > 0) {
require(spatial)
towns <- ppinit("towns.dat")
pp <- as.ppp(towns) # converted to our format

as.psp 75

detach(package:spatial)
}

xyzt <- matrix(runif(40), ncol=4)
Z <- as.ppp(xyzt, square(1))

as.psp Convert Data To Class psp

Description

Tries to coerce any reasonable kind of data object to a line segment pattern (an object of class
"psp”) for use by the spatstat package.

Usage

as.psp(x, ..., from=NULL, to=NULL)

S3 method for class 'psp'
as.psp(x, ..., check=FALSE, fatal=TRUE)

S3 method for class 'data.frame’
as.psp(x, ..., window=NULL, marks=NULL,
check=spatstat.options(”checksegments"”), fatal=TRUE)

S3 method for class 'matrix’
as.psp(x, ..., window=NULL, marks=NULL,
check=spatstat.options(”checksegments"”), fatal=TRUE)

Default S3 method:
as.psp(x, ..., window=NULL, marks=NULL,
check=spatstat.options(”checksegments"”), fatal=TRUE)

Arguments

X Data which will be converted into a line segment pattern

window Data which define a window for the pattern.
Ignored.

marks (Optional) vector or data frame of marks for the pattern

check Logical value indicating whether to check the validity of the data, e.g. to check
that the line segments lie inside the window.

fatal Logical value. See Details.

from, to Point patterns (object of class "ppp") containing the first and second endpoints

(respectively) of each segment. Incompatible with x.

76

as.psp

Details

Converts the dataset x to a line segment pattern (an object of class "psp”; see psp.object for an
overview).

This function is normally used to convert an existing line segment pattern dataset, stored in another
format, to the "psp” format. To create a new point pattern from raw data such as x, y coordinates,
it is normally easier to use the creator function psp.

The dataset x may be:

* an object of class "psp”
¢ a data frame with at least 4 columns
e astructure (list) with elements named x@, y@, x1, y1 or elements named xmid, ymid, length,

angle and possibly a fifth element named marks

If x is a data frame the interpretation of its columns is as follows:

If there are columns named x@, y@, x1, y1 then these will be interpreted as the coordinates
of the endpoints of the segments and used to form the ends component of the psp object to be
returned.

If there are columns named xmid, ymid, length, angle then these will be interpreted as the
coordinates of the segment midpoints, the lengths of the segments, and the orientations of the
segments in radians and used to form the ends component of the psp object to be returned.

If there is a column named marks then this will be interpreted as the marks of the pattern
provided that the argument marks of this function is NULL. If argument marks is not NULL then
the value of this argument is taken to be the marks of the pattern and the column named marks
is ignored (with a warning). In either case the column named marks is deleted and omitted
from further consideration.

If there is no column named marks and if the marks argument of this function is NULL, and if
after interpreting 4 columns of x as determining the ends component of the psp object to be
returned, there remain other columns of x, then these remaining columns will be taken to form
a data frame of marks for the psp object to be returned.

If x is a structure (list) with elements named x@, y@, x1, y1, marks or xmid, ymid, length,
angle, marks, then the element named marks will be interpreted as the marks of the pattern provide
that the argument marks of this function is NULL. If this argument is non-NULL then it is interpreted
as the marks of the pattern and the element marks of x is ignored — with a warning.

Alternatively, you may specify two point patterns from and to containing the first and second
endpoints of the line segments.

The argument window is converted to a window object by the function as.owin.

The argument fatal indicates what to do when the data cannot be converted to a line segment
pattern. If fatal=TRUE, a fatal error will be generated; if fatal=FALSE, the value NULL is returned.

n o n

The function as. psp is generic, with methods for the classes "psp”, "data.frame”, "matrix” and
a default method.

Point pattern datasets can also be created by the function psp.

as.rectangle 77

Value

An object of class "psp” (see psp.object) describing the line segment pattern and its window of
observation. The value NULL may also be returned; see Details.

Warnings

If only a proper subset of the names x@,y@,x1,y1 or xmid,ymid, length,angle appear amongst
the names of the columns of x where x is a data frame, then these special names are ignored.

For example if the names of the columns were xmid, ymid, length,degrees, then these columns
would be interpreted as if the represented x0,y@,x1,y1 in that order.

Whether it gets used or not, column named marks is a/lways removed from x before any attempt to
form the ends component of the psp object that is returned.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp, psp.object, as.owin, owin.object.

See edges for extracting the edges of a polygonal window as a "psp” object.

Examples

mat <- matrix(runif(40), ncol=4)
mx <- data.frame(vi=sample(1:4,10,TRUE),
v2=factor(sample(letters[1:4],10,TRUE),levels=letters[1:4]))
a <- as.psp(mat, window=owin(),marks=mx)
mat <- cbind(as.data.frame(mat),mx)
b <- as.psp(mat, window=owin()) # a and b are identical.
stuff <- list(xmid=runif(10),
ymid=runif(10),
length=rep(0.1, 10),
angle=runif(1@, @, 2 * pi))
a <- as.psp(stuff, window=owin())
b <- as.psp(from=runifrect(10), to=runifrect(10))

as.rectangle Window Frame

Description

Extract the window frame of a window or other spatial dataset

Usage

as.rectangle(w, ...)

78 as.rectangle

Arguments
w A window, or a dataset that has a window. Either a window (object of class

"owin"), a pixel image (object of class "im") or other data determining such a
window.
Optional. Auxiliary data to help determine the window. If w does not belong to
arecognised class, the arguments w and . . . are passed to as.owin to determine
the window.

Details

This function is the quickest way to determine a bounding rectangle for a spatial dataset.

If w is a window, the function just extracts the outer bounding rectangle of w as given by its elements
Xrange,yrange.

The function can also be applied to any spatial dataset that has a window: for example, a point
pattern (object of class "ppp"”) or a line segment pattern (object of class "psp”). The bounding
rectangle of the window of the dataset is extracted.

Use the function boundingbox to compute the smallest bounding rectangle of a dataset.

Value

A window (object of class "owin") of type "rectangle” representing a rectangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

owin, as.owin, boundingbox

Examples
w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
r <- as.rectangle(w)
returns a 10 x 10 rectangle

as.rectangle(lansing)

as.rectangle(copper$SouthLines)

as.solist 79

as.solist Convert List of Two-Dimensional Spatial Objects

Description

Given a list of two-dimensional spatial objects, convert it to the class "solist".

Usage
as.solist(x, ...)
Arguments
X A list of objects, each representing a two-dimensional spatial dataset.
Additional arguments passed to solist.
Details

This command makes the list x into an object of class "solist” (spatial object list). See solist
for details.

The entries in the list x should be two-dimensional spatial datasets (not necessarily of the same
class).
Value

A list, usually of class "solist”.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

solist, as.anylist, solapply.

Examples

x <- list(cells, Window(cells), setcov(Window(cells)))
y <- as.solist(x)

80

as.tess

as.tess Convert Data To Tessellation

Description

Converts data specifying a tessellation, in any of several formats, into an object of class "tess".

Usage

as.tess(X)

S3 method for class 'tess'
as.tess(X)

S3 method for class 'im'
as.tess(X)

S3 method for class 'owin'
as.tess(X)

S3 method for class 'quadratcount'
as.tess(X)

S3 method for class 'list'
as.tess(X)

Arguments

X

Details

Data to be converted to a tessellation.

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. This command creates an object of class "tess” that represents a tessellation.

This function converts data in any of several formats into an object of class "tess"” for use by the
spatstat package. The argument X may be

an object of class "tess"”. The object will be stripped of any extraneous attributes and re-
turned.

a pixel image (object of class "im") with pixel values that are logical or factor values. Each
level of the factor will determine a tile of the tessellation.

a window (object of class "owin"). The result will be a tessellation consisting of a single tile.

a set of quadrat counts (object of class "quadratcount”) returned by the command quadratcount.
The quadrats used to generate the counts will be extracted and returned as a tessellation.

a quadrat test (object of class "quadrattest”) returned by the command quadrat.test. The
quadrats used to perform the test will be extracted and returned as a tessellation.

a list of windows (objects of class "owin") giving the tiles of the tessellation.

The function as. tess is generic, with methods for various classes, as listed above.

bdist.pixels 81

Value

An object of class "tess” specifying a tessellation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

tess

quadratcount

Examples

pixel image

v <= as.im(function(x,y){factor(round(5 * (x*2 + y*2)))}, W=owin())
levels(v) <- letters[seq(length(levels(v)))]

as.tess(v)

quadrat counts

gNZ <- quadratcount(nztrees, nx=4, ny=3)

as.tess(gNZ)

bdist.pixels Distance to Boundary of Window

Description

Computes the distances from each pixel in a window to the boundary of the window.

Usage
bdist.pixels(w, ..., style=c("image", "matrix"”, "coords"), method=c("C", "interpreted”))
Arguments
w A window (object of class "owin").
Arguments passed to as.mask to determine the pixel resolution.
style Character string (partially matched) determining the format of the output: either

n o n

"matrix”, "coords” or "image".

method Choice of algorithm to use when w is polygonal.

82 bdist.pixels

Details

This function computes, for each pixel v in the Frame containing the window w, the shortest distance
d(u, w®) from u to the complement of w. This value is zero for pixels lying outside w, and is positive
for pixels inside w.

If the window is a binary mask then the distance from each pixel to the boundary is computed
using the distance transform algorithm distmap.owin. The result is equivalent to distmap(W,
invert=TRUE).

If the window is a rectangle or a polygonal region, the grid of pixels is determined by the arguments
"\dots" passed to as.mask. The distance from each pixel to the boundary is calculated exactly,
using analytic geometry. This is slower but more accurate than in the case of a binary mask.

For software testing purposes, there are two implementations available when w is a polygon: the
default is method="C" which is much faster than method="interpreted"”.

To compute the distance from each pixel to the bounding rectangular frame Frame (W), use framedist.pixels.

Value

If style="image", a pixel image (object of class "im") containing the distances from each pixel in
the image raster to the boundary of the window.

If style="matrix", a matrix giving the distances. Rows of this matrix correspond to the y coordi-
nate and columns to the x coordinate.

If style="coords", a list with three components x,y,z, where x,y are vectors of length m,n
giving the x and y coordinates respectively, and z is an m X n matrix such that z[i,j] is the
distance from (x[i],y[j]) to the boundary of the window. Rows of this matrix correspond to the
z coordinate and columns to the y coordinate. This result can be plotted with persp, image or
contour.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

framedist.pixels

owin.object, erosion, bdist.points, bdist.tiles, distmap.owin.

Examples

u <- owin(c(0,1),c(0,1))

d <- bdist.pixels(u, eps=0.01)

image(d)

d <- bdist.pixels(u, eps=0.01, style="matrix")
mean(d >= 0.1)

value is approx (1 - 2 *x 0.1)*2 = 0.64

opa <- par(mfrow=c(1,2))
plot(bdist.pixels(letterR))
plot(framedist.pixels(letterR))

par(opa)

bdist.points 83

bdist.points Distance to Boundary of Window

Description

Computes the distances from each point of a point pattern to the boundary of the window.

Usage

bdist.points(X)

Arguments

X A point pattern (object of class "ppp").

Details

This function computes, for each point z; in the point pattern X, the shortest distance d(x;, W¢)
from z; to the boundary of the window W of observation.

If the window Window(X) is of type "rectangle” or "polygonal”, then these distances are com-
puted by analytic geometry and are exact, up to rounding errors. If the window is of type "mask”
then the distances are computed using the real-valued distance transform, which is an approximation
with maximum error equal to the width of one pixel in the mask.

Value

A numeric vector, giving the distances from each point of the pattern to the boundary of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

bdist.pixels, bdist.tiles, ppp.object, erosion

Examples

d <- bdist.points(cells)

84 bdist.tiles

bdist.tiles Distance to Boundary of Window

Description

Computes the shortest distances from each tile in a tessellation to the boundary of the window.

Usage

bdist.tiles(X)

Arguments

X A tessellation (object of class "tess").

Details

This function computes, for each tile s; in the tessellation X, the shortest distance from s; to the
boundary of the window W containing the tessellation.

Value

A numeric vector, giving the shortest distance from each tile in the tessellation to the boundary of
the window. Entries of the vector correspond to the entries of tiles(X).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

tess, bdist.points, bdist.pixels

Examples

P <- runifrect(15)

X <- dirichlet(P)

plot(X, col="red")

B <- bdist.tiles(X)

identify tiles that do not touch the boundary
plot(X[B > @], add=TRUE, col="green", lwd=3)

beachcolours 85

beachcolours Create Colour Scheme for a Range of Numbers

Description
Given a range of numerical values, this command creates a colour scheme that would be appropriate
if the numbers were altitudes (elevation above or below sea level).

Usage

beachcolours(range, sealevel = @, monochrome = FALSE,
ncolours = if (monochrome) 16 else 64,

nbeach = 1)
beachcolourmap(range, ...)
Arguments
range Range of numerical values to be mapped. A numeric vector of length 2.
sealevel Value that should be treated as zero. A single number, lying between range[1]
and range[2].
monochrome Logical. If TRUE then a greyscale colour map is constructed.
ncolours Number of distinct colours to use.
nbeach Number of colours that will be yellow.
Arguments passed to beachcolours.
Details

Given a range of numerical values, these commands create a colour scheme that would be appro-
priate if the numbers were altitudes (elevation above or below sea level).

Numerical values close to zero are portrayed in green (representing the waterline). Negative values
are blue (representing water) and positive values are yellow to red (representing land). At least,
these are the colours of land and sea in Western Australia. This colour scheme was proposed by
Baddeley et al (2005).

The function beachcolours returns these colours as a character vector, while beachcolourmap
returns a colourmap object.

The argument range should be a numeric vector of length 2 giving a range of numerical values.

The argument sealevel specifies the height value that will be treated as zero, and mapped to the
colour green. A vector of ncolours colours will be created, of which nbeach colours will be green.

The argument monochrome is included for convenience when preparing publications. If monochrome=TRUE
the colour map will be a simple grey scale containing ncolours shades from black to white.
Value

For beachcolours, a character vector of length ncolours specifying colour values. For beachcolourmap,
a colour map (object of class "colourmap”).

86 border

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

References
Baddeley, A., Turner, R., Mgller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617-666.

See Also

colourmap, colourtools.

Examples

plot(beachcolourmap(c(-2,2)))

border Border Region of a Window

Description

Computes the border region of a window, that is, the region lying within a specified distance of the
boundary of a window.

Usage
border(w, r, outside=FALSE, ...)
Arguments
w A window (object of class "owin") or something acceptable to as.owin.
r Numerical value.
outside Logical value determining whether to compute the border outside or inside w.
Optional arguments passed to erosion (if outside=FALSE) or to dilation (if
outside=TRUE).
Details

By default (if outside=FALSE), the border region is the subset of w lying within a distance r of the
boundary of w. It is computed by eroding w by the distance r (using erosion) and subtracting this
eroded window from the original window w.

If outside=TRUE, the border region is the set of locations outside w lying within a distance r of w. It
is computed by dilating w by the distance r (using dilation) and subtracting the original window
w from the dilated window.

bounding.box.xy 87

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

erosion, dilation

Examples

rectangle

u <- unit.square()

border(u, 0.1)

border(u, 0.1, outside=TRUE)
polygon

plot(letterR)
plot(border(letterR, 0.1), add=TRUE)
plot(border(letterR, 0.1, outside=TRUE), add=TRUE)

bounding.box.xy Convex Hull of Points

Description

Computes the smallest rectangle containing a set of points.

Usage
bounding.box.xy(x, y=NULL)

Arguments
X vector of x coordinates of observed points, or a 2-column matrix giving X,y
coordinates, or a list with components x,y giving coordinates (such as a point
pattern object of class "ppp".)
y (optional) vector of y coordinates of observed points, if x is a vector.
Details

Given an observed pattern of points with coordinates given by x and y, this function finds the
smallest rectangle, with sides parallel to the coordinate axes, that contains all the points, and returns
it as a window.

88 boundingbox

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin, as.owin, convexhull.xy, ripras

Examples

X <= runif(30)

y <= runif(30)

w <- bounding.box.xy(x,y)

plot(owin(), main="bounding.box.xy(x,y)")
plot(w, add=TRUE)

points(x,y)

X <= runifrect(30)
plot(X, main="bounding.box.xy(X)")
plot(bounding.box.xy(X), add=TRUE)

boundingbox Bounding Box of a Window, Image, or Point Pattern

Description

Find the smallest rectangle containing a given window(s), image(s) or point pattern(s).
Usage
boundingbox(...)

Default S3 method:
boundingbox(...)

S3 method for class 'im'
boundingbox(...)

S3 method for class 'owin'
boundingbox(...)

S3 method for class 'ppp'
boundingbox(...)

boundingbox 89

S3 method for class 'psp'
boundingbox(...)

S3 method for class 'lpp'
boundingbox(...)

S3 method for class 'linnet'
boundingbox(...)

S3 method for class 'solist'
boundingbox(...)

Arguments
One or more windows (objects of class "owin"), pixel images (objects of class
"im") or point patterns (objects of class "ppp" or "1pp") or line segment patterns
(objects of class "psp") or linear networks (objects of class "linnet") or any
combination of such objects. Alternatively, the argument may be a list of such
objects, of class "solist”.

Details

This function finds the smallest rectangle (with sides parallel to the coordinate axes) that contains
all the given objects.

For a window (object of class "owin"), the bounding box is the smallest rectangle that contains all
the vertices of the window (this is generally smaller than the enclosing frame, which is returned by
as.rectangle).

For a point pattern (object of class "ppp” or "1pp"), the bounding box is the smallest rectangle that
contains all the points of the pattern. This is usually smaller than the bounding box of the window
of the point pattern.

For a line segment pattern (object of class "psp") or a linear network (object of class "linnet"),
the bounding box is the smallest rectangle that contains all endpoints of line segments.

For a pixel image (object of class "im"), the image will be converted to a window using as.owin,
and the bounding box of this window is obtained.

If the argument is a list of several objects, then this function finds the smallest rectangle that contains
all the bounding boxes of the objects.
Value

owin, as.owin, as.rectangle

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

90 boundingcircle

Examples

w <- owin(c(0,10),c(0,10), poly=list(x=c(1,2,3,2,1), y=c(2,3,4,6,7)))
r <- boundingbox(w)
returns rectangle [1,3] x [2,7]

w2 <- unit.square()
r <- boundingbox(w, w2)
returns rectangle [0,3] x [0,7]

boundingcircle Smallest Enclosing Circle

Description

Find the smallest circle enclosing a spatial window or other object. Return its radius, or the location
of its centre, or the circle itself.

Usage
boundingradius(x, ...)
boundingcentre(x, ...)
boundingcircle(x, ...)

S3 method for class 'owin'
boundingradius(x, ...)

S3 method for class 'owin'
boundingcentre(x, ...)

S3 method for class 'owin'
boundingcircle(x, ...)

S3 method for class 'ppp'
boundingradius(x, ...)

S3 method for class 'ppp'
boundingcentre(x, ...)

S3 method for class 'ppp'

boundingcircle(x, ...)
Arguments
X A window (object of class "owin"), or another spatial object.

Arguments passed to as.mask to determine the pixel resolution for the calcula-
tion.

box3 91

Details

The boundingcircle of a spatial region W is the smallest circle that contains . The boundingradius
is the radius of this circle, and the boundingcentre is the centre of the circle.

The functions boundingcircle, boundingcentre and boundingradius are generic. There are

non

methods for objects of class "owin”, "ppp"” and "linnet”.

Value

The result of boundingradius is a single numeric value.
The result of boundingcentre is a point pattern containing a single point.

The result of boundingcircle is a window representing the boundingcircle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

diameter

Examples
boundingradius(letterR)
plot(grow.rectangle(Frame(letterR), 0.2), main=""
plot(letterR, add=TRUE, col="grey")

plot(boundingcircle(letterR), add=TRUE, border="green”, lwd=2)
plot(boundingcentre(letterR), pch="+", cex=2, col="blue", add=TRUE)

, type="n")

X <- runifrect(5)

plot(X)

plot(boundingcircle(X), add=TRUE)

plot(boundingcentre(X), pch="+", cex=2, col="blue", add=TRUE)

box3 Three-Dimensional Box

Description

Creates an object representing a three-dimensional box.

Usage

box3(xrange = c(@, 1), yrange = xrange, zrange = yrange, unitname = NULL)

92 boxx

Arguments
xrange, yrange, zrange
Dimensions of the box in the z, y, z directions. Each of these arguments should
be a numeric vector of length 2.

unitname Optional. Name of the unit of length. See Details.

Details

This function creates an object representing a three-dimensional rectangular parallelepiped (box)
with sides parallel to the coordinate axes.

The object can be used to specify the domain of a three-dimensional point pattern (see pp3) and in
various geometrical calculations (see volume.box3, diameter.box3, eroded.volumes).

The optional argument unitname specifies the name of the unit of length. See unitname for valid
formats.

The function as.box3 can be used to convert other kinds of data to this format.

Value

An object of class "box3". There is a print method for this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

as.box3, pp3, volume.box3, diameter.box3, eroded.volumes.

Examples

box3()
box3(c(0,10),c(0,10),c(0,5), unitname=c("metre”,"metres"”))
box3(c(-1,1))

boxx Multi-Dimensional Box

Description

Creates an object representing a multi-dimensional box.

Usage

boxx (..., unitname = NULL)

bufftess 93

Arguments
Dimensions of the box. Vectors of length 2.
unitname Optional. Name of the unit of length. See Details.
Details

This function creates an object representing a multi-dimensional rectangular parallelepiped (box)
with sides parallel to the coordinate axes.

The object can be used to specify the domain of a multi-dimensional point pattern (see ppx) and in
various geometrical calculations (see volume.boxx, diameter.boxx, eroded. volumes).

The optional argument unitname specifies the name of the unit of length. See unitname for valid
formats.

Value

An object of class "boxx". There is a print method for this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppx, volume.boxx, diameter.boxx, eroded.volumes.boxx.

Examples

boxx(c(0,10),c(0,10),c(0,5),c(0,1), unitname=c("metre”, "metres”))

bufftess Buffer Distance Tessellation

Description

Constructs a spatial tessellation, composed of rings or buffers at specified distances away from the
given spatial object.

Usage

bufftess(X, breaks, W = Window(X), ..., polygonal = TRUE)

94 bufftess

Arguments
X A spatial object in two dimensions, such as a point pattern (class "ppp”) or line
segment pattern (class "psp").
breaks Either a numeric vector specifying the cut points for the distance values, or a
single integer specifying the number of cut points.
W Optional. Window (object of class "owin") inside which the tessellation will be
constructed.
Optional arguments passed to as.mask controlling the pixel resolution when
polygonal=FALSE, and optional arguments passed to cut.default controlling
the labelling of the distance bands.
polygonal Logical value specifying whether the tessellation should consist of polygonal
tiles (polygonal=TRUE, the default) or should be constructed using a pixel image
(polygonal=FALSE).
Details

This function divides space into tiles defined by distance from the object X. The result is a tessella-
tion (object of class "tess") that consists of concentric rings around X.

The distance values which determine the tiles are specified by the argument breaks.
e If breaks is a vector of numerical values, then these values are taken to be the distances defin-
ing the tiles. The first tile is the region of space that lies at distances between breaks[1] and

breaks[2] away from X; the second tile is the region lying at distances between breaks[2]
and breaks[3] away from X; and so on. The number of tiles will be 1length(breaks)-1.

* If breaks is a single integer, it is interpreted as specifying the number of intervals between
breakpoints. There will be breaks+1 equally spaced break points, ranging from zero to the
maximum achievable distance. The number of tiles will equal breaks.

The tessellation can be computed using either raster calculations or vector calculations.

* If polygonal=TRUE (the default), the tiles are computed as polygonal windows using vector
geometry, and the result is a tessellation consisting of polygonal tiles. This calculation could
be slow and could require substantial memory, but produces a geometrically accurate result.

* If polygonal=FALSE, the distance map of X is computed as a pixel image (distmap), then
the distance values are divided into discrete bands using cut.im. The result is a tessellation
specified by a pixel image. This computation is faster but less accurate.

Value

A tessellation (object of class "tess").

The result also has an attribute breaks which is the vector of distance breakpoints.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

by.im 95

See Also

Polygonal calculations are performed using dilation and setminus.owin. Pixel calculations are
performed using distmap and cut.im. See as.mask for details of arguments that control pixel
resolution.

For other kinds of tessellations, see tess, hextess, venn. tess, polartess, dirichlet, delaunay,
quantess, quadrats and rpoislinetess.

Examples

X <- cells[c(FALSE,FALSE,FALSE,TRUE)]
if(interactive()) {
b <- c(0, 0.05, 0.1, 0.15, 0.2, Inf)
n<-5
} else {
simpler data for testing
b <- c(0, 0.1, 0.2, Inf)
n<-3
}
plot(bufftess(X, b), do.col=TRUE, col=1:n)

by.im Apply Function to Image Broken Down by Factor

Description

Splits a pixel image into sub-images and applies a function to each sub-image.

Usage
S3 method for class 'im'
by(data, INDICES, FUN, ...)
Arguments
data A pixel image (object of class "im").
INDICES Grouping variable. Either a tessellation (object of class "tess") or a factor-

valued pixel image.
FUN Function to be applied to each sub-image of data.

Extra arguments passed to FUN.

Details

This is a method for the generic function by for pixel images (class "im").

The pixel image data is first divided into sub-images according to INDICES. Then the function FUN
is applied to each subset. The results of each computation are returned in a list.

The grouping variable INDICES may be either

96 by.ppp
* atessellation (object of class "tess"). Each tile of the tessellation delineates a subset of the

spatial domain.

* a pixel image (object of class "im") with factor values. The levels of the factor determine
subsets of the spatial domain.

Value

A list containing the results of each evaluation of FUN.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

split.im, tess, im

Examples

W <- square(1)

X <- as.im(function(x,y){sqrt(x*2+y*2)}, W)
Y <- dirichlet(runifrect(12, W))

mean pixel value in each subset
unlist(by(X, Y, mean))

trimmed mean

unlist(by(X, Y, mean, trim=0.05))

by . ppp Apply a Function to a Point Pattern Broken Down by Factor

Description

Splits a point pattern into sub-patterns, and applies the function to each sub-pattern.

Usage
S3 method for class 'ppp'
by(data, INDICES=marks(data), FUN, ...)
Arguments
data Point pattern (object of class "ppp").
INDICES Grouping variable. Either a factor, a pixel image with factor values, or a tessel-
lation.
FUN Function to be applied to subsets of data.

Additional arguments to FUN.

by.ppp 97

Details

This is a method for the generic function by for point patterns (class "ppp").

The point pattern data is first divided into subsets according to INDICES. Then the function FUN is
applied to each subset. The results of each computation are returned in a list.

The argument INDICES may be

* a factor, of length equal to the number of points in data. The levels of INDICES determine
the destination of each point in data. The ith point of data will be placed in the sub-pattern
split.ppp(data)$l where 1 = f[i].

* a pixel image (object of class "im") with factor values. The pixel value of INDICES at each

point of data will be used as the classifying variable.

* atessellation (object of class "tess"). Each point of data will be classified according to the
tile of the tessellation into which it falls.

If INDICES is missing, then data must be a multitype point pattern (a marked point pattern whose
marks vector is a factor). Then the effect is that the points of each type are separated into different
point patterns.

Value

A list (also of class "anylist” or "solist” as appropriate) containing the results returned from
FUN for each of the subpatterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp, split.ppp, cut.ppp, tess, im.

Examples

multitype point pattern, broken down by type
by(amacrine, FUN=minnndist)
by(amacrine, FUN=function(x) { intensity(unmark(x)) })

if(require(spatstat.explore)) {
how to pass additional arguments to FUN
by(amacrine, FUN=clarkevans, correction=c("Donnelly”,"cdf"))

}

point pattern broken down by tessellation

data(swedishpines)

tes <- quadrats(swedishpines, 4,4)

compute minimum nearest neighbour distance for points in each tile
B <- by(swedishpines, tes, minnndist)

if(require(spatstat.explore)) {

98 cbind.hyperframe

B <- by(swedishpines, tes, clarkevans, correction="Donnelly")
simplify2array(B)
}

cbind.hyperframe Combine Hyperframes by Rows or by Columns

Description

Methods for cbind and rbind for hyperframes.

Usage

S3 method for class 'hyperframe'

cbind(...)

S3 method for class 'hyperframe'

rbind(...)
Arguments

Any number of hyperframes (objects of class hyperframe).

Details

These are methods for cbind and rbind for hyperframes.

Note that all the arguments must be hyperframes (because of the peculiar dispatch rules of cbind
and rbind).

To combine a hyperframe with a data frame, one should either convert the data frame to a hyper-
frame using as . hyperframe, or explicitly invoke the function cbind. hyperframe or rbind.hyperframe.

In other words: if h is a hyperframe and d is a data frame, the result of cbind(h, d) will be the same
as cbind(as.data.frame(h), d), so that all hypercolumns of h will be deleted (and a warning
will be issued). To combine h with d so that all columns of h are retained, type either cbind(h,
as.hyperframe(d)) or cbind. hyperframe(h,d).

Value

Another hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

hyperframe, as.hyperframe

centroid.owin 99

Examples

if(require(spatstat.random)) {
lambda <- runif(5, min=10, max=30)
X <- solapply(as.list(lambda), rpoispp)
h <- hyperframe(lambda=lambda, X=X)
g <- hyperframe(id=letters[1:5], Y=rev(X))
gh <- cbind(h, g)
hh <- rbind(h[1:2, 1, h[3:5,])

centroid.owin Centroid of a window

Description

Computes the centroid (centre of mass) of a window

Usage

centroid.owin(w, as.ppp = FALSE)

Arguments
w A window
as.ppp Logical flag indicating whether to return the centroid as a point pattern (ppp
object)
Details

The centroid of the window w is computed. The centroid (“centre of mass™) is the point whose =
and y coordinates are the mean values of the x and y coordinates of all points in the window.

The argument w should be a window (an object of class "owin", see owin.object for details) or
can be given in any format acceptable to as.owin().

The calculation uses an exact analytic formula for the case of polygonal windows.

Note that the centroid of a window is not necessarily inside the window, unless the window is
convex. If as. ppp=TRUE and the centroid of w lies outside w, then the window of the returned point
pattern will be a rectangle containing the original window (using as.rectangle.

Value
Either a list with components x, y, or a point pattern (of class ppp) consisting of a single point,
giving the coordinates of the centroid of the window w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

100 chop.tess

See Also

owin, as.owin

Examples

w <- owin(c(0,1),c(0,1))
centroid.owin(w)
returns 0.5, 0.5

w <- Window(demopat)
an irregular window
cent <- centroid.owin(w, as.ppp = TRUE)

wapprox <- as.mask(w)
pixel approximation of window

if(interactive()) {
plot(cent)
plot the window and its centroid
points(centroid.owin(wapprox))
should be indistinguishable
}

chop. tess Subdivide a Window or Tessellation using a Set of Lines

Description

Divide a given window into tiles delineated by a set of infinite straight lines, obtaining a tessellation
of the window. Alternatively, given a tessellation, divide each tile of the tessellation into sub-tiles
delineated by the lines.

Usage

chop.tess(X, L)

Arguments

X A window (object of class "owin") or tessellation (object of class "tess") to be
subdivided by lines.

L A set of infinite straight lines (object of class "infline")

clickbox 101

Details

The argument L should be a set of infinite straight lines in the plane (stored in an object L of class
"infline" created by the function infline).

If X is a window, then it is divided into tiles delineated by the lines in L.

If X is a tessellation, then each tile of X is subdivided into sub-tiles delineated by the lines in L.

The result is a tessellation.

Value

A tessellation (object of class "tess").

Warning

If X is a non-convex window, or a tessellation containing non-convex tiles, then chop.tess(X,L)
may contain a tile which consists of several unconnected pieces.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <rolfturner@posteo.net>

See Also

infline, clip.infline

Examples

L <- infline(p=1:3, theta=pi/4)
W <- square(4)
chop.tess(W, L)

clickbox Interactively Define a Rectangle

Description
Allows the user to specify a rectangle by point-and-click in the display.

Usage
clickbox(add=TRUE, ...)

Arguments

add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).

Graphics arguments passed to polygon to plot the box.

102 clickdist

Details

This function allows the user to create a rectangular window by interactively clicking on the screen
display.

The user is prompted to point the mouse at any desired locations for two corners of the rectangle,
and click the left mouse button to add each point.

The return value is a window (object of class "owin") representing the rectangle.

This function uses the R command locator to input the mouse clicks. It only works on screen
devices such as ‘X11°, ‘windows’ and ‘quartz’.

Value

A window (object of class "owin") representing the selected rectangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

clickpoly, clickppp, clickdist, locator

clickdist Interactively Measure Distance

Description

Measures the distance between two points which the user has clicked on.

Usage
clickdist()

Details

This function allows the user to measure the distance between two spatial locations, interactively,
by clicking on the screen display.

When clickdist() is called, the user is expected to click two points in the current graphics device.
The distance between these points will be returned.

This function uses the R command locator to input the mouse clicks. It only works on screen
devices such as ‘X11’, ‘windows’ and ‘quartz’.

Value

A single nonnegative number.

clickpoly 103

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

locator, clickppp, clickpoly, clickbox

clickpoly Interactively Define a Polygon

Description

Allows the user to create a polygon by point-and-click in the display.

Usage
clickpoly(add=FALSE, nv=NULL, np=1, ..., snap.step=NULL, snap.origin=c(0,0))
Arguments
add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).
nv Number of vertices of the polygon (if this is predetermined).
np Number of polygons to create.
Arguments passed to locator to control the interactive plot, and to polygon to
plot the polygons.
shap.step Optional. Spatial coordinates will be rounded to the nearest multiple of snap. step.
A positive number specifying the step length, or a vector of 2 positive numbers
specifying step lengths for the x and y coordinates.
snap.origin Optional. Numeric vector of length 2. Coordinates of the origin that will be
used when rounding coordinates.
Details

This function allows the user to create a polygonal window by interactively clicking on the screen
display.

The user is prompted to point the mouse at any desired locations for the polygon vertices, and click
the left mouse button to add each point. Interactive input stops after nv clicks (if nv was given) or
when the middle mouse button is pressed.

The return value is a window (object of class "owin") representing the polygon.

This function uses the R command locator to input the mouse clicks. It only works on screen de-
vices such as ‘X11’, ‘windows’ and ‘quartz’. Arguments that can be passed to locator through . . .
include pch (plotting character), cex (character expansion factor) and col (colour). See locator
and par.

104 clickppp

Multiple polygons can also be drawn, by specifying np > 1. The polygons must be disjoint. The
result is a single window object consisting of all the polygons.

If snap.step is given, a grid of lines will be drawn with the specified spacing, and the clicked
locations will be snapped (rounded) to the nearest grid point.

Value

A window (object of class "owin") representing the polygon.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

identify.ppp, clickbox, clickppp, clickdist, locator

clickppp Interactively Add Points

Description

Allows the user to create a point pattern by point-and-click in the display.

Usage
clickppp(n=NULL, win=square(1), types=NULL, ..., add=FALSE,
main=NULL, hook=NULL)
Arguments
n Number of points to be added (if this is predetermined).
win Window in which to create the point pattern. An object of class "owin".
types Vector of types, when creating a multitype point pattern.
Optional extra arguments to be passed to locator to control the display.
add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).
main Main heading for plot.

hook For internal use only. Do not use this argument.

clip.infline 105

Details

This function allows the user to create a point pattern by interactively clicking on the screen display.

First the window win is plotted on the current screen device. Then the user is prompted to point the
mouse at any desired locations and click the left mouse button to add each point. Interactive input
stops after n clicks (if n was given) or when the middle mouse button is pressed.

The return value is a point pattern containing the locations of all the clicked points inside the original
window win, provided that all of the clicked locations were inside this window. Otherwise, the
window is expanded to a box large enough to contain all the points (as well as containing the
original window).

If the argument types is given, then a multitype point pattern will be created. The user is prompted
to input the locations of points of type type[i], for each successive index i. (If the argument n was
given, there will be n points of each type.) The return value is a multitype point pattern.

This function uses the R command locator to input the mouse clicks. It only works on screen de-
vices such as ‘X11°, ‘windows’ and ‘quartz’. Arguments that can be passed to locator through . ..
include pch (plotting character), cex (character expansion factor) and col (colour). See locator
and par.

Value

A point pattern (object of class "ppp").

Author(s)

Original by Dominic Schuhmacher. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <rolfturner@posteo.net>.

See Also

identify.ppp, locator, clickpoly, clickbox, clickdist

clip.infline Intersect Infinite Straight Lines with a Window

Description
Take the intersection between a set of infinite straight lines and a window, yielding a set of line
segments.

Usage

clip.infline(L, win)

Arguments

L Object of class "infline” specifying a set of infinite straight lines in the plane.

win Window (object of class "owin").

106 closepairs

Details

This function computes the intersection between a set of infinite straight lines in the plane (stored
in an object L of class "infline” created by the function infline) and a window win. The result
is a pattern of line segments. Each line segment carries a mark indicating which line it belongs to.

Value

A line segment pattern (object of class "psp”) with a single column of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

infline,psp.

To divide a window into pieces using infinite lines, use chop. tess.

Examples

L <- infline(p=1:3, theta=pi/4)
W <- square(4)
clip.infline(L, W)

closepairs Close Pairs of Points

Description

Low-level functions to find all close pairs of points.

Usage

closepairs(X, rmax, ...)

S3 method for class 'ppp'

closepairs(X, rmax, twice=TRUE,
what=c(”all”,"”indices","ijd"),
distinct=TRUE, neat=TRUE,
periodic=FALSE, ...)

crosspairs(X, Y, rmax, ...)

S3 method for class 'ppp'

crosspairs(X, Y, rmax,
what=c("all”, "indices”, "ijd"),
periodic=FALSE, ...,
iX=NULL, iY=NULL)

closepairs 107

Arguments

X, Y Point patterns (objects of class "ppp").

rmax Maximum distance between pairs of points to be counted as close pairs.

twice Logical value indicating whether all ordered pairs of close points should be re-
turned. If twice=TRUE (the default), each pair will appear twice in the output,
as (i,j) and again as (j,1i). If twice=FALSE, then each pair will appear only
once, as the pair (i, j) with i < j.

what String specifying the data to be returned for each close pair of points. If what="all"
(the default) then the returned information includes the indices i, j of each pair,
their x, y coordinates, and the distance between them. If what="indices" then
only the indices i, j are returned. If what="1ijd" then the indices i, j and the
distance d are returned.

distinct Logical value indicating whether to return only the pairs of points with different
indices i and j (distinct=TRUE, the default) or to also include the pairs where
i=j (distinct=FALSE).

neat Logical value indicating whether to ensure that i < j in each output pair, when
twice=FALSE.

periodic Logical value indicating whether to use the periodic edge correction. The win-
dow of X should be a rectangle. Opposite pairs of edges of the window will be
treated as identical.
Extra arguments, ignored by methods.

iX, iy Optional vectors used to determine whether a point in X is identical to a point in
Y. See Details.

Details

These are the efficient low-level functions used by spatstat to find all close pairs of points in a point
pattern or all close pairs between two point patterns.

closepairs(X,rmax) finds all pairs of distinct points in the pattern X which lie at a distance less
than or equal to rmax apart, and returns them. The result is a list with the following components:

i Integer vector of indices of the first point in each pair.

Jj Integer vector of indices of the second point in each pair.

xi,yi Coordinates of the first point in each pair.

xj,yj Coordinates of the second point in each pair.

dx Equal to xj-xi

dy Equal to yj-yi

d Euclidean distance between each pair of points.

If what="indices" then only the components i and j are returned. This is slightly faster and more
efficient with use of memory.

crosspairs(X,rmax) identifies all pairs of neighbours (X[i], Y[j]) between the patterns X and
Y, and returns them. The result is a list with the same format as for closepairs.

108 closepairs.pp3

The arguments iX and iY are used when the two point patterns X and Y may have some points in
common. In this situation crosspairs(X, Y) would return some pairs of points in which the two
points are identical. To avoid this, attach a unique integer identifier to each point, such that two
points are identical if their identifier values are equal. Let iX be the vector of identifier values for
the points in X, and 1Y the vector of identifiers for points in Y. Then the code will only compare two
points if they have different values of the identifier.

Value

A list with components i and j, and possibly other components as described under Details.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a
human) and may not be consistent between different computers and different installations of R. The
discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the
threshold rmax.

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations
using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about
.Machine$double.eps.

If the true interpoint distance d and the threshold rmax are equal, or if their difference is no more
than .Machine$double. eps, the result may be incorrect.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

closepairs.pp3 for the corresponding functions for 3D point patterns.

Kest, Kcross, nndist, nncross, applynbd, markstat for functions which use these capabilities.

Examples

d <- closepairs(cells, 0.1)
head(as.data.frame(d))

Y <- split(amacrine)
e <- crosspairs(Yon, Yoff, 0.1)

closepairs.pp3 Close Pairs of Points in 3 Dimensions

Description

Low-level functions to find all close pairs of points in three-dimensional point patterns.

closepairs.pp3

Usage

109

S3 method for class 'pp3'
closepairs(X, rmax, twice=TRUE,

what=c("all”, "indices”, "ijd"),
distinct=TRUE, neat=TRUE, ...)

S3 method for class 'pp3'

crosspairs(X, Y, rmax, what=c("all”, "indices”, "ijd"), ...)
Arguments

X, Y Point patterns in three dimensions (objects of class "pp3").

rmax Maximum distance between pairs of points to be counted as close pairs.

twice Logical value indicating whether all ordered pairs of close points should be re-
turned. If twice=TRUE, each pair will appear twice in the output, as (i, j) and
again as (j,1). If twice=FALSE, then each pair will appear only once, as the
pair (i, j) such thati < j.

what String specifying the data to be returned for each close pair of points. If what="all"
(the default) then the returned information includes the indices i, j of each pair,
their x,y, z coordinates, and the distance between them. If what="indices"”
then only the indices i, j are returned. If what="1ijd" then the indices i, j and
the distance d are returned.

distinct Logical value indicating whether to return only the pairs of points with different
indices i and j (distinct=TRUE, the default) or to also include the pairs where
i=j (distinct=FALSE).

neat Logical value indicating whether to ensure that i < j in each output pair, when
twice=FALSE.
Ignored.

Details

These are the efficient low-level functions used by spatstat to find all close pairs of points in a
three-dimensional point pattern or all close pairs between two point patterns in three dimensions.

closepairs(X, rmax) identifies all pairs of neighbours in the pattern X and returns them. The result
is a list with the following components:

i Integer vector of indices of the first point in each pair.

J Integer vector of indices of the second point in each pair.

xi,yi,zi Coordinates of the first point in each pair.

Xj,yj,zj Coordinates of the second point in each pair.

dx Equal to xj-xi
dy Equal to yj-yi
dz Equalto zj-zi

d Euclidean distance between each pair of points.

110 closetriples

If what="indices" then only the components i and j are returned. This is slightly faster.

crosspairs(X,rmax) identifies all pairs of neighbours (X[i], Y[j]) between the patterns X and
Y, and returns them. The result is a list with the same format as for closepairs.

Value

A list with components i and j, and possibly other components as described under Details.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a
human) and may not be consistent between different computers and different installations of R. The
discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the
threshold rmax.

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations
using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about
.Machine$double.eps.

If the true interpoint distance d and the threshold rmax are equal, or if their difference is no more
than .Machine$double. eps, the result may be incorrect.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

closepairs

Examples

X <= pp3(runif(10), runif(10), runif(10), box3(c(0,1)))
Y <= pp3(runif(10), runif(10), runif(10), box3(c(0,1)))
a <- closepairs(X, 0.1)

b <- crosspairs(X, Y, 0.1)

closetriples Close Triples of Points

Description

Low-level function to find all close triples of points.

Usage

closetriples(X, rmax)

closing 111

Arguments

X Point pattern (object of class "ppp"” or "pp3").

rmax Maximum distance between each pair of points in a triple.

Details

This low-level function finds all triples of points in a point pattern in which each pair lies closer
than rmax.

Value

A data frame with columns i, j, k giving the indices of the points in each triple, and a column diam
giving the diameter (maximum pairwise distance) in the triple.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

closepairs, Tstat.

Examples

closetriples(redwoodfull, 0.02)
closetriples(redwoodfull, 0.005)

closing Morphological Closing

Description

Perform morphological closing of a window, a line segment pattern or a point pattern.
Usage
closing(w, r, ...)

S3 method for class 'owin'
closing(w, r, ..., polygonal=NULL)

S3 method for class 'ppp'
closing(w, r, ..., polygonal=TRUE)

S3 method for class 'psp'
closing(w, r, ..., polygonal=TRUE)

112 closing

Arguments
w A window (object of class "owin” or a line segment pattern (object of class
"psp”) or a point pattern (object of class "ppp").
r positive number: the radius of the closing.
extra arguments passed to as.mask controlling the pixel resolution, if a pixel
approximation is used
polygonal Logical flag indicating whether to compute a polygonal approximation to the
erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).
Details

The morphological closing (Serra, 1982) of a set W by a distance » > 0 is the set of all points that
cannot be separated from W by any circle of radius . That is, a point = belongs to the closing W
if it is impossible to draw any circle of radius 7 that has x on the inside and W on the outside. The
closing W« contains the original set W.

For a small radius r, the closing operation has the effect of smoothing out irregularities in the bound-
ary of . For larger radii, the closing operation smooths out concave features in the boundary. For
very large radii, the closed set W * becomes more and more convex.

The algorithm applies dilation followed by erosion.

Value

If r > 0, an object of class "owin" representing the closed region. If r=0, the result is identical to w.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Serra, J. (1982) Image analysis and mathematical morphology. Academic Press.

See Also
opening for the opposite operation.
dilation, erosion for the basic operations.

owin, as.owin for information about windows.

Examples

v <- closing(letterR, 0.25)
plot(v, main="closing")
plot(letterR, add=TRUE)

plot(closing(cells, 0.1))
points(cells)

colourmap

113

colourmap

Colour Lookup Tables

Description

Create a colour map (colour lookup table).

Usage

colourmap(col,
compress=NULL, decompress=NULL)

Arguments

col

range

inputs

breaks

gamma

compress

decompress

Details

., range=NULL, breaks=NULL, inputs=NULL, gamma=1,

Vector of values specifying colours
Ignored.

Interval to be mapped. A numeric vector of length 2, specifying the endpoints
of the range of values to be mapped. Incompatible with breaks or inputs.

Values to which the colours are associated. A factor or vector of the same length
as col. Incompatible with breaks or range.

Breakpoints for the colour map. A numeric vector of length equal to length(col)+1.
Incompatible with range or inputs.

Exponent for the gamma correction, when range is given. A single positive
number. See Details.

Optional. Experimental. An R function determining a nonlinear transformation
of the domain of the colour map. See section on Nonlinear colour maps.

Experimental. An R function giving the inverse function of compress, if compress
is specified.

A colour map is a mechanism for associating colours with data. It can be regarded as a function,
mapping data to colours.

The command colourmap creates an object representing a colour map, which can then be used
to control the plot commands in the spatstat package. It can also be used to compute the colour
assigned to any data value.

The argument col specifies the colours to which data values will be mapped. It should be a vector
whose entries can be interpreted as colours by the standard R graphics system. The entries can be
string names of colours like "red”, or integers that refer to colours in the standard palette, or strings
containing six-letter hexadecimal codes like "#FQAQFF".

Exactly one of the arguments range, inputs or breaks must be specified by name.

114 colourmap

e If inputs is given, then it should be a vector or factor, of the same length as col. The
entries of inputs can be any atomic type (e.g. numeric, logical, character, complex) or factor
values. The resulting colour map associates the value inputs[i] with the colour col[i]. The
argument col should have the same length as inputs.

* If range is given, then it determines the interval of the real number line that will be mapped.
It should be a numeric vector of length 2. The interval will be divided evenly into bands, each
of which is assigned one of the colours in col. (If gamma is given, then the bands are equally
spaced on a scale where the original values are raised to the power gamma.) (See the section
on Nonlinear colour maps for the case where compress and decompress are given.)

 If breaks is given, then it determines the precise intervals of the real number line which are
mapped to each colour. It should be a numeric vector, of length at least 2, with entries that are
in increasing order. Infinite values are allowed. Any number in the range between breaks[i]
and breaks[i+1] will be mapped to the colour col[i]. The argument col should have length
equal to length(breaks) - 1.

It is also permissible for col to be a single colour value, representing a trivial colour map in which
all data values are mapped to the same colour.

The result is an object of class "colourmap”. There are print and plot methods for this class.
Some plot commands in the spatstat package accept an object of this class as a specification of the
colour map.

The result is also a function f which can be used to compute the colour assigned to any data value.
That is, f(x) returns the character value of the colour assigned to x. This also works for vectors of
data values.

Value

A function, which is also an object of class "colourmap” and "lut".

Nonlinear colour maps

If the arguments compress and decompress are given, they define a transformation of the range of
numbers. A typical example would be a logarithmic colour map defined by compress = 1og10 and
decompress = function(x) { 10*x }.

These functions have no effect on the interpretation of the arguments range, breaks and inputs.
However, if range is given, then the range of values will be divided into intervals which have
equal length on the scale defined by compress. That is, the range of numbers determined by
compress(range) will be evenly divided into intervals, and these intervals will be mapped back
to the original scale by decompress to determine the breaks. For a logarithmic colour map with
compress=1og10, the specified range will be divided into intervals which are equal on a logarithmic
scale.

The arguments compress and decompress affect the way in which the colour map is plotted by
plot.colourmap. For a continuous colour map, the range of input values is plotted on the com-
pressed scale, but annotated on the original scale. See the Examples.

The arguments compress and decompress should be functions which are vectorised (i.e. if x is
a vector then compress(x) and decompress(x) are also vectors of the same length as x) and
increasing (if x <y then compress(x) < compress(y) and decompress(x) < decompress(y).

The argument decompress is not needed in the following cases:

colouroutputs 115

 If compress is the function 1og10, then decompress is taken to be its inverse function(x) {
10”x 3.

¢ If compress is a cumulative distribution function (of class "ecdf”, "ewcdf" or "interpolatedCDF")
then decompress is taken to be its inverse function decompress = quantilefun(compress).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

The plot method plot.colourmap.

See the R help file on colours for information about the colours that R recognises, and how to
manipulate them.

To make a smooth transition between colours, see interp.colourmap. To alter individual colour
values, see tweak.colourmap. To extract or replace all colour values, see colouroutputs.

See also restrict.colourmap and rev.colourmap.
See colourtools for more tools to manipulate colour values.

See 1lut for lookup tables.

Examples

colour map for real numbers, using breakpoints

cr <- colourmap(c("red”, "blue”, "green"), breaks=c(0,5,10,15))
cr

cr(3.2)

cr(c(3,5,7))

a large colour map

co <- colourmap(rainbow(100), range=c(-1,1))

co(0.2)

colour map for discrete set of values

ct <- colourmap(c("red”, "green"), inputs=c(FALSE, TRUE))
ct(TRUE)

logarithmic colour map

cl <- colourmap(rainbow(25), range=c(0.1, 1000), compress=logl10)
plot(cl)

colouroutputs Extract or Assign Colour Values in a Colour Map

Description

Extract the colour values in a colour map, or assign new colour values.

116 colouroutputs

Usage

colouroutputs(x)

colouroutputs(x) <- value

Arguments

X A colour map (object of class "colourmap”).

value A vector of values that can be interpreted as colours.
Details

An object of class "colourmap” is effectively a function that maps its inputs (numbers or factor
levels) to colour values.

The command colouroutputs(x) extracts the colour values in the colour map x.

The assignment colouroutputs(x) <- value replaces the colour values in the colour map x by the
entries in value. The replacement vector value should have the same length as colouroutputs(x),
and its entries should be interpretable as colours.

To change only some of the colour values in a colour map, it may be easier to use tweak.colourmap.

Value

The result of colouroutputs is a character vector of colour values. The result of the assignment
colouroutputs(x) <- value is another colour map (object of class "colourmap”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

colourmap, interp.colourmap, tweak.colourmap, colourtools.

Examples

m <- colourmap(rainbow(5), range=c(0,1))
m

reverse order of colours
colouroutputs(m) <- rev(colouroutputs(m))
m

colourtools 117

colourtools Convert and Compare Colours in Different Formats

Description

These functions convert between different formats for specifying a colour in R, determine whether
colours are equivalent, and convert colour to greyscale.

Usage

col2hex(x)

rgb2hex (v, maxColorValue=255)

rgb2hsva(red, green=NULL, blue=NULL, alpha=NULL, maxColorValue=255)
paletteindex(x)

samecolour(x,y)

complementarycolour(x)

interp.colours(x, length.out=512)

is.colour(x)

to.grey(x, weights=c(0.299, 0.587, 0.114), transparent=FALSE)
is.grey(x)

to.opaque(x)

to.transparent(x, fraction)

to.saturated(x, s=1)

Arguments
Y Any valid specification for a colour or sequence of colours accepted by col2rgb.
v A numeric vector of length 3, giving the RGB values of a single colour, or a 3-

column matrix giving the RGB values of several colours. Alternatively a vector
of length 4 or a matrix with 4 columns, giving the RGB and alpha (transparency)
values.
red, green, blue, alpha

Arguments acceptable to rgb determining the red, green, blue channels and op-
tionally the alpha (transparency) channel. Note that red can also be a matrix
with 3 rows giving the RGB values, or a matrix with 4 rows giving RGB and
alpha values.

maxColorValue Number giving the maximum possible value for the entries in v or red, green,blue, alpha.

weights Numeric vector of length 3 giving relative weights for the red, green, and blue
channels respectively.

transparent Logical value indicating whether transparent colours should be converted to
transparent grey values (transparent=TRUE) or converted to opaque grey val-
ues (transparent=FALSE, the default).

fraction Transparency fraction. Numerical value or vector of values between 0 and 1,
giving the opaqueness of a colour. A fully opaque colour has fraction=1.

length.out Integer. Length of desired sequence.

s Saturation value (between 0 and 1).

118 colourtools

Details
is.colour(x) can be applied to any kind of data x and returns TRUE if x can be interpreted as a
colour or colours. The remaining functions expect data that can be interpreted as colours.
col2hex converts colours specified in any format into their hexadecimal character codes.

rgb2hex converts RGB colour values into their hexadecimal character codes. It is a very minor
extension to rgbh. Arguments to rgb2hex should be similar to arguments to rgb.

rgb2hsva converts RGB colour values into HSV colour values including the alpha (transparency)
channel. It is an extension of rgb2hsv. Arguments to rgb2hsva should be similar to arguments to
rgb2hsv.

paletteindex checks whether the colour or colours specified by x are available in the default
palette returned by palette(). If so, it returns the index or indices of the colours in the palette. If
not, it returns NA.

samecolour decides whether two colours x and y are equivalent.
is.grey determines whether each entry of x is a greyscale colour, and returns a logical vector.

to. grey converts the colour data in x to greyscale colours. Alternatively x can be an object of class
"colourmap” and to.grey(x) is the modified colour map.

to.opaque converts the colours in x to opaque (non-transparent) colours, and to.transparent
converts them to transparent colours with a specified transparency value. Note that to. transparent(x,1)
is equivalent to to.opaque(x).

For to.grey, to.opaque and to. transparent, if all the data in x specifies colours from the stan-
dard palette, and if the result would be equivalent to x, then the result is identical to x.

to.saturated converts each colour in x to its fully-saturated equivalent. For example, pink is
mapped to red. Shades of grey are converted to black; white is unchanged.

complementarycolour replaces each colour by its complementary colour in RGB space (the colour
obtained by replacing RGB values (r, g, b) by (255-r, 255-g, 255-b)). The transparency value
is not changed. Alternatively x can be an object of class "colourmap” and complementarycolour(x)
is the modified colour map.

interp.colours interpolates between each successive pair of colours in a sequence of colours,
to generate a more finely-spaced sequence. It uses linear interpolation in HSV space (with hue
represented as a two-dimensional unit vector).

Value

For col2hex and rgb2hex a character vector containing hexadecimal colour codes.

For to.grey, to.opaque and to. transparent, either a character vector containing hexadecimal
colour codes, or a value identical to the input x.

For rgb2hsva, a matrix with 3 or 4 rows containing HSV colour values.
For paletteindex, an integer vector, possibly containing NA values.

For samecolour and is.grey, a logical value or logical vector.

Warning

paletteindex("green”) returns NA because the green colour in the default palette is called "green3"”.

commonGrid 119

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

col2rgb, rgh2hsv, palette.

See also the class of colour map objects in the spatstat package: colourmap, interp.colourmap,
tweak.colourmap.

Examples

samecolour("grey”, "gray")
paletteindex("grey")
col2hex("orange")
to.grey("orange")
to.saturated("orange")
complementarycolour(”orange")
is.grey("lightgrey")
is.grey(8)
to.transparent(”orange”, 0.5)
to.opaque("red")

interp.colours(c(”orange”, "red"”, "violet"), 5)
commonGrid Determine A Common Spatial Domain And Pixel Resolution
Description

Determine a common spatial domain and pixel resolution for several spatial objects such as images,
masks, windows and point patterns.

Usage

commonGrid(...)

Arguments

Any number of pixel images (objects of class "im"), binary masks (objects of
class "owin" of type "mask") or data which can be converted to binary masks
by as.mask.

120 compatible

Details

This function determines a common spatial resolution and spatial domain for several spatial objects.

The arguments ... may be pixel images, binary masks, or other spatial objects acceptable to
as.mask.

The common pixel grid is determined by inspecting all the pixel images and binary masks in the
argument list, finding the pixel grid with the highest spatial resolution, and extending this pixel grid
to cover the bounding box of all the spatial objects.

The return value is a binary mask M, representing the bounding box at the chosen pixel resolution.
Use as.im(X, W=M) to convert a pixel image X to this new pixel resolution. Use as.mask (W, xy=M)
to convert a window W to a binary mask at this new pixel resolution. See the Examples.

Value

A binary mask (object of class "owin" and type "mask").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

harmonise.im, compatible.im, as.im

Examples

if(require(spatstat.random)) {
A <- setcov(square(1), dimyx=32)
G <- as.im(function(x,y) { x*2 -y }, W=owin(), dimyx=8)
H <- commonGrid(A, letterR, G)
newR <- as.mask(letterR, xy=H)
newG <- as.im(G, W=H)
if(interactive()) plot(solist(G=newG, R=newR), main="")

compatible Test Whether Objects Are Compatible

Description

Tests whether two or more objects of the same class are compatible.

Usage

compatible(A, B, ...)

Arguments

AB, ... Two or more objects of the same class

compatible.im 121

Details

This generic function is used to check whether the objects A and B (and any additional objects . . .)
are compatible.

What is meant by ‘compatible’ depends on the class of object.

n o n

There are methods for the classes "fv", "fasp”, "im" and "unitname"”. See the documentation for
these methods for further information.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

compatible.fv, compatible.fasp, compatible.im, compatible.unitname

compatible.im Test Whether Pixel Images Are Compatible

Description

Tests whether two or more pixel image objects have compatible dimensions.

Usage
S3 method for class 'im'
compatible(A, B, ..., tol=1e-6)
Arguments
A B, ... Two or more pixel images (objects of class "im").
tol Tolerance factor
Details

This function tests whether the pixel images A and B (and any additional images . . .) have compat-
ible pixel dimensions. They are compatible if they have the same number of rows and columns, the
same physical pixel dimensions, and occupy the same rectangle in the plane.

The argument tol specifies the maximum tolerated error in the pixel coordinates, expressed as a
fraction of the dimensions of a single pixel.

122 complement.owin

Value

Logical value: TRUE if the images are compatible, and FALSE if they are not.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

eval.im, harmonise.im, commonGrid

complement.owin Take Complement of a Window

Description

Take the set complement of a window, within its enclosing rectangle or in a larger rectangle.

Usage

complement.owin(w, frame=as.rectangle(w))

Arguments
w an object of class "owin" describing a window of observation for a point pattern.
frame Optional. The enclosing rectangle, with respect to which the set complement is
taken.
Details

This yields a window object (of class "owin", see owin.object) representing the set complement
of w with respect to the rectangle frame.

By default, frame is the enclosing box of w (originally specified by the arguments xrange and
yrange given to owin when w was created). If frame is specified, it must be a rectangle (an object
of class "owin" whose type is "rectangle”) and it must be larger than the enclosing box of w. This
rectangle becomes the enclosing box for the resulting window.

If w is a rectangle, then frame must be specified. Otherwise an error will occur (since the comple-
ment of w in itself is empty).

For rectangular and polygonal windows, the complement is computed by reversing the sign of each
boundary polygon, while for binary masks it is computed by negating the pixel values.

Value

Another object of class "owin" representing the complement of the window, i.e. the inside of the
window becomes the outside.

concatxy 123

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

owin, owin.object

Examples

rectangular

a <- owin(c(0,1),c(0,1))

b <- owin(c(-1,2),c(-1,2))

bmina <- complement.owin(a, frame=b)
polygonal

w <- Window(demopat)

outside <- complement.owin(w)

mask

w <- as.mask(Window(demopat))
outside <- complement.owin(w)

concatxy Concatenate x,y Coordinate Vectors

Description

Concatenate any number of pairs of x and y coordinate vectors.

Usage

concatxy(...)

Arguments

Any number of arguments, each of which is a structure containing elements x
and y.

Details

This function can be used to superimpose two or more point patterns of unmarked points (but see
also superimpose which is recommended).

It assumes that each of the arguments in . . . is a structure containing (at least) the elements x and y.
It concatenates all the x elements into a vector x, and similarly for y, and returns these concatenated
vectors.

Value

A list with two components x and y, which are the concatenations of all the corresponding x and y
vectors in the argument list.

124

Author(s)

connected

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

superimpose, quadscheme

Examples

dat <- runifrect(30)
Xy <- list(x=runif(10),y=runif(10))
new <- concatxy(dat, xy)

connected

Connected components

Description

Finds the topologically-connected components of a spatial object, such as the connected clumps of
pixels in a binary image.

Usage

connected(X,

)

S3 method for class 'owin'

connected(X,

., polygonal=FALSE, method="C", connect=8)

S3 method for class 'im'

connected(X,

Arguments

X

polygonal
background

method

connect

., background, method="C", connect=8)

A spatial object such as a pixel image (object of class "im") or a window (object
of class "owin").

Logical value specifying whether to use polygonal geometry. See Details.
Optional. Treat pixels with this value as being part of the background.

String indicating the algorithm to be used. Either "C" or "interpreted”. See
Details.

Arguments passed to as.mask to determine the pixel resolution.

The connectivity of the pixel grid: either 8 or 4.

connected 125

Details

The function connected is generic, with methods for pixel images (class "im") and windows (class
"owin") described here. There are also methods for tessellations (connected. tess), point patterns
(connected. ppp and connected. 1pp), and linear networks (connected. linnet).

The functions described here compute the connected component transform (Rosenfeld and Pfalz,
1966) of a binary image or binary mask. The pixel values in X are first mapped to logical values.
Then the algorithm identifies the connected components (topologically-connected clumps of pixels)
in the foreground.

When X is converted to a logical valued image, the pixel value NA is always mapped to FALSE. If
background is specified, then the value background is also mapped to FALSE. All other values
are mapped to TRUE. In the special case where X is already a logical-valued image, the default is
background=FALSE, so that the values NA and FALSE are mapped to FALSE.

Two pixels belong to the same connected component if they have the value TRUE and if they are
neighbours. This rule is applied repeatedly until it terminates. Then each connected component
contains all the pixels that can be reached by stepping from neighbour to neighbour.

Pixels are defined to be neighbours if they are physically adjacent to each other. If connect=4, each
pixel has 4 neighbours, lying one step above or below, or one step to the left or right. If connect=8
(the default), each pixel has 8 neighbours, lying one step above or below, or one step to the left
or right, or one diagonal step away. (Pixels at the edge of the image have fewer neighbours.) The
8-connected algorithm is the default because it gives better results when the pixel grid is coarse.
The 4-connected algorithm is faster and is recommended when the pixel grid is fine.

If method="C", the computation is performed by a compiled C language implementation of the
classical algorithm of Rosenfeld and Pfalz (1966). If method="interpreted", the computation is
performed by an R implementation of the algorithm of Park et al (2000).

By default, the result is a factor-valued image, with levels that correspond to the connected compo-
nents. The Examples show how to extract each connected component as a separate window object.

If X is a window and polygonal=TRUE, the result is a tessellation (object of class "tess") whose
tiles are the connected components.

Value

A pixel image (object of class "im") with factor values. The levels of the factor correspond to the
connected components.

For connected.owin, if polygonal=TRUE, the result is a tessellation (object of class "tess") whose
tiles are the connected components.

Warnings

It may be hard to distinguish different components in the default plot because the colours of nearby
components may be very similar. See the Examples for a randomised colour map.

The algorithm for method="interpreted"” can be very slow for large images (or images where the
connected components include a large number of pixels).

126 connected

Author(s)

Original R code by Julian Burgos, University of Washington. Adapted for spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Park, J.-M., Looney, C.G. and Chen, H.-C. (2000) Fast connected component labeling algorithm
using a divide and conquer technique. Pages 373-376 in S.Y. Shin (ed) Computers and Their Appli-
cations: Proceedings of the ISCA 15th International Conference on Computers and Their Applica-
tions, March 29-31, 2000, New Orleans, Louisiana USA. ISCA 2000, ISBN 1-880843-32-3.

Rosenfeld, A. and Pfalz, J.L.. (1966) Sequential operations in digital processing. Journal of the
Association for Computing Machinery 13 471-494.

See Also

connected.ppp, connected. tess, im.object, tess

Examples

d <- distmap(cells, dimyx=256)
X <- levelset(d, 0.07)

plot(X)

Z <- connected(X)

plot(Z)

or equivalently

Z <- connected(d <= 0.07)

number of components

nc <- length(levels(Z))

plot with randomised colour map

plot(Z, col=hsv(h=sample(seq(@,1,length=nc), nc)))

how to extract the components as a list of windows
W <- tiles(tess(image=Z))

polygonal algorithm

A <- regularpolygon(7)

B <- regularpolygon(13, 0.3)

D <- owin(c(-1, -0.6), c(1, 1.4))

E <- regularpolygon(5, 0.3)

Funky <- union.owin(D, E, setminus.owin(A, B))
plot(Funky, col="blue")

plot(connected(Funky, polygonal=TRUE), do.col=TRUE)

connected.ppp 127

connected. ppp Connected Components of a Point Pattern

Description

Finds the topologically-connected components of a point pattern, when all pairs of points closer
than a threshold distance are joined.

Usage

S3 method for class 'ppp'
connected(X, R, ...)

S3 method for class 'pp3'

connected(X, R, ...)
Arguments
X A point pattern (object of class "ppp"” or "pp3").
R Threshold distance. Pairs of points closer than R units apart will be joined to-
gether.

Other arguments, not recognised by these methods.

Details

This function can be used to identify clumps of points in a point pattern.

The function connected is generic. This file documents the methods for point patterns in dimension
two or three (objects of class "ppp"” or "pp3").

The point pattern X is first converted into an abstract graph by joining every pair of points that lie
closer than R units apart. Then the connected components of this graph are identified.

Two points in X belong to the same connected component if they can be reached by a series of steps
between points of X, each step being shorter than R units in length.

The result is a vector of labels for the points of X where all the points in a connected component
have the same label.

Value
A point pattern, equivalent to X except that the points have factor-valued marks, with levels corre-
sponding to the connected components.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

128 connected.tess

See Also

connected.im, im.object, tess

Examples

Y <- connected(redwoodfull, @.1)
if(interactive()) {
plot(Y, cols=1:1length(levels(marks(Y))),
main="connected(redwoodfull, 0.1)")
}
X <- osteo$pts[[1]]
Z <- connected(X, 32)
if(interactive()) {
plot(Z, col=marks(Z), main="")
}

connected. tess Connected Components of Tiles of a Tessellation

Description

Given a tessellation, find the topologically-connected pieces of each tile, and make a new tessella-
tion using these pieces.

Usage
S3 method for class 'tess'
connected(X, ...)
Arguments
X A tessellation (object of class "tess").

Arguments passed to as.mask to determine the pixel resolution.

Details

The function connected is generic. This function connected. tess is the method for tessellations.

Given the tessellation X, the algorithm considers each tile of the tessellation, and identifies its con-
nected components (topologically-connected pieces) using connected.owin. Each of these pieces
is treated as a distinct tile and a new tessellation is made from these pieces.

The result is another tessellation obtained by subdividing each tile of X into one or more new tiles.

Value

Another tessellation (object of class "tess").

contour.im

Author(s)

129

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

connected.owin

Examples

BB <- grow.rectangle(Frame(letterR), 0.2)

H <- tess(tiles=list(IN=letterR, OUT=complement.owin(letterR, BB)))
opa <- par(mfrow=c(1,2))

plot(H, do.col=TRUE)

plot(connected(H), do.col=TRUE, col=2:4)

par(opa)

contour.im

Contour plot of pixel image

Description

Generates a contour plot of a pixel image.

Usage

S3 method for class 'im'

contour(x,

., main, axes=FALSE, add=FALSE,

nlevels=10, levels=NULL, labels=NULL, log=FALSE,
col=par("fg"),
clipwin=NULL, show.all=!add, do.plot=TRUE)

Arguments

X
main

nlevels, levels
labels

log

axes

add

Pixel image to be plotted. An object of class "im".
Character string to be displayed as the main title.
Arguments passed to contour .default controlling the choice of contour levels.

Arguments passed to contour.default controlling the text labels plotted next
to the contour lines.

Logical value. If TRUE, the contour levels will be evenly-spaced on a logarithmic
scale.

Logical. If TRUE, coordinate axes are plotted (with tick marks) around a region
slightly larger than the image window. If FALSE (the default), no axes are plotted,
and a box is drawn tightly around the image window. Ignored if add=TRUE.

Logical. If FALSE, a new plot is created. If TRUE, the contours are drawn over
the existing plot.

130 contour.im

col Colour in which to draw the contour lines. Either a single value that can be
interpreted as a colour value, or a colourmap object.

clipwin Optional. A window (object of class "owin"). Only this subset of the data will
be displayed.
Other arguments passed to contour.default controlling the contour plot; see
Details.

show.all Logical value indicating whether to display all plot elements including the main

title, bounding box, and (if axis=TRUE) coordinate axis markings. Default is
TRUE for new plots and FALSE for added plots.

do.plot Logical value indicating whether to actually perform the plot.

Details

This is a method for the generic contour function, for objects of the class "im".
An object of class "im" represents a pixel image; see im.object.

This function displays the values of the pixel image x as a contour plot on the current plot device,
using equal scales on the = and y axes.

The appearance of the plot can be modified using any of the arguments listed in the help for
contour.default. Useful ones include:

nlevels Number of contour levels to plot.

drawlabels Whether to label the contour lines with text.

col,ltylwd Colour, type, and width of contour lines.

See contour.default for a full list of these arguments.
The defaults for any of the abovementioned arguments can be reset using spatstat.options(”par.contour”).

If 1og=TRUE, the contour lines will be evenly-spaced on a logarithmic scale, provided the range of
pixel values is at least 1.5 orders of magnitude (a ratio of at least 32). Otherwise the levels will be
evenly-spaced on the original scale.

If col is a colour map (object of class "colourmap”, see colourmap) then the contours will be
plotted in different colours as determined by the colour map. The contour at level z will be plotted
in the colour col(z) associated with this level in the colour map.

Value

Invisibly, a rectangle (object of class "owin" specifying a rectangle) containing the plotted region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im.object, plot.im, persp.im

contour.imlist

Examples

an image

Z <- setcov(owin())
contour(Z, axes=TRUE)
contour(Z)

V <- 100 x Z*2 + 1
contour(V, log=TRUE, labcex=1)

co <- colourmap(rainbow(100), range=c(0,1))
contour(Z, col=co, 1lwd=2)

131

contour.imlist Array of Contour Plots

Description

Generates an array of contour plots.

Usage

S3 method for class 'imlist'
contour(x, ...)

S3 method for class 'listof'
contour(x, ...)

Arguments

X An object of the class "imlist" representing a list of pixel images. Alternatively

x may belong to the outdated class "1istof".

Arguments passed to plot.solist to control the spatial arrangement of panels,

and arguments passed to contour . im to control the display of each panel.

Details

This is a method for the generic command contour for the class "imlist”. An object of class

"imlist" represents a list of pixel images.

(The outdated class "1istof" is also handled.)

Each entry in the list x will be displayed as a contour plot, in an array of panels laid out on the same

graphics display, using plot.solist. Invididual panels are plotted by contour. im.

Value

Null.

132 convexhull

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.solist, contour.im

Examples

bei.extra is a named list of covariate images
contour(bei.extra,
main="Barro Colorado: covariates")

convexhull Convex Hull

Description

Computes the convex hull of a spatial object.

Usage
convexhull(x)
Arguments
X a window (object of class "owin"), a point pattern (object of class "ppp"), a line
segment pattern (object of class "psp”), or an object that can be converted to a
window by as.owin.
Details

This function computes the convex hull of the spatial object x.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

owin, convexhull.xy, is.convex

convexhull.xy 133

Examples

W <- Window(demopat)
plot(convexhull(W), col="lightblue", border=NA)
plot(W, add=TRUE, lwd=2)

convexhull.xy Convex Hull of Points

Description

Computes the convex hull of a set of points in two dimensions.

Usage

convexhull.xy(x, y=NULL)

Arguments
X vector of x coordinates of observed points, or a 2-column matrix giving x,y
coordinates, or a list with components x,y giving coordinates (such as a point
pattern object of class "ppp".)
y (optional) vector of y coordinates of observed points, if x is a vector.
Details

Given an observed pattern of points with coordinates given by x and y, this function computes the
convex hull of the points, and returns it as a window.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin, as.owin, convexhull, bounding.box.xy, ripras

134 convexify

Examples

X <- runif(30)

y <- runif(30)

w <- convexhull.xy(x,y)

plot(owin(), main="convexhull.xy(x,y)", lty=2)
plot(w, add=TRUE)

points(x,y)

X <- runifrect(30)
plot(X, main="convexhull.xy(X)")
plot(convexhull.xy(X), add=TRUE)

convexify Weil’s Convexifying Operation

Description
Converts the window W into a convex set by rearranging the edges, preserving spatial orientation of
each edge.

Usage

convexify(W, eps)

Arguments
W A window (object of class "owin").
eps Optional. Minimum edge length of polygonal approximation, if W is not a poly-
gon.
Details

Weil (1995) defined a convexification operation for windows 1 that belong to the convex ring (that
is, for any W which is a finite union of convex sets). Note that this is not the same as the convex
hull.

The convexified set f(W) has the same total boundary length as W and the same distribution of
orientations of the boundary. If W is a polygonal set, then the convexification f (1) is obtained by
rearranging all the edges of W in order of their spatial orientation.

The argument W must be a window. If it is not already a polygonal window, it is first converted
to one, using simplify.owin. The edges are sorted in increasing order of angular orientation and
reassembled into a convex polygon.

Value

A window (object of class "owin").

convexmetric 135

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

References
Weil, W. (1995) The estimation of mean particle shape and mean particle number in overlapping
particle systems in the plane. Advances in Applied Probability 27, 102—119.

See Also

convexhull for the convex hull of a window.

Examples

opa <- par(mfrow=c(1,2))

plot(letterR)
plot(convexify(letterR))
par(opa)
convexmetric Distance Metric Defined by Convex Set
Description

Create the distance metric associated with a given convex polygon.

Usage
convexmetric(K)
Arguments
K Convex set defining the metric. A polygon that is symmetric about the origin.
See Details.
Details

This function creates the distance metric associated with the convex set K so that the unit ball
of the metric is equal to K. It returns an object of class "metric” representing the metric (see
metric.object).

The argument K must be a window (class "owin"). It will be converted to a polygon. It must be
convex, and symmetric about the origin.

136 convexmetric

To perform distance calculations (for example, nearest-neighbour distances) using this metric in-
stead of the Euclidean metric, first check whether the standard function for this purpose (for ex-
ample nndist.ppp) has an argument named metric. If so, use the standard function and add the
argument metric; if not, use the low-level function invoke.metric.

To see which operations are currently supported by the metric, use summary, as shown in the exam-
ples.

Value

An object of class "metric”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

metric.object, invoke.metric

Examples

K <- owin(poly=list(x=c(2.5,2,0.5,-2.5,-2,-0.5),y=c(0,1,2,0,-1,-2)))
plot(K)

points(@,0)

m <- convexmetric(K)

m

summary (m)

show redwood data and identify point number 43
plot(redwood, main="")
plot(redwood[43], pch=16, add=TRUE)

compute nearest neighbour distances and identifiers
using the distance metric m

nd <- nndist(redwood, metric=m)

nw <- nnwhich(redwood, metric=m)

Nearest neighbour distance for point number 43 is nd[43]; verify
B43 <- disc(radius=nd[43], centre=redwood[43], metric=m)
plot(B43, add=TRUE)

nearest neighbour for point number 43 is point number nw[43]; verify
plot(redwood[nw[43]], pch=3, col="red", add=TRUE)

convolve.im 137

convolve.im Convolution of Pixel Images

Description

Computes the convolution of two pixel images.

Usage
convolve.im(X, Y=X, ..., reflectX=FALSE, reflectY=FALSE)
Arguments
X A pixel image (object of class "im".
Y Optional. Another pixel image.

Ignored.

reflectX, reflectY
Logical values specifying whether the images X and Y (respectively) should be
reflected in the origin before computing the convolution.

Details

The convolution of two pixel images X and Y in the plane is the function C(v) defined for each
vector v as

Cv) = /X(u)Y(U —u)du

where the integral is over all spatial locations u, and where X (u) and Y (u) denote the pixel values
of X and Y respectively at location .

This command computes a discretised approximation to the convolution, using the Fast Fourier
Transform. The return value is another pixel image (object of class "im") whose greyscale values
are values of the convolution.

If reflectX = TRUE then the pixel image X is reflected in the origin (see reflect) before the con-
volution is computed, so that convolve.im(X,Y,reflectX=TRUE) is mathematically equivalent to
convolve.im(reflect(X), Y). (These two commands are not exactly equivalent, because the re-
flection is performed in the Fourier domain in the first command, and reflection is performed in the
spatial domain in the second command).

Similarly if reflectY = TRUE then the pixel image Y is reflected in the origin before the convo-
lution is computed, so that convolve.im(X,Y,reflectY=TRUE) is mathematically equivalent to
convolve.im(X, reflect(Y)).

Value

A pixel image (an object of class "im") representing the convolution of X and Y.

138 coords

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

imcov, reflect

Examples

if(interactive()) {

X <- as.im(letterR)

Y <- as.im(square(1))
} else {

coarser image for testing

X <- as.im(letterR, dimyx=32)

Y <- as.im(square(1), dimyx=32)
3
plot(convolve.im(X, Y))
plot(convolve.im(X, Y, reflectX=TRUE))
plot(convolve.im(X))

coords Extract or Change Coordinates of a Spatial or Spatiotemporal Point
Pattern

Description

Given any kind of spatial or space-time point pattern, this function extracts the (space and/or time
and/or local) coordinates of the points and returns them as a data frame.

Usage

coords(x, ...)
S3 method for class 'ppp'

coords(x, ...)
S3 method for class 'ppx'

coords(x, ..., spatial = TRUE, temporal = TRUE, local=TRUE)
coords(x, ...) <- value
S3 replacement method for class 'ppp'

coords(x, ...) <- value
S3 replacement method for class 'ppx'

coords(x, ..., spatial = TRUE, temporal = TRUE, local=TRUE) <- value

S3 method for class 'quad'
coords(x, ...)

coords 139

Arguments

X A point pattern: either a two-dimensional point pattern (object of class "ppp"),
a three-dimensional point pattern (object of class "pp3"), or a general multi-
dimensional space-time point pattern (object of class "ppx") or a quadrature
scheme (object of class "quad").

Further arguments passed to methods.

spatial, temporal, local
Logical values indicating whether to extract spatial, temporal and local coordi-
nates, respectively. The default is to return all such coordinates. (Only relevant
to ppx objects).

value New values of the coordinates. A numeric vector with one entry for each point
in X, or a numeric matrix or data frame with one row for each point in x.

Details

The function coords extracts the coordinates from a point pattern. The function coords<- replaces
the coordinates of the point pattern with new values.

Both functions coords and coords<- are generic, with methods for the classes "ppp") and "ppx".
An object of class "pp3" also inherits from "ppx" and is handled by the method for "ppx".

Value

coords returns a data. frame with one row for each point, containing the coordinates. coords<-
returns the altered point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppX, pp3, ppp, as.hyperframe.ppx, as.data. frame. ppx.

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4))
X <- ppx(data=df, coord.type=c("s","s","t"))
coords(X)

coords(X, temporal=FALSE)

coords(X) <- matrix(runif(12), ncol=3)

140 corners

corners Corners of a rectangle

Description

Returns the four corners of a rectangle

Usage
corners(window)
Arguments
window A window. An object of class owin, or data in any format acceptable to as.owin().
Details

This trivial function is occasionally convenient. If window is of type "rectangle” this returns the
four corners of the window itself; otherwise, it returns the corners of the bounding rectangle of the
window.

Value

A list with two components x and y, which are numeric vectors of length 4 giving the coordinates
of the four corner points of the (bounding rectangle of the) window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, quadscheme

Examples

w <- unit.square()
corners(w)
returns list(x=c(0,1,0,1),y=c(0,0,1,1))

covering 141

covering Cover Region with Discs

Description

Given a spatial region, this function finds an efficient covering of the region using discs of a chosen

radius.
Usage
covering(W, r, ..., giveup=1000)
Arguments
W A window (object of class "owin").
r positive number: the radius of the covering discs.
extra arguments passed to as.mask controlling the pixel resolution for the cal-
culations.
giveup Maximum number of attempts to place additional discs.
Details

This function finds an efficient covering of the window W using discs of the given radius r. The
result is a point pattern giving the centres of the discs.

The algorithm tries to use as few discs as possible, but is not guaranteed to find the minimal number
of discs. It begins by placing a hexagonal grid of points inside W, then adds further points until every
location inside W lies no more than r units away from one of the points.

Value

A point pattern (object of class "ppp") giving the centres of the discs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

rr <- 0.5

X <- covering(letterR, rr)
plot(grow.rectangle(Frame(X), rr), type="n", main="")
plot(X, pch=16, add=TRUE, col="red")

plot(letterR, add=TRUE, lwd=3)

plot(X %mark% (2*rr), add=TRUE, markscale=1)

142 crossdist

crossdist Pairwise distances

Description

Computes the distances between pairs of ‘things’ taken from two different datasets.

Usage
crossdist(X, Y, ...)
Arguments
X, Y Two objects of the same class.
Additional arguments depending on the method.
Details

Given two datasets X and Y (representing either two point patterns or two line segment patterns)
crossdist computes the Euclidean distance from each thing in the first dataset to each thing in the
second dataset, and returns a matrix containing these distances.

The function crossdist is generic, with methods for point patterns (objects of class "ppp"),
line segment patterns (objects of class "psp”), and a default method. See the documentation for
crossdist.ppp, crossdist.psp or crossdist.default for further details.

Value
A matrix whose [i, j] entry is the distance from the i-th thing in the first dataset to the j-th thing
in the second dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

crossdist.ppp, crossdist.psp, crossdist.default, pairdist, nndist

crossdist.default 143

crossdist.default Pairwise distances between two different sets of points

Description

Computes the distances between each pair of points taken from two different sets of points.

Usage

Default S3 method:
crossdist(X, Y, x2, y2, ...,
period=NULL, method="C", squared=FALSE)

Arguments
X, Y Numeric vectors of equal length specifying the coordinates of the first set of
points.
X2, y2 Numeric vectors of equal length specifying the coordinates of the second set of
points.
Ignored.
period Optional. Dimensions for periodic edge correction.
method String specifying which method of calculation to use. Values are "C" and "interpreted”.
squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).
Details

Given two sets of points, this function computes the Euclidean distance from each point in the first
set to each point in the second set, and returns a matrix containing these distances.

This is a method for the generic function crossdist.

This function expects X and Y to be numeric vectors of equal length specifying the coordinates of
the first set of points. The arguments x2,y2 specify the coordinates of the second set of points.

Alternatively if period is given, then the distances will be computed in the ‘periodic’ sense (also
known as ‘torus’ distance). The points will be treated as if they are in a rectangle of width
period[1] and height period[2]. Opposite edges of the rectangle are regarded as equivalent.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by a factor of 4.

Value

A matrix whose [1, j] entry is the distance from the i-th point in the first set of points to the j-th
point in the second set of points.

144 crossdist.pp3

Author(s)

Pavel Grabarnik <pavel.grabar@issp. serpukhov.su>and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

crossdist, crossdist.ppp, crossdist.psp, pairdist, nndist, Gest

Examples

d <- crossdist(runif(7), runif(7), runif(12), runif(12))
d <- crossdist(runif(7), runif(7), runif(12), runif(12), period=c(1,1))

crossdist.pp3 Pairwise distances between two different three-dimensional point pat-
terns

Description

Computes the distances between pairs of points taken from two different three-dimensional point

patterns.

Usage
S3 method for class 'pp3'

crossdist(X, Y, ..., periodic=FALSE, squared=FALSE)
Arguments

X, Y Point patterns in three dimensions (objects of class "pp3").

Ignored.
periodic Logical. Specifies whether to apply a periodic edge correction.
squared Logical. If squared=TRUE, the squared distances are returned instead (this com-

putation is faster).

Details

Given two point patterns in three-dimensional space, this function computes the Euclidean distance
from each point in the first pattern to each point in the second pattern, and returns a matrix contain-
ing these distances.

This is a method for the generic function crossdist for three-dimensional point patterns (objects
of class "pp3").

This function expects two point patterns X and Y, and returns the matrix whose [i, j] entry is the
distance from X[i] to Y[j1.

Alternatively if periodic=TRUE, then provided the windows containing X and Y are identical and
are rectangular, then the distances will be computed in the ‘periodic’ sense (also known as ‘torus’
distance): opposite edges of the rectangle are regarded as equivalent. This is meaningless if the
window is not a rectangle.

crossdist.ppp

Value

145

A matrix whose [i, j] entry is the distance from the i-th point in X to the j-th point in Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>based on code for two dimensions by Pavel
Grabarnik <pavel.grabar@issp.serpukhov.su>.

See Also

crossdist, pairdist, nndist, G3est

Examples

if(require(spatstat.random)) {
X <= runifpoint3(20)
Y <- runifpoint3(30)

} else {

X <- osteo$pts[[1]]
Y <- osteo$pts[[2]]
Y <- Y[domain(X)]

d <- crossdist(X, Y)
d <- crossdist(X, Y, periodic=TRUE)

crossdist.ppp

Pairwise distances between two different point patterns

Description

Computes the distances between pairs of points taken from two different point patterns.

Usage

S3 method for class 'ppp'

crossdist(X, VY,

Arguments
XY
periodic
method

squared

metric

periodic=FALSE, method="C", squared=FALSE,
metric=NULL)

Point patterns (objects of class "ppp").

Ignored.

Logical. Specifies whether to apply a periodic edge correction.

String specifying which method of calculation to use. Values are "C” and "interpreted”.
Logical. If squared=TRUE, the squared distances are returned instead (this com-

putation is faster).

Optional. A distance metric (object of class "metric"”, see metric.object)

which will be used to compute the distances.

146 crossdist.ppx

Details

Given two point patterns, this function computes the Euclidean distance from each point in the first
pattern to each point in the second pattern, and returns a matrix containing these distances.

This is a method for the generic function crossdist for point patterns (objects of class "ppp").

This function expects two point patterns X and Y, and returns the matrix whose [1i, j] entry is the
distance from X[i] to Y[j1.

Alternatively if periodic=TRUE, then provided the windows containing X and Y are identical and
are rectangular, then the distances will be computed in the ‘periodic’ sense (also known as ‘torus’
distance): opposite edges of the rectangle are regarded as equivalent. This is meaningless if the
window is not a rectangle.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by a factor of 4.

Value

A matrix whose [i, j] entry is the distance from the i-th point in X to the j-th point in Y.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su>and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossdist, crossdist.default, crossdist.psp, pairdist, nndist, Gest

Examples

Y <- runifrect(6, Window(cells))
d <- crossdist(cells, Y)
d <- crossdist(cells, Y, periodic=TRUE)

crossdist.ppx Pairwise Distances Between Two Different Multi-Dimensional Point
Patterns

Description
Computes the distances between pairs of points taken from two different multi-dimensional point
patterns.

Usage

S3 method for class 'ppx'
crossdist(X, Y, ...)

crossdist.psp 147

Arguments
X, Y Multi-dimensional point patterns (objects of class "ppx").
Arguments passed to coords.ppx to determine which coordinates should be
used.
Details

Given two point patterns in multi-dimensional space, this function computes the Euclidean dis-
tance from each point in the first pattern to each point in the second pattern, and returns a matrix
containing these distances.

This is a method for the generic function crossdist for three-dimensional point patterns (objects
of class "ppx").

This function expects two multidimensional point patterns X and Y, and returns the matrix whose
[i,j] entry is the distance from X[i] to Y[j].

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.
Value

A matrix whose [i, j] entry is the distance from the i-th point in X to the j-th pointin Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

crossdist, pairdist, nndist

Examples

df <- data.frame(x=runif(3),y=runif(3),z=runif(3),w=runif(3))
X <- ppx(data=df)

df <- data.frame(x=runif(5),y=runif(5),z=runif(5),w=runif(5))
Y <- ppx(data=df)

d <- crossdist(X, Y)

crossdist.psp Pairwise distances between two different line segment patterns

Description

Computes the distances between all pairs of line segments taken from two different line segment
patterns.

148 crossdist.psp

Usage
S3 method for class 'psp'
crossdist(X, Y, ..., method="C", type="Hausdorff")
Arguments
X, Y Line segment patterns (objects of class "psp”).
Ignored.
method String specifying which method of calculation to use. Values are "C" and "interpreted”.
Usually not specified.
type Type of distance to be computed. Options are "Hausdorff" and "separation”.

Partial matching is used.

Details

This is a method for the generic function crossdist.

Given two line segment patterns, this function computes the distance from each line segment in
the first pattern to each line segment in the second pattern, and returns a matrix containing these
distances.

The distances between line segments are measured in one of two ways:
¢ if type="Hausdorff"”, distances are computed in the Hausdorff metric. The Hausdorff dis-

tance between two line segments is the maximum distance from any point on one of the seg-
ments to the nearest point on the other segment.

* if type="separation”, distances are computed as the minimum distance from a point on one
line segment to a point on the other line segment. For example, line segments which cross
over each other have separation zero.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then compiled C code is used. The C code is several times faster.
Value
A matrix whose [1i, j] entry is the distance from the i-th line segment in X to the j-th line segment
inY.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

pairdist, nndist, Gest

crossing.psp 149

Examples

L1 <= psp(runif(5), runif(5), runif(5), runif(5), owin())

L2 <= psp(runif(10), runif(10), runif(10), runif(10), owin())
D <- crossdist(L1, L2)

#result is a 5 x 10 matrix

S <- crossdist(L1, L2, type="sep")

crossing.psp Crossing Points of Two Line Segment Patterns

Description

Finds any crossing points between two line segment patterns.

Usage
crossing.psp(A,B,fatal=TRUE,details=FALSE)

Arguments
A B Line segment patterns (objects of class "psp”).
details Logical value indicating whether to return additional information. See below.
fatal Logical value indicating what to do if the windows of A and B do not overlap.
See Details.
Details

This function finds any crossing points between the line segment patterns A and B.

A crossing point occurs whenever one of the line segments in A intersects one of the line segments
in B, at a nonzero angle of intersection.

The result is a point pattern consisting of all the intersection points.

If details=TRUE, additional information is computed, specifying where each intersection point
came from. The resulting point pattern has a data frame of marks, with columns named iA, jB,
tA, tB. The marks iA and jB are the indices of the line segments in A and B, respectively, which
produced each intersection point. The marks tA and tB are numbers between 0 and 1 specifying the
position of the intersection point along the original segments.

If the windows Window (A) and Window(B) do not overlap, then an error will be reported if fatal=TRUE,
while if fatal=FALSE an error will not occur and the result will be NULL.

Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

150 cut.im

See Also

selfcrossing.psp, psp.object, ppp.object.

Examples

a <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a, col="green", main="crossing.psp")

plot(b, add=TRUE, col="blue")

P <- crossing.psp(a,b)

plot(P, add=TRUE, col="red")
as.data.frame(crossing.psp(a,b,details=TRUE))

cut.im Convert Pixel Image from Numeric to Factor

Description

Transform the values of a pixel image from numeric values into a factor.

Usage
S3 method for class 'im'
cut(x, ...)
Arguments
X A pixel image. An object of class "im".
Arguments passed to cut.default. They determine the breakpoints for the
mapping from numerical values to factor values. See cut.default.
Details

This simple function applies the generic cut operation to the pixel values of the image x. The range
of pixel values is divided into several intervals, and each interval is associated with a level of a
factor. The result is another pixel image, with the same window and pixel grid as x, but with the
numeric value of each pixel discretised by replacing it by the factor level.

This function is a convenient way to inspect an image and to obtain summary statistics. See the
examples.

To select a subset of an image, use the subset operator [. im instead.

Value

A pixel image (object of class "im") with pixel values that are a factor. See im.object.

cut.ppp 151

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

cut, im.object

Examples

artificial image data
Z <- setcov(square(1))

Y <- cut(Z, 3)
Y <- cut(Z, breaks=seq(9@,1,length=5))

cut at the quartiles
(divides the image into 4 equal areas)
Y <- cut(Z, quantile(Z))

cut.ppp Classify Points in a Point Pattern

Description

Classifies the points in a point pattern into distinct types according to the numerical marks in the
pattern, or according to another variable.

Usage
S3 method for class 'ppp'
cut(x, z=marks(x), ...)
Arguments
X A two-dimensional point pattern. An object of class "ppp”.
z Data determining the classification. A numeric vector, a factor, a pixel image, a

window, a tessellation, or a string giving the name of a column of marks or the
name of a spatial coordinate.

Arguments passed to cut.default. They determine the breakpoints for the
mapping from numerical values in z to factor values in the output. See cut.default.

152

Details

cut.ppp

This function has the effect of classifying each point in the point pattern x into one of several
possible types. The classification is based on the dataset z, which may be either

a factor (of length equal to the number of points in z) determining the classification of each
point in x. Levels of the factor determine the classification.

a numeric vector (of length equal to the number of points in z). The range of values of z will
be divided into bands (the number of bands is determined by . . .) and z will be converted to
a factor using cut.default.

a pixel image (object of class "im"). The value of z at each point of x will be used as the
classifying variable.

a tessellation (object of class "tess"”, see tess). Each point of x will be classified according
to the tile of the tessellation into which it falls.

a window (object of class "owin"). Each point of x will be classified according to whether it
falls inside or outside this window.

a character string, giving the name of one of the columns of marks(x), if this is a data frame.

nyn no,n

a character string "x" or "y" identifying one of the spatial coordinates.

The default is to take z to be the vector of marks in x (or the first column in the data frame of marks
of x, if it is a data frame). If the marks are numeric, then the range of values of the numerical marks
is divided into several intervals, and each interval is associated with a level of a factor. The result is
a marked point pattern, with the same window and point locations as x, but with the numeric mark
of each point discretised by replacing it by the factor level. This is a convenient way to transform a
marked point pattern which has numeric marks into a multitype point pattern, for example to plot it
or analyse it. See the examples.

To select some points from a point pattern, use the subset operators [. ppp or subset. ppp instead.

Value

A multitype point pattern, that is, a point pattern object (of class "ppp") with a marks vector that is
a factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

cut, ppp.object, tess

Examples

(1) cutting based on numeric marks of point pattern

trees <- longleaf
Longleaf Pines data
the marks are positive real numbers indicating tree diameters.

default.colourmap 153

if(interactive()) {
plot(trees)
}

cut the range of tree diameters into three intervals
long3 <- cut(trees, breaks=3)

if(interactive()) {

plot(long3)

}

adult trees defined to have diameter at least 30 cm

long2 <- cut(trees, breaks=c(0,30,100), labels=c("Sapling”, "Adult"))
plot(long2)

plot(long2, cols=c("green"”,"blue"))

(2) cutting based on another numeric vector
Divide Swedish Pines data into 3 classes
according to nearest neighbour distance

swedishpines
plot(cut(swedishpines, nndist(swedishpines), breaks=3))

(3) cutting based on tessellation
Divide Swedish Pines study region into a 4 x 4 grid of rectangles
and classify points accordingly

tes <- tess(xgrid=seq(©0,96,length=5),ygrid=seq(@,100,length=5))
plot(cut(swedishpines, tes))
plot(tes, lty=2, add=TRUE)

(4) inside/outside a given region
with(murchison, cut(gold, greenstone))

(5) multivariate marks
finpines
cut(finpines, "height”, breaks=4)

default.colourmap Default Colour Map for Plotting a Spatial Pattern

Description
Determines a colour map for plotting a spatial pattern (or other data) when one is not supplied by
the user.

Usage

default.colourmap(x, ...,

154 default.colourmap

col=spatstat.options(”image.colfun"),
scramble.cols=FALSE,
monochrome=spatstat.options(”"monochrome”))

Arguments
X A vector of atomic values, or a factor.
col Optional. A specification of colours to be used. See Details.
scramble.cols Logical value. If TRUE, the sequence of colour values will be randomly per-
muted.
monochrome Logical value. If TRUE, the colours will be converted to greyscale colours.

Additional arguments passed to methods.

Details

In the spatstat package, an object of class "colourmap” defines a mapping between data and
colours.

The function default.colourmap provides a suitable default colour map for the values in x.

If x is a factor, default.colourmap(x) is a mapping from the factor levels to colours. If x is a
logical vector, default.colourmap(x) is a mapping from the values TRUE and FALSE to colours. If
x is a numeric vector, default.colourmap(x) is a mapping from numbers in the interval between
the minimum and maximum values of x to colours.

The argument col may provide colour information in any of the following formats:

* A colour map (object of class "colourmap”)

* A palette function (a function(n) or function(n, ...) which returns a vector of colour
values, such as rainbow

* A vector of integers between 1 and 8 indexing the standard colour palette
* A vector of character strings giving common names of colours (e.g. "red")

* A vector of character strings giving hexadecimal codes for colours (e.g. produced by rgb or
rainbow)

NULL.

Value

A colour map (object of class "colourmap”).

Scrambling the colours

The argument scramble.cols=TRUE will cause the sequence of colours in the colour map to be
randomly permuted. This is a useful trick when it is desired that adjacent colours in the sequence
should be easily distinguishable. The return value will be the randomised colour map.

Randomisation implies that the colour map will be different each time the command is executed.
For reproducible results, set the random generator seed using set . seed.

default.dummy 155

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

colourmap

Examples

default.colourmap(letters[1:4])
default.colourmap(factor(letters[1:3], levels=letters[1:4]))
default.colourmap(TRUE)

default.colourmap(NULL)

default.dummy Generate a Default Pattern of Dummy Points

Description

Generates a default pattern of dummy points for use in a quadrature scheme.

Usage
default.dummy(X, nd, random=FALSE, ntile=NULL, npix=NULL,
quasi=FALSE, ..., eps=NULL, verbose=FALSE)
Arguments
X The observed data point pattern. An object of class "ppp"” or in a format recog-
nised by as.ppp()
nd Optional. Integer, or integer vector of length 2, specifying an nd * nd or nd[1]
* nd[2] rectangular array of dummy points.
random Logical value. If TRUE, the dummy points are generated randomly.
quasi Logical value. If TRUE, the dummy points are generated by a quasirandom se-
quence.
ntile Optional. Integer or pair of integers specifying the number of rows and columns
of tiles used in the counting rule.
npix Optional. Integer or pair of integers specifying the number of rows and columns
of pixels used in computing approximate areas.
Ignored.
eps Optional. Grid spacing. A positive number, or a vector of two positive numbers,

giving the horizontal and vertical spacing, respectively, of the grid of dummy
points. Incompatible with nd.

verbose If TRUE, information about the construction of the quadrature scheme is printed.

156 default.image.colours

Details

This function provides a sensible default for the dummy points in a quadrature scheme.

A quadrature scheme consists of the original data point pattern, an additional pattern of dummy
points, and a vector of quadrature weights for all these points. See quad.object for further infor-
mation about quadrature schemes.

If random and quasi are both false (the default), then the function creates dummy points in a regular
nd[1] by nd[1] rectangular grid. If random is true and quasi is false, then the frame of the window
is divided into an nd[1] by nd[1] array of tiles, and one dummy point is generated at random inside
each tile. If quasi is true, a quasirandom pattern of nd[1] * nd[2] points is generated. In all cases,
the four corner points of the frame of the window are added. Then if the window is not rectangular,
any dummy points lying outside it are deleted.

If nd is missing, a default value is computed by the undocumented internal function default.n.tiling,
using information about the data pattern X, and other arguments and settings. The default value of

nd is always greater than or equal to spatstat.options(”ndummy.min") and greater than or equal

to 10 * ceiling(2 x sqrt(npoints(X))/10@), and satisfies some other constraints. The default is
designed so that model-fitting is relatively fast and stable, rather than highly accurate.

Alternative functions for creating dummy patterns include corners, gridcentres, stratrand and
spokes.

Value

A point pattern (an object of class "ppp”, see ppp.object) containing the dummy points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, quadscheme, corners, gridcentres, stratrand, spokes

Examples

P <- simdat

D <- default.dummy(P, 100)

plot(D)

Q <- quadscheme(P, D, "grid")
if(interactive()) {plot(union.quad(Q))3}

default.image.colours Default Colours for Images in Spatstat

Description

Extract or change the default colours for images in spatstat.

default.symbolmap 157

Usage
default.image.colours()
reset.default.image.colours(col = NULL)
Arguments

col A vector of colour values.

Details

These functions extract and change the current default colours used for plotting colour images in
the spatstat family of packages, in particular by the functions plot.imand plot.linim.

The default colour values are a vector of character strings which can be interpreted as colours. In
any particular instance of plot.im or plot.linim, the default colours are interpolated to obtain a
vector of colour values of the required length (usually 256, controlled by the argument ncolours to
the plot command).

default.image.colours() returns the current default colours. reset.default.image.colours(col)

sets the default colours to be the vector col. reset.default.image.colours() orreset.default.image.colours(NULL)
resets the factory default, which is row 29 of the Kovesi uniform perceptual contrast table described

in Kovesi.

Value

A character vector of values which can be interpreted as colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

plot.im

Examples

a <- default.image.colours()
length(a)

default.symbolmap Default Symbol Map for Plotting a Spatial Pattern

Description

Determines the symbol map for plotting a spatial pattern, when one is not supplied by the user.

Usage
default.symbolmap(x, ...)

158 default.symbolmap.ppp

Arguments
X A spatial object in the spatstat package, such as a point pattern (class "ppp").
Additional arguments passed to methods.
Details

In the spatstat package, an object of class "symbolmap” defines a mapping between data and graph-
ical symbols.

If a plot command plot(x, ...) has been issued, and if the arguments were not sufficient to deter-
mine the symbol map that should be used, then default.symbolmap(x, ...) will be executed to
determine the default symbol map.

The function default.symbolmap is generic, with a method for point patterns (class "ppp") and
possibly for other classes.

Value

A symbol map (object of class "symbolmap").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

default.symbolmap.ppp

default.symbolmap.ppp Default Symbol Map for Point Pattern

Description

Determines a symbol map for plotting the spatial point pattern x.

Usage

S3 method for class 'ppp'
default.symbolmap(x, ...,
chars = NULL, cols = NULL,
fixsize = FALSE,
maxsize = NULL, meansize = NULL, markscale
minsize = NULL, zerosize = NULL, transform
scramble.cols = FALSE)

NULL,
NULL,

default.symbolmap.ppp 159

Arguments

X A spatial point pattern (object of class "ppp").

extra graphical parameters, passed to symbolmap (and ultimately to points
and/or symbols).

chars the plotting character(s) used to plot points. Either a single character, an integer,
or a vector of single characters or integers. Ignored if symap is given.

cols the colour(s) used to plot points. Either an integer index from 1 to 8 (indexing
the standard colour palette), a character string giving the name of a colour, a
string giving the hexadecimal representation of a colour, or a vector of such
integers or strings. See the section on Colour Specification in the help for par.
Alternatively cols may be a function, as described in Details below.

fixsize Logical value specifying whether the symbols should all have the same physical
size on the plot. Default is FALSE.

maxsize Maximum physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with meansize and markscale.

meansize Average physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with maxsize and markscale.

markscale physical scale factor determining the sizes of the circles/squares plotted when
x is a marked point pattern with numerical marks. Mark value will be multi-
plied by markscale to determine physical size. Incompatible with maxsize and
meansize.

minsize Minimum physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with zerosize.

zerosize Physical size of the circle/square representing a mark value of zero, when x
is a marked point pattern with numerical marks. Incompatible with minsize.
Defaults to zero.

transform Experimental. A function that will be applied to the mark values before the
symbol map scale is determined.

scramble.cols Logical value specifying whether to randomly permute the sequence cols. Ap-
plies only when x is a multitype point pattern. This is a useful trick when it is
desired that adjacent colours should be easily distinguishable.

Details
This algorithm determines a symbol map that can be used to represent the points of x graphically.
It serves as the default symbol map for the plot method plot. ppp.

Users can modify the behaviour of plot . ppp by saving the symbol map produced by default. symbolmap.ppp,
modifying the symbol map using update. symbolmap or other tools, and passing the modified sym-
bol map to plot.ppp as the argument symap.

The default representation depends on the marks of the points, as follows.
unmarked point pattern: If the point pattern does not have marks, then every point will be repre-
sented by the same plot symbol.

multitype point pattern: If marks(x) is a factor, then each level of the factor is represented by a
different plot character.

160 default.symbolmap.ppp

continuous marks: If marks(x) is a numeric vector, each point is represented by a circle with
diameter proportional to the mark (if the value is positive) or a square with side length pro-
portional to the absolute value of the mark (if the value is negative).

other kinds of marks: If marks(x) is neither numeric nor a factor, then each possible mark will
be represented by a different plotting character. The default is to represent the ith smallest
mark value by points(..., pch=1).

The following arguments can be used to modify how the points are plotted:

 If fixsize=TRUE, or if the graphics parameter size is given and is a single value, then numer-
ical marks will be rendered as symbols of the same physical size

* The argument chars determines the plotting character or characters used to display the points
(in all cases except for the case of continuous marks). For an unmarked point pattern, this
should be a single integer or character determining a plotting character (see par("pch”)).
For a multitype point pattern, chars should be a vector of integers or characters, of the same
length as levels(marks(x)), and then the ith level or type will be plotted using character
chars[il.

* If chars is absent, but there is an extra argument pch, then this will determine the plotting
character for all points.

* The argument cols determines the colour or colours used to display the points. A colour can
be specified either as an integer from 1 to 8 (indexing the standard colour palette), a character
string giving the name of a colour, or a character string giving the hexadecimal representation
of a colour.

— For an unmarked point pattern, cols should be a single colour value.

— For a multitype point pattern, cols should be a vector of colour values, of the same length
as levels(marks(x)): that is, there is one colour for each possible mark value. The ith
level or type will be plotted using colour cols[i].

— Alternatively for a multitype point pattern, cols can be a function(n) or function(n,
...) which returns a vector of n colour values. This function will be invoked to obtain a
vector of colours, with one colour for each possible mark value.

— For a point pattern with continuous marks, cols should be a vector of colour values, of
any length: the range of mark values will be mapped to the specified colours.

— Alternatively, for any kind of data, cols can be a colour map (object of class "colourmap”)
created by colourmap. The colour map will be applied to the mark values to determine
the colours plotted.

— For a multitype point pattern only, if scramble.cols=TRUE, the colours associated with
the different types of points will be randomly permuted. This is a useful trick if it is
desired that adjacent colours should be easily distinguishable.

* If cols is absent, the colours used to plot the points may be determined by the extra arguments
fg and bg for foreground (edge) and background (fill) colours. (These parameters are not
recommended for plotting multitype point patterns, due to quirks of the graphics system.)

* The default colour for the points is a semi-transparent grey, if this is supported by the plot
device. This behaviour can be suppressed (so that the default colour is non-transparent) by
setting spatstat.options(transparent=FALSE).

* The arguments maxsize, meansize and markscale are incompatible with each other (and
incompatible with symap). The arguments minsize and zerosize are incompatible with

default.symbolmap.ppp 161

each other (and incompatible with symap). Together, these arguments control the physi-

cal size of the circles and squares which represent the marks in a point pattern with con-

tinuous marks. The size of a circle is defined as its diameter; the size of a square is its

side length. If markscale is given, then a mark value of m is plotted as a circle of diam-

eter m * markscale + zerosize (if m is positive) or a square of side abs(m) * markscale +

zerosize (if m is negative). If maxsize is given, then the largest mark in absolute value,

mmax=max (abs(marks(x))), will be scaled to have physical size maxsize. If meansize is

given, then the average absolute mark value, mmean=mean (abs(marks(x))), will be scaled to

have physical size meansize. If minsize is given, then the minimum mark value, mmean=mean (abs(marks(x))),
will be scaled to have physical size minsize.

* The user can set the default values of these plotting parameters using spatstat.options("par.points”).

Additionally the user can specify any of the graphics parameters recognised by symbolmap, includ-
ing shape, size, pch, cex, cols, col, fg, bg, lwd, 1ty, etch, direction,headlength,headangle,arrowtype.

Value

A symbol map (object of class "symbolmap"”) or a list of symbol maps, one for each column of
marks.

Scrambling the colours

The argument scramble. cols=TRUE will cause the sequence of colours in the colour map (if any) to
be randomly permuted. This is a useful trick when it is desired that adjacent colours in the sequence
should be easily distinguishable.

Randomisation implies that the return value (the symbol map) will be different each time the com-
mand is executed. For reproducible results, set the random generator seed using set. seed.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

plot.ppp
default.symbolmap

symbolmap

Examples

default.symbolmap(longleaf)
default.symbolmap(lansing)

162 delaunay

delaunay Delaunay Triangulation of Point Pattern

Description

Computes the Delaunay triangulation of a spatial point pattern.

Usage

delaunay(X)

Arguments

X Spatial point pattern (object of class "ppp").

Details

The Delaunay triangulation of a spatial point pattern X is defined as follows. First the Dirich-
let/Voronoi tessellation based on X is computed; see dirichlet. This tessellation is extended to
cover the entire two-dimensional plane. Then two points of X are defined to be Delaunay neigh-
bours if their Dirichlet/Voronoi tiles share a common boundary. Every pair of Delaunay neighbours
is joined by a straight line to make the Delaunay triangulation. The result is a tessellation, consisting
of disjoint triangles. The union of these triangles is the convex hull of X.

Value
A tessellation (object of class "tess”). The window of the tessellation is the convex hull of X, not
the original window of X.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

tess, dirichlet, convexhull.xy, ppp, delaunayDistance, delaunayNetwork.

Examples

X <= runifrect(42)
plot(delaunay(X))
plot(X, add=TRUE)

delaunayDistance 163

delaunayDistance Distance on Delaunay Triangulation

Description

Computes the graph distance in the Delaunay triangulation of a point pattern.

Usage

delaunayDistance(X)
Arguments

X Spatial point pattern (object of class "ppp").
Details

The Delaunay triangulation of a spatial point pattern X is defined as follows. First the Dirich-
let/Voronoi tessellation based on X is computed; see dirichlet. This tessellation is extended to
cover the entire two-dimensional plane. Then two points of X are defined to be Delaunay neigh-
bours if their Dirichlet/Voronoi tiles share a common boundary. Every pair of Delaunay neighbours
is joined by a straight line to make the Delaunay triangulation.

The graph distance in the Delaunay triangulation between two points X[i] and X[j] is the min-
imum number of edges of the Delaunay triangulation that must be traversed to go from X[i] to
X[jJ. Two points have graph distance 1 if they are immediate neighbours.

This command returns a matrix D such that D[i, j] is the graph distance between X[i] and X[j].

Value

A symmetric square matrix with non-negative integer entries.

Definition of neighbours

Note that dirichlet(X) restricts the Dirichlet tessellation to the window containing X, whereas
dirichletDistance uses the Dirichlet tessellation over the entire two-dimensional plane. Some
points may be Delaunay neighbours according to delaunayDistance(X) although the correspond-
ing tiles of dirichlet(X) do not share a boundary inside Window(X).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

delaunay, delaunayNetwork.

164 deltametric

Examples

X <- runifrect(20)

M <- delaunayDistance(X)
plot(delaunay(X), lty=3)
text(X, labels=M[1, 1, cex=2)

deltametric Delta Metric

Description

Computes the discrepancy between two sets A and B according to Baddeley’s delta-metric.

Usage
deltametric(A, B, p =2, ¢ = Inf, ...)
Arguments
A, B The two sets which will be compared. Windows (objects of class "owin"),
point patterns (objects of class "ppp”) or line segment patterns (objects of class
Hpspﬂ)'
Index of the LP metric. Either a positive numeric value, or Inf.
Distance threshold. Either a positive numeric value, or Inf.
Arguments passed to as.mask to determine the pixel resolution of the distance
maps computed by distmap.
Details

Baddeley (1992a, 1992b) defined a distance between two sets A and B contained in a space W by
1 1/p
A(A,B) = { / |min(c, d(x, A)) — min(c,d(z, B))|” dx
W Jw

where ¢ > 0 is a distance threshold parameter, 0 < p < oo is the exponent parameter, and d(z, A)
denotes the shortest distance from a point x to the set A. Also |W| denotes the area or volume of
the containing space W.

This is defined so that it is a metric, i.e.
* A(A,B)=0ifandonlyif A= B
* A(A,B) =A(B,A)
* A(A,C) < A(A,B)+ A(B,C)
It is topologically equivalent to the Hausdorff metric (Baddeley, 1992a) but has better stability
properties in practical applications (Baddeley, 1992b).
If p = 0o and ¢ = oo the Delta metric is equal to the Hausdorff metric.

The algorithm uses distmap to compute the distance maps d(x, A) and d(z, B), then approximates
the integral numerically. The accuracy of the computation depends on the pixel resolution which is
controlled through the extra arguments . . . passed to as.mask.

diameter 165

Value

A numeric value.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J. (1992a) Errors in binary images and an L? version of the Hausdorff metric. Nieuw
Archief voor Wiskunde 10, 157-183.

Baddeley, A.J. (1992b) An error metric for binary images. In W. Foerstner and S. Ruwiedel (eds)
Robust Computer Vision. Karlsruhe: Wichmann. Pages 59-78.

See Also

distmap

Examples

X <= runifrect(20)
Y <- runifrect(10)
deltametric(X, Y, p=1,c=0.1)

diameter Diameter of an Object

Description

Computes the diameter of an object such as a two-dimensional window or three-dimensional box.

Usage

diameter(x)

Arguments

X A window or other object whose diameter will be computed.

Details

This function computes the diameter of an object such as a two-dimensional window or a three-
dimensional box. The diameter is the maximum distance between any two points in the object.

The function diameter is generic, with methods for the class "owin" (two-dimensional windows),
"box3" (three-dimensional boxes), "boxx" (multi-dimensional boxes) and "linnet"” (linear net-
works).

166 diameter.box3

Value

The numerical value of the diameter of the object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

diameter.owin, diameter.box3, diameter.boxx,

diameter.box3 Geometrical Calculations for Three-Dimensional Box

Description

Calculates the volume, diameter, shortest side, side lengths, or eroded volume of a three-dimensional
box.

Usage

S3 method for class 'box3'
diameter(x)

S3 method for class 'box3'
volume (x)

shortside(x)
sidelengths(x)
eroded.volumes(x, r)

S3 method for class 'box3'
shortside(x)

S3 method for class 'box3'
sidelengths(x)

S3 method for class 'box3'
eroded.volumes(x, r)

Arguments
X Three-dimensional box (object of class "box3").
r Numeric value or vector of numeric values for which eroded volumes should be

calculated.

diameter.boxx 167

Details

diameter.box3 computes the diameter of the box. volume.box3 computes the volume of the box.
shortside.box3 finds the shortest of the three side lengths of the box. sidelengths.box3 returns
all three side lengths of the box.

eroded.volumes computes, for each entry r[i], the volume of the smaller box obtained by remov-
ing a slab of thickness r[i] from each face of the box. This smaller box is the subset consisting of
points that lie at least r[i] units away from the boundary of the box.

Value

For diameter.box3, shortside.box3 and volume.box3, a single numeric value. For sidelengths.box3,
a vector of three numbers. For eroded. volumes, a numeric vector of the same length as r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

as.box3

Examples

X <- box3(c(0,10),c(0,10),c(0,5))
diameter(X)

volume(X)

sidelengths(X)

shortside(X)

hd <- shortside(X)/2

eroded.volumes(X, seq(@,hd, length=10))

diameter.boxx Geometrical Calculations for Multi-Dimensional Box

Description
Calculates the volume, diameter, shortest side, side lengths, or eroded volume of a multi-dimensional
box.

Usage

S3 method for class 'boxx'
diameter(x)

S3 method for class 'boxx'
volume (x)

168 diameter.boxx

S3 method for class 'boxx'
shortside(x)

S3 method for class 'boxx'
sidelengths(x)

S3 method for class 'boxx'
eroded.volumes(x, r)

Arguments
X Multi-dimensional box (object of class "boxx").
r Numeric value or vector of numeric values for which eroded volumes should be
calculated.
Details

diameter.boxx, volume.boxx and shortside.boxx compute the diameter, volume and shortest
side length of the box. sidelengths.boxx returns the lengths of each side of the box.

eroded.volumes.boxx computes, for each entry r[i], the volume of the smaller box obtained
by removing a slab of thickness r[i] from each face of the box. This smaller box is the subset
consisting of points that lie at least r[i] units away from the boundary of the box.

Value

For diameter.boxx, shortside.boxx and volume.boxx, a single numeric value. For sidelengths.boxx,
a numeric vector of length equal to the number of spatial dimensions. For eroded. volumes.boxx,
a numeric vector of the same length as r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

boxx

Examples

X <- boxx(c(0,10),c(0,10),c(0,5),c(0,2))
diameter(X)

volume (X)

shortside(X)

sidelengths(X)

hd <- shortside(X)/2

eroded.volumes(X, seq(@,hd, length=10))

diameter.owin 169

diameter.owin Diameter of a Window

Description

Computes the diameter of a window.

Usage
S3 method for class 'owin'
diameter(x)
Arguments
X A window whose diameter will be computed.
Details

This function computes the diameter of a window of arbitrary shape, i.e. the maximum distance
between any two points in the window.

The argument x should be a window (an object of class "owin", see owin.object for details) or
can be given in any format acceptable to as.owin().

The function diameter is generic. This function is the method for the class "owin".

Value

The numerical value of the diameter of the window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

area.owin, perimeter, edges, owin, as.owin

Examples

w <- owin(c(0,1),c(0,1))
diameter(w)

returns sqrt(2)
diameter(letterR)

170 dilated.areas

dilated.areas Areas of Morphological Dilations

Description

Computes the areas of successive morphological dilations.

Usage
dilated.areas(X, r, W=as.owin(X), ..., constrained=TRUE, exact = FALSE)
Arguments
X Object to be dilated. A point pattern (object of class "ppp”), a line segment
pattern (object of class "psp”), or a window (object of class "owin").
Numeric vector of radii for the dilations.
W Window (object of class "owin") inside which the areas will be computed, if
constrained=TRUE.
Arguments passed to distmap to control the pixel resolution, if exact=FALSE.
constrained Logical flag indicating whether areas should be restricted to the window W.
exact Logical flag indicating whether areas should be computed using analytic geom-
etry (which is slower but more accurate). Currently available only when X is a
point pattern.
Details

This function computes the areas of the dilations of X by each of the radii r[i]. Areas may also be
computed inside a specified window W.

The morphological dilation of a set X by a distance > 0 is the subset consisting of all points x
such that the distance from z to X is less than or equal to 7.

When X is a point pattern, the dilation by a distance 7 is the union of discs of radius r centred at the
points of X.

The argument r should be a vector of nonnegative numbers.

If exact=TRUE and if X is a point pattern, then the areas are computed using analytic geometry,
which is slower but much more accurate. Otherwise the computation is performed using distmap.

To compute the dilated object itself, use dilation.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin, as.owin, dilation, eroded.areas

dilation 171

Examples

X <- runifrect(10)
a <- dilated.areas(X, c(0.1,0.2), W=square(1), exact=TRUE)

dilation Morphological Dilation

Description

Perform morphological dilation of a window, a line segment pattern or a point pattern

Usage
dilation(w, r, ...)
S3 method for class 'owin'
dilation(w, r, ..., polygonal=NULL, tight=TRUE)
S3 method for class 'ppp'
dilation(w, r, ..., polygonal=TRUE, tight=TRUE)
S3 method for class 'psp'
dilation(w, r, ..., polygonal=TRUE, tight=TRUE)
Arguments
w A window (object of class "owin"” or a line segment pattern (object of class
"psp”) or a point pattern (object of class "ppp").
r positive number: the radius of dilation.
extra arguments passed to as.mask controlling the pixel resolution, if the pixel
approximation is used; or passed to disc if the polygonal approximation is used.
polygonal Logical flag indicating whether to compute a polygonal approximation to the
dilation (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).
tight Logical flag indicating whether the bounding frame of the window should be
taken as the smallest rectangle enclosing the dilated region (tight=TRUE), or
should be the dilation of the bounding frame of w (tight=FALSE).
Details

The morphological dilation of a set W by a distance r» > 0 is the set consisting of all points lying
at most r units away from W. Effectively, dilation adds a margin of width r onto the set V.

If polygonal=TRUE then a polygonal approximation to the dilation is computed. If polygonal=FALSE
then a pixel approximation to the dilation is computed from the distance map of w. The arguments
"\dots" are passed to as.mask to control the pixel resolution.

When w is a window, the default (when polygonal=NULL) is to compute a polygonal approximation
if w is a rectangle or polygonal window, and to compute a pixel approximation if w is a window of
type "mask”.

172 dirichlet

Value

If r > 0, an object of class "owin" representing the dilated region. If r=0, the result is identical to w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

erosion for the opposite operation.
dilationAny for morphological dilation using any shape.

owin, as.owin

Examples

plot(dilation(redwood, 0.05))
points(redwood)

plot(dilation(letterR, 0.2))
plot(letterR, add=TRUE, lwd=2, border="red")

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(dilation(X, 0.1))
plot(X, add=TRUE, col="red")

dirichlet Dirichlet Tessellation of Point Pattern

Description

Computes the Dirichlet tessellation of a spatial point pattern. Also known as the Voronoi or Thiessen
tessellation.

Usage

dirichlet(X)

Arguments

X Spatial point pattern (object of class "ppp").

dirichletAreas 173

Details

In a spatial point pattern X, the Dirichlet tile associated with a particular point X[i] is the region
of space that is closer to X[i] than to any other point in X. The Dirichlet tiles divide the two-
dimensional plane into disjoint regions, forming a tessellation.

The Dirichlet tessellation is also known as the Voronoi or Thiessen tessellation.

This function computes the Dirichlet tessellation (within the original window of X) using the func-
tion deldir in the package deldir.

To ensure that there is a one-to-one correspondence between the points of X and the tiles of dirichlet (X),
duplicated points in X should first be removed by X <- unique(X, rule="deldir").

The tiles of the tessellation will be computed as polygons if the original window is a rectangle or a
polygon. Otherwise the tiles will be computed as binary masks.
Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

tess, delaunay, ppp, dirichletVertices.

For the Dirichlet tessellation on a linear network, see 1ineardirichlet.

Examples

X <- runifrect(42)
plot(dirichlet(X))
plot(X, add=TRUE)

dirichletAreas Compute Areas of Tiles in Dirichlet Tessellation

Description

Calculates the area of each tile in the Dirichlet-Voronoi tessellation of a point pattern.

Usage

dirichletAreas(X)

Arguments

X Point pattern (object of class "ppp").

174 dirichletVertices

Details

This is an efficient algorithm to calculate the areas of the tiles in the Dirichlet-Voronoi tessellation.

If the window of X is a binary pixel mask, the tile areas are computed by counting pixels. Otherwise
the areas are computed exactly using analytic geometry.

If any points of X are duplicated, the duplicates will have tile area zero.

Value

Numeric vector with one entry for each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

dirichlet, dirichletVertices

Examples

aa <- dirichletAreas(cells)

dirichletVertices Vertices and Edges of Dirichlet Tessellation

Description

Computes the Dirichlet-Voronoi tessellation of a point pattern and extracts the vertices or edges of
the tiles.

Usage

dirichletVertices(X)

dirichletEdges(X, clip=TRUE)

Arguments
X Point pattern (object of class "ppp").
clip Logical value specifying whether to clip the tile edges to the window. See De-

tails.

dirichletWeights 175

Details

These function compute the Dirichlet-Voronoi tessellation of X (see dirichlet) and extract the
vertices or edges of the tiles of the tessellation.

The Dirichlet vertices are the spatial locations which are locally farthest away from X, that is, where
the distance function of X reaches a local maximum.

The Dirichlet edges are the dividing lines equally distant between a pair of points of X.

The Dirichlet tessellation of X is computed using dirichlet. The vertices or edges of all tiles of
the tessellation are extracted.

For dirichletVertices, any vertex which lies on the boundary of the window of X is deleted. The
remaining vertices are returned, as a point pattern, without duplicated entries.

For dirichletEdges, the edges are initially computed inside the rectangle Frame(X). Then if
clip=TRUE (the default), these edges are intersected with Window(X), which may cause an edge
to be broken into several pieces.

Value

dirichletVertices returns a point pattern (object of class "ppp”) in the same window as X.

dirichletEdges returns a line segment pattern (object of class "psp”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

dirichlet, dirichletAreas

Examples

plot(dirichlet(cells))
plot(dirichletVertices(cells), add=TRUE)

ed <- dirichletEdges(cells)

dirichletWeights Compute Quadrature Weights Based on Dirichlet Tessellation

Description

Computes quadrature weights for a given set of points, using the areas of tiles in the Dirichlet
tessellation.

176 dirichletWeights

Usage
dirichletWeights(X, window=NULL, exact=TRUE, ...)
Arguments
X Data defining a point pattern.
window Default window for the point pattern
exact Logical value. If TRUE, compute exact areas using the package deldir. If FALSE,
compute approximate areas using a pixel raster.
Ignored.
Details

This function computes a set of quadrature weights for a given pattern of points (typically compris-
ing both “data” and ‘dummy” points). See quad.object for an explanation of quadrature weights
and quadrature schemes.

The weights are computed using the Dirichlet tessellation. First X and (optionally) window are
converted into a point pattern object. Then the Dirichlet tessellation of the points of X is computed.
The weight attached to a point of X is the area of its Dirichlet tile (inside the window Window(X)).

If exact=TRUE the Dirichlet tessellation is computed exactly by the Lee-Schachter algorithm us-
ing the package deldir. Otherwise a pixel raster approximation is constructed and the areas are
approximations to the true weights. In all cases the sum of the weights is equal to the area of the
window.

Value

Vector of nonnegative weights for each point in X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, gridweights

Examples

Q <- quadscheme(runifrect(10))
X <- as.ppp(Q) # data and dummy points together
w <- dirichletWeights(X, exact=FALSE)

disc

177

disc

Circular Window

Description

Creates a circular window

Usage

disc(radius=1, centre=c(0,0), ...,

Arguments

radius
centre

mask

npoly

delta

type

metric

Details

mask=FALSE, npoly=128, delta=NULL,
type=c("inscribed”, "circumscribed”, "approx"),
metric=NULL)

Radius of the circle.
The centre of the circle.

Logical flag controlling the type of approximation to a perfect circle. See De-
tails.

Number of edges of the polygonal approximation, if mask=FALSE. Incompatible
with delta.

Tolerance of polygonal approximation: the length of arc that will be replaced by
one edge of the polygon. Incompatible with npoly.

Optional. Character string (partially matched) indicating whether the polygo-
nal approximation should be an inscribed polygon (type="1inscribed”, the de-
fault), a circumscribed polygon (type="circumscribed"”) or a polygon which
is between the inscribed and circumscribed polygons (type="approx").

Arguments passed to as.mask determining the pixel resolution, if mask=TRUE.

Optional. A distance metric (object of class "metric"”). The disc with respect
to this metric will be computed.

This command creates a window object representing a disc, with the given radius and centre.

By default, the circle is approximated by a polygon with npoly edges.

If mask=TRUE, then the disc is approximated by a binary pixel mask. The resolution of the mask is
controlled by the arguments . .. which are passed to as.mask.

The argument radius must be a single positive number. The argument centre specifies the disc
centre: it can be either a numeric vector of length 2 giving the coordinates, or a 1ist(x,y) giving
the coordinates of exactly one point, or a point pattern (object of class "ppp"”) containing exactly

one point.

If type="inscribed" (the default), the polygon is inscribed in the perfect circle of radius radius,
that is, all vertices of the polygon are points on the circle, and the circle contains the polygon.

178 disc

If type="circumscribed”, the polygon is circumscribed around the circle, that is, the polygon
contains the circle, and all edges of the polygon are tangent to the circle. If type="approx”, the
polygon is constructed to lie between the inscribed and circumscribed polygons, giving a better
approximation to the circle.

If the argument metric is given, it should be a distance metric (object of class "metric"”). The disc
with respect to this metric will be computed.

Value

An object of class "owin" (see owin.object) specifying a window.

Note

This function can also be used to generate regular polygons, by setting npoly to a small integer
value. For example npoly=5 generates a pentagon and npoly=13 a triskaidecagon.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ellipse, discs, owin.object, owin, as.mask

Examples

unit disc

W <- disc()

disc of radius 3 centred at x=10, y=5

W <- disc(3, c(10,5))

#

plot(disc())

plot(disc(mask=TRUE))

nice smooth circle

plot(disc(npoly=256))

how to control the resolution of the mask
plot(disc(mask=TRUE, dimyx=256))

check accuracy of approximation

area(disc())/pi

area(disc(mask=TRUE))/pi

inscribed and circumscribed

plot(disc(npoly=256), main="Inscribed and circumscribed”, border="green")
plot(disc(npoly=7, type="i"), add=TRUE, border="red")
plot(disc(npoly=7, type="c"), add=TRUE, border="blue")
plot(disc(npoly=7, type="a"), add=TRUE, border="grey")

discpartarea 179

discpartarea Area of Part of Disc

Description

Compute area of intersection between a disc and a window

Usage

discpartarea(X, r, W=as.owin(X))

Arguments
X Point pattern (object of class "ppp") specifying the centres of the discs. Alter-
natively, X may be in any format acceptable to as. ppp.
r Matrix, vector or numeric value specifying the radii of the discs.
W Window (object of class "owin") with which the discs should be intersected.
Details

This algorithm computes the exact area of the intersection between a window W and a disc (or each
of several discs). The centres of the discs are specified by the point pattern X, and their radii are
specified by r.

If r is a single numeric value, then the algorithm computes the area of intersection between W and
the disc of radius r centred at each point of X, and returns a one-column matrix containing one entry
for each point of X.

If r is a vector of length m, then the algorithm returns an n * m matrix in which the entry on row i,
column j is the area of the intersection between W and the disc centred at X[i] with radius r[j].

If r is a matrix, it should have one row for each point in X. The algorithm returns a matrix in which
the entry on row i, column j is the area of the intersection between W and the disc centred at X[1]
with radius r[i, j].

Areas are computed by analytic geometry.

Value

Numeric matrix, with one row for each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

owin, disc

180 discretise

Examples

X <- unmark(demopat)[1:3]
discpartarea(X, 0.2)

discretise Safely Convert Point Pattern Window to Binary Mask

Description

Given a point pattern, discretise its window by converting it to a binary pixel mask, adjusting the
mask so that it still contains all the points. Optionally discretise the point locations as well, by
moving them to the nearest pixel centres.

Usage
discretise(X, eps = NULL, dimyx = NULL, xy = NULL, move.points=FALSE,
rule.eps=c("adjust.eps”, "grow.frame"”, "shrink.frame"))

Arguments

X A point pattern (object of class "ppp") to be converted.

eps (optional) width and height of each pixel

dimyx (optional) pixel array dimensions

Xy (optional) pixel coordinates

move.points Logical value specifying whether the points should also be discretised by mov-

ing each point to the nearest pixel centre.

rule.eps Argument passed to as.mask controlling the discretisation.

Details

This function modifies the point pattern X by converting its observation window Window(X) to a
binary pixel image (a window of type "mask”). It ensures that no points of X are deleted by the
discretisation. If move.points=TRUE, the point coordinates are also discretised.

The window is first discretised using as.mask. Next,

* If move.points=TRUE, each point of X is moved to the centre of the nearest pixel inside the
discretised window.

e If move.points=FALSE (the default), the point coordinates are unchanged. It can happen
that points of X that were inside the original window may fall outside the new mask. The
discretise function corrects this by augmenting the mask (so that the mask includes any
pixel that contains a point of the pattern).

The arguments eps, dimyx, xy and rule. eps control the fineness of the pixel array. They are passed
to as.mask.

If eps, dimyx and xy are all absent or NULL, and if the window of X is of type "mask” to start with,
then discretise(X) returns X unchanged.

See as.mask for further details about the arguments eps, dimyx, xy and rule.eps, and the process
of converting a window to one of type mask.

discs 181

Value

A point pattern (object of class "ppp").

Error checking

Before doing anything, discretise checks that all the points of the pattern are actually inside the
original window. This is guaranteed to be the case if the pattern was constructed using ppp or
as.ppp. However anomalies are possible if the point pattern was created or manipulated inappro-
priately. These will cause an error.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

as.mask

Examples

X <- demopat

plot(X, main="original pattern”)

Y <- discretise(X, dimyx=50)
plot(Y, main="discretise(X)")
stopifnot(npoints(X) == npoints(Y))

what happens if we just convert the window to a mask?

W <- Window(X)

M <- as.mask(W, dimyx=50)

plot(M, main="window of X converted to mask")

plot(X, add=TRUE, pch=16)

plot(X[M], add=TRUE, pch=1, cex=1.5)

XM <- X[M]

cat(paste(npoints(X) - npoints(XM), "points of X lie outside M\n"))

discs Union of Discs

Description

Make a spatial region composed of discs with given centres and radii.

Usage

discs(centres, radii = marks(centres)/2, ...,
separate = FALSE, mask = FALSE, trim = TRUE,
delta = NULL, npoly=NULL)

182 discs

Arguments
centres Point pattern giving the locations of centres for the discs.
radii Vector of radii for each disc, or a single number giving a common radius. (No-
tice that the default assumes that the marks of X are diameters.)
Optional arguments passed to as.mask to determine the pixel resolution, if
mask=TRUE.
separate Logical. If TRUE, the result is a list containing each disc as a separate entry. If
FALSE (the default), the result is a window obtained by forming the union of the
discs.
mask Logical. If TRUE, the result is a binary mask window. If FALSE, the result is a
polygonal window. Applies only when separate=FALSE.
trim Logical value indicating whether to restrict the result to the original window of
the centres. Applies only when separate=FALSE.
delta Argument passed to disc to determine the tolerance for the polygonal approxi-
mation of each disc. Applies only when mask=FALSE. Incompatible with npoly.
npoly Argument passed to disc to determine the number of edges in the polygonal
approximation of each disc. Applies only when mask=FALSE. Incompatible with
delta.
Details

This command is typically applied to a marked point pattern dataset X in which the marks represent
the sizes of objects. The result is a spatial region representing the space occupied by the objects.

If the marks of X represent the diameters of circular objects, then the result of discs(X) is a spatial
region constructed by taking discs, of the specified diameters, centred at the points of X, and forming
the union of these discs. If the marks of X represent the areas of objects, one could take discs(X,
sgrt(marks(X)/pi)) to produce discs of equivalent area.

A fast algorithm is used to compute the result as a binary mask, when mask=TRUE. This option is
recommended unless polygons are really necessary.

If mask=FALSE, the discs will be constructed as polygons by the function disc. To avoid compu-
tational problems, by default, the discs will all be constructed using the same physical tolerance
value delta passed to disc. The default is such that the smallest disc will be approximated by
a 16-sided polygon. (The argument npoly should not normally be used, to avoid computational
problems arising with small radii.)

Value

If separate=FALSE, a window (object of class "owin").

If separate=TRUE, a list of windows.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

distfun 183
See Also
disc, union.owin
Examples
plot(discs(anemones, mask=TRUE, eps=0.5))
distfun Distance Map as a Function
Description
Compute the distance function of an object, and return it as a function.
Usage
distfun(X, ...)
S3 method for class 'ppp'
distfun(X, ..., k=1, undef=Inf)
S3 method for class 'psp'
distfun(X, ...)
S3 method for class 'owin'
distfun(X, ..., invert=FALSE, signed=FALSE)
Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-

tern (object of class "ppp"), a window (object of class "owin") or a line segment

pattern (object of class "psp").

Extra arguments are ignored.

k An integer. The distance to the kth nearest point will be computed.

undef The value that should be returned if the distance is undefined (that is, if X con-

tains fewer than k points).

invert Logical value. If TRUE, compute the distance transform of the complement of X.

signed Logical value. If TRUE, compute the signed distance transform which is negative

inside X and positive outside X.

184 distfun

Details

The “distance function” of a set of points A is the mathematical function f such that, for any two-
dimensional spatial location (x, y), the function value f(x,y) is the shortest distance from (x, y) to

A.

The command f <- distfun(X) returns a function in the R language, with arguments x,y, that
represents the distance function of X. Evaluating the function f in the form v <- f(x,y), where x
and y are any numeric vectors of equal length containing coordinates of spatial locations, yields the
values of the distance function at these locations. Alternatively x can be a point pattern (object of
class "ppp"” or "1pp") of locations at which the distance function should be computed (and then y
should be missing).

This should be contrasted with the related command distmap which computes the distance function
of X on a grid of locations, and returns the distance values in the form of a pixel image.

The distance values returned by f <- distfun(X); d <- f(x) are computed using coordinate ge-
ometry; they are more accurate, but slower to compute, than the distance values returned by Z <-
distmap(X); d <- Z[x] which are computed using a fast recursive algorithm.

The result of f <- distfun(X) also belongs to the class "funxy” and to the special class "distfun”.
It can be printed and plotted immediately as shown in the Examples.

A distfun object can be converted to a pixel image using as. im.

Value

A function with arguments x,y. The function belongs to the class "distfun” which has methods
for print and summary, and for geometric operations like shift. It also belongs to the class
"funxy" which has methods for plot, contour and persp.

Distance values

The values returned by the distance function f <- distfun(X) are distances, expressed as multiples
of the unit of length of the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
f are expressed as multiples of 2 microns, rather than being expressed in microns.

Domain of the function

The domain of the distance function is unbounded, that is, the distance function can be evaluated at
any spatial location.

However, when the distance function is plotted by plot, contour or persp, the function domain
is assumed to be the rectangular frame surrounding the original object X. To generate a plot of the
distance function on a different region, use the argument W in the plot command, as explained in the
help for plot. funxy.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

distmap 185

See Also

distmap, summary.distfun, methods.distfun, methods. funxy, plot.funxy

Examples

f <- distfun(letterR)
f

plot(f)

£(0.2, 0.3)

plot(distfun(letterR, invert=TRUE), eps=0.1)
plot(distfun(letterR, signed=TRUE), eps=0.1, col=beachcolourmap)

d <- distfun(cells)

d2 <- distfun(cells, k=2)
d(e.5, 0.5)

d2(0.5, 0.5)

domain(d)

summary (d)

z <- d(japanesepines)

distmap Distance Map

Description

Compute the distance map of an object, and return it as a pixel image. Generic.

Usage
distmap(X, ...)
Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-

tern (object of class "ppp"), a window (object of class "owin") or a line segment
pattern (object of class "psp”).
Arguments passed to as.mask to control pixel resolution.

Details

The “distance map” of a set of points A is the function f whose value f(x) is defined for any
two-dimensional location x as the shortest distance from z to A.

This function computes the distance map of the set X and returns the distance map as a pixel image.

This is generic. Methods are provided for point patterns (distmap.ppp), line segment patterns
(distmap.psp) and windows (distmap.owin) as well as other classes.

186 distmap.owin

Value

A pixel image (object of class "im") whose grey scale values are the values of the distance map.

Distance values

The pixel values in the image distmap(X) are distances, expressed as multiples of the unit of length
of the spatial coordinates in X. The unit of length is given by unitname (X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values in
distmap(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

distmap.ppp, distmap.psp, distmap.owin, distfun

Examples

U <- distmap(cells)
V <- distmap(letterR)
if(interactive()) {
plot(U)

plot(V)

}

distmap.owin Distance Map of Window

Description

Computes the distance from each pixel to the nearest point in the given window.

Usage

S3 method for class 'owin'
distmap(X, ..., discretise=FALSE, invert=FALSE,
signed=FALSE, connect=8, metric=NULL)

Arguments
X A window (object of class "owin").
Arguments passed to as.mask to control pixel resolution.
discretise Logical flag controlling the choice of algorithm when X is a polygonal window.

See Details.

distmap.owin 187

invert Logical value. If TRUE, compute the distance transform of the complement of
the window.
signed Logical value. If TRUE, compute the signed distance transform which is negative

inside X and positive outside X.

connect Neighbourhood connectivity for the discrete distance transform algorithm. Ei-
ther 8 or 24.
metric Optional. A distance metric (object of class "metric”, see metric.object)

which will be used to compute the distances.

Details

The “distance map” of a window W is the function f whose value f(u) is defined for any two-
dimensional location u as the shortest distance from u to W.

This function computes the distance map of the window X and returns the distance map as a pixel
image. The greyscale value at a pixel u equals the distance from w to the nearest pixel in X.

Additionally, the return value has an attribute "bdry” which is also a pixel image. The grey values
in "bdry" give the distance from each pixel to the bounding rectangle of the image.

If X is a binary pixel mask, the distance values computed are not the usual Euclidean distances.
Instead the distance between two pixels is measured by the length of the shortest path connecting
the two pixels. A path is a series of steps between neighbouring pixels (each pixel has 8 neighbours).
This is the standard ‘distance transform’ algorithm of image processing (Rosenfeld and Kak, 1968;
Borgefors, 1986).

If X is a polygonal window, then exact Euclidean distances will be computed if discretise=FALSE.
If discretise=TRUE then the window will first be converted to a binary pixel mask and the discrete
path distances will be computed.

The arguments . . . are passed to as.mask to control the pixel resolution.

This function is a method for the generic distmap.

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The
return value has an attribute "bdry” which is a pixel image.

Distance values

The pixel values in the image distmap(X) are distances, expressed as multiples of the unit of length
of the spatial coordinates in X. The unit of length is given by unitname (X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values in
distmap(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

188 distmap.ppp

References

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344-371.

Rosenfeld, A. and Pfalz, J.L. Distance functions on digital pictures. Pattern Recognition 1 (1968)
33-61.

See Also

distmap, distmap.ppp, distmap.psp

Examples

U <- distmap(letterR)

if(human <- interactive()) {
plot(U, main="distmap(letterR)")
plot(attr(U, "bdry"))

}
V <- distmap(letterR, signed=TRUE)
if (human)

plot(V, main="signed distance"”, col=beachcolourmap)

distmap.ppp Distance Map of Point Pattern

Description

Computes the distance from each pixel to the nearest point in the given point pattern.

Usage
S3 method for class 'ppp'
distmap(X, ..., clip=FALSE, metric=NULL)
Arguments
X A point pattern (object of class "ppp").

Arguments passed to as.mask to control pixel resolution.

clip Logical value specifying whether the resulting pixel image should be clipped to
the window of X.

metric Optional. A distance metric (object of class "metric"”, see metric.object)
which will be used to compute the distances.

distmap.ppp 189

Details

The “distance map” of a point pattern X is the function f whose value f(u) is defined for any
two-dimensional location w as the shortest distance from u to X.

This function computes the distance map of the point pattern X and returns the distance map as a
pixel image. The greyscale value at a pixel v equals the distance from w to the nearest point of the
pattern X.

If clip=FALSE (the default), the resulting pixel values are defined at every pixel in the rectangle
Frame(X). If c1ip=TRUE, the pixel values are defined only inside Window(X), and are NA outside
this window. Computation is faster when c1ip=FALSE.

Additionally, the return value has two attributes, "index"” and "bdry"”, which are also pixel im-
ages. The grey values in "bdry"” give the distance from each pixel to the boundary of the window
containing X. The grey values in "index" are integers identifying which point of X is closest.

This is a method for the generic function distmap.

Note that this function gives the distance from the centre of each pixel to the nearest data point. To
compute the exact distance from a given spatial location to the nearest data point in X, use distfun
or NNcross.

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The
return value has attributes "index" and "bdry"” which are also pixel images.

Distance values

The pixel values in the image distmap(X) are distances, expressed as multiples of the unit of length
of the spatial coordinates in X. The unit of length is given by unitname (X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values in
distmap(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

Generic function distmap and other methods distmap.psp, distmap.owin.
Generic function distfun.
Nearest neighbour distance nncross.

unitname and rescale to control the unit of length.

Examples

U <- distmap(cells)
if(interactive()) {
plot(U)
plot(attr(U, "bdry"))

190 distmap.psp

plot(attr(U, "index"))
}

distmap.psp Distance Map of Line Segment Pattern

Description

Computes the distance from each pixel to the nearest line segment in the given line segment pattern.

Usage
S3 method for class 'psp'
distmap(X, ..., extras=TRUE, clip=FALSE, metric=NULL)
Arguments
X A line segment pattern (object of class "psp”).

Arguments passed to as.mask to control pixel resolution.

extras Logical value specifying whether to compute the additional attributes "index"
and "bdry"” described in Details.

clip Logical value specifying whether the resulting pixel image should be clipped to
the window of X.

metric Optional. A distance metric (object of class "metric”, see metric.object)
which will be used to compute the distances.

Details

The “distance map” of a line segment pattern X is the function f whose value f(u) is defined for
any two-dimensional location u as the shortest distance from u to X.

This function computes the distance map of the line segment pattern X and returns the distance map
as a pixel image. The greyscale value at a pixel u equals the distance from u to the nearest line
segment of the pattern X. Distances are computed using analytic geometry.

The result is a pixel image. If c1ip=FALSE (the default), the pixel values are defined at every pixel
in the rectangle Frame(X). If c1ip=TRUE, the pixel values are defined only inside Window(X), and
are NA outside this window. Computation is faster when cl1ip=FALSE.

Additionally, if extras=TRUE, the return value has two attributes, "index" and "bdry”, which are
also pixel images. The pixels values of "bdry" give the distance from each pixel to the boundary
of the window of X (and are zero outside this window). The pixel values of "index" are integers
identifying which line segment of X is closest. If c1ip=FALSE (the default), these images are defined
at every pixel in Frame (X); if c1ip=TRUE, they are clipped to the window of X. Computation is faster
when extras=FALSE.

This is a method for the generic function distmap.

Note that this function gives the exact distance from the centre of each pixel to the nearest line seg-
ment. To compute the exact distance from the points in a point pattern to the nearest line segment,
use distfun or one of the low-level functions nncross or project2segment.

domain 191

Value

A pixel image (object of class "im") whose greyscale values are the values of the distance map. The
return value has attributes "index"” and "bdry” which are also pixel images.

Distance values

The pixel values in the image distmap(X) are distances, expressed as multiples of the unit of length
of the spatial coordinates in X. The unit of length is given by unitname (X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values in
distmap(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distmap, distmap.owin, distmap.ppp, distfun, nncross, nearestsegment, project2segment.

Examples

a <= psp(runif(20),runif(20),runif(20),runif(20), window=owin())
Z <- distmap(a)

plot(Z)

plot(a, add=TRUE)

domain Extract the Domain of any Spatial Object

Description
Given a spatial object such as a point pattern, in any number of dimensions, this function extracts
the spatial domain in which the object is defined.
Usage
domain(X, ...)

S3 method for class 'ppp'
domain(X, ...)

S3 method for class 'psp'
domain(X, ...)

S3 method for class 'im'
domain(X, ...)

192 domain

S3 method for class 'ppx'
domain(X, ...)

S3 method for class 'pp3'
domain(X, ...)

S3 method for class 'quad'
domain(X, ...)

S3 method for class 'quadratcount'
domain(X, ...)

S3 method for class 'tess'
domain(X, ...)

S3 method for class 'layered'
domain(X, ...)

S3 method for class 'distfun'
domain(X, ...)

S3 method for class 'nnfun'
domain(X, ...)

S3 method for class 'funxy'
domain(X, ...)

Arguments

X A spatial object such as a point pattern (in any number of dimensions), line
segment pattern or pixel image.

Extra arguments. They are ignored by all the methods listed here.

Details

The function domain is generic

For a spatial object X in any number of dimensions, domain(X) extracts the spatial domain in which
X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

Exceptions occur for methods related to linear networks.

duplicated.ppp 193

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-
dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

domain.ppm, domain.quadrattest, domain.rmhmodel, domain. lpp. Window, Frame.

Examples

domain(redwood)
domain(bei.extra$elev)
domain(osteo$pts[[1]11)

duplicated. ppp Determine Duplicated Points in a Spatial Point Pattern

Description
Determines which points in a spatial point pattern are duplicates of previous points, and returns a
logical vector.

Usage

S3 method for class 'ppp'
duplicated(x, ..., rule=c("spatstat”, "deldir"”, "unmark"))

S3 method for class 'ppx'
duplicated(x, ...)

S3 method for class 'ppp'
anyDuplicated(x, ...)

S3 method for class 'ppx

anyDuplicated(x, ...)
Arguments
X A spatial point pattern (object of class "ppp"” or "ppx").
Ignored.

rule Character string. The rule for determining duplicated points.

194 duplicated.ppp

Details

These are methods for the generic functions duplicated and anyDuplicated for point pattern
datasets (of class "ppp”, see ppp.object, or class "ppx").

anyDuplicated(x) is a faster version of any(duplicated(x)).

Two points in a point pattern are deemed to be identical if their z, y coordinates are the same, and
their marks are also the same (if they carry marks). The Examples section illustrates how it is
possible for a point pattern to contain a pair of identical points.

This function determines which points in x duplicate other points that appeared earlier in the se-
quence. It returns a logical vector with entries that are TRUE for duplicated points and FALSE for
unique (non-duplicated) points.

If rule="spatstat” (the default), two points are deemed identical if their coordinates are equal
according to ==, and their marks are equal according to ==. This is the most stringent possible
test. If rule="unmark”, duplicated points are determined by testing equality of their coordinates
only, using ==. If rule="deldir", duplicated points are determined by testing equality of their
coordinates only, using the function duplicatedxy in the package deldir, which currently uses
duplicated.data.frame. Setting rule="deldir"” will ensure consistency with functions in the
deldir package.

Value

duplicated(x) returns a logical vector of length equal to the number of points in x.

anyDuplicated(x) is a number equal to O if there are no duplicated points, and otherwise is equal
to the index of the first duplicated point.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, unique.ppp, multiplicity.ppp

Examples

X <- ppp(c(1,1,0.5), c(2,2,1), window=square(3))
duplicated(X)
duplicated(X, rule="deldir")

edges 195

edges Extract Boundary Edges of a Window.

Description

Extracts the boundary edges of a window and returns them as a line segment pattern.

Usage
edges(x, ..., window = NULL, check = FALSE)
Arguments
X A window (object of class "owin"), or data acceptable to as.owin, specifying
the window whose boundary is to be extracted.
Ignored.
window Window to contain the resulting line segments. Defaults to as.rectangle(x).
check Logical. Whether to check the validity of the resulting segment pattern.
Details

The boundary edges of the window x will be extracted as a line segment pattern.

Value

A line segment pattern (object of class "psp").

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

perimeter for calculating the total length of the boundary.

Examples

edges(square(1))
edges(letterR)

196 edges2triangles

edges2triangles List Triangles in a Graph

Description

Given a list of edges between vertices, compile a list of all triangles formed by these edges.

Usage
edges2triangles(iedge, jedge, nvert=max(iedge, jedge), ...,
check=TRUE, friendly=rep(TRUE, nvert))
Arguments

iedge, jedge Integer vectors, of equal length, specifying the edges.

nvert Number of vertices in the network.
Ignored
check Logical. Whether to check validity of input data.
friendly Optional. For advanced use. See Details.
Details

This low level function finds all the triangles (cliques of size 3) in a finite graph with nvert vertices
and with edges specified by iedge, jedge.

The interpretation of iedge, jedge is that each successive pair of entries specifies an edge in the
graph. The kth edge joins vertex iedge[k] to vertex jedgel[k]. Entries of iedge and jedge must
be integers from 1 to nvert.

To improve efficiency in some applications, the optional argument friendly can be used. It should
be a logical vector of length nvert specifying a labelling of the vertices, such that two vertices j, k
which are not friendly (friendly[j] = friendly[k] = FALSE) are never connected by an edge.

Value

A 3-column matrix of integers, in which each row represents a triangle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

edges2vees

edges2vees 197

Examples

i<-c(1, 2, 5,5,1, 4, 2)
j<-c(2,3,3,1,3,2,5
edges2triangles(i, j)

edges2vees List Dihedral Triples in a Graph

Description
Given a list of edges between vertices, compile a list of all ‘vees’ or dihedral triples formed by these
edges.
Usage
edges2vees(iedge, jedge, nvert=max(iedge, jedge), ...,
check=TRUE)
Arguments

iedge, jedge Integer vectors, of equal length, specifying the edges.

nvert Number of vertices in the network.

e Ignored

check Logical. Whether to check validity of input data.
Details

Given a finite graph with nvert vertices and with edges specified by iedge, jedge, this low-level
function finds all ‘vees’ or ‘dihedral triples’ in the graph, that is, all triples of vertices (i, j,k)
where i and j are joined by an edge and i and k are joined by an edge.

The interpretation of iedge, jedge is that each successive pair of entries specifies an edge in the
graph. The kth edge joins vertex iedge[k] to vertex jedge[k]. Entries of iedge and jedge must
be integers from 1 to nvert.

Value
A 3-column matrix of integers, in which each row represents a triple of vertices, with the first vertex
joined to the other two vertices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

edges2triangles

198 edit.hyperframe

Examples
i<-c(1, 2, 5,5,1, 4, 2)
j<-c(2,3,3,1,3,2,5
edges2vees(i, j)
edit.hyperframe Invoke Text Editor on Hyperframe
Description

Invokes a text editor allowing the user to inspect and change entries in a hyperframe.

Usage
S3 method for class 'hyperframe'
edit(name, ...)
Arguments
name A hyperframe (object of class "hyperframe").

Other arguments passed to edit.data. frame.

Details

The function edit is generic. This function is the methods for objects of class "hyperframe”.

The hyperframe name is converted to a data frame or array, and the text editor is invoked. The user
can change entries in the columns of data, and create new columns of data.

Only the columns of atomic data (numbers, characters, factor values etc) can be edited.

Note that the original object name is not changed; the function returns the edited dataset.

Value

Another hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

edit.data.frame, edit.ppp

Examples

if(interactive()) Z <- edit(flu)

edit.ppp 199

edit.ppp Invoke Text Editor on Spatial Data

Description

Invokes a text editor allowing the user to inspect and change entries in a spatial dataset.

Usage

S3 method for class 'ppp'
edit(name, ...)

S3 method for class 'psp'
edit(name, ...)

S3 method for class 'im'
edit(name, ...)

Arguments

n o n

name A spatial dataset (object of class "ppp”, "psp” or "im").

Other arguments passed to edit.data. frame.

Details

The function edit is generic. These functions are methods for spatial objects of class "ppp”, "psp”
and "im".

The spatial dataset name is converted to a data frame or array, and the text editor is invoked. The
user can change the values of spatial coordinates or marks of the points in a point pattern, or the
coordinates or marks of the segments in a segment pattern, or the pixel values in an image. The
names of the columns of marks can also be edited.

If name is a pixel image, it is converted to a matrix and displayed in the same spatial orientation as
if the image had been plotted.

Note that the original object name is not changed; the function returns the edited dataset.

Value

Object of the same kind as name containing the edited data.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

200 ellipse

See Also

edit.data.frame, edit.hyperframe

Examples

if(interactive()) Z <- edit(cells)

ellipse Elliptical Window.

Description

Create an elliptical window.

Usage
ellipse(a, b, centre=c(0,0), phi=0, ..., mask=FALSE, npoly = 128)
Arguments
a, b The half-lengths of the axes of the ellipse.
centre The centre of the ellipse.
phi The (anti-clockwise) angle through which the ellipse should be rotated (about
its centre) starting from an orientation in which the axis of half-length a is hori-
zontal.
mask Logical value controlling the type of approximation to a perfect ellipse. See
Details.
Arguments passed to as.mask to determine the pixel resolution, if mask is TRUE.
npoly The number of edges in the polygonal approximation to the ellipse.
Details

This command creates a window object representing an ellipse with the given centre and axes.
By default, the ellipse is approximated by a polygon with npoly edges.

If mask=TRUE, then the ellipse is approximated by a binary pixel mask. The resolution of the mask
is controlled by the arguments . . . which are passed to as.mask.

The arguments a and b must be single positive numbers. The argument centre specifies the ellipse
centre: it can be either a numeric vector of length 2 giving the coordinates, or a 1ist(x,y) giving
the coordinates of exactly one point, or a point pattern (object of class "ppp"”) containing exactly
one point.

Value

An object of class owin (either of type “polygonal” or of type “mask™) specifying an elliptical
window.

endpoints.psp 201

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

disc, owin.object, owin, as.mask

Examples

W <- ellipse(a=5,b=2,centre=c(5,1),phi=pi/6)
plot(W,1lwd=2,border="red")

WM <- ellipse(a=5,b=2,centre=c(5,1),phi=pi/6,mask=TRUE,dimyx=64)
plot (WM, add=TRUE, box=FALSE)

endpoints.psp Endpoints of Line Segment Pattern

Description

Extracts the endpoints of each line segment in a line segment pattern.

Usage

endpoints.psp(x, which="both")

Arguments

X A line segment pattern (object of class "psp”).

which String specifying which endpoint or endpoints should be returned. See Details.
Details

This function extracts one endpoint, or both endpoints, from each of the line segments in x, and
returns these points as a point pattern object.

The argument which determines which endpoint or endpoints of each line segment should be re-

turned:

which="both" (the default): both endpoints of each line segment are returned. The result is a point
pattern with twice as many points as there are line segments in x.

which="first"” select the first endpoint of each line segment (returns the points with coordinates
x$ends$x@, x$ends$y0).

which="second"” select the second endpoint of each line segment (returns the points with coordi-
nates x$ends$x1, x$endss$y1).

which="1eft" select the left-most endpoint (the endpoint with the smaller x coordinate) of each
line segment.

202 eroded.areas

which="right" select the right-most endpoint (the endpoint with the greater x coordinate) of each
line segment.

which="1ower" select the lower endpoint (the endpoint with the smaller y coordinate) of each line
segment.

which="upper” select the upper endpoint (the endpoint with the greater y coordinate) of each line
segment.

The result is a point pattern. It also has an attribute "id" which is an integer vector identifying the
segment which contributed each point.
Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

psp.object, ppp.object, marks.psp, summary.psp, midpoints.psp, lengths_psp, angles.psp,
extrapolate.psp.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a)

b <- endpoints.psp(a, "left")

plot(b, add=TRUE)

eroded. areas Areas of Morphological Erosions

Description

Computes the areas of successive morphological erosions of a window.

Usage

eroded.areas(w, r, subset=NULL)

Arguments
w A window.
r Numeric vector of radii at which erosions will be performed.

subset Optional window inside which the areas should be computed.

erosion 203

Details

This function computes the areas of the erosions of the window w by each of the radii r[i].

The morphological erosion of a set W by a distance > 0 is the subset consisting of all points
x € W such that the distance from x to the boundary of W is greater than or equal to . In other
words it is the result of trimming a margin of width r off the set .

The argument r should be a vector of positive numbers. The argument w should be a window (an
object of class "owin", see owin.object for details) or can be given in any format acceptable to

as.owin().
Unless w is a rectangle, the computation is performed using a pixel raster approximation.

To compute the eroded window itself, use erosion.

Value

Numeric vector, of the same length as r, giving the areas of the successive erosions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin, as.owin, erosion

Examples

w <- owin(c(0,1),c(0,1))
a <- eroded.areas(w, seq(0.01,0.49,by=0.01))

erosion Morphological Erosion by a Disc

Description

Perform morphological erosion of a window, a line segment pattern or a point pattern by a disc.

Usage

erosion(w, r, ...)

S3 method for class 'owin'

erosion(w, r, shrink.frame=TRUE, ...,
strict=FALSE, polygonal=NULL)

S3 method for class 'ppp'

erosion(w, r,...)

S3 method for class 'psp'

erosion(w, r,...)

204 erosion

Arguments
w A window (object of class "owin” or a line segment pattern (object of class
"psp”) or a point pattern (object of class "ppp").
r positive number: the radius of erosion.

shrink.frame logical: if TRUE, erode the bounding rectangle as well.

extra arguments to as.mask controlling the pixel resolution, if pixel approxima-
tion is used.

strict Logical flag determining the fate of boundary pixels, if pixel approximation is
used. See details.

polygonal Logical flag indicating whether to compute a polygonal approximation to the
erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).

Details

The morphological erosion of a set W by a distance » > 0 is the subset consisting of all points
x € W such that the distance from x to the boundary of W is greater than or equal to . In other
words it is the result of trimming a margin of width r off the set W.

If polygonal=TRUE then a polygonal approximation to the erosion is computed. If polygonal=FALSE
then a pixel approximation to the erosion is computed from the distance map of w. The arguments
"\dots" are passed to as.mask to control the pixel resolution. The erosion consists of all pixels
whose distance from the boundary of w is strictly greater than r (if strict=TRUE) or is greater than
or equal to r (if strict=FALSE).

When w is a window, the default (when polygonal=NULL) is to compute a polygonal approximation
if w is a rectangle or polygonal window, and to compute a pixel approximation if w is a window of
type "mask"”.

If shrink. frame is false, the resulting window is given the same outer, bounding rectangle as the
original window w. If shrink.frame is true, the original bounding rectangle is also eroded by the
same distance r.

To simply compute the area of the eroded window, use eroded. areas.

Value

If r > @, an object of class "owin" representing the eroded region (or NULL if this region is empty).
If r=0, the result is identical to w.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

dilation for the opposite operation.
erosionAny for morphological erosion using any shape.

owin, as.owin, eroded. areas

erosionAny 205

Examples

plot(letterR, main="erosion(letterR, 0.2)")
plot(erosion(letterR, 0.2), add=TRUE, col="red")

erosionAny Morphological Erosion of Windows

Description

Compute the morphological erosion of one spatial window by another.

Usage
erosionAny(A, B)

A %(-)% B

Arguments

A B Windows (objects of class "owin").

Details
The operator A %(-)% B and function erosionAny(A,B) are synonymous: they both compute the
morphological erosion of the window A by the window B.

The morphological erosion A © B of region A by region B is the spatial region consisting of all
vectors z such that, when B is shifted by the vector z, the result is a subset of A.

Equivalently
AeB=((A°® (—B))°

where @ is the Minkowski sum, A¢ denotes the set complement, and (—B) is the reflection of B
through the origin, consisting of all vectors —b where b is a point in B.

If B is a disc of radius r, then erosionAny (A, B) is equivalent to erosion(A, r). See erosion.

The algorithm currently computes the result as a polygonal window using the polyclip library. It
will be quite slow if applied to binary mask windows.

Value

Another window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

erosion, MinkowskiSum

206 eval.im

Examples

B <- square(c(-0.1, 0.1))
RminusB <- letterR %(-)% B
FR <- grow.rectangle(Frame(letterR), 0.3)
plot(FR, main="", type="n")
plot(letterR, add=TRUE, lwd=2, hatch=TRUE, box=FALSE)
plot(RminusB, add=TRUE, col="blue"”, box=FALSE)
plot(shift(B, vec=c(3.49, 2.98)),
add=TRUE, border="red"”, 1lwd=2)

eval.im Evaluate Expression Involving Pixel Images

Description

Evaluates any expression involving one or more pixel images, and returns a pixel image.

Usage

eval.im(expr, envir, harmonize=TRUE, warn=TRUE)

Arguments
expr An expression.
envir Optional. The environment in which to evaluate the expression, or a named list
containing pixel images to be used in the expression.
harmonize Logical. Whether to resolve inconsistencies between the pixel grids.
warn Logical. Whether to issue a warning if the pixel grids were inconsistent.
Details

This function is a wrapper to make it easier to perform pixel-by-pixel calculations in an image.

Pixel images in spatstat are represented by objects of class "im"” (see im.object). These are
essentially matrices of pixel values, with extra attributes recording the pixel dimensions, etc.

Suppose X is a pixel image. Then eval.im(X+3) will add 3 to the value of every pixel in X, and
return the resulting pixel image.

Suppose X and Y are two pixel images with compatible dimensions: they have the same number of
pixels, the same physical size of pixels, and the same bounding box. Then eval.im(X +Y) will add
the corresponding pixel values in X and Y, and return the resulting pixel image.

In general, expr can be any expression in the R language involving (a) the names of pixel images,
(b) scalar constants, and (c) functions which are vectorised. See the Examples.

First eval.im determines which of the variable names in the expression expr refer to pixel im-
ages. Each such name is replaced by a matrix containing the pixel values. The expression is then
evaluated. The result should be a matrix; it is taken as the matrix of pixel values.

The expression expr must be vectorised. There must be at least one pixel image in the expression.

Extract.anylist 207

All images must have compatible dimensions. If harmonize=FALSE, images that are incompati-
ble will cause an error. If harmonize=TRUE, images that have incompatible dimensions will be
resampled so that they are compatible; if warn=TRUE, a warning will be issued.

Value

An image object of class "im".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

im.apply for operations similar to apply, such as taking the sum of a list of images.

as.im, compatible.im, harmonise.im, im.object

Examples

test images
X <- as.im(function(x,y) { x*2 - y*2 }, unit.square())
Y <- as.im(function(x,y) { 3 * x + y }, unit.square())

eval.im(X + 3)

eval.im(X - Y)

eval.im(abs(X - Y))

Z <- eval.im(sin(X * pi) + Y)

Use of 'envir': bei.extra is a list with components 'elev' and 'grad'
W <- eval.im(atan(grad) * 180/pi, bei.extra)

Extract.anylist Extract or Replace Subset of a List of Things

Description

Extract or replace a subset of a list of things.

Usage

S3 method for class 'anylist'
x[i, ...]

S3 replacement method for class 'anylist'
x[i] <- value

208 Extract.hyperframe

Arguments
X An object of class "anylist” representing a list of things.
i Subset index. Any valid subset index in the usual R sense.
value Replacement value for the subset.
Ignored.
Details

These are the methods for extracting and replacing subsets for the class "anylist”.
The argument x should be an object of class "anylist” representing a list of things. See anylist.

The method replaces a designated subset of x, and returns an object of class "anylist”.

Value

Another object of class "anylist”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

anylist, plot.anylist, summary.anylist

Examples

x <- anylist(A=runif(10), B=runif(10), C=runif(10))
x[1] <- list(A=rnorm(10))

Extract.hyperframe Extract or Replace Subset of Hyperframe

Description

Extract or replace a subset of a hyperframe.

Extract.hyperframe 209

Usage

S3 method for class 'hyperframe'
x[i, j, drop, strip=drop, ...]

S3 replacement method for class 'hyperframe'
x[i, j1 <- value

S3 method for class 'hyperframe'
x$name

S3 replacement method for class 'hyperframe
x$name <- value

S3 method for class 'hyperframe’
x[C...]]

S3 replacement method for class 'hyperframe
x[[i, j11 <- value

Arguments
X A hyperframe (object of class "hyperframe").
i, j Row and column indices.
drop, strip Logical values indicating what to do when the hyperframe has only one row or
column. See Details.
Indices specifying elements to extract by [[. hyperframe. Ignored by [. hyperframe.
name Name of a column of the hyperframe.
value Replacement value for the subset. A hyperframe or (if the subset is a single
column) a list or an atomic vector.
Details

These functions extract a designated subset of a hyperframe, or replace the designated subset with
another hyperframe.

The function [.hyperframe is a method for the subset operator [for the class "hyperframe”. It
extracts the subset of x specified by the row index i and column index j.

The argument drop determines whether the array structure will be discarded if possible. The ar-
gument strip determines whether the list structure in a row or column or cell will be discarded
if possible. If drop=FALSE (the default), the return value is always a hyperframe or data frame. If
drop=TRUE, and if the selected subset has only one row, or only one column, or both, then

* if strip=FALSE, the result is a list, with one entry for each array cell that was selected.
e if strip=TRUE,
— if the subset has one row containing several columns, the result is a list or (if possible) an
atomic vector;
— if the subset has one column containing several rows, the result is a list or (if possible) an
atomic vector;
— if the subset has exactly one row and exactly one column, the result is the object (or
atomic value) contained in this row and column.

210 Extract.hyperframe

The function [<-.hyperframe is a method for the subset replacement operator [<- for the class
"hyperframe”. It replaces the designated subset with the hyperframe value. The subset of x to
be replaced is designated by the arguments i and j as above. The replacement value should be a
hyperframe with the appropriate dimensions, or (if the specified subset is a single column) a list of
the appropriate length.

The function $. hyperframe is a method for $ for hyperframes. It extracts the relevant column of the
hyperframe. The result is always a list (i.e. equivalent to using [. hyperframe with strip=FALSE).

The function $<-.hyperframe is a method for $<- for hyperframes. It replaces the relevant column
of the hyperframe. The replacement value should be a list of the appropriate length.

The functions [[.hyperframe and [[<-.hyperframe are methods for [[and [[<-.hyperframe
for hyperframes. They are analogous to [[.data.frame and [[<-.data.frame in that they can be
used in different ways:

* when [[.hyperframe or [[<-.hyperframe are used with a single index, as in x[[n]] or
x[[n]] <- value, they index the hyperframe as if it were a list, extracting or replacing a
column of the hyperframe.

» when [[.hyperframe or [[<-.hyperframe are used with two indices, as in x[[i,3j]] or
x[[i,j1] <- value, they index the hyperframe as if it were a matrix, and can only be used to
extract or replace one element.

Value

A hyperframe (of class "hyperframe”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

hyperframe

Examples

h <- hyperframe(X=1ist(square(1), square(2)), Y=list(sin, cos))

h

h{1, 1

h[1, ,drop=TRUE]
hC , 1]

hL , 1, drop=TRUE]
h{1,1]

h[1,1,drop=TRUE]
h[1,1,drop=TRUE, strip=FALSE]
h[1,1] <- list(square(3))

extract column

h$Xx

replace existing column
h$y <- list(cells, cells)

add new column

Extract.im 211

h$Z <- list(tan, exp)

#
h[["Y"1]
h{[2,1]1]

h[[2,1]1] <- square(3)

Extract.im Extract Subset of Image

Description

Extract a subset or subregion of a pixel image.

Usage

S3 method for class 'im'
x[i, j, ..., drop=TRUE, tight=FALSE,
raster=NULL, rescue=is.owin(i)]

Arguments

X A two-dimensional pixel image. An object of class "im".

i Object defining the subregion or subset to be extracted. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or a linear
network (object of class "1innet") or a point pattern (an object of class "ppp"),
or any type of index that applies to a matrix, or something that can be converted
to a point pattern by as. ppp (using the window of x).

j An integer or logical vector serving as the column index if matrix indexing is
being used. Ignored if i is a spatial object.

Ignored.

drop Logical value, specifying whether to return a vector containing the selected pixel
values (drop=TRUE, the default) or to return a pixel image containing these val-
ues in their original spatial positions (drop=FALSE). The exception is that if i is
a point pattern, then drop specifies whether to delete NA values. See Details.

tight Logical value. If tight=TRUE, and if the result of the subset operation is an
image, the image will be trimmed to the smallest possible rectangle.

raster Optional. An object of class "owin” or "im" determining a pixel grid.

rescue Logical value indicating whether rectangular blocks of data should always be

returned as pixel images.

212 Extract.im

Details
This function extracts a subset of the pixel values in a pixel image. (To reassign the pixel values,
see [<-.1im).
The image x must be an object of class "im" representing a pixel image defined inside a rectangle

in two-dimensional space (see im.object).

The subset to be extracted is determined by the arguments i, j according to the following rules
(which are checked in this order):

1. i is a spatial object such as a window, a pixel image with logical values, a linear network, or
a point pattern; or

2. i, j are indices for the matrix as.matrix(x); or

3. i can be converted to a point pattern by as.ppp(i, W=Window(x)), and i is not a matrix.
If i is a spatial window (an object of class "owin"), the pixels inside this window are selected.

* If drop=TRUE (the default) and either is.rectangle(i)=FALSE or rescue=FALSE, the pixel
values are extracted; the result is a vector, with one entry for each pixel of x that lies inside the
window i. Pixel values may be NA, indicating that the selected pixel lies outside the spatial
domain of the image.

* if drop=FALSE, the result is another pixel image, obtained by setting the pixel values to NA
outside the window i. The effect is that the pixel image x is clipped to the window 1i.

* if i is a rectangle and rescue=TRUE, the result is a pixel image as described above.

* To ensure that an image is produced in all circumstances, set drop=FALSE. To ensure that pixel
values are extracted as a vector in all circumstances, set drop=TRUE, rescue=FALSE.

If i is a pixel image with logical values, it is interpreted as a spatial window (with TRUE values
inside the window and FALSE outside).

If i is a linear network (object of class "1innet"), the pixels which lie on this network are selected.

* If drop=TRUE (the default), the pixel values are extracted; the result is a vector, with one entry
for each pixel of x that lies along the network i. Pixel values may be NA, indicating that the
selected pixel lies outside the spatial domain of the image.

* if drop=FALSE, the result is a pixel image on a linear network (object of class "linim"),
obtained by setting the pixel values of x to NA except for those which lie on the network i.
The effect is that the pixel image x is restricted to the network i.

If i is a point pattern (an object of class "ppp") or something that can be converted to a point pattern,
then the values of the pixel image at the points of this pattern are extracted. The result is a vector of
pixel values. This is a simple way to read the pixel values at a given spatial location.

* if drop=FALSE the length of the result is equal to the number of points in the pattern. It may
contain NA values which indicate that the corresponding point lies outside the spatial domain
of the image.

e if drop=TRUE (the default), NA values are deleted. The result is a vector whose length may be
shorter than the number of points of the pattern.

Extract.im 213

If the optional argument raster is given, then it should be a binary image mask or a pixel image.
Then x will first be converted to an image defined on the pixel grid implied by raster, before the
subset operation is carried out. In particular, x[i, raster=i, drop=FALSE] will return an image
defined on the same pixel array as the object i.

If i does not satisfy any of the conditions above, then the algorithm attempts to interpret i and j as
indices for the matrix as.matrix(x). Either i or j may be missing or blank. The result is usually
a vector or matrix of pixel values. Exceptionally the result is a pixel image if i, j determines a
rectangular subset of the pixel grid, and if the user specifies rescue=TRUE.

Finally, if none of the above conditions is met, the object 1 may also be a data frame or list of
X,y coordinates which will be converted to a point pattern, taking the observation window to be
Window(x). Then the pixel values at these points will be extracted as a vector.

Value

Either a pixel image or a vector of pixel values. See Details.

Warnings

If you have a 2-column matrix containing the x,y coordinates of point locations, then to prevent
this being interpreted as an array index, you should convert it to a data. frame or to a point pattern.

If Wis a window or a pixel image, then x[W, drop=FALSE] will return an image defined on the same
pixel array as the original image x. If you want to obtain an image whose pixel dimensions agree
with those of W, use the raster argument, x[W, raster=W, drop=FALSE].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

im.object, [<-.im, ppp.object, as.ppp, owin.object, plot.im

Examples

make up an image
X <- setcov(unit.square())
plot(X)

a rectangular subset

W <- owin(c(9,0.5),c(0.2,0.8))
Y <= X[W]

plot(Y)

a polygonal subset

R <- affine(letterR, diag(c(1,1)/2), c(-2,-0.7))
plot(X[R, drop=FALSE])

plot (X[R, drop=FALSE, tight=TRUE])

a point pattern

214 Extract.layered
Y <- X[cells]
look up a specified location
X[1list(x=0.1,y=0.2)]
10 x 10 pixel array
X <= as.im(function(x,y) { x +y }, owin(c(-1,1),c(-1,1)), dimyx=10)
100 x 100
W <- as.mask(disc(1, c(0,0)), dimyx=100)
10 x 10 raster
X[W,drop=FALSE]
100 x 100 raster
X[W, raster=W, drop=FALSE]
Extract.layered Extract or Replace Subset of a Layered Object
Description
Extract or replace some or all of the layers of a layered object, or extract a spatial subset of each
layer.
Usage
S3 method for class 'layered'
x[i, j, drop=FALSE, ...]
S3 replacement method for class 'layered'’
x[i] <- value
S3 replacement method for class 'layered'
x[[1]1] <- value
Arguments
X A layered object (class "layered”).
i Subset index for the list of layers. A logical vector, integer vector or character

vector specifying which layers are to be extracted or replaced.

A Subset index to be applied to the data in each layer. Typically a spatial window
(class "owin").

drop Logical. If i specifies only a single layer and drop=TRUE, then the contents of
this layer will be returned.

Additional arguments, passed to other subset methods if the subset index is a
window.

value List of objects which shall replace the designated subset, or an object which
shall replace the designated element.

Extract listof 215

Details

A layered object represents data that should be plotted in successive layers, for example, a back-
ground and a foreground. See layered.

The function [.layered extracts a designated subset of a layered object. It is a method for [for
the class "layered”.

The functions [<-.layered and [[<-.layered replace a designated subset or designated entry of
the object by new values. They are methods for [<- and [[<- for the "layered” class.

The index i specifies which layers will be retained. It should be a valid subset index for the list of
layers.

The index j will be applied to each layer. It is typically a spatial window (class "owin") so that
each of the layers will be restricted to the same spatial region. Alternatively j may be any subset
index which is permissible for the "[" method for each of the layers.

Value

Usually an object of class "layered”.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

layered

Examples

D <- distmap(cells)
L <- layered(D, cells,
plotargs=list(list(ribbon=FALSE), list(pch=16)))

L[-2]
L[, square(0.5)]

L[[3]] <- japanesepines
L

Extract.listof Extract or Replace Subset of a List of Things

Description

Replace a subset of a list of things.

216 Extract.listof

Usage

S3 replacement method for class 'listof'
x[i] <- value

Arguments
X An object of class "1istof" representing a list of things which all belong to one
class.
i Subset index. Any valid subset index in the usual R sense.
value Replacement value for the subset.
Details

This is a subset replacement method for the class "1istof".

The argument x should be an object of class "1istof” representing a list of things that all belong
to one class.

The method replaces a designated subset of x, and returns an object of class "listof".

Value

Another object of class "listof".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

plot.listof, summary.listof

Examples

x <= list(A=runif(10), B=runif(10), C=runif(10))
class(x) <- c("listof”, class(x))
x[1] <- list(A=rnorm(10))

Extract.owin 217

Extract.owin Extract Subset of Window

Description

Extract a subset of a window.

Usage
S3 method for class 'owin'
x[i, ...]
Arguments
X A spatial window (object of class "owin").
i Object defining the subregion. Either a spatial window, or a pixel image with
logical values.
Ignored.
Details

This function computes the intersection between the window x and the domain specified by i, using
intersect.owin.

This function is a method for the subset operator "[" for spatial windows (objects of class "owin").
It is provided mainly for completeness.

The index i may be either a window, or a pixel image with logical values (the TRUE values of the
image specify the spatial domain).
Value

Another spatial window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

intersect.owin

Examples

W <- owin(c(2.5, 3.2), c(1.4, 2.9))
plot(letterR)
plot(letterR[W], add=TRUE, col="red")

218

Extract.ppp

Extract.ppp

Extract or Replace Subset of Point Pattern

Description

Extract or replace a subset of a point pattern. Extraction of a subset has the effect of thinning the
points and/or trimming the window.

Usage

S3 method for class 'ppp'
x[i, j, drop=FALSE, ..., clip=FALSE]

S3 replacement method for class 'ppp'
x[i, j] <- value

Arguments

X

i

value

drop

clip

Details

A two-dimensional point pattern. An object of class "ppp".

Subset index. Either a valid subset index in the usual R sense, indicating which
points should be retained, or a window (an object of class "owin") delineating a
subset of the original observation window, or a pixel image with logical values
defining a subset of the original observation window.

Replacement value for the subset. A point pattern.
Redundant. Included for backward compatibility.

Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

Logical value indicating how to form the window of the resulting point pattern,
when i is a window. If c1ip=FALSE (the default), the result has window equal to
i. If clip=TRUE, the resulting window is the intersection between the window
of x and the window 1i.

Ignored. This argument is required for compatibility with the generic function.

These functions extract a designated subset of a point pattern, or replace the designated subset with
another point pattern.

The function [.ppp is a method for [for the class "ppp”. It extracts a designated subset of a
point pattern, either by “thinning” (retaining/deleting some points of a point pattern) or “trimming”
(reducing the window of observation to a smaller subregion and retaining only those points which
lie in the subregion) or both.

The pattern will be “thinned” if 1 is a subset index in the usual R sense: either a numeric vector
of positive indices (identifying the points to be retained), a numeric vector of negative indices
(identifying the points to be deleted) or a logical vector of length equal to the number of points in
the point pattern x. In the latter case, the points (x$x[i], x$y[i]) for which subset[i]=TRUE
will be retained, and the others will be deleted.

Extract.ppp 219

The pattern will be “trimmed” if i is an object of class "owin” specifying a window of observation.
The points of x lying inside the new window i will be retained. Alternatively i may be a pixel
image (object of class "im") with logical values; the pixels with the value TRUE will be interpreted
as a window.

The argument drop determines whether to remove unused levels of a factor, if the point pattern is
multitype (i.e. the marks are a factor) or if the marks are a data frame in which some of the columns
are factors.

The function [<-.ppp is a method for [<- for the class "ppp"”. It replaces the designated subset
with the point pattern value. The subset of x to be replaced is designated by the argument i as
above.

The replacement point pattern value must lie inside the window of the original pattern x. The
ordering of points in x will be preserved if the replacement pattern value has the same number of
points as the subset to be replaced. Otherwise the ordering is unpredictable.

If the original pattern x has marks, then the replacement pattern value must also have marks, of the
same type.

Use the function unmark to remove marks from a marked point pattern.

Use the function split.ppp to select those points in a marked point pattern which have a specified
mark.
Value

A point pattern (of class "ppp”).

Warnings
The function does not check whether i is a subset of Window(x). Nor does it check whether value
lies inside Window(x).

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

subset. ppp.
ppp.object, owin.object, unmark, split.ppp, cut.ppp

Examples

Longleaf pines data

lon <- longleaf

if(human <- interactive()) {
plot(lon)

}

adult trees defined to have diameter at least 30 cm

220 Extract.ppp

longadult <- subset(lon, marks >= 30)

if Chuman){

plot(longadult)

3

note that the marks are still retained.

Use unmark(longadult) to remove the marks

New Zealand trees data

if Chuman){

plot(nztrees) # plot shows a line of trees at the far right
abline(v=148, 1ty=2) # cut along this line

}

nzw <- owin(c(@,148),c(0,95)) # the subwindow
trim dataset to this subwindow

nzsub <- nztrees[nzw]

if (human){

plot(nzsub)

3

Redwood data

if (human){

plot(redwood)

3

Random thinning: delete 60% of data
retain <- (runif(npoints(redwood)) < 0.4)
thinred <- redwood[retain]

if (human){

plot(thinred)

}

Scramble 60% of data
if(require(spatstat.random)) {

X <- redwood

modif <- (runif(npoints(X)) < 0.6)
X[modif] <- runifpoint(ex=X[modif])
3

Lansing woods data - multitype points
lan <- lansing

Hickory trees
hicks <- split(lansing)$hickory

Trees in subwindow
win <- owin(c(@.3, 0.6),c(0.2, 0.5))
1sub <- lan[win]

if(require(spatstat.random)) {
Scramble the locations of trees in subwindow, retaining their marks
lan[win] <- runifpoint(ex=1sub) %mark% marks(lsub)

}

Extract.ppx 221

Extract oaks only

oaknames <- c("redoak"”, "whiteoak”, "blackoak")
oak <- lan[marks(lan) %in% oaknames, drop=TRUE]
oak <- subset(lan, marks %in% oaknames, drop=TRUE)

To clip or not to clip

X <- unmark(demopat)

B <- owin(c(5500, 9000), c(2500, 7400))

opa <- par(mfrow=c(1,2))

plot(X, main="X[B]")

plot(X[B], add=TRUE,
cols="blue"”, col="pink"”, border="blue",
show.all=TRUE, main="")

plot(Window(X), add=TRUE)

plot(X, main="X[B, clip=TRUE]")

plot(B, add=TRUE, lty=2)

plot(X[B, clip=TRUE], add=TRUE,
cols="blue"”, col="pink”, border="blue",
show.all=TRUE, main="")

par(opa)

Extract.ppx Extract Subset of Multidimensional Point Pattern

Description

Extract a subset of a multidimensional point pattern.

Usage

S3 method for class 'ppx'
x[i, drop=FALSE, clip=FALSE, ...]

Arguments

X A multidimensional point pattern (object of class "ppx").

i Subset index. A valid subset index in the usual R sense, indicating which points
should be retained; or a spatial domain of class "boxx" or "box3".

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

clip Logical value indicating how to form the domain of the resulting point pattern,
when i is a box (object of class "boxx"). If c1ip=FALSE (the default), the result
has domain equal to i. If c1ip=TRUE, the resulting domain is the intersection
between the domain of x and the domain i.

Ignored.

222 Extract.ppx

Details

This function extracts a designated subset of a multidimensional point pattern.

The function [. ppx is a method for [for the class "ppx". It extracts a designated subset of a point
pattern. The argument i may be either

* a subset index in the usual R sense: either a numeric vector of positive indices (identifying
the points to be retained), a numeric vector of negative indices (identifying the points to be
deleted) or a logical vector of length equal to the number of points in the point pattern x. In
the latter case, the points (x$x[i], x$y[i]) for which subset[i]=TRUE will be retained, and
the others will be deleted.

* a spatial domain of class "boxx" or "box3". Points falling inside this region will be retained.
The argument drop determines whether to remove unused levels of a factor, if the point pattern is

multitype (i.e. the marks are a factor) or if the marks are a data frame or hyperframe in which some
of the columns are factors.

Use the function unmark to remove marks from a marked point pattern.

Value

A multidimensional point pattern (of class "ppx").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppXx

Examples

df <- data.frame(x=runif(4),y=runif(4),z=runif(4))

X <- ppx(data=df, coord.type=c("s","s","t"))

X[-2]

Y <- ppx(coords(cells), domain = boxx(c(@,1),c(0,1)))
dom <- shift(domain(Y), vec = c(.5,.5))

Y[dom]

Y[dom, clip=TRUE]

Extract.psp 223

Extract.psp Extract Subset of Line Segment Pattern

Description

Extract a subset of a line segment pattern.

Usage
S3 method for class 'psp'
x[i, j, drop, ..., fragments=TRUE]
Arguments
X A two-dimensional line segment pattern. An object of class "psp”.
i Subset index. Either a valid subset index in the usual R sense, indicating which

segments should be retained, or a window (an object of class "owin") delineat-
ing a subset of the original observation window.

j Redundant - included for backward compatibility.
drop Ignored. Required for compatibility with generic function.
Ignored.
fragments Logical value indicating whether to retain all pieces of line segments that inter-

sect the new window (fragments=TRUE, the default) or to retain only those line
segments that lie entirely inside the new window (fragments=FALSE).

Details

These functions extract a designated subset of a line segment pattern.

The function [.psp is a method for [for the class "psp"”. It extracts a designated subset of a
line segment pattern, either by “thinning” (retaining/deleting some line segments of a line segment
pattern) or “¢rimming” (reducing the window of observation to a smaller subregion and clipping the
line segments to this boundary) or both.

The pattern will be “thinned” if subset is specified. The line segments designated by subset will
be retained. Here subset can be a numeric vector of positive indices (identifying the line segments
to be retained), a numeric vector of negative indices (identifying the line segments to be deleted)
or a logical vector of length equal to the number of line segments in the line segment pattern x. In
the latter case, the line segments for which subset[i]=TRUE will be retained, and the others will be
deleted.

The pattern will be “trimmed” if window is specified. This should be an object of class owin speci-
fying a window of observation to which the line segment pattern x will be trimmed. Line segments
of x lying inside the new window will be retained unchanged. Line segments lying partially inside
the new window and partially outside it will, by default, be clipped so that they lie entirely inside
the window; but if fragments=FALSE, such segments will be removed.

Both “thinning” and “trimming” can be performed together.

224 Extract.quad

Value

A line segment pattern (of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp.object, owin.object

Examples

a <= psp(runif(20),runif(20),runif(20),runif(20), window=owin())
plot(a)
thinning
id <- sample(c(TRUE, FALSE), 20, replace=TRUE)
b <- alid]
plot(b, add=TRUE, 1lwd=3)
trimming
plot(a)
w <- owin(c(0.1,0.7), c(0.2, 0.8))
b <- alw]
plot(b, add=TRUE, col="red"”, lwd=2)
plot(w, add=TRUE)
u <- a[w, fragments=FALSE]
plot(u, add=TRUE, col="blue", lwd=3)

Extract.quad Subset of Quadrature Scheme

Description

Extract a subset of a quadrature scheme.

Usage
S3 method for class 'quad'
x[...]
Arguments
X A quadrature scheme (object of class "quad”).

Arguments passed to [. ppp to determine the subset.

Extract.solist 225

Details

This function extracts a designated subset of a quadrature scheme.

The function [.quad is a method for [for the class "quad”. It extracts a designated subset of a
quadrature scheme.

The subset to be extracted is determined by the arguments . . . which are interpreted by [. ppp. Thus
it is possible to take the subset consisting of all quadrature points that lie inside a given region, or a
subset of quadrature points identified by numeric indices.

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, [.ppp.

Examples

Q <- quadscheme(nztrees)
W <- owin(c(0,148),c(0,95)) # a subwindow
QLWI

Extract.solist Extract or Replace Subset of a List of Spatial Objects

Description
Extract or replace some entries in a list of spatial objects, or extract a designated sub-region in each
object.

Usage

S3 method for class 'solist'
x[i, ...]

S3 replacement method for class 'solist'
x[i] <- value

S3 replacement method for class 'solist'
x[[i1] <- value

226

Extract.solist

Arguments
X An object of class "solist"” representing a list of two-dimensional spatial ob-
jects.
i Subset index. Any valid subset index for vectors in the usual R sense, or a
window (object of class "owin").
value Replacement value for the subset. See Details.
Ignored.
Details

These are methods for extracting and replacing subsets for the class "solist"”.

The argument x should be an object of class "solist"” representing a list of two-dimensional spatial
objects. See solist.

For the subset method, the subset index i can be either a vector index (specifying some elements of
the list) or a spatial window (specifying a spatial sub-region).

For the replacement "[<-" method, i must be a vector index and value must be a list of spatial
objects; the designated elements of x will be replaced by the corresponding elements of the list
value.

For the replacement "[[<-" method, i must be a single integer, and value must be a spatial object.

If all entries of x belong to the same class, then in the replacement methods, a value of NA is
automatically coerced to an NA object of the same class.

Value

Another object of the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

solist, plot.solist, summary.solist

Examples

x <- solist(japanesepines, cells, redwood)
x[2:3]

x[square(0.5)]

x[1] <- list(finpines)

x[[1]1] <- cells

x[[3]1] <= NA

Extract.splitppp 227

Extract.splitppp Extract or Replace Sub-Patterns

Description

Extract or replace some of the sub-patterns in a split point pattern.

Usage

S3 method for class 'splitppp'
x[...]

S3 replacement method for class 'splitppp'
x[...] <= value

Arguments
X An object of class "splitppp”, representing a point pattern separated into a list
of sub-patterns.
Subset index. Any valid subset index in the usual R sense.
value Replacement value for the subset. A list of point patterns.
Details

These are subset methods for the class "splitppp”.

The argument x should be an object of class "splitppp”, representing a point pattern that has been
separated into a list of sub-patterns. It is created by split.ppp.

The methods extract or replace a designated subset of the list x, and return an object of class
"splitppp"”.
Value

Another object of class "splitppp”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

split.ppp, plot.splitppp, summary.splitppp

Examples

y <- split(amacrine)

yL[11]

y[["off"1]

yL[[1]1] <- rsyst(Window(amacrine), 4, 3)

228 Extract.tess

Extract.tess Extract or Replace Subset of Tessellation

Description

Extract, change or delete a subset of the tiles of a tessellation, to make a new tessellation.

Usage
S3 method for class 'tess'
x[i, ...]
S3 replacement method for class 'tess'
x[i, ...] <- value
Arguments
X A tessellation (object of class "tess").
i Subset index for the tiles of the tessellation. Alternatively a window (object of
class "owin").
One argument that specifies the subset to be extracted or changed. Any valid
format for the subset index in a list.
value Replacement value for the selected tiles of the tessellation. A list of windows
(objects of class "owin") or NULL.
Details

A tessellation (object of class "tess”, see tess) is effectively a list of tiles (spatial regions) that
cover a spatial region. The subset operator [.tess extracts some of these tiles and forms a new
tessellation, which of course covers a smaller region than the original.

For [. tess only, the subset index can also be a window (object of class "owin"). The tessellation
x is then intersected with the window.

The replacement operator changes the selected tiles. The replacement value may be either NULL
(which causes the selected tiles to be removed from x) or a list of the same length as the selected
subset. The entries of value may be windows (objects of class "owin") or NULL to indicate that the
corresponding tile should be deleted.

Generally it does not make sense to replace a tile in a tessellation with a completely different tile,
because the tiles are expected to fit together. However this facility is sometimes useful for making
small adjustments to polygonal tiles.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

extrapolate.psp 229

See Also

tess, tiles, intersect. tess.

Examples

A <- tess(xgrid=0:4, ygrid=0:3)
B <- Alc(1, 3, 7)]

E <- A[-1]

Alc(2, 5, 11)] <= NULL

extrapolate.psp Extrapolate Line Segments to Obtain Infinite Lines

Description

Given a spatial pattern of line segments, extrapolate the segments to infinite lines.

Usage
extrapolate.psp(x, ...)
Arguments
X Spatial pattern of line segments (object of class "psp").
Ignored.
Details

Each line segment in the pattern x is extrapolated to an infinite line, drawn through its two endpoints.
The resulting pattern of infinite lines is returned as an object of class "infline”.

If a segment’s endpoints are identical (so that it has zero length) the resulting infinite line is vertical
(i.e. parallel to the y coordinate axis).

Value
An object of class "infline"” representing the pattern of infinite lines. See infline for details of
structure.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp, infline

midpoints.psp, lengths_psp angles.psp, endpoints.psp.

230 fardist

Examples

X <= psp(runif(4), runif(4), runif(4), runif(4), window=owin())
Y <- extrapolate.psp(X)

plot(X, col=3, lwd=4)

plot(Y, lty=3)

Y

fardist Farthest Distance to Boundary of Window

Description

Computes the farthest distance from each pixel, or each data point, to the boundary of the window.
Usage
fardist(X, ...)

S3 method for class 'owin'
fardist(X, ..., squared=FALSE)

S3 method for class 'ppp'

fardist(X, ..., squared=FALSE)
Arguments
X A spatial object such as a window or point pattern.

Arguments passed to as.mask to determine the pixel resolution, if required.

squared Logical. If TRUE, the squared distances will be returned.

Details

The function fardist is generic, with methods for the classes owin and ppp.

For a window W, the command fardist (W) returns a pixel image in which the value at each pixel
is the largest distance from that pixel to the boundary of W.

For a point pattern X, with window W, the command fardist (X) returns a numeric vector with one
entry for each point of X, giving the largest distance from that data point to the boundary of W.

Value

For fardist.owin, a pixel image (object of class "im").

For fardist.ppp, a numeric vector.

fillholes.owin 231

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

Examples

fardist(cells)

plot(FR <- fardist(letterR))

fillholes.owin Remove Small Holes in a Window

Description

Given a window, this function removes any small holes in the window.

Usage

fillholes.owin(W, amin)

Arguments

W Window (object of class "owin").

amin Numeric value. The smallest permissible area of a hole.
Details

This function simplifies a window W by removing any holes with area less than amin.

The argument W must be a window (object of class "owin").

Value

Another window (object of class "owin") of the same type as W.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

simplify.owin, owin

232 flipxy

Examples

make object with small hole

A <- meningitis$kreise

W <- setminus.owin(Window(A), tiles(A)[[102]1])
amin <- 500

opa <- par(mfrow=c(1,2))
plot(W)
plot(fillholes.owin(W, amin))

M <- as.mask(W)
plot(M)
plot(fillholes.owin(M, amin))

flipxy Exchange X and Y Coordinates

Description

Exchanges the z and y coordinates in a spatial dataset.

Usage

flipxy(X)

S3 method for class 'owin'
flipxy(X)

S3 method for class 'ppp'
flipxy(X)

S3 method for class 'psp'
flipxy(X)

S3 method for class 'im'
flipxy(X)

Arguments

n on n o n

X Spatial dataset. An object of class "owin", "ppp”, "psp"” or "im".

Details

This function swaps the x and y coordinates of a spatial dataset. This could also be performed using
the command affine, but f1ipxy is faster.

The function flipxy is generic, with methods for the classes of objects listed above.

Value

Another object of the same type, representing the result of swapping the and y coordinates.

fourierbasis 233

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

affine, reflect, rotate, shift

Examples

X <- flipxy(cells)

fourierbasis Fourier Basis Functions

Description
Evaluates the Fourier basis functions on a d-dimensional box with d-dimensional frequencies k; at
the d-dimensional coordinates ;.

Usage

fourierbasis(x, k, win = boxx(rep(list(@:1), ncol(k))))
fourierbasisraw(x, k, boxlengths)

Arguments
X Coordinates. A data.frame or matrix with n rows and d columns giving the
d-dimensional coordinates.
k Frequencies. A data.frame or matrix with m rows and d columns giving the
frequencies of the Fourier-functions.
win window (of class "owin"”, "box3" or "boxx") giving the d-dimensional box do-
main of the Fourier functions.
boxlengths numeric giving the side lengths of the box domain of the Fourier functions.
Details

The result is an m by n matrix where the (¢, j)’th entry is the d-dimensional Fourier basis function
with frequency k; evaluated at the point z;, i.e.,

L exp(2mi Zl = 1dki7lajj7l/Ll)
VIV
where L;, [= 1, ..., d are the box side lengths and |V is the volume of the domain (window/box).
Note that the algorithm does not check whether the coordinates given in x are contained in the
given box. Actually the box is only used to determine the side lengths and volume of the domain
for normalization.

The stripped down faster version fourierbasisraw doesn’t do checking or conversion of argu-
ments and requires x and k to be matrices.

234 Frame

Value

An m by n matrix of complex values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

27 rows of three dimensional Fourier frequencies:

k <- expand.grid(-1:1,-1:1, -1:1)

Two random points in the three dimensional unit box:
X <= rbind(runif(3),runif(3))

27 by 2 resulting matrix:

v <- fourierbasis(x, k)

head(v)

Frame Extract or Change the Containing Rectangle of a Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract or change the containing rectangle inside which the object is defined.

Usage
Frame(X)

Default S3 method:
Frame(X)

Frame(X) <- value

S3 replacement method for class 'owin'
Frame(X) <- value

[

S3 replacement method for class 'ppp
Frame(X) <- value

S3 replacement method for class 'im'
Frame(X) <- value

Default S3 replacement method:
Frame(X) <- value

framedist.pixels 235

Arguments
X A spatial object such as a point pattern, line segment pattern or pixel image.
value A rectangular window (object of class "owin" of type "rectangle”) to be used
as the new containing rectangle for X.
Details

The functions Frame and Frame<- are generic.
Frame(X) extracts the rectangle inside which X is defined.

Frame(X) <- R changes the rectangle inside which X is defined to the new rectangle R.

Value

The result of Frame is a rectangular window (object of class "owin" of type "rectangle”).

The result of Frame<- is the updated object X, of the same class as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window

Examples

Frame(cells)

X <- demopat

Frame (X)

Frame(X) <- owin(c(@, 11000), c(400, 8000))

framedist.pixels Distance to Bounding Frame

Description

Computes the distances from each pixel to the bounding rectangle.

Usage

framedist.pixels(w, ..., style=c("image"”, "matrix", "coords"))

236 framedist.pixels

Arguments
w A window (object of class "owin").
Arguments passed to as.mask to determine the pixel resolution.
style Character string (partially matched) determining the format of the output: either
"matrix"”, "coords” or "image".
Details

This function computes, for each pixel u in the rectangular frame Frame(w), the shortest distance
to the boundary of Frame(w).

The grid of pixels is determined by the arguments "\dots" passed to as.mask. The distance from
each pixel to the boundary is calculated exactly, using analytic geometry.

Value

If style="image", a pixel image (object of class "im") containing the distances from each pixel in
the image raster to the boundary of the window.

If style="matrix", a matrix giving the distances from each pixel in the image raster to the bound-
ary of the window. Rows of this matrix correspond to the y coordinate and columns to the x
coordinate.

If style="coords"”, a list with three components x,y,z, where x,y are vectors of length m,n
giving the x and y coordinates respectively, and z is an m X n matrix such that z[i,j] is the
distance from (x[i],y[j]) to the boundary of the window. Rows of this matrix correspond to the
z coordinate and columns to the y coordinate. This result can be plotted with persp, image or
contour.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

bdist.pixels.

Examples

opa <- par(mfrow=c(1,2))
plot(framedist.pixels(letterR))
plot(bdist.pixels(letterR))
par(opa)

funxy 237

funxy Spatial Function Class

Description

A simple class of functions of spatial location

Usage
funxy(f, W)
Arguments
f A function in the R language with arguments x, y (at least)
W Window (object of class "owin") inside which the function is well-defined.
Details

This command creates an object of class "funxy”. This is a simple mechanism for handling a
function of spatial location f(x,y) to make it easier to display and manipulate.

f should be a function in the R language. The first two arguments of f must be named x and y
respectively.

W should be a window (object of class "owin") inside which the function f is well-defined.

The function f should be vectorised: that is, if x and y are numeric vectors of the same length n,
then v <- f(x,y) should be a vector of length n.

The resulting function g <- funxy(f, W) has the same formal arguments as f and can be called in
the same way, v <- g(x,y) where x and y are numeric vectors. However it can also be called as v
<- g(X), where X is a point pattern (object of class "ppp” or "1pp") or a quadrature scheme (class
"quad"); the function will be evaluated at the points of X.

The result also has a unitname, inherited from W.

Value
A function with the same arguments as f, which also belongs to the class "funxy”. This class has
methods for print, plot, contour and persp.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.funxy, summary. funxy

238 gridcentres

Examples

f <- function(x,y) { x*2 + y*2 - 1}
g <- funxy(f, square(2))

g
evaluate function at any x, y coordinates
g(0.2, 0.3)

evaluate function at the points of a point pattern
g(cells[1:4])

gridcentres Rectangular grid of points

Description

Generates a rectangular grid of points in a window

Usage

gridcentres(window, nx, ny)

Arguments
window A window. An object of class owin, or data in any format acceptable to as.owin().
nx Number of points in each row of the rectangular grid.
ny Number of points in each column of the rectangular grid.

Details

This function creates a rectangular grid of points in the window.

The bounding rectangle of the window is divided into a regular nx X ny grid of rectangular tiles.
The function returns the x, y coordinates of the centres of these tiles.

n

Note that some of these grid points may lie outside the window, if window is not of type "rectangle”.
The function inside.owin can be used to select those grid points which do lie inside the window.
See the examples.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) and for
other miscellaneous purposes.

Value
A list with two components x and y, which are numeric vectors giving the coordinates of the points
of the rectangular grid.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

gridweights

See Also

239

quad.object, quadscheme, inside.owin, stratrand

Examples

w <- unit.square()

Xy <- gridcentres(w, 10,15)
if(human <- interactive()) {
plot(w)

points(xy)

}

bdry <- list(x=c(0.1,0.3,0.7,0.4,0.2),
y=c(0.1,0.1,0.5,0.7,0.3))

w <- owin(c(0,1), c(0,1), poly=bdry)

Xy <- gridcentres(w, 30, 30)

ok <- inside.owin(xyx, xyy, w)

if Chuman) {

plot(w)
points(xy$x[ok], xy$yl[ok])
3
gridweights Compute Quadrature Weights Based on Grid Counts
Description

Computes quadrature weights for a given set of points, using the “counting weights” for a grid of

rectangular tiles.

Usage
gridweights(X, ntile, ..., window=NULL, verbose=FALSE, npix=NULL, areas=NULL)
Arguments
X Data defining a point pattern.
ntile Number of tiles in each row and column of the rectangular grid. An integer
vector of length 1 or 2.
Ignored.
window Default window for the point pattern
verbose Logical flag. If TRUE, information will be printed about the computation of the
grid weights.
npix Dimensions of pixel grid to use when computing a digital approximation to the
tile areas.
areas Vector of areas of the tiles, if they are already known.

240 grow.boxx

Details

This function computes a set of quadrature weights for a given pattern of points (typically compris-
ing both “data” and ‘dummy” points). See quad.object for an explanation of quadrature weights
and quadrature schemes.

The weights are computed by the “counting weights™ rule based on a regular grid of rectangular
tiles. First X and (optionally) window are converted into a point pattern object. Then the bounding
rectangle of the window of the point pattern is divided into a regular ntile[1] * ntile[2] grid of
rectangular tiles. The weight attached to a point of X is the area of the tile in which it lies, divided
by the number of points of X lying in that tile.

For non-rectangular windows the tile areas are currently calculated by approximating the window
as a binary mask. The accuracy of this approximation is controlled by npix, which becomes the
argument dimyx of as.mask.

Value

Vector of nonnegative weights for each point in X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, dirichletWeights

Examples

Q <- quadscheme(runifrect(15))

X <- as.ppp(Q) # data and dummy points together
w <- gridweights(X, 10)

w <- gridweights(X, c(10, 10))

grow.boxx Add margins to box in any dimension

Description

Adds a margin to a box of class boxx.

Usage
grow.boxx(W, left, right = left)
grow.box3(W, left, right = left)

grow.rectangle

Arguments

W
left

right

Value

241

A box (object of class "boxx" or "box3").

Width of margin to be added to left endpoint of box side in every dimension. A
single nonnegative number, or a vector of same length as the dimension of the
box to add different left margin in each dimension.

Width of margin to be added to right endpoint of box side in every dimension.
A single nonnegative number, or a vector of same length as the dimension of the
box to add different right margin in each dimension.

Another object of the same class "boxx" or "box3" representing the window after margins are

added.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

grow.rectangle, boxx, box3

Examples

w <- boxx(c(0,10), c(0,10), c(0,10), c(0,10))
add a margin of size 1 on both sides in all four dimensions
b12 <- grow.boxx(w, 1)

add margin of size 2 at left, and margin of size 3 at right,
in each dimension.
v <- grow.boxx(w, 2, 3)

grow.rectangle

Add margins to rectangle

Description

Adds a margin to a rectangle.

Usage

grow.rectangle(W, xmargin=0, ymargin=xmargin, fraction=NULL)

242 grow.rectangle

Arguments
W A window (object of class "owin"). Must be of type "rectangle”.
xmargin Width of horizontal margin to be added. A single nonnegative number, or a
vector of length 2 indicating margins of unequal width at left and right.
ymargin Height of vertical margin to be added. A single nonnegative number, or a vector
of length 2 indicating margins of unequal width at bottom and top.
fraction Fraction of width and height to be added. A number greater than zero, or a
numeric vector of length 2 indicating different fractions of width and of height,
respectively. Incompatible with specifying xmargin and ymargin.
Details

This is a simple convenience function to add a margin of specified width and height on each side of
a rectangular window. Unequal margins can also be added.

Value

Another object of class "owin" representing the window after margins are added.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

trim.rectangle, dilation, erosion, owin.object

Examples

w <- square(10)
add a margin of width 1 on all four sides
squarel2 <- grow.rectangle(w, 1)

add margin of width 3 on the right side
and margin of height 4 on top.
v <- grow.rectangle(w, c(9,3), c(0,4))

grow by 5 percent on all sides
grow.rectangle(w, fraction=0.05)

harmonise 243

harmonise Make Objects Compatible

Description

Converts several objects of the same class to a common format so that they can be combined or
compared.

Usage

harmonise(...)
harmonize(...)

Arguments

Any number of objects of the same class.

Details

This generic command takes any number of objects of the same class, and atfempts to make them
compatible in the sense of compatible so that they can be combined or compared.

There are methods for the classes "fv" (harmonise.fv) and "im" (harmonise.im).

All arguments . . . must be objects of the same class. The result will be a list, of length equal to the
number of arguments . . ., containing new versions of each of these objects, converted to a common
format. If the arguments were named (name=value) then the return value also carries these names.

Value
A list, of length equal to the number of arguments . . ., whose entries are objects of the same class.
If the arguments were named (name=value) then the return value also carries these names.
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.
See Also

compatible, harmonise. fv, harmonise.im

244 harmonise.im

harmonise.im Make Pixel Images Compatible

Description

Convert several pixel images to a common pixel raster.

Usage

S3 method for class 'im'
harmonise(...)

S3 method for class 'im'
harmonize(...)

Arguments

Any number of pixel images (objects of class "im") or data which can be con-
verted to pixel images by as. im.

Details
This function makes any number of pixel images compatible, by converting them all to a common
pixel grid.
The command harmonise is generic. This is the method for objects of class "im".

At least one of the arguments . . . must be a pixel image. Some arguments may be windows (objects
of class "owin"), functions (function(x,y)) or numerical constants. These will be converted to
images using as. im.

The common pixel grid is determined by inspecting all the pixel images in the argument list, com-
puting the bounding box of all the images, then finding the image with the highest spatial resolution,
and extending its pixel grid to cover the bounding box.

The return value is a list with entries corresponding to the input arguments. If the arguments were
named (name=value) then the return value also carries these names.

If you just want to determine the appropriate pixel resolution, without converting the images, use
commonGrid.

Value

A list, of length equal to the number of arguments . . ., whose entries are pixel images.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

commonGrid, compatible.im, as.im

harmonise.owin 245

Examples

Imagel <- setcov(square(1), dimyx=32)

Image2 <- setcov(square(1), dimyx=16)

Functionl <- function(x,y) { x }

Windowl <- shift(letterR, c(-2, -1))

h <- harmonise(X=Imagel, Y=Image2, Z=Functionl, W=Window1)
plot(h, main="")

harmonise.owin Make Windows Compatible

Description

Convert several windows to a common pixel raster.

Usage

S3 method for class 'owin'
harmonise(...)

S3 method for class 'owin'
harmonize(...)

Arguments

Any number of windows (objects of class "owin") or data which can be con-
verted to windows by as.owin.

Details

This function makes any number of windows compatible, by converting them all to a common pixel
grid.

This only has an effect if one of the windows is a binary mask. If all the windows are rectangular
or polygonal, they are returned unchanged.
The command harmonise is generic. This is the method for objects of class "owin".

Each argument must be a window (object of class "owin"), or data that can be converted to a
window by as.owin.

The common pixel grid is determined by inspecting all the windows in the argument list, computing
the bounding box of all the windows, then finding the binary mask with the finest spatial resolution,
and extending its pixel grid to cover the bounding box.

The return value is a list with entries corresponding to the input arguments. If the arguments were
named (name=value) then the return value also carries these names.

If you just want to determine the appropriate pixel resolution, without converting the windows, use
commonGrid.

246 harmoniseLevels

Value

A list of windows, of length equal to the number of arguments The list belongs to the class
"solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

commonGrid, harmonise.im, as.owin

Examples

harmonise(X=letterR,
Y=grow.rectangle(Frame(letterR), 0.2),
Z=as.mask(letterR, eps=0.1),
V=as.mask(letterR, eps=0.07))

harmoniselLevels Harmonise the levels of several factors, or factor-valued pixel images.

Description
Given several factors (or factor-valued pixel images) convert them so that they all use the same set
of levels.

Usage

harmoniselLevels(...)

Arguments
Factors, or factor-valued pixel images.
Details
All of the arguments . . . must be factors, or factor-valued pixel images (objects of class "im").

The levels of each factor will be extracted, and combined by taking the union of all the levels.
Then each factor will be converted to a new factor so that all of the new factors have exactly the
same set of levels.

Value

A list, containing the same number of arguments as the input, consisting of factors or factor-valued
pixel images.

has.close 247

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

levels, levels.im, mergelLevels.

Examples

(a <- factor(sample(letters[1:3], 10, replace=TRUE)))
(b <- factor(sample(LETTERS[1:4], 7, replace=TRUE)))
harmoniselLevels(a,b)

(A <- gorillas.extra$vegetation)
(B <- gorillas.extra$slopetype)
harmoniselLevels(A,B)

has.close Check Whether Points Have Close Neighbours

Description

For each point in a point pattern, determine whether the point has a close neighbour in the same
pattern.

Usage
has.close(X, r, Y=NULL, ...)

Default S3 method:
has.close(X,r, Y=NULL, ..., periodic=FALSE)

S3 method for class 'ppp'
has.close(X,r, Y=NULL, ..., periodic=FALSE, sorted=FALSE)

S3 method for class 'pp3'

has.close(X,r, Y=NULL, ..., periodic=FALSE, sorted=FALSE)
Arguments
X, Y Point patterns of class "ppp"” or "pp3"” or "lpp”.
r Threshold distance: a number greater than zero.
periodic Logical value indicating whether to measure distances in the periodic sense, so

that opposite sides of the (rectangular) window are treated as identical.

sorted Logical value, indicating whether the points of X (and Y, if given) are already
sorted into increasing order of the = coordinates.

Other arguments are ignored.

248 headtail

Details

This is simply a faster version of (nndist(X) <=r) or (nncross(X,Y,what="dist") <=r).

has.close(X,r) determines, for each point in the pattern X, whether or not this point has a neigh-
bour in the same pattern X which lies at a distance less than or equal to r.

has.close(X,r,Y) determines, for each point in the pattern X, whether or not this point has a
neighbour in the other pattern Y which lies at a distance less than or equal to r.

The function has.close is generic, with methods for "ppp"” and "pp3" and a default method.

Value

A logical vector, with one entry for each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

nndist

Examples

has.close(redwood, 0.05)
with(split(amacrine), has.close(on, 0.05, off))
with(osteo, sum(has.close(pts, 20)))

headtail First or Last Part of a Spatial Pattern

Description

Returns the first few elements (head) or the last few elements (tail) of a spatial pattern.

Usage
S3 method for class 'ppp'
head(x, n = 6L, ...)

S3 method for class 'ppx'
head(x, n = 6L, ...)

S3 method for class 'psp'
head(x, n = 6L, ...)

S3 method for class 'tess'
head(x, n = 6L, ...)

headtail 249

S3 method for class 'ppp'
tail(x, n = 6L, ...)

S3 method for class 'ppx'
tail(x, n = 6L, ...)

S3 method for class 'psp'
tail(x, n =6L, ...)

S3 method for class 'tess'

tail(x, n = 6L, ...)
Arguments
X A spatial pattern of geometrical figures, such as a spatial pattern of points (an

n on

object of class "ppp”, "pp3”, "ppx" or "1pp") or a spatial pattern of line seg-
ments (an object of class "psp”) or a tessellation (object of class "tess").

n Integer. The number of elements of the pattern that should be extracted.

Ignored.

Details

These are methods for the generic functions head and tail. They extract the first or last n elements
from x and return them as an object of the same kind as x.

To inspect the spatial coordinates themselves, use View(x) or head(as.data.frame(x)).

Value

An object of the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

View, edit.

Conversion to data frame: as.data.frame.ppp, as.data.frame.ppx, as.data.frame.psp

Examples

head(cells)
tail(edges(letterR), 5)
head(dirichlet(cells), 4)

250 hextess

hextess Hexagonal Grid or Tessellation

Description

Construct a hexagonal grid of points, or a hexagonal tessellation.

Usage
hexgrid(W, s, offset = c(@, @), origin=NULL, trim = TRUE)

hextess(W, s, offset = c(@, @), origin=NULL, trim = TRUE)

Arguments
W Window in which to construct the hexagonal grid or tessellation. An object of
class "owin".
s Side length of hexagons. A positive number.
offset Numeric vector of length 2 specifying a shift of the hexagonal grid. See Details.
origin Numeric vector of length 2 specifying the initial origin of the hexagonal grid,
before the offset is applied. See Details.
trim Logical value indicating whether to restrict the result to the window W. See De-
tails.
Details

hexgrid constructs a hexagonal grid of points on the window W. If trim=TRUE (the default), the
grid is intersected with W so that all points lie inside W. If trim=FALSE, then we retain all grid points
which are the centres of hexagons that intersect W.

hextess constructs a tessellation of hexagons on the window W. If trim=TRUE (the default), the
tessellation is restricted to the interior of W, so that there will be some fragmentary hexagons near
the boundary of W. If trim=FALSE, the tessellation consists of all hexagons which intersect W.

The points of hexgrid(...) are the centres of the tiles of hextess(...) in the same order.

In the initial position of the grid or tessellation, one of the grid points (tile centres) is placed at
the origin, which defaults to the midpoint of the bounding rectangle of W. The grid can be shifted
relative to this origin by specifing the of fset.

Value

The value of hexgrid is a point pattern (object of class "ppp").

The value of hextess is a tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

hist.funxy 251
See Also
tess
hexagon
Examples
if(interactive()) {
W <- Window(chorley)
s <- 0.7
} else {
W <- letterR
s <- 0.3
}
plot(hextess(W, s))
plot(hexgrid(W, s), add=TRUE)
hist.funxy Histogram of Values of a Spatial Function
Description
Computes and displays a histogram of the values of a spatial function of class "funxy".
Usage
S3 method for class 'funxy'
hist(x, ..., xname)
Arguments
X A pixel image (object of class "funxy").
Arguments passed to as.imor hist.im.
xname Optional. Character string to be used as the name of the dataset x.
Details
This function computes and (by default) displays a histogram of the values of the function x.
An object of class "funxy" describes a function of spatial location. It is a function(x,y,..) in

the R language, with additional attributes.

The function hist. funxy is a method for the generic function hist for the class "funxy".

The function is first converted to a pixel image using as. im, then hist. imis called to produce the

histogram.

Any arguments in ... are passed to as.im to determine the pixel resolution, or to hist.im to
determine the histogram breaks and to control or suppress plotting. Useful arguments include W for

the spatial domain, eps,dimyx for pixel resolution, main for the main title.

252 hist.im

Value

An object of class "histogram” as returned by hist.default. This object can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

spatialcdf for the cumulative distribution function of an image or function.
hist, hist.default.

For other statistical graphics such as Q-Q plots, use as.im(X) [] to extract the pixel values of image
X, and apply the usual statistical graphics commands.

Examples

f <= funxy(function(x,y) {x*23}, unit.square())
hist(f)

hist.im Histogram of Pixel Values in an Image

Description

Computes and displays a histogram of the pixel values in a pixel image. The hist method for class

ns on

im".
Usage
S3 method for class 'im'
hist(x, ..., probability=FALSE, xname)
Arguments
X A pixel image (object of class "im").

Arguments passed to hist.default or barplot.

probability Logical. If TRUE, the histogram will be normalised to give probabilities or prob-
ability densities.

xname Optional. Character string to be used as the name of the dataset x.

hyperframe 253

Details

This function computes and (by default) displays a histogram of the pixel values in the image x.
An object of class "im" describes a pixel image. See im.object) for details of this class.
The function hist. im is a method for the generic function hist for the class "im".

Any arguments in . .. are passed to hist.default (for numeric valued images) or barplot (for
factor or logical images). For example, such arguments control the axes, and may be used to sup-
press the plotting.

Value

For numeric-valued images, an object of class "histogram” as returned by hist.default. This
object can be plotted.

For factor-valued or logical images, an object of class "barplotdata”, which can be plotted. This
is a list with components called counts (contingency table of counts of the numbers of pixels taking
each possible value), probs (corresponding relative frequencies) and mids (graphical z-coordinates
of the midpoints of the bars in the barplot).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

spatialcdf for the cumulative distribution function of an image.
hist, hist.default, barplot.

For other statistical graphics such as Q-Q plots, use X[] to extract the pixel values of image X, and
apply the usual statistical graphics commands.

For information about pixel images see im.object, summary.im.

Examples

X <- as.im(function(x,y) {x*2}, unit.square())
hist(X)
hist(cut(X,3))

hyperframe Hyper Data Frame

Description

Create a hyperframe: a two-dimensional array in which each column consists of values of the same
atomic type (like the columns of a data frame) or objects of the same class.

254 hyperframe

Usage
hyperframe(...,
row.names=NULL, check.rows=FALSE, check.names=TRUE,
stringsAsFactors=NULL)
Arguments

Arguments of the form value or tag=value. Each value is either an atomic
vector, a factor, a list of objects of the same class, a single atomic value, or a sin-
gle object. Each value will become a column of the array. The tag determines
the name of the column. See Details.

row.names, check.rows, check.names, stringsAsFactors
Arguments passed to data. frame controlling the names of the rows, whether to
check that rows are consistent, whether to check validity of the column names,
and whether to convert character columns to factors.

Details

A hyperframe is like a data frame, except that its entries can be objects of any kind.

A hyperframe is a two-dimensional array in which each column consists of values of one atomic
type (as in a data frame) or consists of objects of one class.

The arguments . .. are any number of arguments of the form value or tag=value. Each value
will become a column of the array. The tag determines the name of the column.

Each value can be either

* an atomic vector or factor (i.e. numeric vector, integer vector, character vector, logical vector,
complex vector, factor, or an object of class "Date"” or "Surv")

* alist of objects which are all of the same class
* one atomic value, which will be replicated to make an atomic vector or factor

* one object, which will be replicated to make a list of objects.

All columns (vectors, factors and lists) must be of the same length, if their length is greater than 1.

Value

An object of class "hyperframe”.

Methods for Hyperframes

There are methods for print, plot, summary, with, split, [, [<-, [[, [[<-, $, $<-, names,
as.data.frame as.list, cbind and rbind for the class of hyperframes. There is also is.hyperframe
and as.hyperframe.

hyperframe 255

Handling Character Strings

The argument stringsAsFactors is a logical value (passed to data.frame) specifying how to
handle pixel values which are character strings. If TRUE, character values are interpreted as factor
levels. If FALSE, they remain as character strings. The default values of stringsAsFactors depends
on the version of R.

* In R versions < 4.1.0 the factory-fresh default is stringsAsFactors=FALSE and the default
can be changed by setting options(stringsAsFactors=FALSE).

* in R versions >=4.1.0 the default is stringsAsFactors=FALSE and there is no option to
change the default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

as.hyperframe, as.hyperframe.ppx, plot.hyperframe, [.hyperframe,with.hyperframe, split.hyperframe,
as.data.frame.hyperframe, cbind.hyperframe, rbind.hyperframe

Examples

equivalent to a data frame
hyperframe(X=1:10, Y=3)

list of functions
hyperframe(f=1list(sin, cos, tan))

table of functions and matching expressions
hyperframe(f=1ist(sin, cos, tan),
e=list(expression(sin(x)), expression(cos(x)), expression(tan(x))))

hyperframe(X=1:10, Y=letters[1:10], Z=factor(letters[1:10]),
stringsAsFactors=FALSE)

lambda <- runif(4, min=50, max=100)
if(require(spatstat.random)) {
X <- solapply(as.list(lambda), rpoispp)

} else {

X <- solapply(as.list(lambda), function(lam) runifrect(rpois(1, lam)))
3

h <- hyperframe(lambda=lambda, X=X)

h

h$lambda2 <- lambda*2
h[, "lambda3"] <- lambda*3
h[, "Y"] <- X

h[[2, "lambda3"]1]

256 identity.ppp

identify.ppp Identify Points in a Point Pattern

Description

If a point pattern is plotted in the graphics window, this function will find the point of the pattern
which is nearest to the mouse position, and print its mark value (or its serial number if there is no

mark).
Usage
S3 method for class 'ppp'
identify(x, ...)
Arguments
X A point pattern (object of class "ppp").

Arguments passed to identify.default.

Details

This is a method for the generic function identify for point pattern objects.

The point pattern x should first be plotted using plot.ppp. Then identify(x) reads the position of
the graphics pointer each time the left mouse button is pressed. It then finds the point of the pattern
x closest to the mouse position. If this closest point is sufficiently close to the mouse pointer, its
index (and its mark if any) will be returned as part of the value of the call.

Each time a point of the pattern is identified, text will be displayed next to the point, showing its
serial number (if x is unmarked) or its mark value (if x is marked).
Value

If x is unmarked, the result is a vector containing the serial numbers of the points in the pattern x
that were identified. If x is marked, the result is a 2-column matrix, the first column containing the
serial numbers and the second containing the marks for these points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

identify, clickppp

identity.psp

257

identify.psp

Identify Segments in a Line Segment Pattern

Description

If a line segment pattern is plotted in the graphics window, this function will find the segment which
is nearest to the mouse position, and print its serial number.

Usage

S3 method for class 'psp'

identify(x,

., labels=seq_len(nsegments(x)), n=nsegments(x),

plot=TRUE, paint=plot, paint.args=list())

Arguments

X

labels

plot

paint

paint.args

Details

A line segment pattern (object of class "psp”).

Labels associated with the segments, to be plotted when the segments are iden-
tified. A character vector or numeric vector of length equal to the number of
segments in x.

Maximum number of segments to be identified.
Logical. Whether to plot the labels when a segment is identified.

Arguments passed to text.default controlling the plotting of the labels, if
plot=TRUE.

Logical. Whether to redraw each identified segment, using a different colour.

Optional list of arguments passed to plot.psp determining the colour and style
in which each identified segment will be redrawn, if paint=TRUE.

This is a method for the generic function identify for line segment pattern objects.

The line segment pattern x should first be plotted using plot.psp. Then identify(x) reads the
position of the graphics pointer each time the left mouse button is pressed. It then finds the segment
in the pattern x that is closest to the mouse position. This segment’s index will be returned as part
of the value of the call.

Each time a segment is identified, text will be displayed next to the point, showing its serial number
(or the relevant entry of labels).

The procedure terminates when the right mouse button is pressed.

Value

Vector containing the serial numbers of the segments in the pattern x that were identified.

258 identity.tess

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

identify, identify.ppp.

identify.tess Interactively Identify Tiles of a Tessellation

Description

If a tessellation is plotted in the graphics window, then each time the left mouse button is pressed,
this function will find the tile which contains the mouse position, and print its mark value (or its
serial number if there is no mark).

Usage
S3 method for class 'tess'
identify(x, ...,
labels=tilenames(x),
n=nobjects(x), plot=TRUE, paint=plot, paint.args=list())
Arguments
X A tessellation (object of class "tess").
Arguments passed to plot.owin and text.default controlling the graphical
display.
labels Labels associated with the tiles, to be plotted when the tiles are identified. A
character vector or numeric vector of length equal to the number of tiles in x.
n Maximum number of tiles to be identified.
plot Logical. Whether to plot the labels when a tile is identified.
paint Logical. Whether to redraw each identified tile, using a different colour.
paint.args Optional list of arguments passed to plot.owin determining the colour and style
in which each identified tile will be redrawn, if paint=TRUE.
Details

This is a method for the generic function identify for tessellation objects.

The tessellation x should first be plotted using plot.tess. Then identify(x) reads the position
of the graphics pointer each time the left mouse button is pressed. It then determines which tile of
x contains the mouse position. The index of this tile (and its mark if any) will be returned as part of
the value of the call.

Each time a tile is identified, the tile will be plotted in light blue fill colour, and text will be displayed
inside the tile showing the name of the tile.

im 259

Value
A data.frame with columns id and name containing the serial numbers and names of the tiles of
x that were identified, in the order that they were identified; If x is marked, subsequent columns
contain the marks for these tiles.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

identify, plot.tess

im Create a Pixel Image Object

Description

Creates an object of class "im" representing a two-dimensional pixel image.

Usage

im(mat, xcol=seq_len(ncol(mat)), yrow=seq_len(nrow(mat)),
xrange=NULL, yrange=NULL,
unitname=NULL)

Arguments
mat matrix or vector containing the pixel values of the image.
xcol vector of z coordinates for the pixel grid
yrow vector of y coordinates for the pixel grid

xrange, yrange Optional. Vectors of length 2 giving the = and y limits of the enclosing rectangle.
(Ignored if xcol, yrow are present.)

unitname Optional. Name of unit of length. Either a single character string, or a vector of
two character strings giving the singular and plural forms, respectively.

Details

This function creates an object of class "im"” representing a ‘pixel image’ or two-dimensional array
of values.

The pixel grid is rectangular and occupies a rectangular window in the spatial coordinate system.
The pixel values are scalars: they can be real numbers, integers, complex numbers, single characters
or strings, logical values, or categorical values. A pixel’s value can also be NA, meaning that no
value is defined at that location, and effectively that pixel is ‘outside’ the window. Although the
pixel values must be scalar, photographic colour images (i.e., with red, green, and blue brightness

260

im

channels) can be represented as character-valued images in spatstat, using R’s standard encoding

of colours as character strings.

The matrix mat contains the ‘greyscale’ values for a rectangular grid of pixels. Note carefully that
the entry mat[i, j] gives the pixel value at the location (xcol[j],yrow[i]). That is, the row
index of the matrix mat corresponds to increasing y coordinate, while the column index of mat
corresponds to increasing x coordinate. Thus yrow has one entry for each row of mat and xcol has
one entry for each column of mat. Under the usual convention in R, a correct display of the image
would be obtained by transposing the matrix, e.g. image.default(xcol, yrow, t(mat)), if you

wanted to do it by hand.

The entries of mat may be numeric (real or integer), complex, logical, character, or factor values.
If mat is not a matrix, it will be converted into a matrix with nrow(mat) = length(yrow) and

ncol(mat) = length(xcol).

To make a factor-valued image, note that R has a quirky way of handling matrices with factor-valued

entries. The command matrix cannot be used directly, because it destroys factor information. To
make a factor-valued image, do one of the following:
* Create a factor containing the pixel values, say mat <- factor(.....), and then assign

matrix dimensions to it by dim(mat) <- c(nr, nc) where nr, nc are the numbers of rows

and columns. The resulting object mat is both a factor and a vector.

* Supply mat as a one-dimensional factor and specify the arguments xcol and yrow to determine

the dimensions of the image.

 Use the functions cut.imor eval.im to make factor-valued images from other images).

For a description of the methods available for pixel image objects, see im.object.

To convert other kinds of data to a pixel image (for example, functions or windows), use as. im.

Warnings

The internal representation of images is likely to change in future releases of spatstat. The safe

way to extract pixel values from an image object is to use as.matrix.imor [.im.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

im.object for details of the class.
as. im for converting other kinds of data to an image.

as.matrix.im, [.im, eval.im for manipulating images.

Examples

vec <- rnorm(1200)
mat <- matrix(vec, nrow=30, ncol=40)
whitenoise <- im(mat)

im.apply 261

whitenoise <- im(mat, xrange=c(0,1), yrange=c(0,1))

whitenoise <- im(mat, xcol=seq(@,1,length=40), yrow=seq(@,1,length=30))
whitenoise <- im(vec, xcol=seq(@,1,length=40), yrow=seq(@,1,length=30))
plot(whitenoise)

Factor-valued images:

f <- factor(letters[1:12])
dim(f) <- c(3,4)

Z <- im(f)

Factor image from other image:
cutwhite <- cut(whitenoise, 3)
plot(cutwhite)

Factor image from raw data
cutmat <- cut(mat, 3)
dim(cutmat) <- c(30,40)
cutwhite <- im(cutmat)
plot(cutwhite)

im.apply Apply Function Pixelwise to List of Images

Description

Returns a pixel image obtained by applying a given function to corresponding pixels in several pixel

images.
Usage
im.apply(X, FUN, ..., fun.handles.na=FALSE, check=TRUE, verbose=TRUE)
Arguments
X A list of pixel images (objects of class "im").
FUN A function that can be applied to vectors, or a character string giving the name

of such a function.
Additional arguments to FUN.

fun.handles.na Logical value specifying what to do when the data include NA values. See De-
tails.

check Logical value specifying whether to check that the images in X are compatible
(for example that they have the same grid of pixel locations) and to convert them
to compatible images if necessary.

verbose Logical value specifying whether to print informative messages.

262 im.apply

Details

The argument X should be a list of pixel images (objects of class "im"). If the images do not have
identical pixel grids, they will be converted to a common grid using harmonise.im.

At each pixel location, the values of the images in X at that pixel will be extracted as a vector; the
function FUN will be applied to this vector; and the return value of FUN will become the pixel value
of the resulting image. For example im.apply (X, mean) will return a pixel image in which the
value of each pixel is the average of the corresponding pixel values in the images in X.

If the result of FUN is a vector, then the result of im.apply will be a list of images. For exam-
ple im.apply(X, range) will return a list of two images containing the pixelwise minimum and
pixelwise maximum, respectively, of the input images in X.

The argument fun.handles.na specifies what to do when some of the pixel values are NA.
 If fun.handles.na=FALSE (the default), the function FUN is never applied to data that include
NA values; the result is defined to be NA whenever the data contain NA.

 If fun.handles.na=TRUE, the function FUN will be applied to all pixel data, including those
which contain NA values.

Value

A pixel image (object of class "im") or a list of pixel images.

Computation details

The computation is performed efficiently using matrix operations where possible, by constructing
a large matrix containing all the pixel data for all images. However, if this matrix would exceed
the maximum permitted size of matrices (as given in spatstat.options(”maxmatrix”)), then the
calculation is performed on smaller sub-images, and this is reported in a message if verbose=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

eval. im for algebraic operations with images.

Examples

list of two pixel images

Y <- solapply(bei.extra, scaletointerval)
plot(Y)

im.apply(Y, max)

im.apply(Y, sum)

im.apply(Y, range)

Example with incompatible patterns of NA values
B <- owin(c(438, 666), c(80, 310))
YCL111[B] <- NA

im.object 263

opa <- par(mfrow=c(2,2))

plot(YL[1]])

plot(YL[211)

#' Default action: NA -> NA

plot(im.apply(Y, mean))

#' Use NA handling in mean.default

plot(im.apply(Y, mean, na.rm=TRUE, fun.handles.na=TRUE))
par(opa)

im.object Class of Images

Description

A class "im" to represent a two-dimensional pixel image.

Details
An object of this class represents a two-dimensional pixel image. It specifies

* the dimensions of the rectangular array of pixels
* z and y coordinates for the pixels

* anumeric value (“grey value”) at each pixel

If X is an object of type im, it contains the following elements:

v matrix of values

dim dimensions of matrix v

xrange range of x coordinates of image window
yrange range of y coordinates of image window
xstep width of one pixel

ystep height of one pixel

xcol vector of = coordinates of centres of pixels
yrow vector of y coordinates of centres of pixels

Users are strongly advised not to manipulate these entries directly.

Objects of class "im" may be created by the functions im and as. im. Image objects are also returned
by various functions including distmap, Kmeasure, setcov, eval.imand cut.im.

Image objects may be displayed using the methods plot.im, image.im, persp.imand contour.im.
There are also methods print.im for printing information about an image, summary. im for sum-
marising an image, mean. im for calculating the average pixel value, hist.im for plotting a his-
togram of pixel values, quantile.im for calculating quantiles of pixel values, and cut.im for
dividing the range of pixel values into categories.

Pixel values in an image may be extracted using the subset operator [. im. To extract all pixel values
from an image object, use as.matrix.im. The levels of a factor-valued image can be extracted and
changed with levels and levels<-.

264 imcov

Calculations involving one or more images (for example, squaring all the pixel values in an image,
converting numbers to factor levels, or subtracting one image from another) can often be done easily
using eval.im. To find all pixels satisfying a certain constraint, use solutionset.

Note carefully that the entry v[i, j] gives the pixel value at the location (xcol[j],yrow[i]. That
is, the row index of the matrix v corresponds to increasing y coordinate, while the column index
of mat corresponds to increasing x coordinate. Thus yrow has one entry for each row of v and
xcol has one entry for each column of v. Under the usual convention in R, a correct display of the
image would be obtained by transposing the matrix, e.g. image.default(xcol, yrow, t(v)), if
you wanted to do it by hand.

Warnings

The internal representation of images is likely to change in future releases of spatstat. Do not
address the entries in an image directly. To extract all pixel values from an image object, use
as.matrix.im.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

im, as.im, plot.im, persp.im, eval.im, [.im

imcov Spatial Covariance of a Pixel Image

Description

Computes the unnormalised spatial covariance function of a pixel image.

Usage

imcov(X, Y=X)

Arguments
X A pixel image (object of class "im".

Y Optional. Another pixel image.

incircle 265

Details

The (uncentred, unnormalised) spatial covariance function of a pixel image X in the plane is the
function C'(v) defined for each vector v as

Cv) = /X(u)X(ufv) du

where the integral is over all spatial locations u, and where X (u) denotes the pixel value at location
U.

This command computes a discretised approximation to the spatial covariance function, using the
Fast Fourier Transform. The return value is another pixel image (object of class "im") whose
greyscale values are values of the spatial covariance function.

If the argument Y is present, then imcov(X,Y) computes the set cross-covariance function C(u)
defined as

Cv) = /X(U)Y(u —v) du.
Note that imcov (X, Y) is equivalent to convolve.im(X,Y,reflectY=TRUE).

Value
A pixel image (an object of class "im") representing the spatial covariance function of X, or the
cross-covariance of X and Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

setcov, convolve.im, owin, as.owin, erosion

Examples

X <- as.im(square(1))
v <- imcov(X)
plot(v)

incircle Find Largest Circle Inside Window

Description

Find the largest circle contained in a given window.

266 incircle

Usage

incircle(W)

inradius(W)

Arguments

W A window (object of class "owin").

Details

Given a window W of any type and shape, the function incircle determines the largest circle that
is contained inside W, while inradius computes its radius only.

For non-rectangular windows, the incircle is computed approximately by finding the maximum of
the distance map (see distmap) of the complement of the window.

Value

The result of incircle is a list with entries x,y, r giving the location (x,y) and radius r of the
incircle.

The result of inradius is the numerical value of radius.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

centroid.owin

Examples

W <- square(1)

Wc <- incircle(W)

plot(W)

plot(disc(Wc$r, c(Wc$x, Wc$y)), add=TRUE)

plot(letterR)
Rc <- incircle(letterR)
plot(disc(Rc$r, c(Rc$x, Rc$y)), add=TRUE)

W <- as.mask(letterR)

plot(W)

Rc <- incircle(W)

plot(disc(Rc$r, c(Rc$x, Rc$y)), add=TRUE)

infline 267

infline Infinite Straight Lines

Description

Define the coordinates of one or more straight lines in the plane

Usage

infline(a = NULL, b = NULL, h = NULL, v = NULL, p = NULL, theta = NULL)

S3 method for class 'infline'
print(x, ...)

S3 method for class 'infline'

plot(x, ...)
Arguments
a,b Numeric vectors of equal length giving the intercepts a and slopes b of the lines.
Incompatible with h,v,p, theta
h Numeric vector giving the positions of horizontal lines when they cross the y
axis. Incompatible with a,b,v,p, theta
v Numeric vector giving the positions of vertical lines when they cross the x axis.
Incompatible with a,b,h,p, theta
p, theta Numeric vectors of equal length giving the polar coordinates of the line. Incom-
patible with a,b,h,v
X An object of class "infline”
Extra arguments passed to print for printing or abline for plotting
Details

The class infline is a convenient way to handle infinite straight lines in the plane.

The position of a line can be specified in several ways:

* its intercept a and slope b in the equation y = a + bz can be used unless the line is vertical.
* for vertical lines we can use the position v where the line crosses the y axis
* for horizontal lines we can use the position h where the line crosses the x axis

* the polar coordinates p and 6 can be used for any line. The line equation is
xcosf +ysinh =p
The command infline will accept line coordinates in any of these formats. The arguments a,b,h,v

have the same interpretation as they do in the line-plotting function abline.

The command infline converts between different coordinate systems (e.g. from a,b to p, theta)
and returns an object of class "infline" that contains a representation of the lines in each appro-
priate coordinate system. This object can be printed and plotted.

268 inside.boxx

Value

The value of infline is an object of class "infline” which is basically a data frame with columns
a,b,h,v,p, theta. Each row of the data frame represents one line. Entries may be NA if a coordi-
nate is not applicable to a particular line.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

rotate.infline, clip.infline, chop.tess, whichhalfplane

Examples

infline(a=10:13,b=1)

infline(p=1:3, theta=pi/4)
plot(c(-1,1),c(-1,1),type="n",xlab="",ylab="", asp=1)
plot(infline(p=0.4, theta=seq(@,pi,length=20)))

inside.boxx Test Whether Points Are Inside A Multidimensional Box

Description

Test whether points lie inside or outside a given multidimensional box.

Usage
inside.boxx(..., w)

Arguments
Coordinates of points to be tested. One vector for each dimension (all of same
length). (Alternatively, a single point pattern object of class "ppx" or its coordi-
nates as amatrix, data.frame, or "hyperframe")

w A window. This should be an object of class boxx, or can be given in any format

acceptable to as.boxx().

Details

This function tests whether each of the provided points lies inside or outside the window w and
returns TRUE if it is inside.

The boundary of the window is treated as being inside.

Normally each argument provided (except w) must be numeric vectors of equal length (length zero
is allowed) containing the coordinates of points. Alternatively a single point pattern (object of class
"ppx") can be given; then the coordinates of the point pattern are extracted. A single matrix,
data.frame, or "hyperframe") with the coordinates is also accepted.

inside.owin 269

Value

Logical vector whose ith entry is TRUE if the corresponding point is inside w.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

boxx, as.boxx

Examples

3D box with side [0,2]
w <- boxx(c(0,2), c(0,2), c(9,2))

Random points in box with side [-1,3]
X <= runif (30, min=-1, max=3)
y <= runif(30, min=-1, max=3)
z <- runif (30, min=-1, max=3)

Points falling in smaller box
ok <- inside.boxx(x, y, z, w=w)

Same using a point pattern as argument:
X <- ppx(data = cbind(x, y, z), domain = boxx(c(@,3), c(0,3), c(0,3)))
ok2 <- inside.boxx(X, w=w)

Same using the coordinates given as data.frame/matrix/hyperframe
coords_mat <- cbind(x,y,z)

ok_mat <- inside.boxx(coords_mat, w=w)

coords_df <- data.frame(x,y,z)

ok_df <- inside.boxx(coords_mat, w=w)

coords_hyper <- hyperframe(x,y,z)

ok_hyper <- inside.boxx(coords_mat, w=w)

inside.owin Test Whether Points Are Inside A Window

Description

Test whether points lie inside or outside a given window.

Usage

inside.owin(x, y, w)

270 inside.owin

Arguments
X Vector of = coordinates of points to be tested. (Alternatively, a point pattern
object providing both x and y coordinates.)
Vector of y coordinates of points to be tested.
A window. This should be an object of class owin, or can be given in any format
acceptable to as.owin().
Details

This function tests whether each of the points (x[i],y[i]) lies inside or outside the window w and
returns TRUE if it is inside.

The boundary of the window is treated as being inside.

If w is of type "rectangle” or "polygonal”, the algorithm uses analytic geometry (the discrete
Stokes theorem). Computation time is linear in the number of points and (for polygonal windows)
in the number of vertices of the boundary polygon. Boundary cases are correct to single precision
accuracy.

If wis of type "mask” then the pixel closest to (x[i],y[i]) is tested. The results may be incorrect
for points lying within one pixel diameter of the window boundary.

Normally x and y must be numeric vectors of equal length (length zero is allowed) containing the
coordinates of points. Alternatively x can be a point pattern (object of class "ppp”) while y is
missing; then the coordinates of the point pattern are extracted.

Value

Logical vector whose ith entry is TRUE if the corresponding point (x[i],y[i]) is inside w.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin.object, as.owin

Examples

hexagonal window

k <-6

theta <- 2 * pi * (0:(k-1))/k

co <- cos(theta)

si <- sin(theta)

mas <- owin(c(-1,1), c(-1,1), poly=list(x=co, y=si))
if(human <- interactive()) {

plot(mas)

}

random points in rectangle

integral.im 271

X <= runif(30,min=-1, max=1)
y <= runif(30,min=-1, max=1)

ok <- inside.owin(x, y, mas)

if(human) {

points(x[ok], y[okl)
points(x[!ok], y[!ok], pch="x")
3

integral.im Integral of a Pixel Image

Description

Computes the integral of a pixel image.

Usage
S3 method for class 'im'
integral(f, domain=NULL, weight=NULL, ...)
Arguments
f A pixel image (object of class "im") with pixel values that can be treated as
numeric or complex values.
domain Optional. Window specifying the domain of integration. Alternatively a tessel-
lation.
Ignored.
weight Optional. A pixel image (object of class "im") or a function(x,y) giving a

numerical weight to be applied to the integration.

Details

non

The function integral is generic, with methods for spatial objects ("im",
and one-dimensional functions ("density”, "fv").

msr”,"linim”, "1infun")

The method integral.im treats the pixel image f as a function of the spatial coordinates, and
computes its integral. The integral is calculated by summing the pixel values and multiplying by
the area of one pixel.

The pixel values of f may be numeric, integer, logical or complex. They cannot be factor or char-
acter values.

The logical values TRUE and FALSE are converted to 1 and @ respectively, so that the integral of a
logical image is the total area of the TRUE pixels, in the same units as unitname(x).

If domain is a window (class "owin") then the integration will be restricted to this window. If
domain is a tessellation (class "tess") then the integral of f in each tile of domain will be computed.

If weight is given, it should be a pixel image or a function of coordinates = and y returning numer-
ical values. Then each pixel value of f will be multiplied by the corresponding value of weight.
Effectively, the result is the integral of weight * f.

272 integral.tessfun

Value

A single numeric or complex value (or a vector of such values if domain is a tessellation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

integral, eval.im, [.im

Examples

approximate integral of f(x,y) dx dy
f <- function(x,y){3*x*2 + 2%y}

Z <- as.im(f, square(1))

integral(2)

correct answer is 2

integrate over the subset [0.1,0.9] x [0.2,0.8]
W <- owin(c(0.1,0.9), c(0.2,0.8))
integral(z, W)

weighted integral
integral (Z, weight=function(x,y){x})

integral.tessfun Integrate a Function Which is Constant on Each Tile of a Tessellation

Description

Given a function which is constant on each tile of a tessellation, compute the integral of the function.

Usage
S3 method for class 'tessfun'
integral(f, domain = NULL, ...)
Arguments
f Integrand. A function of class "tessfun” (created by as.function. tess).
domain Optional window (object of class "owin") specifying a subregion to which the

integral should be restricted.

Ignored.

intensity 273

Details

The command integral is generic. This is the method for objects of class "tessfun”.

The integrand f should be a function of class "tessfun” created by as.function. tess. It repre-
sents a function which takes a constant value on each tile of a tessellation.

The integral is calculated by multiplying the area of each tile by the value of the function in that tile,
and summing. This avoids the need for discretisation and avoids concomitant discretisation errors.
Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

as.function.tess.

Examples

V <- dirichlet(runifrect(5))
f <- as.function(V, values=1/tile.areas(V))
integral(f) # should be close to 5.

intensity Intensity of a Dataset or a Model

Description

Generic function for computing the intensity of a spatial dataset or spatial point process model.

Usage
intensity(X, ...)
Arguments
X A spatial dataset or a spatial point process model.

Further arguments depending on the class of X.

274 intensity.ppp

Details

This is a generic function for computing the intensity of a spatial dataset or spatial point process
model. There are methods for point patterns (objects of class "ppp") and fitted point process models
(objects of class "ppm").

The empirical intensity of a dataset is the average density (the average amount of ‘stuff’ per unit area
or volume). The empirical intensity of a point pattern is computed by the method intensity. ppp.

The theoretical intensity of a stochastic model is the expected density (expected amount of ‘stuff’
per unit area or volume). The theoretical intensity of a fitted point process model is computed by
the method intensity.ppm.

Value

Usually a numeric value or vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

intensity.ppp, intensity.ppm.

intensity.ppp Empirical Intensity of Point Pattern

Description

Computes the average number of points per unit area in a point pattern dataset.

Usage

S3 method for class 'ppp'
intensity(X, ..., weights=NULL)

S3 method for class 'splitppp'

intensity(X, ..., weights=NULL)
Arguments
X A point pattern (object of class "ppp").
weights Optional. Numeric vector of weights attached to the points of X. Alternatively,

an expression which can be evaluated to give a vector of weights.

Ignored.

intensity.ppp 275

Details
This is a method for the generic function intensity. It computes the empirical intensity of a point
pattern (object of class "ppp"), i.e. the average density of points per unit area.
If the point pattern is multitype, the intensities of the different types are computed separately.

Note that the intensity will be computed as the number of points per square unit, based on the unit
of length for X, given by unitname (X). If the unit of length is a strange multiple of a standard unit,
like 5.7 metres, then it can be converted to the standard unit using rescale. See the Examples.

If weights are given, then the intensity is computed as the total weight per square unit. The argu-
ment weights should be a numeric vector of weights for each point of X (weights may be negative
Or Zero).

Alternatively weights can be an expression which will be evaluated for the dataset to yield a
vector of weights. The expression may involve the Cartesian coordinates x, y of the points, and the
marks of the points, if any. Variable names permitted in the expression include x and y, the name
marks if X has a single column of marks, the names of any columns of marks if X has a data frame
of marks, and the names of constants or functions that exist in the global environment. See the
Examples.

Value
A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible
type).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

intensity, intensity.ppm

Examples

japanesepines
intensity(japanesepines)
unitname(japanesepines)
intensity(rescale(japanesepines))

intensity(amacrine)
intensity(split(amacrine))

numeric vector of weights
volumes <- with(marks(finpines), (pi/4) * height * diameter*2)
intensity(finpines, weights=volumes)

expression for weights
intensity(finpines, weights=expression((pi/4) * height x diameter*2))

276 intensity.ppx

intensity.ppx Intensity of a Multidimensional Space-Time Point Pattern

Description

Calculates the intensity of points in a multi-dimensional point pattern of class "ppx" or "pp3".

Usage
S3 method for class 'ppx'
intensity(X, ...)
Arguments
X Point pattern of class "ppx"” or "pp3".
Ignored.
Details

This is a method for the generic function intensity. It computes the empirical intensity of a multi-
dimensional point pattern (object of class "ppx" including "pp3"), i.e. the average density of points
per unit volume.

If the point pattern is multitype, the intensities of the different types are computed separately.

Value

A single number or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

Examples

X <- osteo$pts[[1]]

intensity(X)

marks(X) <- factor(sample(letters[1:3], npoints(X), replace=TRUE))
intensity(X)

intensity.psp 277

intensity.psp Empirical Intensity of Line Segment Pattern

Description

Computes the average total length of segments per unit area in a spatial pattern of line segments.

Usage
S3 method for class 'psp'
intensity(X, ..., weights=NULL)
Arguments
X A line segment pattern (object of class "psp”).
weights Optional. Numeric vector of weights attached to the segments of X. Alterna-

tively, an expression which can be evaluated to give a vector of weights.
Ignored.

Details

This is a method for the generic function intensity. It computes the empirical intensity of a line
segment pattern (object of class "psp”), i.e. the average total segment length per unit area.

If the segment pattern is multitype, the intensities of the different types are computed separately.

Note that the intensity will be computed as the length per area in units per square unit, based on
the unit of length for X, given by unitname(X). If the unit of length is a strange multiple of a
standard unit, like 5.7 metres, then it can be converted to the standard unit using rescale. See the
Examples.

If weights are given, then the intensity is computed as the total weight times length per square unit.
The argument weights should be a numeric vector of weights for each point of X (weights may be
negative or zero).

Alternatively weights can be an expression which will be evaluated for the dataset to yield a
vector of weights. The expression may involve the Cartesian coordinates x, y of the points, and the
marks of the points, if any. Variable names permitted in the expression include x@, x1, y@, y1 for the
coordinates of the segment endpoint, the name marks if X has a single column of marks, the names
of any columns of marks if X has a data frame of marks, and the names of constants or functions
that exist in the global environment. See the Examples.

Value
A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible
type).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

278 intensity.quadratcount

See Also

intensity

Examples

S <- edges(letterR)

intensity(S)

intensity(S, weights=runif(nsegments(S)))
intensity(S, weights=expression((x0+x1)/2))

intensity.quadratcount
Intensity Estimates Using Quadrat Counts

Description

Uses quadrat count data to estimate the intensity of a point pattern in each tile of a tessellation,
assuming the intensity is constant in each tile.

Usage
S3 method for class 'quadratcount'
intensity(X, ..., image=FALSE)
Arguments
X An object of class "quadratcount”.
image Logical value specifying whether to return a table of estimated intensities (the

default) or a pixel image of the estimated intensity (image=TRUE).

Arguments passed to as.mask to determine the resolution of the pixel image, if
image=TRUE.

Details

This is a method for the generic function intensity. It computes an estimate of the intensity of a
point pattern from its quadrat counts.

The argument X should be an object of class "quadratcount”. It would have been obtained by
applying the function quadratcount to a point pattern (object of class "ppp"”). It contains the
counts of the numbers of points of the point pattern falling in each tile of a tessellation.

Using this information, intensity.quadratcount divides the quadrat counts by the tile areas,
yielding the average density of points per unit area in each tile of the tessellation.

If image=FALSE (the default), these intensity values are returned in a contingency table. Cells of the
contingency table correspond to tiles of the tessellation.

If image=TRUE, the estimated intensity function is returned as a pixel image. For each pixel, the
pixel value is the estimated intensity in the tile which contains that pixel.

interp.colourmap 279

Value
If image=FALSE (the default), a contingency table. If image=TRUE, a pixel image (object of class
”imll .

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

intensity, quadratcount

Examples

ga <- quadratcount(swedishpines, 4,3)
ga

intensity(qga)

plot(intensity(ga, image=TRUE))

interp.colourmap Interpolate smoothly between specified colours

Description
Given a colourmap object which maps numbers to colours, this function interpolates smoothly
between the colours, yielding a new colour map.

Usage

interp.colourmap(m, n = 512)

Arguments

m A colour map (object of class "colourmap”).

n Number of colour steps to be created in the new colour map.
Details

Given a colourmap object m, which maps numerical values to colours, this function interpolates the
mapping, yielding a new colour map.

This makes it easy to build a colour map that has smooth gradation between different colours or
shades. First specify a small vector of numbers x which should be mapped to specific colours
y. Use m<- colourmap(y, inputs=x) to create a colourmap that represents this simple mapping.
Then apply interp.colourmap(m) to obtain a smooth transition between these points.

280 interp.im

Value

Another colour map (object of class "colourmap”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

colourmap, tweak.colourmap, colourtools.

Examples

co <- colourmap(inputs=c(@, 0.5, 1), c("black”, "red”, "white"))
plot(interp.colourmap(co))

interp.im Interpolate a Pixel Image

Description

Interpolates the values of a pixel image at any desired location in the frame.

Usage

interp.im(Z, x, y=NULL, bilinear=FALSE)

Arguments
Z Pixel image (object of class "im") with numeric or integer values.
X,y Vectors of Cartesian coordinates. Alternatively x can be a point pattern and y
can be missing.
bilinear Logical value specifying the choice of interpolation rule. If bilinear=TRUE
then a bilinear interpolation rule is used. If bilinear=FALSE (the default) then
a slightly biased rule is used; this rule is consistent with earlier versions of spat-
stat.
Details

A value at each location (x[i],y[i]) will be interpolated using the pixel values of Z at the four
surrounding pixel centres, by simple bilinear interpolation.

At the boundary (where (x[i],y[i]) is not surrounded by four pixel centres) the value at the
nearest pixel is taken.

The arguments X, y can be anything acceptable to xy. coords.

intersect.boxx 281

Value

Vector of interpolated values, with NA for points that lie outside the domain of the image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>,
with a contribution from an anonymous user.

Examples

opa <- par(mfrow=c(1,2))

coarse image

V <- as.im(function(x,y) { x*2 +y 3}, owin(), dimyx=10)
plot(V, main="coarse image”, col=terrain.colors(256))

lookup value at location (0.5,0.5)
V[1list(x=0.5,y=0.5)]

interpolated value at location (0.5,0.5)
interp.im(V, 0.5, 0.5)

interp.im(V, 0.5, 0.5, bilinear=TRUE)

true value is 0.75

how to obtain an interpolated image at a desired resolution
U <- as.im(interp.im, W=owin(), Z=V, dimyx=256)

plot(U, main="interpolated image"”, col=terrain.colors(256))
par(opa)

intersect.boxx Intersection Of Boxes Of Arbitrary Dimension

Description

Yields the intersection of boxes of arbitrary dimension (of class "boxx").

Usage
intersect.boxx(..., fatal=FALSE)
Arguments
Boxes (of class "boxx").
fatal Logical. Determines what happens if the intersection is empty: If true
Details

If the intersection is empty, then if fatal=FALSE the result is NULL, while if fatal=TRUE an error
occurs.

282 intersect.owin

Value

A box (object of class "boxx") or possibly NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

intersect.owin, boxx

Examples

intersect.boxx(boxx(c(-1,1),c(0,2)), boxx(c(0,3),c(0,1)))

intersect.owin Intersection, Union or Set Subtraction of Windows

Description

Yields the intersection, union or set subtraction of windows.

Usage
intersect.owin(..., fatal=FALSE, p)
union.owin(..., p)
setminus.owin(A, B, ..., p)
Arguments
A B Windows (objects of class "owin").
Windows, or arguments passed to as.mask to control the discretisation.
fatal Logical. Determines what happens if the intersection is empty.
p Optional list of parameters passed to polyclip to control the accuracy of poly-
gon geometry.
Details
The function intersect.owin computes the intersection between the windows given in . . ., while

union.owin computes their union. The function setminus.owin computes the intersection of A
with the complement of B.

For intersect.owin and union.owin, the arguments . .. must be either

» window objects of class "owin",

* data that can be coerced to this class by as.owin),

intersect.owin 283

e lists of windows, of class "solist”,

* named arguments of as.mask to control the discretisation if required.

For setminus.owin, the arguments . .. must be named arguments of as.mask.

If the intersection is empty, then if fatal=FALSE the result is an empty window or NULL, while if
fatal=TRUE an error occurs.

Value

A window (object of class "owin") or possibly NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

is.subset.owin, overlap.owin, is.empty, boundingbox, owin.object

Examples

rectangles

u <- unit.square()

v <- owin(c(0.5,3.5), c(0.4,2.5))
polygon

letterR
mask

m <- as.mask(letterR)

two rectangles
intersect.owin(u, v)
union.owin(u,v)
setminus.owin(u,v)

polygon and rectangle
intersect.owin(letterR, v)
union.owin(letterR,v)
setminus.owin(letterR,v)

mask and rectangle
intersect.owin(m, v)
union.owin(m,v)
setminus.owin(m,v)

mask and polygon
p <- rotate(v, 0.2)
intersect.owin(m, p)
union.owin(m,p)
setminus.owin(m,p)

two polygons

284 intersect.tess

A <- letterR

B <- rotate(letterR, 0.2)
plot(boundingbox(A,B), main="intersection")
w <- intersect.owin(A, B)

plot(w, add=TRUE, col="lightblue")

plot(A, add=TRUE)

plot(B, add=TRUE)

plot(boundingbox(A,B), main="union")
w <- union.owin(A,B)

plot(w, add=TRUE, col="lightblue")
plot(A, add=TRUE)

plot(B, add=TRUE)

plot(boundingbox(A,B), main="set minus")
w <- setminus.owin(A,B)

plot(w, add=TRUE, col="lightblue")
plot(A, add=TRUE)

plot(B, add=TRUE)

intersection and union of three windows
C <- shift(B, c(0.2, 0.3))
plot(union.owin(A,B,C))
plot(intersect.owin(A,B,C))

intersect.tess Intersection of Two Tessellations

Description

Yields the intersection of two tessellations, or the intersection of a tessellation with a window.

Usage
intersect.tess(X, Y, ..., keepempty=FALSE, keepmarks=FALSE, sep="x")
Arguments
X, Y Two tessellations (objects of class "tess"), or windows (objects of class "tess"),
or other data that can be converted to tessellations by as. tess.
Optional arguments passed to as.mask to control the discretisation, if required.
keepempty Logical value specifying whether empty intersections between tiles should be
retained (keepempty=TRUE) or deleted (keepempty=FALSE, the default).
keepmarks Logical value. If TRUE, the marks attached to the tiles of X and Y will be retained
as marks of the intersection tiles.
sep Character string used to separate the names of tiles from X and from Y, when

forming the name of the tiles of the intersection.

intersect.tess 285

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

If X and Y are not tessellations, they are first converted into tessellations by as. tess.

The function intersect. tess then computes the intersection between the two tessellations. This
is another tessellation, each of whose tiles is the intersection of a tile from X and a tile from Y.

One possible use of this function is to slice a window W into subwindows determined by a tessella-
tion. See the Examples.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

tess, as.tess, intersect.owin

Examples

opa <- par(mfrow=c(1,3))
polygon
plot(letterR)
tessellation of rectangles
X <- tess(xgrid=seq(2, 4, length=10), ygrid=seq(@, 3.5, length=8))
plot(X)
plot(intersect.tess(X, letterR))

A <- runifrect(10)

B <- runifrect(10)

plot(DA <- dirichlet(A))
plot(DB <- dirichlet(B))
plot(intersect.tess(DA, DB))
par(opa)

marks(DA) <- 1:10

marks(DB) <- 1:10@

plot(Z <- intersect.tess(DA,DB, keepmarks=TRUE))

mZ <- marks(Z)

tZ <- tiles(Z)

for(i in which(mz[,1] == 3)) plot(tZ[[i]], add=TRUE, col="pink")

286 invoke.metric

invoke.metric Perform Geometric Task using a Specified Metric

Description

Perform a desired geometrical operation using a specified distance metric.

Usage
invoke.metric(m, task, ..., evaluate=TRUE)
Arguments
m Metric (object of class "metric")
task Character string specifying the task. The name of a function that performs the
desired operation for the Euclidean metric.
Input to the function that performs the geometrical operation (matching the ar-
guments of task).
evaluate Logical value specifying whether to actually perform the computation and return
the result (evaluate=TRUE, the default) or to simply return the function which
performs the computation (evaluate=FALSE).
Details

A ‘metric’ is a measure of distance between points in space. An object of class "metric” rep-
resents such a metric, and supports many geometrical computations that involve the metric. See
metric.object.

The argument task should be the name of an existing function in the spatstat family representing a
geometrical operation, such as computing pairwise distances, nearest-neighbour distances, the dis-
tance map, and so on. The code will determine whether this geometrical operation has a counterpart
using the specified metric, that is defined and supported in the object m. If so, then this operation
will be applied to the data specified in . . ., and the result will be returned.

For example, the spatstat function nndist.ppp computes nearest-neighbour distances using the
Euclidean distance metric. To calculate nearest-neighbour distances for a point pattern X using
another metric m, use invoke.metric(m, "nndist.ppp"”, X).

If evaluate=FALSE, the computation is not performed, and invoke.metric simply returns a func-
tion to perform the desired operation.

Value

If evaluate=TRUE (the default), the result of the computation has the same format as the result of
the computation using the existing function named task.

If evaluate=FALSE, the result is a function in the R language to perform the desired operation; or
NULL if the operation is not supported by the metric.

invoke.symbolmap

Author(s)

287

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

convexmetric

Examples

nearest-neighbour distances using rectangular metric (L*1 metric)
d <- convexmetric(square(c(-1,1)))

y <- invoke.metric(d, "nndist.ppp"”, cells)

f <- invoke.metric(d, "nndist.ppp”, cells, evaluate=FALSE)

y <- f(cells)

invoke.metric(d, "orderPizza”, evaluate=FALSE)

invoke.symbolmap

Plot Data Using Graphics Symbol Map

Description

Apply a graphics symbol map to a vector of data values and plot the resulting symbols.

Usage

invoke.symbolmap(map, values, x=NULL, y = NULL, ...,

Arguments

map
values

X’y

angleref

add

do.plot

started

angleref=NULL,
add = FALSE,
do.plot = TRUE, started = add && do.plot)

Graphics symbol map (object of class "symbolmap").

Vector of data that can be mapped by the symbol map.

Coordinate vectors for the spatial locations of the symbols to be plotted.
Additional graphics parameters (which will be applied to the entire plot).

Optional. Reference angle, or vector of reference angles, used when plotting
some of the symbols. A numeric value or vector giving angles in degrees be-
tween 0 and 360.

Logical value indicating whether to add the symbols to an existing plot (add=TRUE)
or to initialise a new plot (add=FALSE, the default).

Logical value indicating whether to actually perform the plotting.

Logical value indicating whether the plot has already been initialised.

288 is.boxx

Details

A symbol map is an association between data values and graphical symbols.

This command applies the symbol map map to the data values and plots the resulting symbols at
the locations given by xy.coords(x,y).

Value

(Invisibly) the maximum diameter of the symbols, in user coordinate units.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.symbolmap to plot the graphics map itself.

symbolmap to create a graphics map.

Examples

g <- symbolmap(range=c(-1,1),
shape=function(x) ifelse(x > @, "circles”, "squares"),
size=function(x) sqrt(ifelse(x > 0@, x/pi, -x))/15,
bg=function(x) ifelse(x > @, "green”, "red"))

plot(square(1), main="")

a <- invoke.symbolmap(g, runif(10@, -1, 1), runifrect(10), add=TRUE)

a

is.boxx Recognise a Multi-Dimensional Box

Description

Checks whether its argument is a multidimensional box (object of class "boxx").

Usage

is.boxx(x)

Arguments

X Any object.

Details

This function tests whether the object x is a multidimensional box of class "boxx".

The result is determined to be TRUE if x inherits from "boxx", i.e. if x has "boxx" amongst its
classes.

is.connected 289

Value

A logical value.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau. dk>

See Also

methods.boxx, boxx.

Examples

B <- boxx(c(0,10),c(0,10),c(0,5),c(@,1), unitname="km")
is.boxx(B)
is.boxx(42)

is.connected Determine Whether an Object is Connected

Description

Determine whether an object is topologically connected.

Usage

is.connected(X, ...)

Default S3 method:

is.connected(X, ...)
Arguments
X A spatial object such as a pixel image (object of class "im"), or a window (object

of class "owin").

Arguments passed to connected to determine the connected components.

Details

The command is.connected(X) returns TRUE if the object X consists of a single, topologically-
connected piece, and returns FALSE if X consists of several pieces which are not joined together.

The function is.connected is generic. The default method is.connected.default works for
many classes of objects, including windows (class "owin") and images (class "im"). There is a
method for point patterns, described in is.connected. ppp.

290 is.connected.ppp

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

connected, is.connected. ppp.

Examples

d <- distmap(cells, dimyx=256)
X <- levelset(d, 0.07)

plot(X)

is.connected(X)

is.connected.ppp Determine Whether a Point Pattern is Connected

Description

Determine whether a point pattern is topologically connected when all pairs of points closer than a
threshold distance are joined.

Usage
S3 method for class 'ppp'
is.connected(X, R, ...)
Arguments
X A point pattern (object of class "ppp").
R Threshold distance. Pairs of points closer than R units apart will be joined to-
gether.
Ignored.
Details

The function is.connected is generic. This is the method for point patterns (objects of class
"ppp").

The point pattern X is first converted into an abstract graph by joining every pair of points that lie
closer than R units apart. Then the algorithm determines whether this graph is connected.

That is, the result of is.connected(X) is TRUE if any point in X can be reached from any other
point, by a series of steps between points of X, each step being shorter than R units in length.

is.convex 291

Value

A logical value.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

is.connected, connected. ppp.

Examples

is.connected(redwoodfull, @.1)
is.connected(redwoodfull, 0.2)

is.convex Test Whether a Window is Convex

Description

Determines whether a window is convex.

Usage

is.convex(x)

Arguments

X Window (object of class "owin").

Details

If x is a rectangle, the result is TRUE.

If x is polygonal, the result is TRUE if x consists of a single polygon and this polygon is equal to
the minimal convex hull of its vertices computed by chull.

If x is a mask, the algorithm first extracts all boundary pixels of x using vertices. Then it computes
the (polygonal) convex hull K of the boundary pixels. The result is TRUE if every boundary pixel
lies within one pixel diameter of an edge of K.

Value

Logical value, equal to TRUE if x is convex.

292 is.empty

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <rolfturner@posteo.net>

See Also

owin, convexhull.xy, vertices

is.empty Test Whether An Object Is Empty

Description

Checks whether the argument is an empty window, an empty point pattern, etc.

Usage

is.empty(x)

S3 method for class 'owin'
is.empty(x)

S3 method for class 'ppp'
is.empty(x)

S3 method for class 'psp'
is.empty(x)

Default S3 method:
is.empty(x)

Arguments
X A window (object of class "owin"), a point pattern (object of class "ppp"), or a
line segment pattern (object of class "psp”).
Details

This function tests whether the object x represents an empty spatial object, such as an empty win-
dow, a point pattern with zero points, or a line segment pattern with zero line segments.

An empty window can be obtained as the output of intersect.owin, erosion, opening, complement.owin
and some other operations.

An empty point pattern or line segment pattern can be obtained as the result of simulation.

Value

Logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <rolfturner@posteo.net>

is.im 293

is.im Test Whether An Object Is A Pixel Image

Description

Tests whether its argument is a pixel image (object of class "im").

Usage

is.im(x)

Arguments

X Any object.

Details

This function tests whether the argument x is a pixel image object of class "im". For details of this
class, see im.object.

The object is determined to be an image if it inherits from class "im".

Value

TRUE if x is a pixel image, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

is.linim Test Whether an Object is a Pixel Image on a Linear Network

Description

Tests whether its argument is a pixel image on a linear network (object of class "1inim").

Usage

is.linim(x)

Arguments

X Any object.

294 is.linnet

Details

This function tests whether the argument x is a pixel image on a linear network (object of class
"linim").

The object is determined to be an image if it inherits from class "1inim".

Value

TRUE if x is a pixel image on a linear network, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

is.linnet Test Whether An Object Is A Linear Network

Description

Checks whether its argument is a linear network (object of class "linnet").

Usage

is.linnet(x)

Arguments

X Any object.

Details

This function tests whether the object x is a linear network (object of class "1innet").

Value

TRUE if x is of class "1innet”, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

is.Ipp 295

is.1lpp Test Whether An Object Is A Point Pattern on a Linear Network

Description

Checks whether its argument is a point pattern on a linear network (object of class "1pp").

Usage

is.lpp(x)

Arguments

X Any object.

Details

This function tests whether the object x is a point pattern object of class "1pp".

Value

TRUE if x is a point pattern of class "1pp"”, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

is.marked Test Whether Marks Are Present

Description

Generic function to test whether a given object (usually a point pattern or something related to a
point pattern) has “marks” attached to the points.

Usage
is.marked(X, ...)
Arguments
X Object to be inspected

Other arguments.

296 is.marked.ppp

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

Other objects related to point patterns, such as point process models, may involve marked points.
This function tests whether the object X contains or involves marked points. It is generic; methods
are provided for point patterns (objects of class "ppp") and point process models (objects of class
n ppm n) .

Value

Logical value, equal to TRUE if X is marked.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

is.marked.ppp, is.marked.ppm

is.marked. ppp Test Whether A Point Pattern is Marked

Description

Tests whether a point pattern has “marks” attached to the points.

Usage
S3 method for class 'ppp'
is.marked(X, na.action="warn”, ...)
Arguments
X Point pattern (object of class "ppp")
na.action String indicating what to do if NA values are encountered amongst the marks.

Options are "warn”, "fatal” and "ignore".

Ignored.

is.multitype 297

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

This function tests whether the point pattern X contains or involves marked points. It is a method
for the generic function is.marked.

The argument na.action determines what action will be taken if the point pattern has a vector of
marks but some or all of the marks are NA. Options are "fatal” to cause a fatal error; "warn” to
issue a warning and then return TRUE; and "ignore" to take no action except returning TRUE.

Value

Logical value, equal to TRUE if X is a marked point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

is.marked, is.marked. ppm

Examples

is.marked(cells) #FALSE
data(longleaf)
is.marked(longleaf) #TRUE

is.multitype Test whether Object is Multitype

Description

Generic function to test whether a given object (usually a point pattern or something related to a
point pattern) has “marks” attached to the points which classify the points into several types.

Usage
is.multitype(X, ...)
Arguments
X Object to be inspected

Other arguments.

298 is.multitype.ppp

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell. Other objects related to point patterns, such as point process
models, may involve marked points.

This function tests whether the object X contains or involves marked points, and that the marks are
a factor.

For example, the amacrine dataset is multitype (there are two types of cells, on and off), but the
longleaf dataset is not multitype (the marks are real numbers).

This function is generic; methods are provided for point patterns (objects of class "ppp") and point
process models (objects of class "ppm”).

Value

Logical value, equal to TRUE if X is multitype.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

is.multitype.ppp, is.multitype.ppm

is.multitype.ppp Test Whether A Point Pattern is Multitype

Description
Tests whether a point pattern has “marks” attached to the points which classify the points into
several types.

Usage

S3 method for class 'ppp'
is.multitype(X, na.action="warn", ...)

Arguments

X Point pattern (object of class "ppp").

na.action String indicating what to do if NA values are encountered amongst the marks.
Options are "warn”, "fatal” and "ignore".

Ignored.

is.na.hyperframe 299

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

This function tests whether the point pattern X contains or involves marked points, and that the
marks are a factor. It is a method for the generic function is.multitype.

For example, the amacrine dataset is multitype (there are two types of cells, on and off), but the
longleaf dataset is not multitype (the marks are real numbers).

The argument na.action determines what action will be taken if the point pattern has a vector of
marks but some or all of the marks are NA. Options are "fatal” to cause a fatal error; "warn” to
issue a warning and then return TRUE; and "ignore” to take no action except returning TRUE.

Value

Logical value, equal to TRUE if X is a multitype point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

is.multitype, is.multitype.ppm

Examples

is.multitype(cells) #FALSE - no marks
is.multitype(longleaf) #FALSE - real valued marks
is.multitype(amacrine) #TRUE

is.na.hyperframe Identify Missing Entries in a Hyperframe

Description

Given a hyperframe, this function returns a logical matrix specifying which entries of the hyper-
frame are missing.

Usage

S3 method for class 'hyperframe'
is.na(x)

300 is.na.solist

Arguments

X A hyperframe (object of class "hyperframe").

Details

This function returns a logical matrix, with the same dimensions as the hyperframe x, with the value
TRUE in each position where the corresponding entry in the hyperframe is missing.

Anentry x[1i, j] is deemed to be missing if it is either NA (representing a missing value in an atomic
vector) or is an object of class "NAobject” (representing a missing object of a particular class in
the spatstat package family).

Value

A logical matrix with the same dimensions as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

NAobject

Examples

A <= c(1, NA, 3)

B <- solist(cells, cells, NA)
h <- hyperframe(A=A, B=B)

h

is.na(h)

is.na.solist Identify Missing Entries in a List of Spatial Objects

Description
Given a list of spatial objects (of class "solist"), this function returns a logical vector specifying
which entries of the list are missing.
Usage
S3 method for class 'solist'
is.na(x)
Arguments

X A list of spatial objects (an object of class "solist").

is.NAobject 301

Details

This function returns a logical vector with the same length as the list x, with the value TRUE in each
position where the corresponding entry in the list is missing.

An entry x[[i]] is deemed to be missing if it is an object of class "NAobject” (representing a
missing object of a particular class in the spatstat package family).
Value

A logical vector with the same length as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

NAobject

Examples

B <- solist(cells, NA, cells)

BL[2]1]

is.na(B)

V <- solist(cells, Window(cells), NAobject("im"))
is.na(V)

is.NAobject Recognise NA Objects

Description
Recognises whether an object is an NA object (representing a missing or unavailable object in the
spatstat package family).

Usage

is.NAobject(x)

Arguments

X An object.

302 is.owin

Details

This function recognises whether an object is a missing or unavailable object belonging to one of
the classes in the spatstat package family.

In spatstat, a missing or unavailable object of class "foo" is represented by an object that inherits
the classes "foo"” and "NAobject".

For any object x, the command is.NAobject(x) will return TRUE if x is a missing or unavailable
object, and FALSE otherwise.
Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

NAobject

Examples

A <- NAobject("ppp")
is.NAobject(A)

X <- solist(cells, NA, cells)
is.NAobject(X[[211)
sapply(X, is.NAobject)

is.owin Test Whether An Object Is A Window

Description

Checks whether its argument is a window (object of class "owin").

Usage

is.owin(x)

Arguments

X Any object.

iS.ppp 303

Details

This function tests whether the object x is a window object of class "owin”. See owin.object for
details of this class.

The result is determined to be TRUE if x inherits from "owin"”, i.e. if x has "owin” amongst its
classes.
Value

TRUE if x is a point pattern, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

is.ppp Test Whether An Object Is A Point Pattern

Description

Checks whether its argument is a point pattern (object of class "ppp").

Usage

is.ppp(x)

Arguments

X Any object.

Details

This function tests whether the object x is a point pattern object of class "ppp"”. See ppp.object
for details of this class.

The result is determined to be TRUE if x inherits from "ppp", i.e. if x has "ppp" amongst its classes.

Value

TRUE if x is a point pattern, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

304 is.rectangle

is.rectangle Determine Type of Window

Description

Determine whether a window is a rectangle, a polygonal region, or a binary mask.

Usage
is.rectangle(w)

is.polygonal (w)
is.mask(w)

Arguments

w Window to be inspected. An object of class "owin".

Details
These simple functions determine whether a window w (object of class "owin") is a rectangle
(is.rectangle(w) = TRUE), a domain with polygonal boundary (is.polygonal(w) = TRUE), or a
binary pixel mask (is.mask(w) = TRUE).

Value

Logical value, equal to TRUE if w is a window of the specified type.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin

is.subset.owin 305

is.subset.owin Determine Whether One Window is Contained In Another

Description

Tests whether window A is a subset of window B.

Usage

is.subset.owin(A, B)

Arguments
A A window object (see Details).
B A window object (see Details).
Details

This function tests whether the window A is a subset of the window B.

The arguments A and B must be window objects (either objects of class "owin", or data that can be
coerced to this class by as.owin).

Various algorithms are used, depending on the geometrical type of the two windows.

Note that if B is not rectangular, the algorithm proceeds by discretising A, converting it to a pixel
mask using as.mask. In this case the resulting answer is only “approximately correct”. The accu-
racy of the approximation can be controlled: see as.mask.

Value

Logical scalar; TRUE if A is a sub-window of B, otherwise FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

Examples

wl <- as.owin(c(0,1,0,1))

w2 <- as.owin(c(-1,2,-1,2))
is.subset.owin(wl,w2) # Returns TRUE.
is.subset.owin(w2,wl) # Returns FALSE.

306 layered

layered Create List of Plotting Layers

Description

Given several objects which are capable of being plotted, create a list containing these objects as if
they were successive layers of a plot. The list can then be plotted in different ways.

Usage
layered(..., plotargs = NULL, LayerList=NULL)
Arguments
Objects which can be plotted by plot.
plotargs Default values of the plotting arguments for each of the objects. A list of lists of
arguments of the form name=value.
LayerList A list of objects. Incompatible with
Details

Layering is a simple mechanism for controlling a high-level plot that is composed of several suc-
cessive plots, for example, a background and a foreground plot. The layering mechanism makes it
easier to issue the plot command, to switch on or off the plotting of each individual layer, to control
the plotting arguments that are passed to each layer, and to zoom in.

Each individual layer in the plot should be saved as an object that can be plotted using plot. It will
typically belong to some class, which has a method for the generic function plot.

The command layered simply saves the objects ... as a list of class "layered”. This list can
then be plotted by the method plot.layered. Thus, you only need to type a single plot com-
mand to produce the multi-layered plot. Individual layers of the plot can be switched on or off, or
manipulated, using arguments to plot.layered.

The argument plotargs contains default values of the plotting arguments for each layer. It should
be a list, with one entry for each objectin Each entry of plotargs should be a list of arguments
in the form name=value, which are recognised by the plot method for the relevant layer.

The plotargs can also include an argument named .plot specifying (the name of) a function to
perform the plotting instead of the generic plot.

The length of plotargs should either be equal to the number of layers, or equal to 1. In the latter
case it will be replicated to the appropriate length.

Value

A list, belonging to the class "layered”. There are methods for plot, "[", "shift”, "affine”,
"rotate” and "rescale”.

There is a method for ¢ which makes it possible to concatenate two or more layered objects.

layerplotargs 307

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

plot.layered, methods.layered, as. layered, [.layered, layerplotargs.

Examples

D <- distmap(cells)

L <- layered(D, cells)

L

L <- layered(D, cells,
plotargs=list(list(ribbon=FALSE), list(pch=16)))
plot(L)

layerplotargs(L)[[1]] <- list(.plot="contour")
plot(L)

layerplotargs Extract or Replace the Plot Arguments of a Layered Object

Description

Extracts or replaces the plot arguments of a layered object.

Usage

layerplotargs(L)

layerplotargs(L) <- value

Arguments
L An object of class "layered” created by the function layered.
value Replacement value. A list, with the same length as L, whose elements are lists
of plot arguments.
Details

These commands extract or replace the plotargs in a layered object. See layered.

The replacement value should normally have the same length as the current value. However, it can
also be a list with one element which is a list of parameters. This will be replicated to the required
length.

For the assignment function layerplotargs<-, the argument L can be any spatial object; it will be
converted to a layered object with a single layer.

308 layout.boxes

Value

layerplotargs returns a list of lists of plot arguments.

"layerplotargs<-" returns the updated object of class "layered”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

layered, methods. layered, [.layered.

Examples

W <- square(2)

L <- layered(W=W, X=cells)

The following are equivalent
layerplotargs(L) <- list(list(), list(pch=16))
layerplotargs(L)[[2]] <- list(pch=16)
layerplotargs(L)$X <- list(pch=16)

The following are equivalent
layerplotargs(L) <- list(list(cex=2), list(cex=2))
layerplotargs(L) <- list(list(cex=2))

layout.boxes Generate a Row or Column Arrangement of Rectangles.

Description

A simple utility to generate a row or column of boxes (rectangles) for use in point-and-click panels.

Usage

layout.boxes(B, n, horizontal = FALSE, aspect = 0.5, usefrac = 0.9)

Arguments

B Bounding rectangle for the boxes. An object of class "owin".

n Integer. The number of boxes.

horizontal Logical. If TRUE, arrange the boxes in a horizontal row. If FALSE (the default),
arrange them in a vertical column.

aspect A single finite positive number, giving the aspect ratio (height divided by width)
of each box, or NA or Inf, indicating that the aspect ratio is unconstrained.

usefrac Number between 0 and 1. The fraction of height or width of B that should be

occupied by boxes.

lengths_psp 309

Details

This simple utility generates a list of boxes (rectangles) inside the bounding box B arranged in a
regular row or column. It is useful for generating the positions of the panel buttons in the function
simplepanel.

The argument aspect specifies the ratio of height to width (height divided by width). If aspect
is a finite numerical value, then the boxes will have the given aspect ratio. If aspect is Inf or NA,
aspect ratio is unconstrained; the boxes will have the maximum possible width and height.

Value

A list of rectangles (objects of class "owin" which are rectangles).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

simplepanel

Examples

B <- owin(c(0,10),c(0,1))

boxes <- layout.boxes(B, 5, horizontal=TRUE)
plot(B, main="", col="blue")

niets <- lapply(boxes, plot, add=TRUE, col="grey")

lengths_psp Lengths of Line Segments

Description

Computes the length of each line segment in a line segment pattern.

Usage

lengths_psp(x, squared=FALSE)

Arguments
X A line segment pattern (object of class "psp”).
squared Logical value indicating whether to return the squared lengths (squared=TRUE)

or the lengths themselves (squared=FALSE, the default).

310 levelset

Details

The length of each line segment is computed and the lengths are returned as a numeric vector.

Using squared lengths may be more efficient for some purposes, for example, to find the length of
the shortest segment, sqrt (min(lengths.psp(x, squared=TRUE))) is faster thanmin(lengths.psp(x)).

Value

Numeric vector.

Change of name

The name of this function has changed from lengths.psp to lengths_psp, because the old name
lengths.psp could be misinterpreted as a method for lengths.

The older function name lengths. psp is retained temporarily, for consistency with older code and
documentation.

In future versions of spatstat, the function name lengths. psp will be removed. The newer function
name lengths_psp should be used.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

marks.psp, summary.psp, midpoints.psp, angles.psp, endpoints.psp, extrapolate.psp.

Examples

a <- psp(runif(10), runif(10), runif(10@), runif(10), window=owin())
b <- lengths_psp(a)

levelset Level Set of a Pixel Image

Description

Given a pixel image, find all pixels which have values less than a specified threshold value (or
greater than a threshold, etc), and assemble these pixels into a window.

Usage
levelset (X, thresh, compare="<=", ...)

S3 method for class 'im'
levelset (X, thresh, compare="<=", ...)

levelset

Arguments

X

thresh

compare

Details

311

A pixel image (object of class "im")

Threshold value. A single number or value compatible with the pixel values in
X

Character string specifying one of the comparison operators "<", ">" "=="

n__n n-n ny)y_n
<=1, M>=, M=

Arguments passed to other methods (ignored by levelset.im)

If X is a pixel image with numeric values, then levelset(X, thresh) finds the region of space
where the pixel values are less than or equal to the threshold value thresh. This region is returned
as a spatial window.

The argument compare specifies how the pixel values should be compared with the threshold value.
Instead of requiring pixel values to be less than or equal to thresh, you can specify that they must
be less than (<), greater than (>), equal to (==), greater than or equal to (>=), or not equal to (!=) the
threshold value thresh.

If X has non-numeric pixel values (for example, logical or factor values) it is advisable to use only
the comparisons == and ! =, unless you really know what you are doing.

For more complicated logical comparisons, see solutionset.

Value

A spatial window (object of class "owin", see owin.object) containing the pixels satisfying the

constraint.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

im.object, as.owin, solutionset.

Examples

test image

X <- as.im(function(x,y) { x*2 - y*2 }, unit.square())

W <- levelset(X, 0.2)
W <- levelset(X, -0.3, ">")

compute area of level set
area(levelset(X, 0.1))

312 levelset.distfun

levelset.distfun Level Set of a Distance Function

Description

Given a distance function, find the spatial region where the function value is less than a specified
threshold value (or greater than a threshold, etc),

Usage
S3 method for class 'distfun'
levelset (X, thresh, compare="<=", ...)
Arguments
X Object of class "distfun” representing the distance function of a spatial object.
thresh Single numeric value of distance, defining the level set.
compare Character string specifying one of the comparison operators "<", ">" "=="
R S T

Arguments passed to as.mask if it is necessary to convert the result to a binary
mask.

Details

This is a method for the generic function levelset which computes level sets of a spatial variable.

A distance function (object of class "distfun” created by distfun) is a function of spatial location
which measures the distance to a given spatial object.

If f <- distfun(B), where B is some object, then the level set of f consisting of all spatial locations
u where f(u) <= thresh, is simply the dilation of the original object B by a distance equal to
thresh. The command levelset(X, thresh) computes this dilation as a spatial window.

In some cases the object must be converted to a binary pixel mask and the computation performed
by levelset.im. In that case, any arguments ... are passed to as.mask to determine the pixel
resolution.

Value

A spatial window (object of class "win").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distfun, methods.distfun, levelset

Iut 313
Examples
f <- distfun(cells)
V <- levelset(f, 0.05)
plot(V)
plot(cells, add=TRUE)
lut Lookup Tables
Description

Create a lookup table.

Usage

lut(outputs,

., range=NULL, breaks=NULL, inputs=NULL,

gamma=1, compress=NULL, decompress=NULL)

Arguments

outputs

range

inputs

breaks

gamma

compress

decompress

Details

Vector of output values.
Ignored.

Interval of numbers to be mapped. A numeric vector of length 2, specifying the
ends of the range of values to be mapped. Incompatible with breaks or inputs.

Input values to which the output values are associated. A factor or vector of the
same length as outputs. Incompatible with breaks or range.

Breakpoints for the lookup table. A numeric vector of length equal to length(outputs)+1.
Incompatible with range or inputs.

Exponent for gamma correction, when range is given. A single positive number.
See Details.

Optional. Experimental. An R function determining a nonlinear transformation
of the domain of the lookup table. See section on Nonlinear lookup tables.

Experimental. An R function giving the inverse function of compress, if compress
is specified.

A lookup table is a function, mapping input values to output values.

The command lut creates an object representing a lookup table, which can then be used to control
various behaviour in the spatstat package. It can also be used to compute the output value assigned

to any input value.

The argument outputs specifies the output values to which input data values will be mapped. It
should be a vector of any atomic type (e.g. numeric, logical, character, complex) or factor values.

Exactly one of the arguments range, inputs or breaks must be specified by name.

314 lut

* If inputs is given, then it should be a vector or factor, of the same length as outputs. The
entries of inputs can be any atomic type (e.g. numeric, logical, character, complex) or factor
values. The resulting lookup table associates the value inputs[i] with the value outputs[i].
The argument outputs should have the same length as inputs.

 If range is given, then it determines the interval of the real number line that will be mapped.
It should be a numeric vector of length 2. The interval will be divided evenly into bands, each
of which is mapped to an entry of outputs. (If gamma is given, then the bands are equally
spaced on a scale where the original values are raised to the power gamma.) (See the section
on Nonlinear lookup tables for the case where compress and decompress are given.)

 If breaks is given, then it determines intervals of the real number line which are mapped to
each output value. It should be a numeric vector, of length at least 2, with entries that are in
increasing order. Infinite values are allowed. Any number in the range between breaks[i]
and breaks[i+1] will be mapped to the value outputs[i]. The argument outputs should
have length equal to length(breaks) - 1.

It is also permissible for outputs to be a single value, representing a trivial lookup table in which
all data values are mapped to the same output value.

The result is an object of class "1ut”. There is a print method for this class. Some plot commands
in the spatstat package accept an object of this class as a specification of a lookup table.

The result is also a function f which can be used to compute the output value assigned to any input
data value. That is, f(x) returns the output value assigned to x. This also works for vectors of input
data values.

Value

A function, which is also an object of class "1ut”.

Nonlinear lookup tables

If the arguments compress and decompress are given, they define a transformation of the range of
numbers. A typical example would be a logarithmic lookup table defined by compress = 1log10 and
decompress = function(x) { 10*xg }.

These functions have no effect on the interpretation of the arguments range, breaks and inputs.
However, if range is given, then the range of values will be divided into intervals which have
equal length on the scale defined by compress. That is, the range of numbers determined by
compress(range) will be evenly divided into intervals, and these intervals will be mapped back
to the original scale by decompress to determine the breaks. For a logarithmic lookup table with
compress=1og10, the specified range will be divided into intervals which are equal on a logarithmic
scale.

The arguments compress and decompress should be functions which are vectorised (i.e. if x is
a vector then compress(x) and decompress(x) are also vectors of the same length as x) and
increasing (if x <y then compress(x) < compress(y) and decompress(x) < decompress(y).

The argument decompress is not needed in the following cases:
e If compress is the function 1og10, then decompress is taken to be its inverse function(x) {
10°x J.

 If compress is a cumulative distribution function (of class "ecdf”, "ewcdf" or "interpolatedCDF")
then decompress is taken to be its inverse function decompress = quantilefun(compress).

marks 315

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

colourmap.

Examples

lookup table for real numbers, using breakpoints

cr <- lut(factor(c("low”, "medium”, "high")), breaks=c(0,5,10,15))
cr

cr(3.2)

cr(c(3,5,7))

lookup table for discrete set of values

ct <- lut(c(@,1), inputs=c(FALSE, TRUE))

ct(TRUE)

logarithmic lookup table

cl <- lut(letters[1:3], range=c(@0.1, 100), compress=loglQ)

marks Marks of a Point Pattern

Description

Extract or change the marks attached to a point pattern dataset.

Usage

marks(x, ...)

S3 method for class 'ppp'
marks(x, ..., dfok=TRUE, drop=TRUE)

S3 method for class 'ppx'
marks(x, ..., drop=TRUE)

marks(x, ...) <- value

S3 replacement method for class 'ppp'
marks(x, ..., dfok=TRUE, drop=TRUE) <- value

S3 replacement method for class 'ppx'
marks(x, ...) <- value

setmarks(x, value)

x %mark% value

316 marks

Arguments
X Point pattern dataset (object of class "ppp"” or "ppx").
Ignored.
dfok Logical. If FALSE, data frames of marks are not permitted and will generate an
error.
drop Logical. If TRUE, a data frame consisting of a single column of marks will be
converted to a vector or factor.
value Replacement value. A vector, data frame or hyperframe of mark values, or NULL.
Details

These functions extract or change the marks attached to the points of the point pattern x.

The expression marks(x) extracts the marks of x. The assignment marks(x) <- value assigns
new marks to the dataset x, and updates the dataset x in the current environment. The expression
setmarks(x,value) or equivalently x %mark% value returns a point pattern obtained by replacing
the marks of x by value, but does not change the dataset x itself.

For point patterns in two-dimensional space (objects of class "ppp”) the marks can be a vector, a
factor, or a data frame.

For general point patterns (objects of class "ppx") the marks can be a vector, a factor, a data frame
or a hyperframe.

For the assignment marks(x) <- value, the value should be a vector or factor of length equal to
the number of points in x, or a data frame or hyperframe with as many rows as there are points in x.
If value is a single value, or a data frame or hyperframe with one row, then it will be replicated so
that the same marks will be attached to each point.

To remove marks, use marks(x) <- NULL or unmark(x).

Use ppp or ppx to create point patterns in more general situations.

Value

For marks(x), the result is a vector, factor, data frame or hyperframe, containing the mark values
attached to the points of x.

For marks (x) <- value, the result is the updated point pattern x (with the side-effect that the dataset
x is updated in the current environment).

For setmarks(x,value) and x %mark% value, the return value is the point pattern obtained by
replacing the marks of x by value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppp.object, ppx, unmark, hyperframe

marks.psp 317

Examples

X <- amacrine
extract marks
m <- marks(X)

recode the mark values "off"”, "on" as 0, 1
marks(X) <- as.integer(m == "on")
marks.psp Marks of a Line Segment Pattern

Description

Extract or change the marks attached to a line segment pattern.

Usage
S3 method for class 'psp'
marks(x, ..., dfok=TRUE)
S3 replacement method for class 'psp'
marks(x, ...) <- value
Arguments
X Line segment pattern dataset (object of class "psp").
Ignored.
dfok Logical. If FALSE, data frames of marks are not permitted and will generate an
error.
value Vector or data frame of mark values, or NULL.
Details

These functions extract or change the marks attached to each of the line segments in the pattern x.
They are methods for the generic functions marks and marks<- for the class "psp” of line segment
patterns.

The expression marks (x) extracts the marks of x. The assignment marks(x) <- value assigns new
marks to the dataset x, and updates the dataset x in the current environment.

The marks can be a vector, a factor, or a data frame.

For the assignment marks(x) <- value, the value should be a vector or factor of length equal to
the number of segments in x, or a data frame with as many rows as there are segments in x. If value
is a single value, or a data frame with one row, then it will be replicated so that the same marks will
be attached to each segment.

To remove marks, use marks(x) <- NULL or unmark(x).

318 marks.tess

Value

For marks(x), the result is a vector, factor or data frame, containing the mark values attached to the
line segments of x. If there are no marks, the result is NULL.

For marks(x) <- value, the result is the updated line segment pattern x (with the side-effect that
the dataset x is updated in the current environment).
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp.object, marks, marks<-

Examples

m <- data.frame(A=1:10, B=letters[1:10])
X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin(), marks=m)

marks (X)
marks(X)[, 2]
marks(X) <- 42
marks(X) <- NULL

marks.tess Marks of a Tessellation

Description

Extract or change the marks attached to the tiles of a tessellation.

Usage
S3 method for class 'tess'

marks(x, ...)

S3 replacement method for class 'tess'
marks(x, ...) <- value

S3 method for class 'tess'
unmark (X)

Arguments

X, X Tessellation (object of class "tess")
Ignored.
value Vector or data frame of mark values, or NULL.

markstat 319

Details

These functions extract or change the marks attached to each of the tiles in the tessellation x. They
are methods for the generic functions marks, marks<- and unmark for the class "tess” of tessella-
tions

The expression marks (x) extracts the marks of x. The assignment marks(x) <- value assigns new
marks to the dataset x, and updates the dataset x in the current environment.

The marks can be a vector, a factor, a data frame or a hyperframe.

For the assignment marks(x) <- value, the value should be a vector or factor of length equal to
the number of tiles in x, or a data frame or hyperframe with as many rows as there are tiles in x. If
value is a single value, or a data frame or hyperframe with one row, then it will be replicated so
that the same marks will be attached to each tile.

To remove marks, use marks(x) <- NULL or unmark(x).

Value

For marks(x), the result is a vector, factor, data frame or hyperframe, containing the mark values
attached to the tiles of x. If there are no marks, the result is NULL.

For unmark(x), the result is the tessellation without marks.

For marks(x) <- value, the result is the updated tessellation x (with the side-effect that the dataset
x is updated in the current environment).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

marks, marks<-

Examples

D <- dirichlet(cells)
marks(D) <- tile.areas(D)

markstat Summarise Marks in Every Neighbourhood in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and summarise their marks

Usage

markstat(X, fun, N=NULL, R=NULL, ...)

320 markstat
Arguments

X A marked point pattern. An object of class "ppp".

fun Function to be applied to the vector of marks.

N Integer. If this argument is present, the neighbourhood of a point of X is defined
to consist of the N points of X which are closest to it.

R Nonnegative numeric value. If this argument is present, the neighbourhood of a
point of X is defined to consist of all points of X which lie within a distance R of
it.
extra arguments passed to the function fun. They must be given in the form
name=value.

Details

This algorithm visits each point in the point pattern X, determines which points of X are “neighbours”
of the current point, extracts the marks of these neighbouring points, applies the function fun to the
marks, and collects the value or values returned by fun.

The definition of “neighbours” depends on the arguments N and R, exactly one of which must be
given.

If N is given, then the neighbours of the current point are the N points of X which are closest to the
current point (including the current point itself). If R is given, then the neighbourhood of the current
point consists of all points of X which lie closer than a distance R from the current point.

Each point of X is visited; the neighbourhood of the current point is determined; the marks of these
points are extracted as a vector v; then the function fun is called as:

fun(v, ...)
where . .. are the arguments passed from the call to markstat.

The results of each call to fun are collected and returned according to the usual rules for apply and
its relatives. See the section on Value.

This function is just a convenient wrapper for a common use of the function applynbd. For
more complex tasks, use applynbd. To simply tabulate the marks in every R-neighbourhood, use
marktable.

Value

Similar to the result of apply. if each call to fun returns a single numeric value, the result is a
vector of dimension npoints(X), the number of points in X. If each call to fun returns a vector of
the same length m, then the result is a matrix of dimensions c(m,n); note the transposition of the
indices, as usual for the family of apply functions. If the calls to fun return vectors of different
lengths, the result is a list of length npoints(X).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

matchingdist 321

See Also

applynbd, marktable, ppp.object, apply

Examples

trees <- longleaf
average diameter of 5 closest neighbours of each tree
md <- markstat(trees, mean, N=5)

range of diameters of trees within 10 metre radius
rd <- markstat(trees, range, R=10)

matchingdist Distance for a Point Pattern Matching

Description

Computes the distance associated with a matching between two point patterns.

Usage

matchingdist(matching, type = NULL, cutoff = NULL, g = NULL)

Arguments
matching A point pattern matching (an object of class "pppmatching”).
type A character string giving the type of distance to be computed. One of "spa”,
"ace” or "mat”. See details below.
cutoff The value > 0 at which interpoint distances are cut off.
q The order of the average that is applied to the interpoint distances. May be Inf,
in which case the maximum of the interpoint distances is taken.
Details

Computes the distance specified by type, cutoff, and order for a point matching. If any of
these arguments are not provided, the function uses the corresponding elements of matching (if
available).

For the type "spa” (subpattern assignment) it is assumed that the points of the point pattern with
the smaller cardinality m are matched to a m-point subpattern of the point pattern with the larger
cardinality n in a 1-1 way. The distance is then given as the g-th order average of the m distances be-
tween matched points (minimum of Euclidean distance and cutoff) and n — m "penalty distances"
of value cutoff.

For the type "ace"” (assignment only if cardinalities equal) the matching is assumed to be 1-1 if the
cardinalities of the point patterns are the same, in which case the g-th order average of the matching

322 matchingdist

distances (minimum of Euclidean distance and cutoff) is taken. If the cardinalities are different,
the matching may be arbitrary and the distance returned is always equal to cutoff.

For the type mat (mass transfer) it is assumed that each point of the point pattern with the smaller
cardinality m has mass 1, each point of the point pattern with the larger cardinality n has mass
m/n, and fractions of these masses are matched in such a way that each point contributes exactly
its mass. The distance is then given as the g-th order weighted average of all distances (minimum of
Euclidean distance and cutoff) of (partially) matched points with weights equal to the fractional
masses divided by m.

If the cardinalities of the two point patterns are equal, matchingdist(m, type, cutoff, q) yields

non

the same result no matter if type is "spa”, "ace"” or "mat".

Value

Numeric value of the distance associated with the matching.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>, URL http://dominic.schuhmache

See Also

pppdist pppmatching.object

Examples

an optimal matching
X <- runifrect(20)
Y <- runifrect(20)
m.opt <- pppdist(X, Y)
summary (m.opt)
matchingdist(m.opt)
is the same as the distance given by summary(m.opt)

sequential nearest neighbour matching
(go through all points of point pattern X in sequence
and match each point with the closest point of Y that is
still unmatched)
am <- matrix(@, 20, 20)
h <- matrix(c(1:20, rep(0,20)), 20, 2)
h[1,2] = nncross(X[1],Y)[1,2]
for (i in 2:20) {
nn <- nncross(X[il,Y[-h[1:(i-1),211)[1,2]
hl[i,2] <= ((1:20)[-h[1:(i-1),211)[nn]
}
am[h] <- 1
m.nn <- pppmatching(X, Y, am)
matchingdist(m.nn, type="spa", cutoff=1, g=1)
is >= the distance obtained for m.opt
in most cases strictly >

opa <- par(mfrow=c(1,2))

Math.im 323

plot(m.opt, main="optimal")

plot(m.nn, main="nearest neighbour")
text(X, 1:20, pos=1, offset=0.3, cex=0.8)
par(opa)

Math.im S3 Group Generic methods for images

Description

These are group generic methods for images of class "im"”, which allows for usual mathematical
functions and operators to be applied directly to images. See Details for a list of implemented

functions.
Usage
S3 methods for group generics have prototypes:
Math(x, ...)
Ops(el, e2)
Complex(z)
Summary (..., na.rm=FALSE, drop=TRUE)
Arguments
X, z,el, e2 objects of class "im".
further arguments passed to methods.
na.rm, drop Logical values specifying whether missing values should be removed. This will
happen if either na.rm=TRUE or drop=TRUE. See Details.
Details

Below is a list of mathematical functions and operators which are defined for images. Not all
functions will make sense for all types of images. For example, none of the functions in the "Math”
group make sense for character-valued images. Note that the "Ops" group methods are implemented
using eval.im, which tries to harmonise images via harmonise. im if they aren’t compatible to
begin with.

1. Group "Math":

e abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

* exp, log, expml, loglp,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

324 Math.im

e lgamma, gamma, digamma, trigamma

e cumsum, cumprod, cummax, cummin

2. Group "Ops":
° ”+H’ ”_”’ ”*”’ ”/”’ ”/\”’ ”%%H’ H%/%H
° ”&”’ ”IH’ ”!H
° ”::" ”':” l1<” l1<:H H>:H ">”

3. Group "Summary”:

e all, any
e sum, prod
* min, max

* range
4. Group "Complex”:
* Arg, Conj, Im, Mod, Re

For the Summary group, the generic has an argument na.rm=FALSE, but for pixel images it makes
sense to set na.rm=TRUE so that pixels outside the domain of the image are ignored. To enable this,
we added the argument drop. Pixel values that are NA are removed if drop=TRUE or if na.rm=TRUE.

For the Ops group, one of the arguments is permitted to be a single atomic value instead of an image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Kassel Hingee.

See Also

eval.im for evaluating expressions involving images.

Examples

Convert gradient values to angle of inclination:

V <- atan(bei.extra$grad) * 180/pi

Make logical image which is TRUE when heat equals 'Moderate’:
A <- (gorillas.extra$heat == "Moderate")

Summary:

any(A)

Complex:

Z <- exp(1 +V % 1i)

z

Re(Z)

Math.imlist 325

Math.imlist S3 Group Generic methods for List of Images

Description

These are group generic methods for the class "imlist"” of lists of images. These methods allows
the usual mathematical functions and operators to be applied directly to lists of images. See Details
for a list of implemented functions.

Usage
S3 methods for group generics have prototypes:
Math(x, ...)
Ops(el, e2)
Complex(z)
Summary(..., na.rm = TRUE)
Arguments
X, z,el,e2 Lists of pixel images (objects of class "imlist").
further arguments passed to methods.
na.rm logical: should missing values be removed?
Details

An object of class "imlist" represents a list of pixel images. It is a 1ist, whose entries are pixel
images (objects of class "im").

The following mathematical functions and operators are defined for lists of images.

Not all functions will make sense for all types of images. For example, none of the functions in
the "Math" group make sense for character-valued images. Note that the "Ops” group methods
are implemented using eval. im, which tries to harmonise images via harmonise. im if they aren’t
compatible to begin with.

1. Group "Math":

e abs, sign, sqgrt,
floor, ceiling, trunc,
round, signif

* exp, log, expml, logip,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

e lgamma, gamma, digamma, trigamma
* cumsum, cumprod, cummax, cummin

326 Math.imlist

2. Group "Ops":
° ”+H’ ”_”’ ”*”’ ”/H’ ”/\”, ”%%H’ H%/%H
n n n n n n
° & ’ | ’ !
° II::II H!:II H<II’ H<:Il Il>:H II>II

k] > > s

3. Group "Summary":

e all, any
e sum, prod
* min, max

* range
4. Group "Complex”:

* Arg, Conj, Im, Mod, Re

For the binary operations in "Ops”, either

* el and e2 are lists of pixel images, and contain the same number of images.

* one of e1,e2 is a list of pixel images, and the other is a single atomic value.

Value

The result of "Math”, "Ops” and "Complex” group operations is another list of images. The result
of "Summary” group operations is a numeric vector of length 1 or 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Math.im or eval.im for evaluating expressions involving images. solapply for a wrapper for
lapply.

Examples

a <- solist(A=setcov(square(1)), B=setcov(square(2)))
log(a)/2 - sqrt(a)
range(a)

maxnndist 327

maxnndist Compute Minimum or Maximum Nearest-Neighbour Distance

Description

A faster way to compute the minimum or maximum nearest-neighbour distance in a point pattern.

Usage

minnndist (X, positive=FALSE, by=NULL)
maxnndist (X, positive=FALSE, by=NULL)

Arguments
X A point pattern (object of class "ppp").
positive Logical. If FALSE (the default), compute the usual nearest-neighbour distance.
If TRUE, ignore coincident points, so that the nearest neighbour distance for each
point is greater than zero.
by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.
Details

These functions find the minimum and maximum values of nearest-neighbour distances in the point
pattern X. minnndist(X) and maxnndist(X) are equivalent to, but faster than, min(nndist(X))
and max(nndist (X)) respectively.

The value is NA if npoints(X) < 2.

Value

A single numeric value (possibly NA).

If by is given, the result is a numeric matrix giving the minimum or maximum nearest neighbour
distance between each subset of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

nndist

328

Examples

min(nndist(swedishpines))
minnndist(swedishpines)

max(nndist(swedishpines))
maxnndist(swedishpines)

minnndist(lansing, positive=TRUE)

if(interactive()) {
X <= runifrect(1e6)
system. time(min(nndist(X)))
system.time(minnndist (X))

3

minnndist(amacrine, by=marks(amacrine))
maxnndist(amacrine, by=marks(amacrine))

mean.im

mean. im Mean and Median of Pixel Values in an Image

Description

Calculates the mean or median of the pixel values in a pixel image.

Usage

S3 method for class 'im'
mean(x, trim=0, na.rm=TRUE, ...)

S3 method for class 'im'

median(x, na.rm=TRUE) [R < 3.4.0]

median(x, na.rm=TRUE, ...) [R >= 3.4.0]
Arguments

X A pixel image (object of class "im").

na.rm Logical value indicating whether NA values should be stripped before the com-

putation proceeds.

trim The fraction (0 to 0.5) of pixel values to be trimmed from each end of their

range, before the mean is computed.

Ignored.

mergeLevels 329

Details

These functions calculate the mean and median of the pixel values in the image x.
An object of class "im" describes a pixel image. See im.object) for details of this class.

ns on

The function mean.im is a method for the generic function mean for the class "im". Similarly

median.imis a method for the generic median.

If the image x is logical-valued, the mean value of x is the fraction of pixels that have the value
TRUE. The median is not defined.

If the image x is factor-valued, then the mean of x is the mean of the integer codes of the pixel
values. The median is are not defined.

Other mathematical operations on images are supported by Math. im, Summary. im and Complex. im.

Other information about an image can be obtained using summary.imor quantile.im.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Kassel Hingee.

See Also

Math.im for other operations.
Generics and default methods: mean, median.

quantile.im, anyNA.im, im.object, summary.im.

Examples

X <- as.im(function(x,y) {x*2}, unit.square())
mean (X)

median(X)

mean(X, trim=0.05)

mergelLevels Merge Levels of a Factor

Description

Specified levels of the factor will be merged into a single level.

Usage

mergelLevels(.f, ...)

330 mergeLevels

Arguments
.f A factor (or a factor-valued pixel image or a point pattern with factor-valued
marks).
List of name=value pairs, where name is the new merged level, and value is the
vector of old levels that will be merged.
Details

This utility function takes a factor . f and merges specified levels of the factor.

The grouping is specified by the arguments ... which must each be given in the form new=o0ld,
where new is the name for the new merged level, and old is a character vector containing the old
levels that are to be merged.

The result is a new factor (or factor-valued object), in which the levels listed in old have been
replaced by a single level new.

An argument of the form name=character (@) or name=NULL is interpreted to mean that all other
levels of the old factor should be mapped to name.

Value

Another factor of the same length as . f (or object of the same kind as . f).

Tips for manipulating factor levels

To remove unused levels from a factor f, just type f <- factor(f).

To change the ordering of levels in a factor, use factor (f, levels=1) or relevel(f, ref).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

factor, relevel

Examples

likert <- c("Strongly Agree”, "Agree”, "Neutral”,

"Disagree”, "Strongly Disagree")
answers <- factor(sample(likert, 15, replace=TRUE), levels=likert)
answers
mergelLevels(answers, Positive=c("Strongly Agree"”, "Agree"),

Negative=c("Strongly Disagree”, "Disagree"))

methods.box3 331

methods.box3 Methods for Three-Dimensional Box

Description

Methods for class "box3".

Usage
S3 method for class 'box3'
print(x, ...)
S3 method for class 'box3'
unitname(x)

S3 replacement method for class 'box3'
unitname(x) <- value

Arguments
X Object of class "box3" representing a three-dimensional box.
Other arguments passed to print.default.
value Name of the unit of length. See unitname.
Details

These are methods for the generic functions print and unitname for the class "box3" of three-
dimensional boxes.

The print method prints a description of the box, while the unitname method extracts the name of
the unit of length in which the box coordinates are expressed.

Value

For print.box3 the value is NULL. For unitname.box3 an object of class "units”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

box3, print, unitname

332 methods.boxx

Examples

X <- box3(c(0,10),c(0,10),c(@,5), unitname=c("metre”, "metres"))
X

unitname (X)

Northern European usage

unitname(X) <- "meter”

methods.boxx Methods for Multi-Dimensional Box

Description

Methods for class "boxx".

Usage
S3 method for class 'boxx'
print(x, ...)
S3 method for class 'boxx'
unitname(x)

S3 replacement method for class 'boxx'
unitname(x) <- value

S3 method for class 'boxx'
scale(x, center=TRUE, scale=TRUE)

Arguments
X Object of class "boxx" representing a multi-dimensional box.
Other arguments passed to print.default.
value Name of the unit of length. See unitname.

center, scale Arguments passed to scale.default to determine the rescaling.

Details

These are methods for the generic functions print, unitname, unitname<- and scale for the class
"boxx" of multi-dimensional boxes.

The print method prints a description of the box, the unitname method extracts the name of
the unit of length in which the box coordinates are expressed, while the assignment method for
unitname assigns this unit name.

The scale method rescales each spatial coordinate of x.

Value

For print.boxx the value is NULL. For unitname.boxx an object of class "units”. For unitname<-.boxx
and scale.boxx the result is the updated "boxx" object x.

methods.distfun 333

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

boxx, is.boxx, print, unitname, scale

Examples

B <- boxx(c(0,10),c(0,10),c(0,5),c(0,1), unitname=c("metre”, "metres"))
B

is.boxx(B)

unitname(B)

Northern European usage

unitname(B) <- "meter”

scale(B)

methods.distfun Geometrical Operations for Distance Functions

Description

Methods for objects of the class "distfun”.

Usage
S3 method for class 'distfun'
shift(X, ...)

S3 method for class 'distfun'
rotate(X, ...)

S3 method for class 'distfun'
scalardilate(X, ...)

S3 method for class 'distfun'
affine(X, ...)

S3 method for class 'distfun'
flipxy(X)

S3 method for class 'distfun'
reflect(X)

S3 method for class 'distfun'
rescale(X, s, unitname)

334 methods.distfun

Arguments
X Object of class "distfun” representing the distance function of a spatial object.
Arguments passed to the next method for the geometrical operation. See Details.
s, unitname Arguments passed to the next method for rescale.
Details

These are methods for the generic functions shift, rotate, scalardilate, affine, flipxy and
reflect which perform geometrical operations on spatial objects, and for the generic rescale
which changes the unit of length.

The argument X should be an object of class "distfun” representing the distance function of a
spatial object Y. Objects of class "distfun” are created by distfun.

The methods apply the specified geometrical transformation to the original object Y, producing a
new object Z of the same type as Y. They then create a new distfun object representing the distance
function of Z.

Value

Another object of class "distfun”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distfun, methods. funxy.

Examples

(f <- distfun(letterR))
plot(f)

flipxy(f)

shift(f, origin="midpoint")
plot(rotate(f, angle=pi/2))

(g <~ distfun(lansing))
rescale(g)

methods.funxy 335

methods. funxy Methods for Spatial Functions

Description

Methods for objects of the class " funxy”.

Usage

S3 method for class 'funxy'
contour(x, ...)

S3 method for class 'funxy'
persp(x, ...)

S3 method for class 'funxy'
plot(x, ...)

Arguments

X Object of class "funxy"” representing a function of x, y coordinates.

Named arguments controlling the plot. See Details.

Details

These are methods for the generic functions plot, contour and persp for the class "funxy" of
spatial functions.

Objects of class "funxy” are created, for example, by the commands distfun and funxy.

The plot, contour and persp methods first convert x to a pixel image object using as.im, then
display it using plot.im, contour.im or persp.im.

Additional arguments . . . are either passed to as.im.function to control the spatial resolution of
the pixel image, or passed to contour.im, persp.im or plot.im to control the appearance of the
plot.

In particular the argument W specifies the spatial domain over which the function will be plotted.
See the Examples.

Value

Equivalent to the result of contour. im, persp.imor plot. im respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

funxy, distfun, as.im, plot.im, persp.im, contour.im, spatstat.options

336 methods.layered

Examples

f <- distfun(letterR)

contour(f)

plot it on a larger region

B <- owin(c(1,5), c(-1, 4))

contour(f, W=B)

persp(f, W=B, theta=40, phi=40, border=NA, shade=0.7)

methods.layered Methods for Layered Objects

Description

Methods for geometrical transformations of layered objects (class "layered").

Usage

S3 method for class 'layered'
c(...)

S3 method for class 'layered'
shift(X, vec=c(0,0), ...)

S3 method for class 'layered'
rotate(X, ..., centre=NULL)

S3 method for class 'layered'
affine(X, ...)

S3 method for class 'layered'
reflect(X)

S3 method for class 'layered'
flipxy(X)

S3 method for class 'layered'
rescale(X, s, unitname)

S3 method for class 'layered'

scalardilate(X, ...)
Arguments
X Object of class "layered”.

Arguments passed to the relevant methods when applying the operation to each
layer of X.

s Rescaling factor passed to the relevant method for rescale. May be missing.

methods.pp3 337

vec Shift vector (numeric vector of length 2).

centre Centre of rotation. FEither a vector of length 2, or a character string (partially
matched to "centroid”, "midpoint” or "bottomleft"”). The default is the
coordinate origin c(0,0).

unitname Optional. New name for the unit of length. A value acceptable to the function
unitname<-

Details

These are methods for the generic functions c, shift, rotate, reflect, affine, rescale, scalardilate
and flipxy for the class of layered objects.

A layered object represents data that should be plotted in successive layers, for example, a back-
ground and a foreground. See layered.

The method for c can be used to concatenate two or more layered objects . . . into a single layered
object, retaining the plot arguments.

The other methods apply geometrical operations to each of the layers of the layered object X.

Value

Another object of class "layered”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

layered

Examples

B <- owin(c(5500, 9000), c(2500, 7400))

L <- layered(Window(demopat), unmark(demopat)[B])
plot(L)

plot(rotate(L, pi/4))

methods.pp3 Methods for three-dimensional point patterns

Description

Methods for class "pp3".

338

Usage

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
summary (object,

S3 method for
unitname(x)

S3 replacement method for class 'pp3'

class

class

class

)

class

unitname(x) <- value

Arguments
X, object Object of class "pp3".
Ignored.
value Name of the unit of length. See unitname.
Details

lpp3l
'summary.pp3"’
lpp3l

|pp3|

methods.pp3

These are methods for the generic functions print, summary, unitname and unitname<- for the

class "pp3" of three-dimensional point patterns.

The print and summary methods print a description of the point pattern.

The unitname method extracts the name of the unit of length in which the point coordinates are

expressed. The unitname<- method assigns the name of the unit of length.

Value

For print.pp3 the value is NULL. For unitname.pp3 an object of class "units”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

pp3, print, unitname unitname<-

Examples

X <= pp3(runif(42),runif(42),runif(42), box3(c(@,1), unitname="mm"))

X
unitname (X)

unitname(X) <- c("foot”, "feet")

summary (X)

methods.ppx 339

methods. ppx Methods for Multidimensional Space-Time Point Patterns

Description

Methods for printing and plotting a general multidimensional space-time point pattern.

Usage

S3 method for class 'ppx'

print(x, ...)

S3 method for class 'ppx'

plot(x, ...)

S3 method for class 'ppx'

unitname(x)

S3 replacement method for class 'ppx'
unitname(x) <- value

S3 method for class 'ppx'

scale(x, center=TRUE, scale=TRUE)

Arguments
X Multidimensional point pattern (object of class "ppx").
Additional arguments passed to plot methods.
value Name of the unit of length. See unitname.

center, scale Arguments passed to scale.default to determine the rescaling.

Details

These are methods for the generic functions print, plot, unitname, unitname<- and scale for
the class "ppx" of multidimensional point patterns.

The print method prints a description of the point pattern and its spatial domain.

The unitname method extracts the name of the unit of length in which the point coordinates are
expressed. The unitname<- method assigns the name of the unit of length.

The scale method rescales each spatial coordinate of x.

Value
For print.ppx and plot.ppx the value is NULL. For unitname.ppx the value is an object of class
"units”. For unitname<-.ppx and scale.ppx the value is another object of class "ppx".
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

340 methods.unitname

See Also

ppXx, unitname

methods.unitname Methods for Units

Description

Methods for class "unitname”.

Usage
S3 method for class 'unitname'
print(x, ...)
S3 method for class 'unitname'
summary (object, ...)

S3 method for class 'unitname'
rescale(X, s, unitname)

S3 method for class 'unitname'
compatible(A,B, ..., coerce=TRUE)

S3 method for class 'unitname'
harmonise(..., coerce=TRUE, single=FALSE)

S3 method for class 'unitname'
harmonize(..., coerce=TRUE, single=FALSE)

Arguments

x, X, A, B, object Objects of class "unitname” representing units of length.

Other arguments. For print.unitname these arguments are passed to print.default.
For summary . unitname they are ignored. For compatible.unitname and harmonise.unitname
these arguments are other objects of class "unitname”.

s Conversion factor: the new units are s times the old units.
unitname Optional new name for the unit. If present, this overrides the rescaling operation
and simply substitutes the new name for the old one.
coerce Logical. If TRUE, a null unit of length is compatible with any non-null unit.
single Logical value indicating whether to return a single unitname, or a list of unit-
names.
Details

These are methods for the generic functions print, summary, rescale and compatible for the
class "unitname”.

An object of class "unitname” represents a unit of length.

The print method prints a description of the unit of length, and the summary method gives a more
detailed description.

metric.object 341

The rescale method changes the unit of length by rescaling it.
The compatible method tests whether two or more units of length are compatible.

The harmonise method returns the common unit of length if there is one. For consistency with other
methods for harmonise, the result is a list of unitname objects, with one entry for each argument
in All of these entries are identical. This can be overridden by setting single=TRUE when the
result will be a single unitname object.

Value

For print.unitname the value is NULL. For summary.unitname the value is an object of class
summary . unitname (with its own print method). For rescale.unitname the value is another object
of class "unitname”. For compatible.unitname the result is logical. For harmonise.unitname
the result is a list of identical unitnames if single=FALSE (the default), or a single unitname if
single=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

box3, print, unitname

metric.object Distance Metric

Description

An object of class "metric” defines a measure of distance between points, and supports many
operations that involve distances.

Details
A ‘metric’ d is a measure of distance between points that satisfies

1. d(x,z) = 0 for any point z,

2. d(z,y) > 0 for any two distinct points = and y

3. symmetry: d(z,y) = d(y, x) for any two points x and y

4. triangle inequality: d(z,y) < d(z, z) + d(z, y) for any three points z, y, 2.

The Euclidean distance between points is an example of a metric.

An object of class "metric” is a structure that defines a metric and supports many computations
that involve the metric. The internal structure of this object, and the mechanism for performing
these computations, are under development.

342 midpoints.psp

Objects of class "metric” are produced by the function convexmetric and possibly by other func-
tions.

There are methods for print and summary for the class "metric”. The summary method lists the
operations that are supported by the metric.

To perform distance calculations (for example, nearest-neighbour distances) using a desired metric
instead of the Euclidean metric, first check whether the standard function for this purpose (for
example nndist.ppp) has an argument named metric. If so, use the standard function and add the
argument metric; if not, use the low-level function invoke.metric.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

convexmetric, invoke.metric

Examples

m <- convexmetric(square(c(-1,1)))
summary (m)
y <- nndist(cells, metric=m)

midpoints.psp Midpoints of Line Segment Pattern

Description

Computes the midpoints of each line segment in a line segment pattern.

Usage

midpoints.psp(x)

Arguments

X A line segment pattern (object of class "psp").

Details

The midpoint of each line segment is computed.

Value

Point pattern (object of class "ppp").

MinkowskiSum 343

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

marks.psp, summary.psp, lengths_psp angles.psp, endpoints.psp, extrapolate.psp.

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
b <- midpoints.psp(a)

MinkowskiSum Minkowski Sum of Windows

Description

Compute the Minkowski sum of two spatial windows.

Usage
MinkowskiSum(A, B)

A %(+)% B

dilationAny(A, B)

Arguments
A B Windows (objects of class "owin"), point patterns (objects of class "ppp") or
line segment patterns (objects of class "psp”) in any combination.
Details

The operator A %(+)% B and function MinkowskiSum(A,B) are synonymous: they both compute
the Minkowski sum of the windows A and B. The function dilationAny computes the Minkowski
dilation A %(+)% reflect(B).

The Minkowski sum of two spatial regions A and B is another region, formed by taking all possible
pairs of points, one in A and one in B, and adding them as vectors. The Minkowski Sum A & B is
the set of all points a + b where a is in A and b is in B. A few common facts about the Minkowski
sum are:

* The sum is symmetric: A® B = B @ A.
* If B is a single point, then A & B is a shifted copy of A.

* If A is a square of side length a, and B is a square of side length b, with sides that are parallel
to the coordinate axes, then A @ B is a square of side length a + b.

344 MinkowskiSum

o If A and B are discs of radius r and s respectively, then A & B is a disc of redius r + s.

* If B is a disc of radius r centred at the origin, then A & B is equivalent to the morphological
dilation of A by distance r. See dilation.

The Minkowski dilation is the closely-related region A @ (—B) where (—B) is the reflection of B
through the origin. The Minkowski dilation is the set of all vectors z such that, if B is shifted by z,
the resulting set B + z has nonempty intersection with A.

The algorithm currently computes the result as a polygonal window using the polyclip library. It
will be quite slow if applied to binary mask windows.

The arguments A and B can also be point patterns or line segment patterns. These are interpreted
as spatial regions, the Minkowski sum is computed, and the result is returned as an object of the
most appropriate type. The Minkowski sum of two point patterns is another point pattern. The
Minkowski sum of a point pattern and a line segment pattern is another line segment pattern.

Value

A window (object of class "owin") except that if A is a point pattern, then the result is an object of
the same type as B (and vice versa).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

dilation, erosionAny

Examples

B <- square(0.2)
RplusB <- letterR %(+)% B

opa <- par(mfrow=c(1,2))
FR <- grow.rectangle(Frame(letterR), 0.3)
plot(FR, main="")
plot(letterR, add=TRUE, lwd=2, hatch=TRUE, hatchargs=1list(texture=5))
plot(shift(B, vec=c(3.675, 3)),

add=TRUE, border="red"”, lwd=2)
plot(FR, main="")
plot(letterR, add=TRUE, lwd=2, hatch=TRUE, hatchargs=list(texture=5))
plot(RplusB, add=TRUE, border="blue", lwd=2,

hatch=TRUE, hatchargs=list(col="blue"))

par(opa)

plot(cells %(+)% square(0.1))

multiplicity.ppp 345

multiplicity.ppp Count Multiplicity of Duplicate Points

Description

Counts the number of duplicates for each point in a spatial point pattern.

Usage

multiplicity(x)

S3 method for class 'ppp'
multiplicity(x)

S3 method for class 'ppx'
multiplicity(x)

S3 method for class 'data.frame'
multiplicity(x)

Default S3 method:

multiplicity(x)
Arguments
X A spatial point pattern (object of class "ppp” or "ppx") or a vector, matrix or
data frame.
Details

Two points in a point pattern are deemed to be identical if their =, y coordinates are the same, and
their marks are also the same (if they carry marks). The Examples section illustrates how it is
possible for a point pattern to contain a pair of identical points.

For each point in x, the function multiplicity counts how many points are identical to it, and
returns the vector of counts.

The argument x can also be a vector, a matrix or a data frame. When x is a vector,m <- multiplicity(x)
is a vector of the same length as x, and m[i] is the number of elements of x that are identical to
x[i]. When x is a matrix or data frame, m <- multiplicity(x) is a vector of length equal to the
number of rows of x, and m[i] is the number of rows of x that are identical to the ith row.

Value

A vector of integers (multiplicities) of length equal to the number of points in x.

346 NAobject

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
, Rolf Turner <rolfturner@posteo.net>

and Sebastian Meyer.

See Also

ppp.object, duplicated. ppp, unique. ppp

Examples

X <- ppp(c(1,1,0.5,1), c(2,2,1,2), window=square(3), check=FALSE)
m <- multiplicity(X)

unique points in X, marked by their multiplicity
first <- !duplicated(X)
Y <- X[first] %mark% m[first]

NAobject Make an NA Object

Description

Create a object which represents a missing or unavailable object of a particular class in the spatstat
package family.

Usage
NAobject(cls)

Arguments

cls Character string specifying a class.

Details
This function creates an object which represents a missing or unavailable object belonging to one
of the classes in the spatstat package family.

For example NAobject ("ppp") creates an object which inherits the classes "NAobject” and "ppp”,
and effectively represents a point pattern dataset that is missing or unavailable.

Typical uses of NA objects include simulation algorithms (where the algorithm may sometimes
fail to produce a result) and designed experiments (where data may be missing for some of the
experimental cases).

An NA object can be recognised by is.NAobject.

NA entries in a hyperframe can be recognised by is.na.hyperframe. NA entries in a spatial object
list can be recognised by is.na.solist.

nearest.raster.point 347

Value

An object belonging to the classes "NAobject"” and cls.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

is.NAobject, is.na.hyperframe, is.na.solist.

Examples

NAobject("tess")

nearest.raster.point Find Pixel Nearest to a Given Point

Description

Given cartesian coordinates, find the nearest pixel.

Usage

nearest.raster.point(x,y,w, indices=TRUE)

Arguments
X Numeric vector of = coordinates of any points
y Numeric vector of y coordinates of any points
An image (object of class "im") or a binary mask window (an object of class
"owin" of type "mask").
indices Logical flag indicating whether to return the row and column indices, or the
actual z, y coordinates.
Details

The argument w should be either a pixel image (object of class "im") or a window (an object of
class "owin", see owin.object for details) of type "mask".

The arguments x and y should be numeric vectors of equal length. They are interpreted as the
coordinates of points in space. For each point (x[i], y[i1), the function finds the nearest pixel in
the grid of pixels for w.

If indices=TRUE, this function returns a list containing two vectors rr and cc giving row and
column positions (in the image matrix). For the location (x[i],y[i]) the nearest pixel is at row
rr[i] and column cc[i] of the image.

If indices=FALSE, the function returns a list containing two vectors x and y giving the actual
coordinates of the pixels.

348 nearestsegment

Value

If indices=TRUE, a list containing two vectors rr and cc giving row and column positions (in the
image matrix). If indices=FALSE, a list containing vectors x and y giving actual coordinates of the
pixels.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin.object, as.mask

Examples

w <- owin(c(@,1), c(0,1), mask=matrix(TRUE, 100,100)) # 100 x 100 grid
nearest.raster.point(0.5, 0.3, w)
nearest.raster.point(0.5, 0.3, w, indices=FALSE)

nearestsegment Find Line Segment Nearest to Each Point

Description
Given a point pattern and a line segment pattern, this function finds the nearest line segment for
each point.

Usage

nearestsegment (X, Y)

Arguments

X A point pattern (object of class "ppp").

Y A line segment pattern (object of class "psp").
Details

The distance between a point x and a straight line segment y is defined to be the shortest Euclidean
distance between x and any location on y. This algorithm first calculates the distance from each
point of X to each segment of Y. Then it determines, for each point x in X, which segment of Y is
closest. The index of this segment is returned.

Value

Integer vector v (of length equal to the number of points in X) identifying the nearest segment to
each point. If v[i] = j, then Y[]] is the line segment lying closest to X[i].

nearestValue 349

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

project2segment to project each point of X to a point lying on one of the line segments.

Use distmap.psp to identify the nearest line segment for each pixel in a grid.

Examples

X <- runifrect(3)

Y <- as.psp(matrix(runif(20), 5, 4), window=owin())
v <- nearestsegment(X,Y)

plot(Y)

plot(X, add=TRUE)

plot(X[1], add=TRUE, col="red")

plot(Y[v[1]], add=TRUE, 1lwd=2, col="red")

nearestValue Image of Nearest Defined Pixel Value

Description
Given a pixel image defined on a subset of a rectangle, this function assigns a value to every pixel
in the rectangle, by looking up the value of the nearest pixel that has a value.

Usage

nearestValue(X)

Arguments

X A pixel image (object of class "im").

Details

A pixel image in spatstat is always stored on a rectangular grid of pixels, but its value may be NA
on some pixels, indicating that the image is not defined at those pixels.

This function assigns a value to every pixel in the rectangular grid. For each pixel a in the grid, if
the value of X is not defined at a, the function finds the nearest other pixel b at which the value of X
is defined, and takes the pixel value at b as the new pixel value at a.

Value

Another image of the same kind as X.

350 nestsplit

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

blur, Smooth.ppp

Examples

X <- as.im(function(x,y) { x + y }, letterR)
Y <- nearestValue(X)

plot(solist(”"X"=X, "nearestValue(X)"=Y), main="", panel.end=letterR)
nestsplit Nested Split
Description

Applies two splitting operations to a point pattern, producing a list of lists of patterns.

Usage
nestsplit(X, ...)
Arguments
X Point pattern to be split. Object of class "ppp".
Data determining the splitting factors or splitting regions. See Details.
Details

This function splits the point pattern X into several sub-patterns using split.ppp, then splits each of
the sub-patterns into sub-sub-patterns using split. ppp again. The result is a hyperframe containing
the sub-sub-patterns and two factors indicating the grouping.

The arguments . . . determine the two splitting factors or splitting regions. Each argument may be:

* a factor (of length equal to the number of points in X)

* the name of a column of marks of X (provided this column contains factor values)
 atessellation (class "tess")

* apixel image (class "im") with factor values

¢ a window (class "owin")

* identified by name (in the form name=value) as one of the formal arguments of quadrats or

tess

The arguments will be processed to yield a list of two splitting factors/tessellations. The splits will
be applied to X consecutively to produce the sub-sub-patterns.

Nncross 351

Value

A hyperframe with three columns. The first column contains the sub-sub-patterns. The second and
third columns are factors which identify the grouping according to the two splitting factors.

Author(s)

Original idea by Ute Hahn. Code by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf
Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

See Also

split.ppp, quantess

Examples

factor and tessellation

Nft <- nestsplit(amacrine, marks(amacrine), quadrats(amacrine, 3, 1))
Ntf <- nestsplit(amacrine, quadrats(amacrine, 3, 1), marks(amacrine))
Ntf

two factors
big <- with(marks(betacells), area > 300)
Nff <- nestsplit(betacells, "type"”, factor(big))

two tessellations

Tx <- quantess(redwood, "x", 4)

Td <- dirichlet(runifrect(5, Window(redwood)))
Ntt <- nestsplit(redwood, Td, Tx)

Ntt2 <- nestsplit(redwood, Td, ny=3)

nncross Nearest Neighbours Between Two Patterns

Description
Given two point patterns X and Y, finds the nearest neighbour in Y of each point of X. Alternatively
Y may be a line segment pattern.

Usage

nncross(X, Y, ...)

S3 method for class 'ppp'
nncross(X, Y,
iX=NULL, iY=NULL,
what = c("dist”, "which"),

352 nncross
Sortbyzc("range”, "Var"’ HX”’ lly”),
is.sorted.X = FALSE,
is.sorted.Y = FALSE,
metric=NULL)
Default S3 method:
nncross(X, Y, ...)
Arguments
X Point pattern (object of class "ppp").
Y Either a point pattern (object of class "ppp") or a line segment pattern (object of
class "psp").
iX, iy Optional identifiers, applicable only in the case where Y is a point pattern, used

to determine whether a point in X is identical to a point in Y. See Details.

what Character string specifying what information should be returned. Either the
nearest neighbour distance ("dist"), the identifier of the nearest neighbour
("which™), or both.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

sortby Determines which coordinate to use to sort the point patterns. See Details.

is.sorted.X, is.sorted.Y
Logical values attesting whether the point patterns X and Y have been sorted. See
Details.

metric Optional. A distance metric (object of class "metric”, see metric.object)
which will be used to compute the distances.

Ignored.

Details

Given two point patterns X and Y this function finds, for each point of X, the nearest point of Y. The
distance between these points is also computed. If the argument k is specified, then the k-th nearest
neighbours will be found.

Alternatively if X is a point pattern and Y is a line segment pattern, the function finds the nearest line
segment to each point of X, and computes the distance.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the
nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is
returned. If what="which"” then only the vector of indices is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours. The result is a data frame.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, where Y is a point pattern, use nncross(Y,X).

Nncross 353

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X, Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if what=c("dist"”, "which") and k=1) a data frame with two columns:

dist Nearest neighbour distance

which Nearest neighbour index in Y

If what="dist" and k=1, a vector of nearest neighbour distances.
If what="which” and k=1, a vector of nearest neighbour indices.

If k is specified, the result is a data frame with columns containing the k-th nearest neighbour
distances and/or nearest neighbour indices.

Efficiency, sorting data, and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts the point patterns X and Y into increasing order of the x coordinate
or increasing order of the the y coordinate. Sorting is only an intermediate step; it does not affect
the output, which is always given in the same order as the original data.

By default (if sortby="range"), the sorting will occur on the coordinate that has the larger range of
values (according to the frame of the enclosing window of Y). If sortby = "var"), sorting will occur
on the coordinate that has the greater variance (in the pattern Y). Setting sortby="x" or sortby =
"y" will specify that sorting should occur on the z or y coordinate, respectively.

If the point pattern X is already sorted, then the corresponding argument is. sorted. X should be set

no,n

to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

Similarly if Y is already sorted, then is.sorted.Y should be set to TRUE, and sortby should be set

ny,n no,n

equal to "x" or "y" to indicate which coordinate is sorted.

If both X and Y are sorted on the same coordinate axis then both is.sorted.X and is.sorted.Y

non

should be set to TRUE, and sortby should be set equal to "x" or "y" to indicate which coordinate is
sorted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>,
and Jens Oehlschlaegel

See Also

nndist for nearest neighbour distances in a single point pattern.

354

Examples

two different point patterns

<- runifrect(15)

<- runifrect(20)

<- nncross(X,Y)$which

note that length(N) = 15

plot(superimpose(X=X,Y=Y), main="nncross"”, cols=c("red"”,"blue"))
arrows(Xx, Xy, Y[NI$x, Y[NI$y, length=0.15)

H =Z < X

third-nearest neighbour

NXY <- nncross(X, Y, k=3)

NXY[1:3,]

second and third nearest neighbours
NXY <- nncross(X, Y, k=2:3)

NXY[1:3,]

two patterns with some points in common

Z <- runifrect(50)

X <- Z[1:30]

Y <- Z[20:50]

iX <- 1:30

iY <- 20:50

N <- nncross(X,Y, iX, iY)$which

N <- nncross(X,Y, iX, iY, what="which"”) #faster
plot(superimpose (X=X, Y=Y), main="nncross”, cols=c("red"”,"blue"))
arrows(Xx, Xy, YI[NI$x, Y[NI$y, length=0.15)

point pattern and line segment pattern

X <- runifrect(15)

Y <= psp(runif(10), runif(10), runif(10), runif(10), square(1))
N <- nncross(X,Y)

nncross.pp3

nncross.pp3 Nearest Neighbours Between Two Patterns in 3D

Description

Given two point patterns X and Y in three dimensions, finds the nearest neighbour in Y of each point

of X.

Usage

S3 method for class 'pp3'
nncross(X, Y,
iX=NULL, 1iY=NULL,
what = c("dist”, "which"),

D

k=1,
sortby:C<Hrange“’ llvarll’ ”X“, llyll’ “Z”),

nncross.pp3 355

is.sorted.X = FALSE,
is.sorted.Y = FALSE)
Arguments
X, Y Point patterns in three dimensions (objects of class "pp3").
iX, iy Optional identifiers, used to determine whether a point in X is identical to a point
in Y. See Details.
what Character string specifying what information should be returned. Either the

nearest neighbour distance ("dist"”), the identifier of the nearest neighbour
("which™), or both.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

sortby Determines which coordinate to use to sort the point patterns. See Details.
is.sorted.X, is.sorted.Y

Logical values attesting whether the point patterns X and Y have been sorted. See
Details.

Ignored.

Details

Given two point patterns X and Y in three dimensions, this function finds, for each point of X,
the nearest point of Y. The distance between these points is also computed. If the argument k is
specified, then the k-th nearest neighbours will be found.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the
nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist"” then only the vector of distances is
returned. If what="which"” then only the vector of indices is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours. The result is a data frame.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, use nncross(Y, X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X, Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if what=c("dist"”, "which") and k=1) a data frame with two columns:

356 nncross.pp3

dist Nearest neighbour distance

which Nearest neighbour index in Y

If what="dist"” and k=1, a vector of nearest neighbour distances.
If what="which" and k=1, a vector of nearest neighbour indices.

If k is specified, the result is a data frame with columns containing the k-th nearest neighbour
distances and/or nearest neighbour indices.

Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts both the point patterns X and Y into increasing order of the =
coordinate, or both into increasing order of the y coordinate, or both into increasing order of the z
coordinate. Sorting is only an intermediate step; it does not affect the output, which is always given
in the same order as the original data.

By default (if sortby="range"), the sorting will occur on the coordinate that has the largest range
of values (according to the frame of the enclosing window of Y). If sortby = "var"), sorting will
occur on the coordinate that has the greater variance (in the pattern Y). Setting sortby="x" or
sortby = "y" or sortby = "z" will specify that sorting should occur on the x, y or z coordinate,
respectively.

If the point pattern X is already sorted, then the corresponding argument is. sorted. X should be set

ny,n o non

to TRUE, and sortby should be set equal to "x", "y" or "z" to indicate which coordinate is sorted.

Similarly if Y is already sorted, then is.sorted.Y should be set to TRUE, and sortby should be set

nyn o non

equal to "x", "y" or "z" to indicate which coordinate is sorted.

If both X and Y are sorted on the same coordinate axis then both is.sorted.X and is.sorted.Y

non

should be set to TRUE, and sortby should be set equal to "x", "y" or "z" to indicate which coordi-
nate is sorted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>, and Jens Oehlschlaegel

See Also

nndist for nearest neighbour distances in a single point pattern.

Examples

two different point patterns

<- pp3(runif(10), runif(10), runif(10), box3(c(0,1)))
<- pp3(runif(20), runif(20), runif(20), box3(c(0,1)))
<- nncross(X,Y)$which

<- nncross(X,Y, what="which") #faster

note that length(N) = 10

H =Z Z < X

k-nearest neighbours
N3 <- nncross(X, Y, k=1:3)

nncross.ppx 357

two patterns with some points in common

Z <- pp3(runif(20), runif(20), runif(20), box3(c(0,1)))
X <= Z[1:15]

Y <- Z[10:20]

iX <- 1:15

iY <- 10:20

N <- nncross(X,Y, iX, iY, what="which")

NNCross. ppx Nearest Neighbours Between Two Patterns in Any Dimensions

Description

Given two point patterns X and Y in many dimensional space, finds the nearest neighbour in Y of
each point of X.

Usage

S3 method for class 'ppx'
nncross(X, Y,
iX=NULL, iY=NULL,
what = c("dist”, "which”),

L

k=1

Arguments
X, Y Point patterns in any number of spatial dimensions (objects of class "ppx").
iX, iy Optional identifiers, used to determine whether a point in X is identical to a point
in Y. See Details.
what Character string specifying what information should be returned. Either the

nearest neighbour distance ("dist"), the identifier of the nearest neighbour
("which™), or both.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

Ignored.

Details

Given two point patterns X and Y in m-dimensional space, this function finds, for each point of X,
the nearest point of Y. The distance between these points is also computed. If the argument k is
specified, then the k-th nearest neighbours will be found.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the

358 nncross.ppx

nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is
returned. If what="which"” then only the vector of indices is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours. The result is a data frame.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X, Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and 1Y the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

Value

A data frame, or a vector if the data frame would contain only one column.

By default (if what=c("dist"”, "which") and k=1) a data frame with two columns:

dist Nearest neighbour distance

which Nearest neighbour index in Y

If what="dist"” and k=1, a vector of nearest neighbour distances.
If what="which” and k=1, a vector of nearest neighbour indices.

If k is specified, the result is a data frame with columns containing the k-th nearest neighbour
distances and/or nearest neighbour indices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

nndist for nearest neighbour distances in a single point pattern.

Examples

XYZ <- ppx(matrix(runif(80), 20, 4),
boxx(c(0,1), c(0,1), c(0,1), c(0,1)))

two different point patterns
X <= XYZ[1:5]

Y <- XYZ[10:20]

nncross(X,Y)

N23 <- nncross(X,Y, k=2:3)

nndist 359

two patterns with some points in common
X <= XYZ[1:15]

Y <- XYZ[10:20]

iX <- 1:15

iY <- 10:20

N <- nncross(X,Y, iX, iY, what="which")
N4 <- nncross(X,Y, iX, iY, k=4)

nndist Nearest neighbour distances

Description

Computes the distance from each point to its nearest neighbour in a point pattern. Alternatively
computes the distance to the second nearest neighbour, or third nearest, etc.

Usage

nndist(X, ...)
S3 method for class 'ppp'

nndist(X, ..., k=1, by=NULL, proper=FALSE, method="C", metric=NULL)
Default S3 method:

nndist(X, Y=NULL, ..., k=1, by=NULL, method="C")
Arguments
X, Y Arguments specifying the locations of a set of points. For nndist. ppp, the argu-

ment X should be a point pattern (object of class "ppp"). For nndist.default,
typically X and Y would be numeric vectors of equal length. Alternatively Y may
be omitted and X may be a list with two components x and y, or a matrix with
two columns. Alternatively X can be a three-dimensional point pattern (class
"pp3"), a higher-dimensional point pattern (class "ppx"), a point pattern on a
linear network (class "1pp"), or a spatial pattern of line segments (class "psp”).

Ignored by nndist.ppp and nndist.default.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group. See Details.

proper Logical value specifying whether to measure distances only between distinct
points (proper=TRUE) or to include distances between data points at the same
spatial location (proper=FALSE, the default). See Details.

method String specifying which method of calculation to use. Values are "C” and "interpreted”.

metric Optional. A metric (object of class "metric"”) that will be used to define and
compute the distances.

360 nndist

Details

This function computes the Euclidean distance from each point in a point pattern to its nearest
neighbour (the nearest other point of the pattern). If k is specified, it computes the distance to the
kth nearest neighbour.

The function nndist is generic, with a method for point patterns (objects of class "ppp"), and a
default method for coordinate vectors.

There are also methods for line segment patterns, nndist.psp, three-dimensional point patterns,
nndist.pp3, higher-dimensional point patterns, nndist. ppx and point patterns on a linear network,
nndist. 1pp; these are described in their own help files. Type methods(nndist) to see all available
methods.

The method for planar point patterns nndist.ppp expects a single point pattern argument X and
returns the vector of its nearest neighbour distances.

The default method expects that X and Y will determine the coordinates of a set of points. Typically
X and Y would be numeric vectors of equal length. Alternatively Y may be omitted and X may be a
list with two components named x and y, or a matrix or data frame with two columns.

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of & specified in the vector.

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

If proper=FALSE (the default), data points which lie at the same spatial location are treated as
different individuals, and the nearest-neighbour distance for any such point is defined to be zero. If
proper=TRUE, only distances between distinct points are included in the calculation, so the nearest-
neighbour distance is always nonzero (or NA if there are not enough data points).

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by two to three orders
of magnitude and uses much less memory.

If there is only one point (if x has length 1), then a nearest neighbour distance of Inf is returned. If
there are no points (if x has length zero) a numeric vector of length zero is returned.

To identify which point is the nearest neighbour of a given point, use nnwhich.

To use the nearest neighbour distances for statistical inference, it is often advisable to use the edge-
corrected empirical distribution, computed by Gest.

To find the nearest neighbour distances from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith data point.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith data point.

nndist 361

If k is a vector, then the return value is a matrix m such that m[i, j] is the k[j]th nearest neighbour
distance for the ith data point.

If the argument by is given, then it should be a factor which separates X into groups (or any type of
data acceptable to split.ppp that determines the grouping). The result is a data frame containing
the distances described above, from each point of X, to the nearest point in each subset of X defined
by the grouping factor by.

Nearest neighbours of each type

If X is a multitype point pattern and by=marks(X), then the algorithm will compute, for each point
of X, the distance to the nearest neighbour of each type. See the Examples.

To find the minimum distance from any point of type i to the nearest point of type j, for all combi-
nations of i and j, use minnndist, or the R function aggregate as suggested in the Examples.
Warnings
An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the
point pattern).
Distance values

The values returned by nndist(X) are distances, expressed as multiples of the unit of length of the
spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
nndist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su>and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

nndist.psp, nndist.pp3, nndist.ppx, pairdist, Gest, nnwhich, nncross, minnndist, maxnndist.

Examples

nearest neighbours
d <- nndist(cells)

second nearest neighbours
d2 <- nndist(cells, k=2)

first, second and third nearest
d1to3 <- nndist(cells, k=1:3)

X <= runif(100)
y <- runif(100)
d <- nndist(x, y)

Stienen diagram

362

nndist.pp3

plot(cells %mark% nndist(cells), markscale=1)

distance to nearest neighbour of each type

nnda <- nndist(ants, by=marks(ants))

head(nnda)

For nest number 1, the nearest Cataglyphis nest is 87.32125 units away

minimum distance between each pair of types
minnndist(ants, by=marks(ants))

Use of 'aggregate':

minimum distance between each pair of types
aggregate(nnda, by=list(from=marks(ants)), min)
mean nearest neighbour distances
aggregate(nnda, by=list(from=marks(ants)), mean)
The mean distance from a Messor nest to

the nearest Cataglyphis nest is 59.02549 units

nndist.pp3 Nearest neighbour distances in three dimensions

Description

Computes the distance from each point to its nearest neighbour in a three-dimensional point pattern.

Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.
Usage
S3 method for class 'pp3'
nndist(X, ..., k=1, by=NULL)
Arguments
X Three-dimensional point pattern (object of class "pp3").
Ignored.
k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.
by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.
Details

This function computes the Euclidean distance from each point in a three-dimensional point pattern

to

its nearest neighbour (the nearest other point of the pattern). If k is specified, it computes the

distance to the kth nearest neighbour.

The function nndist is generic; this function nndist. pp3 is the method for the class "pp3".

nndist.pp3 363

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of & specified in the vector.

If there is only one point (if x has length 1), then a nearest neighbour distance of Inf is returned. If
there are no points (if x has length zero) a numeric vector of length zero is returned.

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

To identify which point is the nearest neighbour of a given point, use nnwhich.

To use the nearest neighbour distances for statistical inference, it is often advisable to use the edge-
corrected empirical distribution, computed by G3est.

To find the nearest neighbour distances from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith data point.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith data point.

If k is a vector, then the return value is a matrix m such that m[i, j] is the k[j]th nearest neighbour
distance for the ith data point.

Distance values

The values returned by nndist(X) are distances, expressed as multiples of the unit of length of the
spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
nndist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.
Warnings
An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the
point pattern).
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>based on code for two dimensions by Pavel
Grabarnik <pavel.grabar@issp.serpukhov.su>.
See Also

nndist, pairdist, G3est, nnwhich

364 nndist.ppx

Examples
X <= pp3(runif(40), runif(40), runif(40), box3(c(0,1)))

nearest neighbours
d <- nndist(X)

second nearest neighbours
d2 <- nndist(X, k=2)

first, second and third nearest
d1to3 <- nndist(X, k=1:3)

distance to nearest point in each group
marks(X) <- factor(rep(letters[1:4], 10))
dby <- nndist(X, by=marks(X))

nndist.ppx Nearest Neighbour Distances in Any Dimensions

Description

Computes the distance from each point to its nearest neighbour in a multi-dimensional point pattern.
Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.

Usage
S3 method for class 'ppx'
nndist(X, ..., k=1, by=NULL)
Arguments
X Multi-dimensional point pattern (object of class "ppx").
Arguments passed to coords.ppx to determine which coordinates should be
used.
k Integer, or integer vector. The algorithm will compute the distance to the kth

nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.

Details

This function computes the Euclidean distance from each point in a multi-dimensional point pattern
to its nearest neighbour (the nearest other point of the pattern). If k is specified, it computes the
distance to the kth nearest neighbour.

The function nndist is generic; this function nndist. ppx is the method for the class "ppx".

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of & specified in the vector.

nndist.ppx 365

If there is only one point (if x has length 1), then a nearest neighbour distance of Inf is returned. If
there are no points (if x has length zero) a numeric vector of length zero is returned.

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

To identify which point is the nearest neighbour of a given point, use nnwhich.
To find the nearest neighbour distances from one point pattern to another point pattern, use nncross.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.

Value

Numeric vector or matrix containing the nearest neighbour distances for each point.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith data point.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith data point.

If k is a vector, then the return value is a matrix m such that m[i, j] is the k[j]Jth nearest neighbour
distance for the ith data point.
Distance values

The values returned by nndist(X) are distances, expressed as multiples of the unit of length of the
spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
nndist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.
Warnings
An infinite or NA value is returned if the distance is not defined (e.g. if there is only one point in the
point pattern).
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

nndist, pairdist, nnwhich

Examples
df <- data.frame(x=runif(5),y=runif(5),z=runif(5),w=runif(5))
X <- ppx(data=df)

nearest neighbours
d <- nndist(X)

366 nndist.psp

second nearest neighbours
d2 <- nndist(X, k=2)

first, second and third nearest
d1to3 <- nndist(X, k=1:3)

nearest neighbour distances to each group
marks(X) <- factor(c(”a”,”a”, "b", "b", "b"))
nndist(X, by=marks(X))

nndist(X, by=marks(X), k=1:2)

nndist.psp Nearest neighbour distances between line segments

Description

Computes the distance from each line segment to its nearest neighbour in a line segment pattern.
Alternatively finds the distance to the second nearest, third nearest etc.

Usage
S3 method for class 'psp'
nndist(X, ..., k=1, method="C")
Arguments
X A line segment pattern (object of class "psp").
Ignored.
k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.
method String specifying which method of calculation to use. Values are "C" and "interpreted”.
Usually not specified.
Details

This is a method for the generic function nndist for the class "psp”.

If k=1, this function computes the distance from each line segment to the nearest other line segment
in X. In general it computes the distance from each line segment to the kth nearest other line segment.
The argument k can also be a vector, and this computation will be performed for each value of k.

Distances are calculated using the Hausdorff metric. The Hausdorff distance between two line
segments is the maximum distance from any point on one of the segments to the nearest point on
the other segment.

If there are fewer than max(k)+1 line segments in the pattern, some of the nearest neighbour dis-
tances will be infinite (Inf).

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then compiled C code is used. The C code is somewhat faster.

nnfun 367

Value

Numeric vector or matrix containing the nearest neighbour distances for each line segment.

If k = 1 (the default), the return value is a numeric vector v such that v[i] is the nearest neighbour
distance for the ith segment.

If k is a single integer, then the return value is a numeric vector v such that v[i] is the kth nearest
neighbour distance for the ith segment.

If k is a vector, then the return value is a matrix m such that m[i, j] is the k[j]Jth nearest neighbour
distance for the ith segment.
Distance values

The values returned by nndist (X) are distances, expressed as multiples of the unit of length of the
spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
nndist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

nndist, nndist.ppp

Examples

L <= psp(runif(10), runif(10), runif(10), runif(10), owin())
D <- nndist(L)
D <- nndist(L, k=1:3)

nnfun Nearest Neighbour Index Map as a Function

Description

Compute the nearest neighbour index map of an object, and return it as a function.

Usage
nnfun(X, ...)

S3 method for class 'ppp'
nnfun(X, ..., k=1, value=c("”index"”, "mark"))

S3 method for class 'psp'
nnfun(X, ..., value=c("index"”, "mark"))

368 nnfun

Arguments
X Any suitable dataset representing a two-dimensional collection of objects, such
as a point pattern (object of class "ppp") or a line segment pattern (object of
class "psp").
k A single integer. The kth nearest neighbour will be found.
Extra arguments are ignored.
value String (partially matched) specifying whether to return the index of the neigh-
bour (value="index", the default) or the mark value of the neighbour (value="mark").
Details

For a collection X of two dimensional objects (such as a point pattern or a line segment pattern),
the “nearest neighbour index function” of X is the mathematical function f such that, for any two-
dimensional spatial location (z, y), the function value f(x,y) is the index 7 identifying the closest
member of X. That is, if ¢ = f(x,y) then X[¢] is the closest member of the collection X to the
location (z, y).

The command f <- nnfun(X) returns a function in the R language, with arguments x, y, that repre-
sents the nearest neighbour index function of X. Evaluating the function f in the form v <- f(x,y),
where x and y are any numeric vectors of equal length containing coordinates of spatial locations,
yields the indices of the nearest neighbours to these locations.

If the argument k is specified then the k-th nearest neighbour will be found.

The result of f <- nnfun(X) also belongs to the class "funxy" and to the special class "nnfun”. It
can be printed and plotted immediately as shown in the Examples.

A nnfun object can be converted to a pixel image using as. im.

Value

A function with arguments x,y. The function also belongs to the class "nnfun” which has a
method for print. It also belongs to the class "funxy” which has methods for plot, contour and
persp.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

distfun, plot. funxy

Examples

f <- nnfun(cells)
f

plot(f)

f(0.2, 0.3)

nnmap 369

g <- nnfun(cells, k=2)
g(0.2, 0.3)

plot(nnfun(amacrine, value="m"))
L <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())

h <= nnfun(L)
h(0.2, 0.3)

nnmap K-th Nearest Point Map

Description

Given a point pattern, this function constructs pixel images giving the distance from each pixel to
its k-th nearest neighbour in the point pattern, and the index of the k-th nearest neighbour.

Usage

nnmap(X, k = 1, what = c("dist"”, "which"),
., W= as.owin(X),
is.sorted.X = FALSE, sortby = c("range”,

n

Var”, ”X”, nyu))

Arguments
X Point pattern (object of class "ppp").
k Integer, or integer vector. The algorithm will find the kth nearest neighbour.
what Character string specifying what information should be returned. Either the
nearest neighbour distance ("dist"), the index of the nearest neighbour ("which"),
or both.
Arguments passed to as.mask to determine the pixel resolution of the result.
W Window (object of class "owin") specifying the spatial domain in which the
distances will be computed. Defaults to the window of X.
is.sorted.X Logical value attesting whether the point pattern X has been sorted. See Details.
sortby Determines which coordinate to use to sort the point pattern. See Details.
Details

Given a point pattern X, this function constructs two pixel images:

* adistance map giving, for each pixel, the distance to the nearest point of X;

* a nearest neighbour map giving, for each pixel, the identifier of the nearest point of X.

370 nnmap

If the argument k is specified, then the k-th nearest neighbours will be found.

If what="dist" then only the distance map is returned. If what="which” then only the nearest
neighbour map is returned.

The argument k may be an integer or an integer vector. If it is a single integer, then the k-th nearest
neighbours are computed. If it is a vector, then the k[i]-th nearest neighbours are computed for
each entry k[i]. For example, setting k=1:3 will compute the nearest, second-nearest and third-
nearest neighbours.

Value

A pixel image, or a list of pixel images.

By default (if what=c("dist”, "which")), the result is a list with two components dist and which
containing the distance map and the nearest neighbour map.

If what="dist" then the result is a real-valued pixel image containing the distance map.

If what="which"” then the result is an integer-valued pixel image containing the nearest neighbour
map.

If k is a vector of several integers, then the result is similar except that each pixel image is replaced
by a list of pixel images, one for each entry of k.

Sorting data and pre-sorted data

Read this section if you care about the speed of computation.

For efficiency, the algorithm sorts the point pattern X into increasing order of the x coordinate or
increasing order of the the y coordinate. Sorting is only an intermediate step; it does not affect the
output, which is always given in the same order as the original data.

By default (if sortby="range"), the sorting will occur on the coordinate that has the larger range of
values (according to the frame of the enclosing window of X). If sortby = "var"), sorting will occur
on the coordinate that has the greater variance (in the pattern X). Setting sortby="x" or sortby =
"y" will specify that sorting should occur on the z or y coordinate, respectively.

If the point pattern X is already sorted, then the argument is.sorted.X should be set to TRUE, and

ny,n no,n

sortby should be set equal to "x" or "y" to indicate which coordinate is sorted.

Warning About Ties

Ties are possible: there may be two data points which lie exactly the same distance away from a par-
ticular pixel. This affects the results from nnmap(what="which"). The handling of ties is not well-
defined: it is not consistent between different computers and different installations of R. If there
are ties, then different calls to nnmap(what="which") may give inconsistent results. For exam-
ple, you may get a different answer from nnmap(what="which"”, k=1) and nnmap(what="which",

k=1:2)[[1]].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>, and Jens Oehlschlaegel

nnmark 371

See Also

distmap

Examples

plot(nnmap(cells, 2, what="which"))

nnmark Mark of Nearest Neighbour

Description

Given a marked point pattern dataset X this function computes, for each desired location y, the mark
attached to the nearest neighbour of y in X. The desired locations y can be either a pixel grid or the
point pattern X itself.

Usage
nnmark(X, ..., k =1, at=c("pixels”, "points"),
ties=c("first"”, "mean”, "min"”, "max"),
proper=FALSE)
Arguments
X A marked point pattern (object of class "ppp").
Arguments passed to as.mask to determine the pixel resolution.
k Single integer. The kth nearest data point will be used.
at String specifying whether to compute the values at a grid of pixel locations
(at="pixels") or only at the points of X (at="points").
ties Character string (partially matched) indicating how to handle the case of ties,
where there are two or more data points at the same location. See Details.
proper Logical value specifying how to define nearest neighbours if there are two or
more data points at the same location. Applies only when at="points"”. See
Details.
Details

Given a marked point pattern dataset X this function computes, for each desired location y, the mark
attached to the point of X that is nearest to y. The desired locations y can be either a pixel grid or
the point pattern X itself.

The argument X must be a marked point pattern (object of class "ppp”, see ppp.object). The marks
are allowed to be a vector or a data frame.

» If at="points", then for each point in X, the algorithm finds the nearest other point in X, and
extracts the mark attached to it. The result is a vector or data frame containing the marks of
the neighbours of each point.

372 nnmark

e If at="pixels" (the default), then for each pixel in a rectangular grid, the algorithm finds the
nearest point in X, and extracts the mark attached to it. The result is an image or a list of images
containing the marks of the neighbours of each pixel. The pixel resolution is controlled by the
arguments . .. passed to as.mask.

If the argument k is given, then the k-th nearest neighbour will be used.
The arguments ties and proper specify how to handle the case where two or more data points are

at the same spatial location.

* ties determines how to pool the mark values. If ties="first" (the default), the mark value
for this location is taken to be the mark of the data point that is listed first in sequence in the
dataset X. If ties="mean"”, ties="max" or ties="min", the mark value for this location is
taken to be the mean, maximum or minimum (respectively) of the mark values of all the data
points at this location (after converting the mark values to numerical values).

* proper determines how to define nearest neighbours, when at="points". If proper=TRUE,
the nearest neighbour of a data point must be another data point lying a nonzero distance away
from it. If proper=FALSE (the default), then two data points occupying the exact same spatial
location can be nearest neighbours.

Value

If X has a single column of marks:

e If at="pixels" (the default), the result is a pixel image (object of class "im"). The value at
each pixel is the mark attached to the nearest point of X.

o If at="points", the result is a vector or factor of length equal to the number of points in X.
Entries are the mark values of the nearest neighbours of each point of X.

If X has a data frame of marks:

o If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist”,
for which there is a plot method.

o If at="points", the result is a data frame with one row for each point of X, Entries are the
mark values of the nearest neighbours of each point of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Smooth. ppp, marktable, nnwhich

nnwhich

Examples

373

plot(nnmark(ants))
v <- nnmark(ants, at="points")

v[1:10]

plot(nnmark(finpines))
vf <- nnmark(finpines, at="points")

vf[1:5,]

nnwhich

Nearest neighbour

Description

Finds the nearest neighbour of each point in a point pattern.

Usage
nnwhich(X, ...)
S3 method for class 'ppp'
nnwhich(X, ., k=1, by=NULL, proper=FALSE, method="C", metric=NULL)
Default S3 method:
nnwhich(X, Y=NULL, ..., k=1, by=NULL, method="C")
Arguments
X, Y Arguments specifying the locations of a set of points. For nnwhich. ppp, the ar-
gument X should be a point pattern (object of class "ppp"). For nnwhich.default,
typically X and Y would be numeric vectors of equal length. Alternatively Y may
be omitted and X may be a list with two components x and y, or a matrix with
two columns.
Ignored by nnwhich.ppp and nnwhich.default.
k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.
by Optional. A factor, which separates X into groups. The algorithm will find the
nearest neighbour in each group. See Details.
proper Logical value specifying whether to measure distances only between distinct
points (proper=TRUE) or to include distances between data points at the same
spatial location (proper=FALSE, the default). See Details.
method String specifying which method of calculation to use. Values are "C"” and "interpreted”.
metric Optional. A metric (object of class "metric"”) that will be used to define and

compute the distances.

374 nnwhich

Details

For each point in the given point pattern, this function finds its nearest neighbour (the nearest other
point of the pattern). By default it returns a vector giving, for each point, the index of the point’s
nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest neighbour.

The function nnwhich is generic, with method for point patterns (objects of class "ppp"”) and a
default method which are described here, as well as a method for three-dimensional point patterns
(objects of class "pp3", described in nnwhich.pp3.

The method nnwhich.ppp expects a single point pattern argument X. The default method expects
that X and Y will determine the coordinates of a set of points. Typically X and Y would be numeric
vectors of equal length. Alternatively Y may be omitted and X may be a list with two components
named x and y, or a matrix or data frame with two columns.

The argument k may be a single integer, or an integer vector. If it is a vector, then the kth nearest
neighbour distances are computed for each value of k specified in the vector.

If the argument by is given, it should be a factor, of length equal to the number of points in X. This
factor effectively partitions X into subsets, each subset associated with one of the levels of X. The
algorithm will then find, for each point of X, the nearest neighbour in each subset.

If there are no points (if x has length zero) a numeric vector of length zero is returned. If there
is only one point (if x has length 1), then the nearest neighbour is undefined, and a value of NA
is returned. In general if the number of points is less than or equal to k, then a vector of NA’s is
returned.

If proper=FALSE (the default), data points which lie at the same spatial location are treated as
different individuals, and the nearest neighbour of any such point is one of the other individuals at
the same location. If proper=TRUE, points lying at the same location are treated as identical, so that
nearest neighbours are always separated by a nonzero distance.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is faster by two to three orders
of magnitude and uses much less memory.

To evaluate the distance between a point and its nearest neighbour, use nndist.

To find the nearest neighbours from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest
neighbour).

If k = 1 (the default), the return value is a numeric vector v giving the indices of the nearest neigh-
bours (the nearest neighbout of the ith point is the jth point where j = v[i]).

If k is a single integer, then the return value is a numeric vector giving the indices of the kth nearest
neighbours.

If k is a vector, then the return value is a matrix m such that m[i, j] is the index of the k[j Jth nearest
neighbour for the ith data point.

If the argument by is given, then it should be a factor which separates X into groups (or any type of
data acceptable to split.ppp that determines the grouping). The result is a data frame containing
the indices described above, from each point of X, to the nearest point in each subset of X defined
by the factor by.

nnwhich.pp3 375

Nearest neighbours of each type

If X is a multitype point pattern and by=marks(X), then the algorithm will find, for each point of X,
the nearest neighbour of each type. See the Examples.

Warnings

A value of NA is returned if there is only one point in the point pattern.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su>and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

nndist, nncross

Examples

plot(cells)
m <- nnwhich(cells)
m2 <- nnwhich(cells, k=2)

plot nearest neighbour links
b <- cells[m]
arrows(cells$x, cells$y, bx, by, angle=15, length=0.15, col="red")

find points which are the neighbour of their neighbour
self <- (m[m] == seq(m))

plot them

A <- cells[self]

B <- cells[m[self]]

plot(cells)

segments(A$x, A%y, B$x, BS$y)

nearest neighbours of each type
head(nnwhich(ants, by=marks(ants)))

nnwhich.pp3 Nearest neighbours in three dimensions

Description

Finds the nearest neighbour of each point in a three-dimensional point pattern.

Usage

S3 method for class 'pp3'
nnwhich(X, ..., k=1)

376 nnwhich.pp3

Arguments
X Three-dimensional point pattern (object of class "pp3").
Ignored.
k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.
Details

For each point in the given three-dimensional point pattern, this function finds its nearest neighbour
(the nearest other point of the pattern). By default it returns a vector giving, for each point, the
index of the point’s nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest
neighbour.

The function nnwhich is generic. This is the method for the class "pp3".

If there are no points in the pattern, a numeric vector of length zero is returned. If there is only
one point, then the nearest neighbour is undefined, and a value of NA is returned. In general if the
number of points is less than or equal to k, then a vector of NA’s is returned.

To evaluate the distance between a point and its nearest neighbour, use nndist.

To find the nearest neighbours from one point pattern to another point pattern, use nncross.

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest
neighbour).

If k = 1 (the default), the return value is a numeric vector v giving the indices of the nearest neigh-
bours (the nearest neighbout of the ith point is the jth point where j = v[i]).

If k is a single integer, then the return value is a numeric vector giving the indices of the kth nearest
neighbours.

If k is a vector, then the return value is a matrix m such that m[i, j] is the index of the k[j Jth nearest
neighbour for the ith data point.

Warnings

A value of NA is returned if there is only one point in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> based on two-dimensional code by Pavel
Grabarnik <pavel.grabar@issp.serpukhov.su>.

See Also

nnwhich, nndist, nncross

nnwhich.ppx 377

Examples

if(require(spatstat.random)) {
X <= runifpoint3(30)
} else {
X <- osteo$pts[[1]]
3
m <- nnwhich(X)
m2 <- nnwhich(X, k=2)

nnwhich.ppx Nearest Neighbours in Any Dimensions

Description

Finds the nearest neighbour of each point in a multi-dimensional point pattern.

Usage
S3 method for class 'ppx'
nnwhich(X, ..., k=1)
Arguments
X Multi-dimensional point pattern (object of class "ppx").
Arguments passed to coords.ppx to determine which coordinates should be
used.
k Integer, or integer vector. The algorithm will compute the distance to the kth

nearest neighbour.

Details

For each point in the given multi-dimensional point pattern, this function finds its nearest neighbour
(the nearest other point of the pattern). By default it returns a vector giving, for each point, the
index of the point’s nearest neighbour. If k is specified, the algorithm finds each point’s kth nearest
neighbour.

The function nnwhich is generic. This is the method for the class "ppx".

If there are no points in the pattern, a numeric vector of length zero is returned. If there is only
one point, then the nearest neighbour is undefined, and a value of NA is returned. In general if the
number of points is less than or equal to k, then a vector of NA’s is returned.

To evaluate the distance between a point and its nearest neighbour, use nndist.
To find the nearest neighbours from one point pattern to another point pattern, use nncross.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.

378 nobjects

Value

Numeric vector or matrix giving, for each point, the index of its nearest neighbour (or kth nearest
neighbour).

If k = 1 (the default), the return value is a numeric vector v giving the indices of the nearest neigh-
bours (the nearest neighbout of the ith point is the jth point where j = v[i]).

If k is a single integer, then the return value is a numeric vector giving the indices of the kth nearest
neighbours.

If k is a vector, then the return value is a matrix m such that m[i, j] is the index of the k[j]th nearest
neighbour for the ith data point.
Warnings

A value of NA is returned if there is only one point in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

nnwhich, nndist, nncross

Examples

df <- data.frame(x=runif(5),y=runif(5),z=runif(5),w=runif(5))
X <- ppx(data=df)

m <- nnwhich(X)

m2 <- nnwhich(X, k=2)

nobjects Count Number of Geometrical Objects in a Spatial Dataset

Description

A generic function to count the number of geometrical objects in a spatial dataset.

Usage

nobjects(x)

S3 method for class 'ppp'
nobjects(x)

S3 method for class 'ppx'
nobjects(x)

S3 method for class 'psp'

npoints 379

nobjects(x)

S3 method for class 'tess'
nobjects(x)

Arguments

X A dataset.

Details

The generic function nobjects counts the number of geometrical objects in the spatial dataset x.

The methods for point patterns (classes "ppp" and "ppx", embracing "pp3"” and "1pp") count the
number of points in the pattern.

The method for line segment patterns (class "psp”) counts the number of line segments in the
pattern.

The method for tessellations (class "tess") counts the number of tiles of the tessellation.

Value

A single integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

npoints

Examples

nobjects(redwood)
nobjects(edges(letterR))
nobjects(dirichlet(cells))

npoints Number of Points in a Point Pattern

Description

Returns the number of points in a point pattern of any kind.

380 nsegments

Usage
npoints(x)
S3 method for class 'ppp'
npoints(x)
S3 method for class 'pp3'
npoints(x)
S3 method for class 'ppx'
npoints(x)
Arguments
X A point pattern (object of class "ppp"”, "pp3"”, "ppx” or some other suitable
class).
Details

This function returns the number of points in a point pattern. The function npoints is generic with

n on

methods for the classes "ppp”, "pp3"”, "ppx" and possibly other classes.

Value

Integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, print.pp3, print.ppx.

Examples

npoints(cells)

nsegments Number of Line Segments in a Line Segment Pattern

Description

Returns the number of line segments in a line segment pattern.

Usage

nsegments(x)

S3 method for class 'psp'
nsegments(x)

nvertices 381

Arguments
X A line segment pattern, i.e. an object of class psp, or an object containing a
linear network.
Details

This function is generic, with methods for classes psp, 1innet and 1pp.

Value

Integer.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

npoints(), psp.object()

Examples

nsegments(copper$Lines)
nsegments(copper$SouthLines)

nvertices Count Number of Vertices

Description

Count the number of vertices in an object for which vertices are well-defined.
Usage
nvertices(x, ...)

S3 method for class 'owin'
nvertices(x, ...)

Default S3 method:

nvertices(x, ...)
Arguments
X A window (object of class "owin"), or some other object which has vertices.

Currently ignored.

382 opening

Details

This function counts the number of vertices of x as they would be returned by vertices(x). Itis
more efficient than executing npoints(vertices(x)).

Value

A single integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Suman Rakshit.

See Also

vertices

Examples

nvertices(square(2))
nvertices(letterR)

opening Morphological Opening

Description

Perform morphological opening of a window, a line segment pattern or a point pattern.

Usage
opening(w, r, ...)

S3 method for class 'owin'
opening(w, r, ..., polygonal=NULL)

S3 method for class 'ppp'
opening(w, r, ...)

S3 method for class 'psp'
opening(w, r, ...)

opening 383

Arguments
w A window (object of class "owin” or a line segment pattern (object of class
"psp”) or a point pattern (object of class "ppp").
r positive number: the radius of the opening.
extra arguments passed to as.mask controlling the pixel resolution, if a pixel
approximation is used
polygonal Logical flag indicating whether to compute a polygonal approximation to the
erosion (polygonal=TRUE) or a pixel grid approximation (polygonal=FALSE).
Details

The morphological opening (Serra, 1982) of a set W by a distance r» > 0 is the subset of points in
W that can be separated from the boundary of W by a circle of radius 7. That is, a point = belongs
to the opening if it is possible to draw a circle of radius r (not necessarily centred on x) that has x
on the inside and the boundary of W on the outside. The opened set is a subset of W.

For a small radius 7, the opening operation has the effect of smoothing out irregularities in the
boundary of W. For larger radii, the opening operation removes promontories in the boundary. For
very large radii, the opened set is empty.

The algorithm applies erosion followed by dilation.

Value
If r > 9, an object of class "owin" representing the opened region. If r=0, the result is identical to
W.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Serra, J. (1982) Image analysis and mathematical morphology. Academic Press.

See Also

closing for the opposite operation.
dilation, erosion for the basic operations.

owin, as.owin for information about windows.

Examples

v <- opening(letterR, 0.3)
plot(letterR, type="n", main="opening")
plot(v, add=TRUE, col="grey")
plot(letterR, add=TRUE)

384 overlap.owin

overlap.owin Compute Area of Overlap

Description

Computes the area of the overlap (intersection) of two windows.

Usage

overlap.owin(A, B)

Arguments

A B Windows (objects of class "owin").

Details

This function computes the area of the overlap between the two windows A and B.

If one of the windows is a binary mask, then both windows are converted to masks on the same grid,
and the area is computed by counting pixels. Otherwise, the area is computed analytically (using
the discrete Stokes theorem).

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

intersect.owin, area.owin, setcov.

Examples

A <- square(1)
B <- shift(A, c(0.3, 0.2))
overlap.owin(A, B)

owin

385

owin

Create a Window

Description

Creates an object of class "owin" representing an observation window in the two-dimensional plane

Usage

owin(xrange=c(0,1), yrange=c(0,1), ..., poly=NULL, mask=NULL,
unitname=NULL, xy=NULL)

Arguments

xrange

yrange

poly
mask

unitname

Xy

Details

x coordinate limits of enclosing box

y coordinate limits of enclosing box

Ignored.

Optional. Polygonal boundary of window. Incompatible with mask.

Optional. Logical matrix giving binary image of window. Incompatible with
poly.

Optional. Name of unit of length. Either a single character string, or a vector of
two character strings giving the singular and plural forms, respectively.

Optional. List with components x and y specifying the pixel coordinates for
mask.

In the spatstat library, a point pattern dataset must include information about the window of obser-
vation. This is represented by an object of class "owin". See owin.object for an overview.

To create a window in its own right, users would normally invoke owin, although sometimes
as.owin may be convenient.

A window may be rectangular, polygonal, or a mask (a binary image).

* rectangular windows: If only xrange and yrange are given, then the window will be rect-
angular, with its = and y coordinate dimensions given by these two arguments (which must
be vectors of length 2). If no arguments are given at all, the default is the unit square with
dimensions xrange=c(0,1) and yrange=c(0,1).

* polygonal windows: If poly is given, then the window will be polygonal.

— single polygon: If poly is a matrix or data frame with two columns, or a structure with
two component vectors x and y of equal length, then these values are interpreted as the
cartesian coordinates of the vertices of a polygon circumscribing the window. The ver-
tices must be listed anticlockwise. No vertex should be repeated (i.e. do not repeat the
first vertex).

386

owin

— multiple polygons or holes: If poly is a list, each entry poly[[i]] of which is a matrix or

data frame with two columns or a structure with two component vectors x and y of equal
length, then the successive list members poly[[i]] are interpreted as separate polygons
which together make up the boundary of the window. The vertices of each polygon must
be listed anticlockwise if the polygon is part of the external boundary, but clockwise if the
polygon is the boundary of a hole in the window. Again, do not repeat any vertex.

* binary masks: If mask is given, then the window will be a binary image.

— Specified by logical matrix: Normally the argument mask should be a logical matrix such

that mask[1i, j] is TRUE if the point (x[j1,y[i]) belongs to the window, and FALSE if it
does not (NA entries will be treated as FALSE). Note carefully that rows of mask correspond
to the y coordinate, and columns to the x coordinate. Here x and y are vectors of x and
y coordinates equally spaced over xrange and yrange respectively. The pixel coordinate
vectors x and y may be specified explicitly using the argument xy, which should be a list
containing components x and y. Alternatively there is a sensible default.

Specified by list of pixel coordinates: Alternatively the argument mask can be a data frame
with 2 or 3 columns. If it has 2 columns, it is expected to contain the spatial coordinates
of all the pixels which are inside the window. If it has 3 columns, it should contain the
spatial coordinates (z,y) of every pixel in the grid, and the logical value associated with
each pixel. The pixels may be listed in any order.

To create a window which is mathematically defined by inequalities in the Cartesian coordinates,
use raster.x() and raster.y() as in the examples below.

Functions square and disc will create square and circular windows, respectively.

Value

An object of class "owin" describing a window in the two-dimensional plane.

Validity of polygon data

Polygon data may contain geometrical inconsistencies such as self-intersections and overlaps. These
inconsistencies must be removed to prevent problems in other spatstat functions. By default, poly-
gon data will be repaired automatically using polygon-clipping code. The repair process may
change the number of vertices in a polygon and the number of polygon components. To disable
the repair process, set spatstat.options(fixpolygons=FALSE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin.object, as.owin, complement.owin, ppp.object, ppp

square, hexagon, regularpolygon, disc, ellipse.

owin.object 387

Examples

w <- owin()
w <- owin(c(@,1), c(0,1))
the unit square

w <- owin(c(10,20), c(10,30), unitname=c("foot”,"feet"))
a rectangle of dimensions 10 x 20 feet
with lower left corner at (10,10)

++

polygon (diamond shape)
w <- owin(poly=list(x=c(@.5,1,0.5,0),y=c(0,1,2,1)))
w <- owin(c(@,1), c(0,2), poly=list(x=c(0.5,1,0.5,0),y=c(0,1,2,1)))

polygon with hole
ho <- owin(poly=list(list(x=c(0,1,1,0), y=c(0,0,1,1)),
list(x=c(0.6,0.4,0.4,0.6), y=c(0.2,0.2,0.4,0.4))))

w <- owin(c(-1,1), c(-1,1), mask=matrix(TRUE, 100,100))
100 x 100 image, all TRUE

X <- raster.x(w)

Y <- raster.y(w)

wm <- owin(w$xrange, w$yrange, mask=(X"2 + Y*2 <= 1))
discrete approximation to the unit disc

vertices of a polygon (listed anticlockwise)
bdry <- list(x=c(0.1,0.3,0.7,0.4,0.2),
y=c(0.1,0.1,0.5,0.7,0.3))
vertices could alternatively be read from a file, or use locator()
w <- owin(poly=bdry)

Not run:

how to read in a binary mask from a file

im <- as.logical(matrix(scan("myfile"), nrow=128, ncol=128))

read in an arbitrary 128 x 128 digital image from text file
rim <- im[, 128:1]

Assuming it was given in row-major order in the file

i.e. scanning left-to-right in rows from top-to-bottom,

the use of matrix() has effectively transposed rows & columns,
so to convert it to our format just reverse the column order.
w <- owin(mask=rim)

plot(w)

display it to check!

End(Not run)

owin.object Class owin

Description

A class owin to define the “observation window” of a point pattern

388 owin.object

Details

In the spatstat library, a point pattern dataset must include information about the window or region
in which the pattern was observed. A window is described by an object of class "owin". Windows
of arbitrary shape are supported.

An object of class "owin" has one of three types:

"rectangle”: arectangle in the two-dimensional plane with edges parallel to the axes
"polygonal”: aregion whose boundary is a polygon or several polygons. The region may have holes and may consist of se
"mask": a binary image (a logical matrix) set to TRUE for pixels inside the window and FALSE outside the window.

Objects of class "owin” may be created by the function owin and converted from other types of
data by the function as.owin.

They may be manipulated by the functions as.rectangle, as.mask, complement.owin, rotate,
shift, affine, erosion, dilation, opening and closing.

Geometrical calculations available for windows include area.owin, perimeter, diameter.owin,
boundingbox, eroded.areas, bdist.points, bdist.pixels, and even.breaks.owin. The map-
ping between continuous coordinates and pixel raster indices is facilitated by the functions raster.x,
raster.y and nearest.raster.point.

There is a plot method for window objects, plot.owin. This may be useful if you wish to plot a
point pattern’s window without the points for graphical purposes.

There are also methods for summary and print.

Warnings

In a window of type "mask”, the row index corresponds to increasing y coordinate, and the column
index corresponds to increasing = coordinate.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin, as.owin, as.rectangle, as.mask, summary.owin, print.owin, complement.owin, erosion
dilation, opening, closing, affine.owin, shift.owin, rotate.owin, raster.x, raster.y,
nearest.raster.point, plot.owin, area.owin, boundingbox, diameter, eroded. areas, bdist.points,
bdist.pixels

Examples

w <= owin()
w <- owin(c(9,1), c(0,1))
the unit square

w <- owin(c(0,1), c(90,2))
if (FALSE) {

owin2mask 389

plot(w)

plots edges of a box 1 unit x 2 units

<- locator()

click on points in the plot window

to be the vertices of a polygon
traversed in anticlockwise order

u <- owin(c(@,1), c(9,2), poly=v)

plot(u)

plots polygonal boundary using polygon()
plot(as.mask(u, eps=0.02))

plots discrete pixel approximation to polygon

* o o <

owin2mask Convert Window to Binary Mask under Constraints

Description

Converts a window (object of class "owin") to a binary pixel mask, with options to require that the
inside, outside, and/or boundary of the window should be completely covered.

Usage
owin2mask (W,
op = c("sample”, "notsample”,
"cover”, "inside",
"uncover"”, "outside",
"boundary”,
"majority"”, "minority"),
)
Arguments
W A window (object of class "owin").
op Character string (partially matched) specifying how W should be converted to a
binary pixel mask.
Optional arguments in name=value format, passed to as.mask to determine the
pixel resolution. Unrecognised arguments will be silently ignored.
Details

This function is similar to, but more flexible than, as.mask. It converts the interior, exterior, or
boundary of the window W to a binary pixel mask.

* If op="sample"” (the default), the mask consists of all pixels whose centres lie inside the
window W. This is the same as using as.mask.

* If op="notsample”, the mask consists of all pixels whose centres lie outside the window W.
This is the same as using as.mask followed by complement.owin.

390 owin2mask

* Ifop="cover"”, the mask consists of all pixels which overlap the window W, wholly or partially.
» If op="inside", the mask consists of all pixels which lie entirely inside the window W.

* If op="uncover"”, the mask consists of all pixels which overlap the outside of the window W,
wholly or partially.

e If op="outside", the mask consists of all pixels which lie entirely outside the window W.

* If op="boundary", the mask consists of all pixels which overlap the boundary of the window
W.

* If op="majority"”, the mask consists of all pixels in which at least half of the pixel area is
covered by the window W.

* If op="minority", the mask consists of all pixels in which less than half of the pixel area is
covered by the window W.

These operations are complementary pairs as follows:

"notsample” is the complement of "sample”
"uncover” is the complement of "inside”
"outside” is the complement of "cover”
"minority” isthe complement of "majority”

They also satisfy the following set relations:

"inside"” is a subset of "cover"
"outside” is a subset of "uncover”
"boundary” is a subset of "cover"”
"boundary” is asubsetof "uncover”

The results of "inside”, "boundary” and "outside” are disjoint and their union is the entire
frame.

non

Theoretically "sample” should be a subset of "cover”, "notsample” should be a subset of "uncover”,
"inside" should be a subset of "majority” and "outside” should be a subset of "minority”,
but these could be false due to numerical error in computational geometry.

Value

A mask (object of class "owin" of type "mask” representing a binary pixel mask).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

as.mask

padimage 391

Examples

W <- Window(chorley)

opa <- par(mfrow=c(2,5))

plot(as.mask(W, dimyx=10), col="grey", main="sample")

plot(W, add=TRUE, lwd=3, border="red")

plot(owin2mask(W, "ma”, dimyx=10), col="grey", main="majority")

plot(W, add=TRUE, lwd=3, border="red")

plot(owin2mask(W, "i", dimyx=10@), col="grey"”, main="inside")

plot(W, add=TRUE, 1lwd=3, border="red")

plot(owin2mask(W, "c", dimyx=10), col="grey"”, main="cover")

plot(W, add=TRUE, lwd=3, border="red")

plot(owin2mask (W, "b", dimyx=10), col="grey", main="boundary")

plot(W, add=TRUE, lwd=3, border="red")

plot(as.mask(complement.owin(W), dimyx=10@), col="grey",
main="notsample")

plot(W, add=TRUE, lwd=3, border="red")

plot(owin2mask(W, "mi", dimyx=10), col="grey", main="minority")

plot(W, add=TRUE, 1lwd=3, border="red")

plot(owin2mask (W, "o", dimyx=10), col="grey", main="outside")

plot(W, add=TRUE, 1lwd=3, border="red")

plot(owin2mask (W, "u"”, dimyx=10), col="grey"”, main="uncover")

plot(W, add=TRUE, lwd=3, border="red")

plot(owin2mask (W, "b", dimyx=1@), col="grey"”, main="boundary")

plot(W, add=TRUE, 1lwd=3, border="red")

par(opa)

”

padimage Pad the Border of a Pixel Image

Description

Fills the border of a pixel image with a given value or values, or extends a pixel image to fill a larger
window.

Usage

padimage (X, value=NA, n=1, W=NULL)

Arguments
X Pixel image (object of class "im").
value Single value to be placed around the border of X.
n Width of border, in pixels. See Details.

W Window for the resulting image. Incompatible with n.

392 pairdist

Details

The image X will be expanded by a margin of n pixels, or extended to fill the window W, with new
pixel values set to value.

The argument value should be a single value (a vector of length 1), normally a value of the same
type as the pixel values of X. It may be NA. Alternatively if X is a factor-valued image, value can be
one of the levels of X.

If n is given, it may be a single number, specifying the width of the border in pixels. Alternatively
it may be a vector of length 2 or 4. It will be replicated to length 4, and these numbers will be
interpreted as the border widths for the (left, right, top, bottom) margins respectively.

Alternatively if W is given, the image will be extended to the window W.

Value

Another object of class "im", of the same type as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im

Examples

Z <- setcov(owin())
plot(padimage(Z, 1, 10))

D <- distmap(letterR, invert=TRUE, eps=0.05)[letterR, drop=FALSE]
V <- dilation(letterR, 0.15)
plot(padimage(D, 0.4, W=V))

pairdist Pairwise distances

Description

Computes the matrix of distances between all pairs of ‘things’ in a dataset

Usage

pairdist(X, ...)

pairdist.default 393

Arguments
X Object specifying the locations of a set of ‘things’ (such as a set of points or a
set of line segments).
Further arguments depending on the method.
Details

Given a dataset X and Y (representing either a point pattern or a line segment pattern) pairdist
computes the distance between each pair of ‘things’ in the dataset, and returns a matrix containing
these distances.

The function pairdist is generic, with methods for point patterns (objects of class "ppp"), line seg-
ment patterns (objects of class "psp”) and a default method. See the documentation for pairdist. ppp,
pairdist.psp or pairdist.default for details.

Value

A square matrix whose [1i, j] entry is the distance between the ‘things’ numbered i and j.

Distance values

The values returned by pairdist(X) are distances, expressed as multiples of the unit of length of
the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
pairdist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Pavel Grabarnik <pavel.grabar@issp.serpukhov.su>and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

pairdist.ppp, pairdist.psp, pairdist.default, crossdist, nndist, Kest

pairdist.default Pairwise distances

Description
Computes the matrix of distances between all pairs of points in a set of points in two dimensional
space

Usage

Default S3 method:
pairdist(X, Y=NULL, ..., period=NULL, method="C", squared=FALSE)

394 pairdist.default

Arguments
XY Arguments specifying the coordinates of a set of points. Typically X and Y would
be numeric vectors of equal length. Alternatively Y may be omitted and X may
be a list with two components x and y, or a matrix with two columns.
Ignored.
period Optional. Dimensions for periodic edge correction.
method String specifying which method of calculation to use. Values are "C” and "interpreted”.
Usually not specified.
squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).
Details

Given the coordinates of a set of points in two dimensional space, this function computes the Eu-
clidean distances between all pairs of points, and returns the matrix of distances. It is a method for
the generic function pairdist.

Note: If only pairwise distances within some threshold value are needed the low-level function
closepairs may be much faster to use.

The arguments X and Y must determine the coordinates of a set of points. Typically X and Y would
be numeric vectors of equal length. Alternatively Y may be omitted and X may be a list with two
components named x and y, or a matrix or data frame with two columns.

For typical input the result is numerically equivalent to (but computationally faster than) as.matrix(dist(x))
where x = cbind(X, Y), but that command is useful for calculating all pairwise distances between
points in k-dimensional space when x has k£ columns.

Alternatively if period is given, then the distances will be computed in the ‘periodic’ sense (also
known as ‘torus’ distance). The points will be treated as if they are in a rectangle of width
period[1] and height period[2]. Opposite edges of the rectangle are regarded as equivalent.

If squared=TRUE then the squared Euclidean distances d? are returned, instead of the Euclidean
distances d. The squared distances are faster to calculate, and are sufficient for many purposes
(such as finding the nearest neighbour of a point).

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is somewhat faster.

Value

A square matrix whose [1, j] entry is the distance between the points numbered i and j.

Author(s)

Pavel Grabarnik <pavel.grabar@issp. serpukhov.su>and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossdist, nndist, Kest, closepairs

pairdist.pp3 395

Examples
X <= runif(100)
y <= runif(100)
d <- pairdist(x, y)
d <- pairdist(cbind(x,y))
d <- pairdist(x, y, period=c(1,1))
d <- pairdist(x, y, squared=TRUE)

pairdist.pp3 Pairwise distances in Three Dimensions

Description

Computes the matrix of distances between all pairs of points in a three-dimensional point pattern.

Usage
S3 method for class 'pp3'

pairdist(X, ..., periodic=FALSE, squared=FALSE)
Arguments

X A point pattern (object of class "pp3").

Ignored.
periodic Logical. Specifies whether to apply a periodic edge correction.
squared Logical. If squared=TRUE, the squared distances are returned instead (this com-

putation is faster).

Details

This is a method for the generic function pairdist.

Given a three-dimensional point pattern X (an object of class "pp3"), this function computes the
Euclidean distances between all pairs of points in X, and returns the matrix of distances.

Alternatively if periodic=TRUE and the window containing X is a box, then the distances will be
computed in the ‘periodic’ sense (also known as ‘torus’ distance): opposite faces of the box are
regarded as equivalent. This is meaningless if the window is not a box.

If squared=TRUE then the squared Euclidean distances d? are returned, instead of the Euclidean
distances d. The squared distances are faster to calculate, and are sufficient for many purposes
(such as finding the nearest neighbour of a point).

Value

A square matrix whose [1i, j] entry is the distance between the points numbered i and j.

396 pairdist.ppp

Distance values

The values returned by pairdist(X) are distances, expressed as multiples of the unit of length of
the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
pairdist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> based on two-dimensional code by Pavel
Grabarnik <pavel.grabar@issp.serpukhov.su>.

See Also

pairdist, crossdist, nndist, K3est

Examples

if(require(spatstat.random)) {
X <= runifpoint3(20)
} else {
X <- osteo$pts[[1]]
3
d <- pairdist(X)
d <- pairdist(X, periodic=TRUE)
d <- pairdist(X, squared=TRUE)

pairdist.ppp Pairwise distances

Description

Computes the matrix of distances between all pairs of points in a point pattern.

Usage
S3 method for class 'ppp'
pairdist(X, ...,
periodic=FALSE, method="C", squared=FALSE, metric=NULL)

Arguments

X A point pattern (object of class "ppp").

Ignored.
periodic Logical. Specifies whether to apply a periodic edge correction.
method String specifying which method of calculation to use. Values are "C" and "interpreted”.

Usually not specified.

pairdist.ppp 397

squared Logical. If squared=TRUE, the squared distances are returned instead (this com-
putation is faster).

metric Optional. A metric (object of class "metric"”) that will be used to define and
compute the distances.

Details

This is a method for the generic function pairdist.

Given a point pattern X (an object of class "ppp"), this function computes the Euclidean distances
between all pairs of points in X, and returns the matrix of distances.

Alternatively if periodic=TRUE and the window containing X is a rectangle, then the distances will
be computed in the ‘periodic’ sense (also known as ‘torus’ distance): opposite edges of the rectangle
are regarded as equivalent. This is meaningless if the window is not a rectangle.

If squared=TRUE then the squared Euclidean distances d? are returned, instead of the Euclidean
distances d. The squared distances are faster to calculate, and are sufficient for many purposes
(such as finding the nearest neighbour of a point).

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then C code is used. The C code is somewhat faster.

Value

A square matrix whose [1, j] entry is the distance between the points numbered i and j.

Distance values

The values returned by pairdist(X) are distances, expressed as multiples of the unit of length of
the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
pairdist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.
Author(s)

Pavel Grabarnik <pavel.grabar@issp. serpukhov.su>and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

pairdist, pairdist.default, pairdist.psp, crossdist, nndist, Kest

Examples

d <- pairdist(cells)
d <- pairdist(cells, periodic=TRUE)
d <- pairdist(cells, squared=TRUE)

398 pairdist.ppx

pairdist.ppx FPairwise Distances in Any Dimensions

Description

Computes the matrix of distances between all pairs of points in a multi-dimensional point pattern.

Usage
S3 method for class 'ppx'
pairdist(X, ...)
Arguments
X A point pattern (object of class "ppx").

Arguments passed to coords.ppx to determine which coordinates should be
used.
Details

This is a method for the generic function pairdist.

Given a multi-dimensional point pattern X (an object of class "ppx"), this function computes the
Euclidean distances between all pairs of points in X, and returns the matrix of distances.

By default, both spatial and temporal coordinates are extracted. To obtain the spatial distance
between points in a space-time point pattern, set temporal=FALSE.
Value

A square matrix whose [1i, j] entry is the distance between the points numbered i and j.

Distance values

The values returned by pairdist (X, temporal=FALSE) are distances, expressed as multiples of
the unit of length of the spatial coordinates in X. The unit of length is given by unitname (X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the val-
ues of pairdist(X, temporal=FALSE) are expressed as multiples of 2 microns, rather than being
expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

pairdist, crossdist, nndist

pairdist.psp 399

Examples

df <- data.frame(x=runif(4),y=runif(4),z=runif(4),w=runif(4))
X <- ppx(data=df)
pairdist(X)

pairdist.psp Pairwise distances between line segments

Description

Computes the matrix of distances between all pairs of line segments in a line segment pattern.

Usage
S3 method for class 'psp'
pairdist(X, ..., method="C", type="Hausdorff")
Arguments
X A line segment pattern (object of class "psp”).
Ignored.
method String specifying which method of calculation to use. Values are "C" and "interpreted”.
Usually not specified.
type Type of distance to be computed. Options are "Hausdorff"” and "separation”.

Partial matching is used.

Details
This function computes the distance between each pair of line segments in X, and returns the matrix
of distances.
This is a method for the generic function pairdist for the class "psp”.
The distances between line segments are measured in one of two ways:
* if type="Hausdorff"”, distances are computed in the Hausdorff metric. The Hausdorff dis-

tance between two line segments is the maximum distance from any point on one of the seg-
ments to the nearest point on the other segment.

* if type="separation”, distances are computed as the minimum distance from a point on one
line segment to a point on the other line segment. For example, line segments which cross
over each other have separation zero.

The argument method is not normally used. It is retained only for checking the validity of the
software. If method = "interpreted” then the distances are computed using interpreted R code
only. If method="C" (the default) then compiled C code is used, which is somewhat faster.

Value

A square matrix whose [1i, j] entry is the distance between the line segments numbered i and j.

400 perimeter

Distance values

The values returned by pairdist(X) are distances, expressed as multiples of the unit of length of
the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
pairdist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

crossdist, nndist, pairdist.ppp

Examples

L <= psp(runif(10), runif(1@), runif(10), runif(10), owin())
D <- pairdist(L)
S <- pairdist(L, type="sep")

perimeter Perimeter Length of Window

Description

Computes the perimeter length of a window

Usage
perimeter(w)
Arguments
w A window (object of class "owin") or data that can be converted to a window
by as.owin.
Details

This function computes the perimeter (length of the boundary) of the window w. If w is a rectangle
or a polygonal window, the perimeter is the sum of the lengths of the edges of w. If w is a mask, it is
first converted to a polygonal window using as. polygonal, then staircase edges are removed using
simplify.owin, and the perimeter of the resulting polygon is computed.

Value

A numeric value giving the perimeter length of the window.

periodify 401

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

area.owin diameter.owin, owin.object, as.owin

Examples

perimeter(square(3))
perimeter(letterR)
if(interactive()) print(perimeter(as.mask(letterR)))

periodify Make Periodic Copies of a Spatial Pattern

Description

Given a spatial pattern (point pattern, line segment pattern, window, etc) make shifted copies of the
pattern and optionally combine them to make a periodic pattern.

Usage

periodify(X, ...)

S3 method for class 'ppp'

periodify(X, nx =1, ny =1, ...,
combine=TRUE, warn=TRUE, check=TRUE,
ix=(-nx):nx, iy=(-ny):ny,
ixy=expand.grid(ix=ix,iy=iy))

S3 method for class 'psp'

periodify(X, nx =1, ny =1, ...,
combine=TRUE, warn=TRUE, check=TRUE,
ix=(-nx):nx, iy=(-ny):ny,
ixy=expand.grid(ix=ix,iy=iy))

S3 method for class 'owin'

periodify(X, nx =1, ny =1, ...,
combine=TRUE, warn=TRUE,
ix=(-nx):nx, iy=(-ny):ny,
ixy=expand.grid(ix=ix,iy=iy))

Arguments

X An object representing a spatial pattern (point pattern, line segment pattern or
window).

402 periodify

nx, ny Integers. Numbers of additional copies of X in each direction. The result will
be a grid of 2 * nx + 1 by 2 * ny + 1 copies of the original object. (Overruled by
ix, iy, ixy).

Ignored.
combine Logical flag determining whether the copies should be superimposed to make an
object like X (if combine=TRUE) or simply returned as a list of objects (combine=FALSE).
warn Logical flag determining whether to issue warnings.
check Logical flag determining whether to check the validity of the combined pattern.
ix, iy Integer vectors determining the grid positions of the copies of X. (Overruled by
ixy).
ixy Matrix or data frame with two columns, giving the grid positions of the copies
of X.
Details

Given a spatial pattern (point pattern, line segment pattern, etc) this function makes a number of
shifted copies of the pattern and optionally combines them. The function periodify is generic,
with methods for various kinds of spatial objects.

The default is to make a 3 by 3 array of copies of X and combine them into a single pattern of the
same kind as X. This can be used (for example) to compute toroidal or periodic edge corrections for
various operations on X.

If the arguments nx, ny are given and other arguments are missing, the original object will be copied
nx times to the right and nx times to the left, then ny times upward and ny times downward, making
(2 *nx+1) x (2*ny + 1) copies altogether, arranged in a grid, centred on the original object.

If the arguments ix, iy or ixy are specified, then these determine the grid positions of the copies of
X that will be made. For example (ix,iy) = (1, 2) means a copy of X shifted by the vector (ix *
w, iy * h) where w, h are the width and height of the bounding rectangle of X.

If combine=TRUE (the default) the copies of X are superimposed to create an object of the same kind
as X. If combine=FALSE the copies of X are returned as a list.

Value
If combine=TRUE, an object of the same class as X. If combine=FALSE, a list of objects of the same
class as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

shift

Examples

plot(periodify(cells))
a <- lapply(periodify(Window(cells), combine=FALSE),
plot, add=TRUE,1lty=2)

persp.im 403

persp.im Perspective Plot of Pixel Image

Description

Displays a perspective plot of a pixel image. The pixel values are treated as heights of a surface;
the surface is displayed in perspective view.

Usage
S3 method for class 'im'
persp(x, ...,
colmap=NULL, colin=x, valuesAreColours=NULL,
apron=FALSE, visible=FALSE)
Arguments
X The pixel image to be plotted as a surface. An object of class "im" (see im.object).
Extra arguments passed to persp.default to control the display.
colmap Optional data controlling the colour map. See Details.
colin Optional. Colour input. Another pixel image (of the same dimensions as x)
containing the values that will be mapped to colours.
valuesAreColours
Optional. Logical value indicating whether the pixel values in colin are to be
interpreted directly as colour values (valuesAreColours=TRUE) or interpreted
as numerical values that should be mapped to colours (valuesAreColours=FALSE).
The default is TRUE if colin is a character-valued or factor-valued image, and
FALSE otherwise.
apron Logical. If TRUE, a grey apron is placed around the sides of the perspective plot.
visible Logical value indicating whether to compute which pixels of x are visible in the
perspective view. See Details.
Details

This is the persp method for the class "im".

The pixel image x must have real or integer values. These values are treated as heights of a surface,
and the surface is displayed as a perspective plot on the current plot device, using equal scales on
the x and y axes.

The optional argument colmap gives an easy way to display different altitudes in different colours
(if this is what you want).

e If colmap is a colour map (object of class "colourmap”, created by the function colourmap)
then this colour map will be used to associate altitudes with colours.

404

persp.im

* If colmap is a character vector, then the range of altitudes in the perspective plot will be
divided into length(colmap) intervals, and those parts of the surface which lie in a particular
altitude range will be assigned the corresponding colour from colmap.

o If colmap is a function in the R language of the form function(n, ...), this function will
be called with an appropriate value of n to generate a character vector of n colours. Examples
of such functions are heat.colors, terrain.colors, topo.colors and cm.colors.

o If colmap is a function in the R language of the form function(range, ...) then it will be
called with range equal to the range of altitudes, to determine the colour values or colour map.
Examples of such functions are beachcolours and beachcolourmap.

e If colmap is a list with entries breaks and col, then colmap$breaks determines the break-
points of the altitude intervals, and colmap$col provides the corresponding colours.

Alternatively, if the argument colin (colour input) is present, then colin determines the colour of
each piece of the surface. The result is a perspective view of a surface with heights determined by
x and colours determined by colin:

e If colin is a numeric-valued image, or if valuesAreColours=FALSE is specified, the pixel
values of colin will be mapped to colour values to determine the colour of each piece of the
surface. The colour map colmap controls this mapping.

* If colin is a character-valued or factor-valued image, or if valuesAreColours=TRUE is spec-
ified, the pixel values of colin are interpreted directly as colour values.

If apron=TRUE, a vertical surface is drawn around the boundary of the perspective plot, so that the
terrain appears to have been cut out of a solid material. If colour data were supplied, then the apron
is coloured light grey.

Graphical parameters controlling the perspective plot are passed through the . . . arguments directly
to the function persp.default. See the examples in persp.default or in demo(persp).

The vertical scale is controlled by the argument expand: setting expand=1 will interpret the pixel
values as being in the same units as the spatial coordinates = and y and represent them at the same
scale.

If visible=TRUE, the algorithm also computes whether each pixel in x is visible in the perspective
view. In order to be visible, a pixel must not be obscured by another pixel which lies in front of it (as
seen from the viewing direction), and the three-dimensional vector normal to the surface must be
pointing toward the viewer. The return value of persp.im then has an attribute "visible"” which
is a pixel image, compatible with x, with pixel value equal to TRUE if the corresponding pixel in x
is visible, and FALSE if it is not visible.

Value

(invisibly) the 3D transformation matrix returned by persp.default, together with an attribute
"expand” which gives the relative scale of the z coordinate.

If argument visible=TRUE was given, the return value also has an attribute "visible"” which is a
pixel image, compatible with x, with logical values which are TRUE when the corresponding pixel
is visible in the perspective view, and FALSE when it is obscured.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

persp.ppp 405

See Also

perspPoints, persplLines for drawing additional points or lines on the surface.
trans3d for mapping arbitrary (z,y, z) coordinate locations to the plotting coordinates.

im.object, plot.im, contour.im

Examples

an image
Z <- setcov(owin(), dimyx=32)
persp(Z, colmap=terrain.colors(128))
if(interactive()) {
co <- colourmap(range=c(0,1), col=rainbow(128))
persp(Z, colmap=co, axes=FALSE, shade=0.3)
3

Terrain elevation

persp(bei.extra$elev, colmap=terrain.colors(128),
apron=TRUE, theta=-30, phi=20,
zlab="Elevation”, main="", ticktype="detailed”,
expand=6)

if(interactive()) {

apron for non-rectangular domain

sto <- subset(stonetools, TYPE == "LITHIC", select=NULL)

D <- density(sto, 0.65, dimyx=512)

persp(D, phi=30, apron=TRUE, colmap=terrain.colors, expand=0.5, box=FALSE, theta=-10)
}

persp.ppp Perspective Plot of Marked Point Pattern

Description

For a spatial point pattern with numeric marks, generate a perspective plot in which each data point
is shown as a vertical spike, with height proportional to the mark value.

Usage
S3 method for class 'ppp'
persp(x, ..., main, type=c("1", "b"),
grid = TRUE, ngrid = 10,
col.grid = "grey"”, col.base = "white",

win.args=list(),

spike.args = list(), neg.args = list(),
point.args=list(),

which.marks = 1,

zlab = NULL, zlim = NULL, zadjust =1,
show.window=TRUE,

406

Arguments

X

main

type

grid

ngrid

col.grid

col.base

win.args

spike.args

neg.args

point.args

which.marks

zlab
zlim
zadjust

show.window

legend

legendpos

persp.ppp

legend=TRUE, legendpos="bottomleft",
leg.args=list(lwd=4), leg.col=c("black”, "orange"))

A spatial point pattern (object of class "ppp"”) with numeric marks, or a data
frame of marks.

Additional graphical arguments passed to persp.default to determine the per-
spective view (for example the rotation angle theta and the elevation angle
phi) or passed to segments to control the drawing of lines (for example 1wd for
line width) or passed to points.default to control the drawing of points (for
example pch for symbol type).

Optional main title for the plot.

Single character specifying how each observation will be plotted: type="1" for
lines, type="b" for both lines and points.

Logical value specifying whether to draw a grid of reference lines on the hori-
zontal plane.

Number of grid lines to draw in each direction, if grid=TRUE. An integer, or
a pair of integers specifying the number of grid lines along the horizontal and
vertical axes respectively.

Colour of grid lines, if grid=TRUE.

Colour with which to fill the horizontal plane. A single colour value, or a pixel
image.

List of arguments passed to plot.owin to control the drawing of the window of
x. Applicable only when the window is not a rectangle.

List of arguments passed to segments to control the drawing of the spikes.

List of arguments passed to segments applicable only to those spikes which
have negative height (corresponding to a mark value which is negative).

List of arguments passed to points.default to control the drawing of the
points, when type="b".

Integer, or character name, identifying the column of marks which should be
used, when marks(x) is a data frame.

Optional. Label for the vertical axis. Character string or expression.
Optional. Range of values on the vertical axis. A numeric vector of length 2.
Scale adjustment factor controlling the height of spikes.

Logical value specifying whether to draw the window of x on the horizontal
plane.

Logical value specifying whether to draw a reference scale bar for the vertical
axis.

Position of the reference scale bar. Either a character string matching one of the
options "bottomleft”, "bottomright”, "topleft"”, "topright”, "bottom”,
"left"”, "top"” or "right", or a numeric vector of length 2 specifing the coor-
dinate position of the base of the reference scale bar.

persp.ppp 407

leg.args Additional arguments passed to segments to control the drawing of the refer-
ence scale bar.
leg.col A vector (usually of length 2) of colour values for successive intervals in the
reference scale. The default is a reference scale consisting of black and orange
stripes.
Details

The function persp is generic. This is the method for spatial point patterns (objects of class "ppp").
The argument x must be a point pattern with numeric marks, or with a data frame of marks.

A perspective view will be plotted. The eye position is determined by the arguments theta and phi
passed to persp.default.

First the horizontal plane is drawn in perspective view, using a faint grid of lines to help suggest the
perspective. Next the observation window of x is placed on the horizontal plane and its edges are
drawn in perspective view. Finally for each data point in x, a vertical spike is erected at the spatial
location of the data point, with height equal to the mark value of the point.

The horizontal plane is effectively transparent, by default. If the argument col.base is a single
colour value, the horizontal plane will be painted in this colour. If col.base is a pixel image, it will
be rendered as a colour image shown in perspective view on the horizontal plane:

 If valuesAreColours=TRUE is specified, the pixel values of col.base will be interpreted
directly as colour values.

* Otherwise, the argument colmap controls the mapping from pixel values of col.base to phys-
ical colours.

After the horizontal plane has been coloured, the observation window Window(x) will be drawn on
the horizontal plane (unless show.window=FALSE). By default, only the edges of the window will be
drawn, as black line segments. The style of plotting the window can be modified using win.args.
The colour of the line segments is controlled by win.args$border. If win.args$col is given, the
window will be filled in the specified colour, overwriting any previous colours. See the Examples.

If any mark values are negative, the corresponding spikes will penetrate below the horizontal plane.
They can be drawn in a different colour by specifying neg.args as shown in the examples. These
would be obscured if col.base is an opaque colour other than white, or if col.base is a pixel
image. A transparent colour for col.base can be used if it is supported by the graphics device.

Like all spatial plots in the spatstat family, persp. ppp does not independently rescale the x and y
coordinates. A long narrow window will be represented as a long narrow window in the perspective
view. To override this and allow the coordinates to be independently rescaled, use the argument
scale=TRUE which will be passed to persp.default.

Value

(Invisibly) the perspective transformation matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

408 perspPoints

Examples

persp(longleaf, theta=-30, phi=35, spike.args=list(lwd=3), zadjust=1.5,
zlab="diameter")

negative mark values

X <- longleaf

marks(X) <- marks(X) - 20

persp(X, theta=80, phi=35, neg.args=list(col="red"),
spike.args=list(lwd=3), zadjust=1.2)

irregular window

Australia <- Window(austates)

Y <- runifrect(70, Frame(Australia))[Australia]

marks(Y) <- runif(npoints(Y))

persp(Y, theta=30, phi=20, col.base="lightblue",
win.args=list(col="pink"”, border=NA),
spike.args=list(lwd=2), zadjust=1.5, zlab="")

persp(Y, type="b",
theta=30, phi=20, col.base="lightblue",
win.args=list(col="pink", border=NA),
spike.args=list(lty=3), point.args=list(col="blue"), zadjust=1.5)

perspPoints Draw Points or Lines on a Surface Viewed in Perspective

Description

After a surface has been plotted in a perspective view using persp.im, these functions can be used
to draw points or lines on the surface.

Usage
perspPoints(x, y=NULL, ..., Z, M, occluded=TRUE)
perspLines(x, y = NULL, ..., Z, M, occluded=TRUE)
perspSegments(x@, y@ = NULL, x1 = NULL, y1 = NULL, ..., Z, M, occluded=TRUE)

perspContour(Z, M, ...,
nlevels=10, levels=pretty(range(Z), nlevels),
occluded=TRUE)

Arguments

X,y Spatial coordinates, acceptable to xy . coords, for the points or lines on the hor-
izontal plane.

perspPoints

X0, y0, x1, y1

nlevels
levels
occluded

Details

409

Pixel image (object of class "im") specifying the surface heights.

Projection matrix returned from persp.im when Z was plotted.

Graphical arguments passed to points, lines or segments to control the draw-
ing.

Spatial coordinates of the line segments, on the horizontal plane. Alternatively

x@ can be a line segment pattern (object of class "psp”) and y@,x1,y1 can be
NULL.

Number of contour levels
Vector of heights of contours.

Logical value specifying whether parts of the surface can be obscured by other
parts of the surface. See Details.

After a surface has been plotted in a perspective view, these functions can be used to draw points or
lines on the surface.

The user should already have called persp. im to display the perspective view of the surface Z and to
obtain the perspective matrix M by typing M <- persp(Z, ...). The points and lines will be drawn
in their correct three-dimensional position according to the same perspective.

If occluded=TRUE (the default), then the surface is treated as if it were opaque. The code will draw
only those points and lines which are visible from the viewer’s standpoint, and not obscured by
other parts of the surface lying closer to the viewer. The user should already have called persp.im
in the form M <- persp(Z, visible=TRUE, ...) to compute the visibility information.

If occluded=FALSE, then the surface is treated as if it were transparent. All the specified points and
lines will be drawn on the surface.

Value

Same as the return value from points or segments.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

persp.im

Examples

M <- persp(bei.extraselev, colmap=terrain.colors(128),

apron=TRUE, theta=-30, phi=20,
zlab="Elevation”, main=
expand=6, visible=TRUE, shade=0.3)

nn
’

perspContour(bei.extraselev, M=M, col="pink"”, nlevels=12)
perspPoints(bei, Z=bei.extra$elev, M=M, pch=16, cex=0.3, col="chartreuse")

410 pHcolourmap

pHcolourmap Colour Map for pH Values

Description

Create a colour map for values of pH.

Usage
pHcolourmap(range = c(@, 14), ..., n=256, step = FALSE)
pHcolour (pH)
Arguments
n Number of different colour values to be used, when step=FALSE.
range Range of pH values that will be accepted as inputs to the colour map. A numeric
vector of length 2 giving the minimum and maximum values of pH.
step Logical value. If step=FALSE (the default) the colours change continuously with
increasing values of the input. If step=TRUE, the colour is constant on each unit
interval of pH values.
Ignored.
pH Numerical value or numeric vector of values of pH.
Details

In chemistry the hydrogen potential pH measures how acidic or basic a solution is.

The function pHcolour calculates the colour associated with a given value of pH, according to a
standard mapping in which neutral pH = 7 is green, acidic values pH < 7 are yellow or red, and
basic values pH > 7 are blue. The function pHcolour takes a numerical value or vector of values
of pH and returns a character vector containing the corresponding colours.

The function pHcolourmap produces a colour map for numerical values of pH, using the same
consistent mapping of pH values to colours. The argument range specifies the range of pH values
that will be mapped by the resulting colour map. It should be a numeric vector of length 2 giving
the minimum and maximum values of pf that the colour map will handle. (Colour maps created
with different values of range use essentially the same mapping of colours, but when plotted as
colour ribbons, display only the specified range.)

If step=FALSE (the default) the colours change continuously with increasing values of the input.
There will be n different colour values in the colour map. Usually n should be a large number.

If step=TRUE, the colour is constant on each unit interval of pH values. That is, any value of pH
in the interval [k, k + 1], where k is an integer, will be mapped to the same colour.

Value

The return value of pHcolour is a character string or a vector of character strings representing
colours.

The return value of pHcolourmap is a colour map (object of class "colourmap”).

pixelcentres 411

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

colourmap

Examples

pHcolour(7)

plot(pHcolourmap())
plot(pHcolourmap(step=TRUE))
plot(pHcolourmap(c(3, 8)))

pixelcentres Extract Pixel Centres as Point Pattern

Description

Given a pixel image or binary mask window, extract the centres of all pixels and return them as a
point pattern.

Usage
pixelcentres(X, W = NULL, ...)
Arguments
Pixel image (object of class "im") or window (object of class "owin").
W Optional window to contain the resulting point pattern.
Optional arguments defining the pixel resolution.
Details

If the argument X is a pixel image, the result is a point pattern, consisting of the centre of every pixel
whose pixel value is not NA.

If X is a window which is a binary mask, the result is a point pattern consisting of the centre of every
pixel inside the window (i.e. every pixel for which the mask value is TRUE).

Otherwise, X is first converted to a window, then converted to a mask using as.mask, then handled
as above.

Value

A point pattern (object of class "ppp").

412 pixellate

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

raster.xy

Examples

pixelcentres(letterR, dimyx=5)

pixellate Convert Spatial Object to Pixel Image

Description

Convert a spatial object to a pixel image by measuring the amount of stuff in each pixel.

Usage
pixellate(x, ...)
Arguments
X Spatial object to be converted. A point pattern (object of class "ppp"), a window
(object of class "owin"), a line segment pattern (object of class "psp"), or some
other suitable data.
Arguments passed to methods.
Details

The function pixellate converts a geometrical object x into a pixel image, by measuring the
amount of x that is inside each pixel.

If x is a point pattern, pixellate(x) counts the number of points of x falling in each pixel. If x is
a window, pixellate(x) measures the area of intersection of each pixel with the window.

The function pixellate is generic, with methods for point patterns (pixellate.ppp), windows
(pixellate.owin), and line segment patterns (pixellate.psp), See the separate documentation
for these methods.

The related function as.im also converts x into a pixel image, but typically measures only the
presence or absence of x inside each pixel.

Value

A pixel image (object of class "im").

pixellate.owin 413

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pixellate.ppp, pixellate.owin, pixellate.psp, as.im

pixellate.owin Convert Window to Pixel Image

Description

Convert a window to a pixel image by measuring the area of intersection between the window and
each pixel in a raster.

Usage

S3 method for class 'owin'

pixellate(x, W = NULL, ..., DivideByPixelArea=FALSE)
Arguments

Window (object of class "owin") to be converted.

W Optional. Window determining the pixel raster on which the conversion should
occur.

e Optional. Extra arguments passed to as.mask to determine the pixel raster.

DivideByPixelArea
Logical value, indicating whether the resulting pixel values should be divided
by the pixel area.

Details

This is a method for the generic function pixellate.
It converts a window x into a pixel image, by measuring the amount of x that is inside each pixel.

(The related function as.im also converts x into a pixel image, but records only the presence or
absence of x in each pixel.)

The pixel raster for the conversion is determined by the argument W and the extra arguments
o If Wis given, and it is a binary mask (a window of type "mask”) then it determines the pixel
raster.

* IfWis given, but it is not a binary mask (it is a window of another type) then it will be converted
to a binary mask using as.mask(W, ...).

 If Wis not given, it defaults to as.mask(as.rectangle(x), ...)

414 pixellate.ppp

In the second and third cases it would be common to use the argument dimyx to control the number
of pixels. See the Examples.

The algorithm then computes the area of intersection of each pixel with the window.

The result is a pixel image with pixel entries equal to these intersection areas.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

pixellate.ppp, pixellate, as.im

Examples

plot(pixellate(letterR, dimyx=15))
W <- grow.rectangle(as.rectangle(letterR), 0.2)
plot(pixellate(letterR, W, dimyx=15))

pixellate.ppp Convert Point Pattern to Pixel Image

Description

Converts a point pattern to a pixel image. The value in each pixel is the number of points falling in
that pixel, and is typically either O or 1.

Usage

S3 method for class 'ppp'

pixellate(x, W=NULL, ..., weights = NULL,
padzero=FALSE, fractional=FALSE, preserve=FALSE,
DivideByPixelArea=FALSE, savemap=FALSE)

S3 method for class 'ppp'
as.im(X, ...)

pixellate.ppp 415

Arguments
X, X Point pattern (object of class "ppp").
Arguments passed to as.mask to determine the pixel resolution
W Optional window mask (object of class "owin") determining the pixel raster.
weights Optional vector of weights associated with the points.
padzero Logical value indicating whether to set pixel values to zero outside the window.

fractional, preserve
Logical values determining the type of discretisation. See Details.

DivideByPixelArea
Logical value, indicating whether the resulting pixel values should be divided
by the pixel area.

savemap Logical value, indicating whether to save information about the discretised co-
ordinates of the points of x.

Details

The functions pixellate.ppp and as.im.ppp convert a spatial point pattern x into a pixel image,
by counting the number of points (or the total weight of points) falling in each pixel.

Calling as.im.ppp is equivalent to calling pixellate.ppp with its default arguments. Note that
pixellate.ppp is more general than as. im. ppp (it has additional arguments for greater flexibility).

The functions as.im.ppp and pixellate.ppp are methods for the generic functions as.im and
pixellate respectively, for the class of point patterns.

The pixel raster (in which points are counted) is determined by the argument W if it is present (for
pixellate.ppp only). In this case W should be a binary mask (a window object of class "owin"
with type "mask”). Otherwise the pixel raster is determined by extracting the window containing x
and converting it to a binary pixel mask using as.mask. The arguments . . . are passed to as.mask
to control the pixel resolution.

If weights is NULL, then for each pixel in the mask, the algorithm counts how many points in x fall
in the pixel. This count is usually either O (for a pixel with no data points in it) or 1 (for a pixel
containing one data point) but may be greater than 1. The result is an image with these counts as its
pixel values.

If weights is given, it should be a numeric vector of the same length as the number of points in x.
For each pixel, the algorithm finds the total weight associated with points in x that fall in the given
pixel. The result is an image with these total weights as its pixel values.

By default (if zeropad=FALSE) the resulting pixel image has the same spatial domain as the window
of the point pattern x. If zeropad=TRUE then the resulting pixel image has a rectangular domain;
pixels outside the original window are assigned the value zero.

The discretisation procedure is controlled by the arguments fractional and preserve.

* The argument fractional specifies how data points are mapped to pixels. If fractional=FALSE
(the default), each data point is allocated to the nearest pixel centre. If fractional=TRUE, each
data point is allocated with fractional weight to four pixel centres (the corners of a rectangle
containing the data point).

416 pixellate.psp

* The argument preserve specifies what to do with pixels lying near the boundary of the win-
dow, if the window is not a rectangle. If preserve=FALSE (the default), any contributions that
are attributed to pixel centres lying outside the window are reset to zero. If preserve=TRUE,
any such contributions are shifted to the nearest pixel lying inside the window, so that the total
mass is preserved.

If savemap=TRUE then the result has an attribute "map” which is a 2-column matrix containing the
row and column indices of the discretised positions of the points of x in the pixel grid.
Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pixellate, im, as.im, density.ppp, Smooth.ppp.

Examples

plot(pixellate(humberside))
plot(pixellate(humberside, fractional=TRUE))

pixellate.psp Convert Line Segment Pattern to Pixel Image

Description

Converts a line segment pattern to a pixel image by measuring the length or number of lines inter-
secting each pixel.

Usage
S3 method for class 'psp'
pixellate(x, W=NULL, ..., weights = NULL,
what=c("length”, "number"”, "indicator"),

DivideByPixelArea=FALSE)

pixellate.psp 417
Arguments
X Line segment pattern (object of class "psp").
Optional window (object of class "owin") determining the pixel resolution.
e Optional arguments passed to as.mask to determine the pixel resolution.
weights Optional vector of weights associated with each line segment, used when what="1ength".
what String (partially matched) indicating whether to compute the total length of in-
tersection of segments with each pixel (what="1length", the default), the to-
tal number of segments intersecting each pixel (what="number") or an indica-
tor variable that equals 1 if any segments intersect the pixel, and O otherwise
(code="indicator").
DivideByPixelArea
Logical value, indicating whether the resulting pixel values should be divided
by the pixel area.
Details

This function converts a line segment pattern to a pixel image by computing, for each pixel, the
total length of intersection between the pixel and the line segments. Alternatively it can count the
number of line segments intersecting each pixel.

This is a method for the generic function pixellate for the class of line segment patterns.

The pixel raster is determined by W and the optional arguments If W is missing or NULL, it
defaults to the window containing x. Then W is converted to a binary pixel mask using as.mask.

The arguments . . .

are passed to as.mask to control the pixel resolution.

If weights are given and what="1ength", then the length of the intersection between line segment
i and pixel j is multiplied by weights[i] before the lengths are summed for each pixel.

Value

A pixel image (object of class "im") with numeric values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pixellate, as.mask, psp2mask.

Use psp2mask if you only want to know which pixels are intersected by lines.

Examples

X <= psp(runif(10),runif(10), runif(10), runif(10), window=owin())
plot(pixellate(X))

plot(X, add=TRUE)

sum(lengths_psp(X))

sum(pixellate(X))

plot(pixellate(X, what="n"))

418 pixelquad

pixelquad Quadrature Scheme Based on Pixel Grid

Description

Makes a quadrature scheme with a dummy point at every pixel of a pixel image.

Usage
pixelquad(X, W = as.owin(X), ...)
Arguments
X Point pattern (object of class "ppp") containing the data points for the quadrature
scheme.
W Specifies the pixel grid. A pixel image (object of class "im"), a window (object
of class "owin"), or anything that can be converted to a window by as.owin.
Optional arguments to as.mask controlling the pixel raster dimensions.
Details

This is a method for producing a quadrature scheme for use by ppm. It is an alternative to quadscheme.

The function ppm fits a point process model to an observed point pattern using the Berman-Turner
quadrature approximation (Berman and Turner, 1992; Baddeley and Turner, 2000) to the pseudo-
likelihood of the model. It requires a quadrature scheme consisting of the original data point pattern,
an additional pattern of dummy points, and a vector of quadrature weights for all these points. Such
quadrature schemes are represented by objects of class "quad”. See quad.object for a description
of this class.

Given a grid of pixels, this function creates a quadrature scheme in which there is one dummy point
at the centre of each pixel. The counting weights are used (the weight attached to each quadrature
point is 1 divided by the number of quadrature points falling in the same pixel).

The argument X specifies the locations of the data points for the quadrature scheme. Typically this
would be a point pattern dataset.

The argument W specifies the grid of pixels for the dummy points of the quadrature scheme. It
should be a pixel image (object of class "im"), a window (object of class "owin"), or anything that
can be converted to a window by as.owin. If W is a pixel image or a binary mask (a window of type
"mask") then the pixel grid of W will be used. If W is a rectangular or polygonal window, then it will
first be converted to a binary mask using as.mask at the default pixel resolution.

Value

An object of class "quad” describing the quadrature scheme (data points, dummy points, and
quadrature weights) suitable as the argument Q of the function ppm() for fitting a point process
model.

The quadrature scheme can be inspected using the print and plot methods for objects of class
Hquadl"

plot.anylist 419

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

guadscheme, quad.object, ppm

Examples

W <- owin(c(0,1),c(0,1))
X <- runifrect(42, W)

W <- as.mask(W,dimyx=128)
pixelquad(X,W)

plot.anylist Plot a List of Things

Description

Plots a list of things

Usage

S3 method for class 'anylist'
plot(x, ..., main, arrange=TRUE,

nrows=NULL, ncols=NULL, main.panel=NULL,
mar.panel=c(2,1,1,2), hsep=0, vsep=0,

panel.begin=NULL, panel.end=NULL, panel.args=NULL,
panel.begin.args=NULL, panel.end.args=NULL, panel.vpad=0.2,
plotcommand="plot",

do.plot=TRUE,

adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
adorn.size=0.2, adorn.args=list(),

equal.scales=FALSE, halign=FALSE, valign=FALSE)

Arguments
X An object of the class "anylist”. Essentially a list of objects.
Arguments passed to plot when generating each plot panel.
main Overall heading for the plot.
arrange Logical flag indicating whether to plot the objects side-by-side on a single page
(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).
nrows, ncols Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).

You can specify either or both of these numbers.

420

main.panel

mar.panel

hsep, vsep

plot.anylist

Optional. A character string, or a vector of character strings, giving the headings
for each of the objects.

Size of the margins outside each plot panel. A numeric vector of length 4 giving
the bottom, left, top, and right margins in that order. (Alternatively the vector
may have length 1 or 2 and will be replicated to length 4). See the section on
Spacing between plots.

Additional horizontal and vertical separation between plot panels, expressed in
the same units as mar . panel.

panel.begin, panel.end

panel.args

Optional. Functions that will be executed before and after each panel is plotted.
See Details.

Optional. Function that determines different plot arguments for different panels.
See Details.

panel.begin.args

panel.end.args

panel.vpad

plotcommand

do.plot

Optional. List of additional arguments for panel.begin when it is a function.
Optional. List of additional arguments for panel.end when it is a function.

Amount of extra vertical space that should be allowed for the title of each panel,
if a title will be displayed. Expressed as a fraction of the height of the panel. Ap-
plies only when equal. scales=FALSE (the default) and requires that the height
of each panel can be determined.

Optional. Character string containing the name of the command that should be
executed to plot each panel.

Logical value specifying whether to actually perform the plot.

adorn. left, adorn.right, adorn. top, adorn.bottom

adorn.size

adorn.args

equal.scales

halign, valign

Details

Optional. Functions that will be executed to generate additional plots at the
margins (left, right, top and/or bottom, respectively) of the array of plots. Alter-
natively they may be objects of class "colourmap” or "symbolmap”.

Relative width (as a fraction of the other panels’ widths) of the margin plots.

Optional list of arguments passed to the functions adorn.left, adorn.right,
adorn.top and adorn.bottom if they are functions, or arguments passed to
plot.colourmap or plot.symbolmap as appropriate.

Logical value indicating whether the components should be plotted at (approxi-
mately) the same physical scale.

Logical values indicating whether panels in a column should be aligned to the
same x coordinate system (halign=TRUE) and whether panels in a row should be
aligned to the same y coordinate system (valign=TRUE). These are applicable
only if equal.scales=TRUE.

This is the plot method for the class "anylist".

An object of class "anylist” represents a list of objects intended to be treated in the same way.
This is the method for plot.

plot.anylist 421

In the spatstat package, various functions produce an object of class "anylist”, essentially a list of
objects of the same kind. These objects can be plotted in a nice arrangement using plot.anylist.
See the Examples.

The argument panel.args determines extra graphics parameters for each panel. It should be a
function that will be called as panel.args(i) where i is the panel number. Its return value should
be a list of graphics parameters that can be passed to the relevant plot method. These parameters
override any parameters specified in the ... arguments.

The arguments panel.begin and panel.end determine graphics that will be plotted before and
after each panel is plotted. They may be objects of some class that can be plotted with the generic
plot command. Alternatively they may be functions that will be called as panel.begin(i, vy,
main=main.panel[i]) and panel.end(i, y, add=TRUE) where i is the panel number and y =
xCLi1].

If all entries of x are pixel images, the function image . listof is called to control the plotting. The

arguments equal.ribbon and col can be used to determine the colour map or maps applied.

If equal. scales=FALSE (the default), then the plot panels will have equal height on the plot device
(unless there is only one column of panels, in which case they will have equal width on the plot
device). This means that the objects are plotted at different physical scales, by default.

If equal. scales=TRUE, then the dimensions of the plot panels on the plot device will be propor-
tional to the spatial dimensions of the corresponding components of x. This means that the objects
will be plotted at approximately equal physical scales. If these objects have very different spatial
sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an
error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under
the following conditions:
* every component of x is a spatial object whose position can be shifted by shift;

* panel.begin and panel.end are either NULL or they are spatial objects whose position can
be shifted by shift;

e adorn.left, adorn.right, adorn. top and adorn.bottom are all NULL.
Another special case is when every component of x is an object of class "fv" representing a func-

tion. If equal.scales=TRUE then all these functions will be plotted with the same axis scales (i.e.
with the same x1im and the same ylim).

Value

Null.

Spacing between plots

The spacing between individual plots is controlled by the parameters mar . panel, hsep and vsep.

If equal. scales=FALSE, the plot panels are logically separate plots. The margins for each panel
are determined by the argument mar . panel which becomes the graphics parameter mar described
in the help file for par. One unit of mar corresponds to one line of text in the margin. If hsep or
vsep are present, mar.panel is augmented by c(vsep, hsep, vsep, hsep)/2.

If equal.scales=TRUE, all the plot panels are drawn in the same coordinate system which repre-
sents a physical scale. The unit of measurement for mar.panel[1,3] is one-sixth of the greatest

422 plot.colourmap

height of any object plotted in the same row of panels, and the unit for mar.panel[2,4] is one-
sixth of the greatest width of any object plotted in the same column of panels. If hsep or vsep are
present, they are interpreted in the same units as mar.panel[2] and mar.panel[1] respectively.

Error messages

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects
had a much smaller physical scale than the others. Ensure that equal.scales=FALSE and increase
the values of mar. panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

contour.listof, image.listof, density.splitppp

Examples

if(require(spatstat.explore)) {

trichotomy <- list(regular=cells,
random=japanesepines,
clustered=redwood)

K <- lapply(trichotomy, Kest)

K <- as.anylist(K)

plot(K, main="")

3

list of 3D point patterns

apel <- osteo[osteo$shortid==4, "pts"”, drop=TRUE]

class(apel)

plot(apel, main.panel="", mar.panel=0.1, hsep=0.7, vsep=1,
cex=1.5, pch=21, bg='white')

nn

plot.colourmap Plot a Colour Map

Description

Displays a colour map as a colour ribbon

Usage

S3 method for class 'colourmap'
plot(x, ...,
main, xlim = NULL, ylim = NULL, vertical = FALSE,
axis = TRUE, side = if(vertical) "right"” else "bottom”,

plot.colourmap 423

labelmap=NULL, gap=0.25, add=FALSE, do.plot=TRUE,
increasing=NULL, nticks=5,
at=NULL, box=NULL)

Arguments

X Colour map to be plotted. An object of class "colourmap”.
Graphical arguments passed to image.default or axis.

main Main title for plot. A character string.

x1lim Optional range of x values for the location of the colour ribbon.

ylim Optional range of y values for the location of the colour ribbon.

vertical Logical flag determining whether the colour ribbon is plotted as a horizontal
strip (FALSE) or a vertical strip (TRUE).

axis Logical value determining whether an axis should be plotted showing the nu-
merical values that are mapped to the colours.

side One of the character strings "bottom”, "left"”, "top"” or "right”, or one of the
integers from 1 to 4, specifying the position of the axis tick marks and labels, if
axis=TRUE.

labelmap Function. If this is present, then the labels on the plot, which indicate the input
values corresponding to particular colours, will be transformed by labelmap
before being displayed on the plot. Typically used to simplify or shorten the
labels on the plot.

gap Distance between separate blocks of colour, as a fraction of the width of one
block, if the colourmap is discrete.

add Logical value indicating whether to add the colourmap to the existing plot (add=TRUE),
or to start a new plot (add=FALSE, the default).

do.plot Logical value indicating whether to actually perform the plot.

increasing Logical value indicating whether to display the colour map in increasing order.
See Details.

nticks Optional. Integer specifying the approximate number of tick marks (represent-
ing different values of the numerical input) that should be drawn next to the
colour map. Applies only when the colour map inputs are numeric values.

at Optional. Numeric values at which tick marks should be drawn. Applies only
when the colour map inputs are numeric values.

box Optional. Logical value specifying whether to draw a black box around the
colour ribbon. Default is box=FALSE when plotting separate blocks of colour
(i.e. when the colourmap is discrete and gap > @) and box=TRUE otherwise.

Details

This is the plot method for the class "colourmap”. An object of this class (created by the function
colourmap) represents a colour map or colour lookup table associating colours with each data value.

The command plot.colourmap displays the colour map as a colour ribbon or as a colour legend (a
sequence of blocks of colour). This plot can be useful on its own to inspect the colour map.

424 plot.hyperframe

If the domain of the colourmap is an interval of real numbers, the colourmap is displayed as a
continuous ribbon of colour. If the domain of the colourmap is a finite set of inputs, the colours
are displayed as separate blocks of colour. The separation between blocks is equal to gap times the
width of one block.

To annotate an existing plot with an explanatory colour ribbon or colour legend, specify add=TRUE
and use the arguments x1im and/or ylim to control the physical position of the ribbon on the plot.

Labels explaining the colour map are drawn by axis and can be modified by specifying arguments
that will be passed to this function.

The argument increasing indicates whether the colourmap should be displayed so that the in-

put values are increasing with the spatial coordinate: that is, increasing from left to right (if
vertical=FALSE) or increasing from bottom to top (if vertical=TRUE). If increasing=FALSE,
this ordering will be reversed. The defaultis increasing=TRUE in all cases except when vertical=TRUE
and the domain of the colourmap is a finite set of discrete inputs.

Value

(Invisibly) a rectangular window (object of class "owin") giving the region of coordinate space
where the colours were drawn (or would have been drawn).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

colourmap

Examples

co <- colourmap(rainbow(100), breaks=seq(-1,1,length=101))
plot(co)

plot(co, col.ticks="pink")

ca <- colourmap(rainbow(8), inputs=letters[1:8])

plot(ca, vertical=TRUE)

logarithmic colour map

cl <- colourmap(rainbow(25), range=c(@0.1, 1000), compress=logl10)
plot(cl)

plot.hyperframe Plot Entries in a Hyperframe

Description

Plots the entries in a hyperframe, in a series of panels, one panel for each row of the hyperframe.

plot.hyperframe

Usage

425

S3 method for class 'hyperframe'

plot(x, e, ., main, arrange=TRUE,
nrows=NULL, ncols=NULL,
parargs=list(mar=mar * marsize),
marsize=1, mar=c(1,1,3,1))
Arguments
X Data to be plotted. A hyperframe (object of class "hyperframe”, see hyperframe).
e How to plot each row. Optional. An R language call or expression (typically
enclosed in quote() that will be evaluated in each row of the hyperframe to
generate the plots.
Extra arguments controlling the plot (when e is missing).
main Overall title for the array of plots.
arrange Logical flag indicating whether to plot the objects side-by-side on a single page

nrows, ncols

(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

parargs Optional list of arguments passed to par before plotting each panel. Can be used
to control margin sizes, etc.
marsize Optional scale parameter controlling the sizes of margins around the panels.
Incompatible with parargs.
mar Optional numeric vector of length 1, 2 or 4 controlling the relative sizes of mar-
gins between the panels. Incompatible with parargs.
Details

This is the plot method for the class "hyperframe”.

The argument x must be a hyperframe (like a data frame, except that the entries can be objects of
any class; see hyperframe).

This function generates a series of plots, one plot for each row of the hyperframe. If arrange=TRUE
(the default), then these plots are arranged in a neat array of panels within a single plot frame. If
arrange=FALSE, the plots are simply executed one after another.

Exactly what is plotted, and how it is plotted, depends on the argument e. The default (if e is
missing) is to plot only the first column of x. Each entry in the first column is plotted using the
generic plot command, together with any extra arguments given in

If e is present, it should be an R language expression involving the column names of x. (It is
typically created using quote or expression.) The expression will be evaluated once for each row
of x. It will be evaluated in an environment where each column name of x is interpreted as meaning
the object in that column in the current row. See the Examples.

Value

NULL.

426 plot.im

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

hyperframe, with.hyperframe

Examples

H <- hyperframe(id=1:6)

H$X <- with(H, runifrect(100))

H$D <- with(H, distmap(X))

points only

plot(HL,"X"1)

plot(H, quote(plot(X, main=id)))

points superimposed on images

plot(H, quote({plot(D, main=id); plot(X, add=TRUE)}))

plot.im Plot a Pixel Image

Description

Plot a pixel image.

Usage

S3 method for class 'im'

plot(x, ...,
main,
add=FALSE, clipwin=NULL,
col=NULL, reverse.col=FALSE,
valuesAreColours=NULL, log=FALSE,
ncolours=256, gamma=1, opacity=1,
ribbon=show.all, show.all=!add,
drop.ribbon=FALSE,
ribside=c("right”, "left”, "bottom”, "top"),
ribsep=0.15, ribwid=0.05, ribn=1024,
ribscale=1, ribargs=list(), riblab=NULL, colargs=list(),
useRaster=NULL, workaround=FALSE, zap=1,
do.plot=TRUE,
addcontour=FALSE, contourargs=list(),
background=NULL, clip.background=FALSE)

S3 method for class 'im'
image(x, ...,

plot.im

Arguments

X

main
add

clipwin

col

reverse.col

427

main,

add=FALSE, clipwin=NULL,

col=NULL, reverse.col=FALSE,
valuesAreColours=NULL, log=FALSE,
ncolours=256, gamma=1, opacity=1,
ribbon=show.all, show.all=!add,
drop.ribbon=FALSE,

ribside=c("right"”, "left"”, "bottom”, "top"),
ribsep=0.15, ribwid=0.05, ribn=1024,
ribscale=1, ribargs=list(), riblab=NULL, colargs=list(),
useRaster=NULL, workaround=FALSE, zap=1,
do.plot=TRUE,

addcontour=FALSE, contourargs=list(),
background=NULL, clip.background=FALSE)

The pixel image to be plotted. An object of class "im" (see im.object).
Extra arguments passed to image.default to control the plot. See Details.
Main title for the plot.

Logical value indicating whether to superimpose the image on the existing plot
(add=TRUE) or to initialise a new plot (add=FALSE, the default).

Optional. A window (object of class "owin"). Only this subset of the image will
be displayed.

Colours for displaying the pixel values. Either a character vector of colour val-
ues, an object of class colourmap, or a function as described under Details.

Logical value. If TRUE, the sequence of colour values specified by col will be
reversed.

valuesAreColours

log

ncolours
gamma

opacity

ribbon

show.all

drop.ribbon

Logical value. If TRUE, the pixel values of x are to be interpreted as colour
values.

Logical value. If TRUE, the colour map will be evenly-spaced on a logarithmic
scale.

Integer. The default number of colours in the colour map for a real-valued image.
Exponent for the gamma correction of the colours. A single positive number.

Numerical value between 0 and 1 specifying the degree of transparency or opaque-
ness of the colours. opacity=0 would make the colours completely invisible.
opacity=1 (the default) makes the colours completely opaque. Not all graphics
devices support transparent colours.

Logical flag indicating whether to display a ribbon showing the colour map.
Default is TRUE for new plots and FALSE for added plots.

Logical value indicating whether to display all plot elements including the main
title and colour ribbon. Default is TRUE for new plots and FALSE for added plots.

Logical value. If TRUE, then a ribbon will not be displayed if all pixel values are
equal.

428
ribside
ribsep
ribwid
ribn

ribscale

ribargs

riblab

colargs

useRaster

workaround

zap

do.plot

addcontour

contourargs

background

clip.background

Details

plot.im

Character string indicating where to display the ribbon relative to the main im-
age.

Factor controlling the space between the ribbon and the image.
Factor controlling the width of the ribbon.
Number of different values to display in the ribbon.

Rescaling factor for tick marks. The values on the numerical scale printed beside
the ribbon will be multiplied by this rescaling factor.

List of additional arguments passed to image.default, axis and axisTicks to
control the display of the ribbon and its scale axis. These may override the . . .
arguments.

Text to be plotted in the margin near the ribbon. A character string or expression
to be interpreted as text, or a list of arguments to be passed to mtext.

List of additional arguments passed to col if it is a function.

Logical value, passed to image.default. Images are plotted using a bitmap
raster if useRaster=TRUE or by drawing polygons if useRaster=FALSE. Bitmap
raster display tends to produce better results, but is not supported on all graphics
devices. The default is to use bitmap raster display if it is supported.

Logical value, specifying whether to use a workaround to avoid a bug which
occurs with some device drivers in R, in which the image has the wrong spatial
orientation. See the section on Image is Displayed in Wrong Spatial Orienta-
tion below.

Noise threshold factor. A numerical value greater than or equal to 1. If the
range of pixel values is less than zap * .Machine$double.eps, the image will
be treated as constant. This avoids displaying images which should be constant
but contain small numerical errors.

Logical value indicating whether to actually plot the image and colour ribbon.
Setting do. plot=FALSE will simply return the colour map and the bounding box
that were chosen for the plot.

Logical value specifying whether to add contour lines to the image plot. The
contour lines will also be drawn on the colour ribbon.

Optional list of arguments to be passed to contour.default to control the con-
tour plot.

Optional. An object to be plotted underneath the image. See the section on
Background.

Logical value specifying whether background should be intersected with the
rectangular frame of x.

This is the plot method for the class "im". [It is also the image method for "im".]

The pixel image x is displayed on the current plot device, using equal scales on the x and y axes.

If ribbon=TRUE, a legend will be plotted. The legend consists of a colour ribbon and an axis with
tick-marks, showing the correspondence between the pixel values and the colour map.

plot.im 429

Arguments ribside, ribsep, ribwid control the placement of the colour ribbon. By default, the
ribbon is placed at the right of the main image. This can be changed using the argument ribside.
The width of the ribbon is ribwid times the size of the pixel image, where ‘size’ means the larger
of the width and the height. The distance separating the ribbon and the image is ribsep times the
size of the pixel image.

The ribbon contains the colours representing ribn different numerical values, evenly spaced be-
tween the minimum and maximum pixel values in the image x, rendered according to the chosen
colour map.

The argument ribargs controls the annotation of the colour ribbon. It is a list of arguments to be
passed to image.default, axis and axisTicks. To plot the colour ribbon without the axis and
tick-marks, use ribargs=1ist(axes=FALSE). To ensure that the numerals or symbols printed next
to the colour map are oriented horizontally, use ribargs=1ist(las=1). To double the size of the
numerals or symbols, use ribargs=1ist(cex.axis=2). To control the number of tick-marks, use
ribargs=1ist(nint=N) where N is the desired number of intervals (so there will be N+1 tickmarks,
subject to the vagaries of R internal code).

The argument riblab contains text that should be displayed in the margin next to the ribbon. Al-
ternatively riblab may be a list of arguments to be passed to mtext; in that case riblab$text
should specify the text to be displayed, while other arguments can specify a different location for
the text (e.g. riblab$side =1 for text at the bottom of the ribbon) and a different font and colour
if desired.

The argument ribscale is used to rescale the numerical values printed next to the colour map,
for convenience. For example if the pixel values in x range between 1000 and 4000, it would be
sensible to use ribscale=1/1000 so that the colour map tickmarks would be labelled 1 to 4.

Normally the pixel values are displayed using the colours given in the argument col. This may be
either

* an explicit colour map (an object of class "colourmap”, created by the command colourmap).
This is the best way to ensure that when we plot different images, the colour maps are consis-
tent.

* a character vector or integer vector that specifies a set of colours. The colour mapping will be
stretched to match the range of pixel values in the image x. The mapping of pixel values to
colours is determined as follows.

logical-valued images: the values FALSE and TRUE are mapped to the colours col[1] and
col[2] respectively. The vector col should have length 2.

factor-valued images: the factor levels levels(x) are mapped to the entries of col in order.
The vector col should have the same length as levels(x).

numeric-valued images: By default, the range of pixel values in x is divided into n = length(col)
equal subintervals, which are mapped to the colours in col. (If col was not specified, it
defaults to a vector of 255 colours.)
Alternatively if the argument z1im is given, it should be a vector of length 2 specifying
an interval of real numbers. This interval will be used instead of the range of pixel values.
The interval from z1im[1] to z1im[2] will be mapped to the colours in col. This facility
enables the user to plot several images using a consistent colour map.
Alternatively if the argument breaks is given, then this specifies the endpoints of the
subintervals that are mapped to each colour. This is incompatible with z1im.
The arguments col and z1im or breaks are then passed to the function image.default.
For examples of the use of these arguments, see image . default.

430 plot.im

 a function in the R language with an argument named range or inputs.

If col is a function with an argument named range, and if the pixel values of x are numeric val-
ues, then the colour values will be determined by evaluating col (range=range(x)). The re-
sult of this evaluation should be a character vector containing colour values, or a "colourmap”
object. Examples of such functions are beachcolours and beachcolourmap.

If col is a function with an argument named inputs, and if the pixel values of x are discrete
values (integer, logical, factor or character), then the colour values will be determined by
evaluating col (inputs=p) where p is the set of possible pixel values. The result should be a
character vector containing colour values, or a "colourmap” object.

* a function in the R language with first argument named n. The colour values will be deter-
mined by evaluating col (n) where n is the number of distinct pixel values, up to a maximum
of 128. The result of this evaluation should be a character vector containing color values. Ex-
amples of such functions are heat.colors, terrain.colors, topo.colors and cm.colors.

If col is missing or col=NULL, the default colour values are the linear, perceptually uniform colour
sequence given by Kovesi[[29, "values”]1].

If spatstat.options(”monochrome”) has been set to TRUE then all colours will be converted to
grey scale values.

If reverse.col=TRUE, the sequence of colour values specified by col will be reversed (unless
valuesAreColours=TRUE).

Finally if opacity is a value less than 1, the colours are transformed to semi-transparent
colours.

Other graphical parameters controlling the display of both the pixel image and the ribbon can be
passed through the . .. arguments to the function image.default. A parameter is handled only if
it is one of the following:

* aformal argument of image.default that is operative when add=TRUE.
* one of the parameters "main”, "asp”, "sub”, "axes", "xlab”, "ylab" described in plot.default.

* one of the parameters "ann”, "cex”, "font"”, "cex.axis", "cex.lab"”, "cex.main”, "cex.sub",
"col.axis", "col.lab"”, "col.main"”, "col.sub”, "font.axis", "font.lab"”, "font.main",
"font.sub" described in par.

* the argument box, a logical value specifying whether a box should be drawn.

Images are plotted using a bitmap raster if useRaster=TRUE or by drawing polygons if useRaster=FALSE.
Bitmap raster display (performed by rasterImage) tends to produce better results, but is not sup-
ported on all graphics devices. The default is to use bitmap raster display if it is supported according

to dev.capabilities.

Alternatively, the pixel values could be directly interpretable as colour values in R. That is, the
pixel values could be character strings that represent colours, or values of a factor whose levels are
character strings representing colours.

* If valuesAreColours=TRUE, then the pixel values will be interpreted as colour values and
displayed using these colours.

* If valuesAreColours=FALSE, then the pixel values will not be interpreted as colour values,
even if they could be.

plot.im 431

* If valuesAreColours=NULL, the algorithm will guess what it should do. If the argument col
is given, the pixel values will not be interpreted as colour values. Otherwise, if all the pixel
values are strings that represent colours, then they will be interpreted and displayed as colours.

If pixel values are interpreted as colours, the arguments col and ribbon will be ignored, and a
ribbon will not be plotted.

Value

The colour map used. An object of class "colourmap”.

Also has an attribute "bbox" giving a bounding box for the plot (containing the main colour image,
the colour ribbon if plotted, and the background if given). If a ribbon was plotted, there is also
an attribute "bbox.legend” giving a bounding box for the ribbon image. Text annotation occurs
outside these bounding boxes.

Also has an attribute "at"” giving the axis positions of the tick marks next to the colour ribbon.

Adding contour lines

If addcontour=TRUE, contour lines will be superimposed on the image. Lines will also be superim-
posed on the colour ribbon at the corresponding positions. The display of the contour lines can be
controlled by arguments specified in contourargs.

Main title, box and white space

The left-right placement of the main title is controlled by the argument adj.main passed to plot.owin.
A rectangular box surrounding the image domain is drawn by default; it can be suppressed by setting
box=FALSE. White space around the plot is controlled by par('mar").

Complex-valued images

If the pixel values in x are complex numbers, they will be converted into four images contain-
ing the real and imaginary parts and the modulus and argument, and plotted side-by-side using
plot.imlist.

Monochrome colours

If spatstat.options("monochrome”) has been set to TRUE, then the image will be plotted in
greyscale. The colours are converted to grey scale values using to. grey. The choice of colour map
still has an effect, since it determines the final grey scale values.

Monochrome display can also be achieved by setting the graphics device parameter colormodel="grey"
when starting a new graphics device, or in a call to ps.options or pdf.options.

Background

The argument background specifies an object that will be plotted before the image x is plotted,
and will therefore appear underneath it. The background can be any spatial object in the spatstat
package family. To specify graphical arguments for the background, make it into a layered object
using layered or as.layered, and assign graphical parameters to it using layerplotargs.

432 plot.im

Troubleshooting: Image Looks Like Noise

An image plot which looks like digital noise can be produced when the pixel values are almost
exactly equal but include a tiny amount of numerical error. To check this, look at the numerals
plotted next to the colour ribbon, or compute diff(range(x)), to determine whether the range
of pixel values is almost zero. The behaviour can be suppressed by picking a larger value of the
argument zap.

Troubleshooting: Image Rendering Errors and Problems

The help for image.default and rasterImage explains that errors may occur, or images may be
rendered incorrectly, on some devices, depending on the availability of colours and other device-
specific constraints.

If the image is not displayed at all, try setting useRaster=FALSE in the call to plot.im. If the
ribbon colours are not displayed, set ribargs=1ist(useRaster=FALSE).

Errors may occur on some graphics devices if the image is very large. If this happens, try setting
useRaster=FALSE in the call to plot.im.

The error message useRaster=TRUE can only be used with a regular grid means that the x and
gy coordinates of the pixels in the image are not perfectly equally spaced, due to numerical rounding.
This occurs with some images created by earlier versions of spatstat. To repair the coordinates in
an image X, type X <- as.im(X).

Troubleshooting: Image is Displayed in Wrong Spatial Orientation

If the image is displayed in the wrong spatial orientation, and you created the image data directly,
please check that you understand the spatstat convention for the spatial orientation of pixel images.
The row index of the matrix of pixel values corresponds to the increasing y coordinate; the column
index of the matrix corresponds to the increasing = coordinate (Baddeley, Rubak and Turner, 2015,
section 3.6.3, pages 66-67).

Images can be displayed in the wrong spatial orientation on some devices, due to a bug in the device
driver. This occurs only when the plot coordinates are reversed, that is, when the plot was initialised
with coordinate limits x1im, ylim such that x1im[1] > x1im[2] or ylim[1] > ylim[2] or both.
This bug is reported to occur only when useRaster=TRUE. To fix this, try setting workaround=TRUE,
or if that is unsuccessful, useRaster=FALSE.

Troubleshooting: text is clipped

Text that is intended to be drawn in the margins of the plot can sometimes be clipped so that it is
only partly visible or is completely missing. Clipping is not an artefact of spatstat; it is a feature of
base graphics in R. To prevent clipping of text, first ensure that the plot margins are large enough
by setting par('mar'). In base graphics, some plot functions have the side-effect that they re-set
the clipping region to be a sub-rectangle of the plotting region. To override this and ensure that the
clipping region is as large as possible, set par (xpd=NA) immediately before calling plot.im.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

plot.imlist 433

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

im.object, colourmap, contour.im, persp.im, hist.im, image.default, spatstat.options
default.image.colours

Examples

an image

Z <- setcov(owin())

plot(Z)

plot(Z, ribside="bottom")

stretchable colour map

plot(Z, col=rainbow)

plot(Z, col=terrain.colors(128), axes=FALSE)

fixed colour map

tc <- colourmap(rainbow(128), breaks=seq(-1,2,length=129))

plot(Z, col=tc)

colour map function, with argument 'range’

plot(Z, col=beachcolours, colargs=list(sealevel=0.5))

tweaking the plot

plot(Z, main="La vie en bleu”, col.main="blue", cex.main=1.5,
box=FALSE,
ribargs=list(col.axis="blue"”, col.ticks="blue"”, cex.axis=0.75),
riblab=1list(text="couleur”, side=1, col="blue"”, offset=1, font=2))

add axes and axis labels

plot(Z, axes=TRUE, ann=TRUE, xlab="Easting”, ylab="Northing")

add contour lines

plot(Z, addcontour=TRUE, contourargs=list(col="white"”, drawlabels=FALSE))

log scale

V <- eval.im(exp(exp(Z+2))/1e4)

plot(V, log=TRUE, main="Log scale")

it's complex

Y <- exp(Z + V * 11)

plot(Y)

plot.imlist Plot a List of Images

Description

Plots an array of pixel images.

434 plot.imlist
Usage
S3 method for class 'imlist'
plot(x, ..., plotcommand="image",
equal.ribbon=FALSE,
equal.scales=FALSE,
ribmar=NULL)
S3 method for class 'imlist'
image(x, ..., equal.ribbon=FALSE,
equal.scales=FALSE, ribmar=NULL)
S3 method for class 'listof’
image(x, ..., equal.ribbon=FALSE,
equal.scales=FALSE, ribmar=NULL)
Arguments
X An object of the class "imlist" representing a list of pixel images. Alternatively

x may belong to the outdated class "1istof".

Arguments passed to plot.solist to control the spatial arrangement of panels,
and arguments passed to plot.im to control the display of each panel.

equal.ribbon Logical. If TRUE, the colour maps of all the images will be the same. If FALSE,
the colour map of each image is adjusted to the range of values of that image.

equal.scales Logical. If TRUE, the images will be plotted using the same physical scale, and
the plots will be aligned neatly where possible.

ribmar Numeric vector of length 4 specifying the margins around the colour ribbon, if
equal.ribbon=TRUE. Entries in the vector give the margin at the bottom, left,
top, and right respectively, as a multiple of the height of a line of text.

plotcommand Character string giving the name of a function to be used to display each image.
Recognised by plot.imlist only.

Details

These are methods for the generic plot commands plot and image for the class "imlist”. They
are currently identical.

An object of class "imlist” represents a list of pixel images. (The outdated class "1istof" is also
handled.)

Each entry in the list x will be displayed as a pixel image, in an array of panels laid out on the same
graphics display, using plot.solist. Individual panels are plotted by plot.im.

If equal.ribbon=FALSE (the default), the images are rendered using different colour maps, which
are displayed as colour ribbons beside each image. If equal . ribbon=TRUE, the images are rendered
using the same colour map, and a single colour ribbon will be displayed at the right side of the array.
The colour maps and the placement of the colour ribbons are controlled by arguments . .. passed
toplot.im.

If equal.scales=TRUE, the images are plotted using the same physical scale, and the plots will
be aligned neatly where possible. If equal.scales=FALSE (the default), images are plotted using

plot.layered 435

equal amounts of space in the available plotting area, so they may be plotted at different physical
scales.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.solist, plot.im

Examples

bei.extra is a list of pixel images on the same spatial domain
Y <- solapply(bei.extra, scaletointerval)
image(Y, equal.ribbon=TRUE, equal.scales=TRUE,

main="",

mar.panel=0, hsep=1,

ribside="bottom",

col.ticks="blue", col.axis="blue", cex.axis=1.2)

plot.layered Layered Plot

Description

Generates a layered plot. The plot method for objects of class "layered”.

Usage

S3 method for class 'layered'

plot(x, ..., which = NULL, plotargs = NULL,
add=FALSE, show.all=!add, main=NULL,
do.plot=TRUE)

Arguments
X An object of class "layered” created by the function layered.
Arguments to be passed to the plot method for every layer.
which Subset index specifying which layers should be plotted.
plotargs Arguments to be passed to the plot methods for individual layers. A list of lists

of arguments of the form name=value.

436 plot.layered

add Logical value indicating whether to add the graphics to an existing plot.
show.all Logical value indicating whether the first layer should be displayed in full (in-
cluding the main title, bounding window, coordinate axes, colour ribbon, and so
on).
main Main title for the plot
do.plot Logical value indicating whether to actually do the plotting.
Details

Layering is a simple mechanism for controlling a high-level plot that is composed of several suc-
cessive plots, for example, a background and a foreground plot. The layering mechanism makes
it easier to plot, to switch on or off the plotting of each individual layer, to control the plotting
arguments that are passed to each layer, and to zoom in on a subregion.

The layers of data to be plotted should first be converted into a single object of class "layered”
using the function layered. Then the layers can be plotted using the method plot. layered.

To zoom in on a subregion, apply the subset operator [. layered to x before plotting.

Graphics parameters for each layer are determined by (in order of precedence) . . ., plotargs, and
layerplotargs(x).

The graphics parameters may also include the special argument .plot specifying (the name of) a
function which will be used to perform the plotting instead of the generic plot.

The argument show.all is recognised by many plot methods in spatstat. It determines whether a
plot is drawn with all its additional components such as the main title, bounding window, coordinate
axes, colour ribbons and legends. The default is TRUE for new plots and FALSE for added plots.

In plot.layered, the argument show.all applies only to the first layer. The subsequent layers are
plotted with show.all=FALSE.

To override this, that is, if you really want to draw all the components of all layers of x, insert the
argument show.all=TRUE in each entry of plotargs or layerplotargs(x).

Value
(Invisibly) a list containing the return values from the plot commands for each layer. This list has
an attribute "bbox" giving a bounding box for the entire plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

layered, layerplotargs, [.layered, plot.

Examples

D <- distmap(cells)

L <- layered(D, cells)
plot(L)

plot(L, which = 2)

plot.listof 437

plot(L, plotargs=list(list(ribbon=FALSE), list(pch=3, cols="white")))
plot a subregion
plot(L[, square(@.5)1)

plot.listof Plot a List of Things

Description

Plots a list of things

Usage

S3 method for class 'listof"
plot(x, ..., main, arrange=TRUE,

nrows=NULL, ncols=NULL, main.panel=NULL,
mar.panel=c(2,1,1,2), hsep=0, vsep=0,

panel.begin=NULL, panel.end=NULL, panel.args=NULL,
panel.begin.args=NULL, panel.end.args=NULL, panel.vpad=0.2,
plotcommand="plot",

do.plot=TRUE,

adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
adorn.size=0.2, adorn.args=list(),

equal.scales=FALSE, halign=FALSE, valign=FALSE)

Arguments

X An object of the class "1istof". Essentially a list of objects.
Arguments passed to plot when generating each plot panel.

main Overall heading for the plot.

arrange Logical flag indicating whether to plot the objects side-by-side on a single page
(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

nrows, ncols Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

main.panel Optional. A character string, or a vector of character strings, giving the headings
for each of the objects.

mar . panel Size of the margins outside each plot panel. A numeric vector of length 4 giving
the bottom, left, top, and right margins in that order. (Alternatively the vector
may have length 1 or 2 and will be replicated to length 4). See the section on
Spacing between plots.

hsep, vsep Additional horizontal and vertical separation between plot panels, expressed in

the same units as mar . panel.

panel.begin, panel.end
Optional. Functions that will be executed before and after each panel is plotted.
See Details.

438 plot.listof

panel.args Optional. Function that determines different plot arguments for different panels.
See Details.

panel.begin.args
Optional. List of additional arguments for panel.begin when it is a function.

panel.end.args Optional. List of additional arguments for panel.end when it is a function.

panel.vpad Amount of extra vertical space that should be allowed for the title of each panel,
if a title will be displayed. Expressed as a fraction of the height of the panel. Ap-
plies only when equal. scales=FALSE (the default) and requires that the height
of each panel can be determined.

plotcommand Optional. Character string containing the name of the command that should be
executed to plot each panel.

do.plot Logical value specifying whether to actually perform the plot.

adorn.left, adorn.right, adorn. top, adorn.bottom
Optional. Functions (with no arguments) that will be executed to generate ad-
ditional plots at the margins (left, right, top and/or bottom, respectively) of the
array of plots.

adorn.size Relative width (as a fraction of the other panels’ widths) of the margin plots.

adorn.args Optional list of arguments passed to the functions adorn.left, adorn.right,
adorn. top and adorn.bottom.

equal.scales Logical value indicating whether the components should be plotted at (approxi-
mately) the same physical scale.

halign, valign Logical values indicating whether panels in a column should be aligned to the
same z coordinate system (halign=TRUE) and whether panels in a row should be
aligned to the same y coordinate system (valign=TRUE). These are applicable
only if equal.scales=TRUE.

Details

This is the plot method for the class "1istof".

An object of class "listof"” (defined in the base R package) represents a list of objects, all be-
longing to a common class. The base R package defines a method for printing these objects,
print.listof, but does not define a method for plot. So here we have provided a method for
plot.

In the spatstat package, various functions produce an object of class "listof”, essentially a list
of spatial objects of the same kind. These objects can be plotted in a nice arrangement using
plot.listof. See the Examples.

The argument panel.args determines extra graphics parameters for each panel. It should be a
function that will be called as panel.args(i) where i is the panel number. Its return value should
be a list of graphics parameters that can be passed to the relevant plot method. These parameters
override any parameters specified in the . .. arguments.

The arguments panel.begin and panel.end determine graphics that will be plotted before and
after each panel is plotted. They may be objects of some class that can be plotted with the generic
plot command. Alternatively they may be functions that will be called as panel.begin(i, y,
main=main.panel[i]) and panel.end(i, y, add=TRUE) where i is the panel number and y =
xCLi1].

plot.listof 439

If all entries of x are pixel images, the function image. listof is called to control the plotting. The
arguments equal.ribbon and col can be used to determine the colour map or maps applied.

If equal. scales=FALSE (the default), then the plot panels will have equal height on the plot device
(unless there is only one column of panels, in which case they will have equal width on the plot
device). This means that the objects are plotted at different physical scales, by default.

If equal. scales=TRUE, then the dimensions of the plot panels on the plot device will be propor-
tional to the spatial dimensions of the corresponding components of x. This means that the objects
will be plotted at approximately equal physical scales. If these objects have very different spatial
sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an
error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under
the following conditions:
* every component of x is a spatial object whose position can be shifted by shift;

* panel.begin and panel.end are either NULL or they are spatial objects whose position can
be shifted by shift;

e adorn.left, adorn.right, adorn. top and adorn.bottom are all NULL.
Another special case is when every component of x is an object of class "fv" representing a func-

tion. If equal.scales=TRUE then all these functions will be plotted with the same axis scales (i.e.
with the same x1im and the same ylim).

Value

Null.

Spacing between plots

The spacing between individual plots is controlled by the parameters mar . panel, hsep and vsep.

If equal.scales=FALSE, the plot panels are logically separate plots. The margins for each panel
are determined by the argument mar . panel which becomes the graphics parameter mar described
in the help file for par. One unit of mar corresponds to one line of text in the margin. If hsep or
vsep are present, mar . panel is augmented by c(vsep, hsep, vsep, hsep)/2.

If equal. scales=TRUE, all the plot panels are drawn in the same coordinate system which repre-
sents a physical scale. The unit of measurement for mar.panel[1,3] is one-sixth of the greatest
height of any object plotted in the same row of panels, and the unit for mar.panel[2,4] is one-
sixth of the greatest width of any object plotted in the same column of panels. If hsep or vsep are
present, they are interpreted in the same units as mar.panel[2] and mar.panel[1] respectively.

Error messages

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects
had a much smaller physical scale than the others. Ensure that equal.scales=FALSE and increase
the values of mar.panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

440 plot.onearrow

See Also

print.listof, contour.listof, image.listof, density.splitppp

Examples

D <- solapply(split(mucosa), distfun)

plot(D)
plot(D, main="", equal.ribbon=TRUE,
panel.end=function(i,y,...){contour(y, ..., drawlabels=FALSE)})

list of 3D point patterns

apel <- osteo[osteo$shortid==4, "pts”, drop=TRUE]

class(apel)

plot(apel, main.panel="", mar.panel=0.1, hsep=0.7, vsep=1,
cex=1.5, pch=21, bg="white')

nn

plot.onearrow Plot an Arrow

Description

Plots an object of class "onearrow”.

Usage
S3 method for class 'onearrow'
plot(x, ...,
add = FALSE, main = "",

retract = 0.05, headfraction = 0.25, headangle = 12, headnick = 0.1,
col.head = NA, lwd.head = 1lwd, lwd = 1, col =1,
zap = FALSE, zapfraction = 0.07,

pch = 1, cex = 1, do.plot = TRUE, do.points = FALSE, show.all = !add)
Arguments

X Object of class "onearrow” to be plotted. This object is created by the command
onearrow.
Additional graphics arguments passed to segments to control the appearance of
the line.

add Logical value indicating whether to add graphics to the existing plot (add=TRUE)
or to start a new plot (add=FALSE).

main Main title for the plot.

retract Fraction of length of arrow to remove at each end.

headfraction Length of arrow head as a fraction of overall length of arrow.

plot.onearrow 441

headangle Angle (in degrees) between the outer edge of the arrow head and the shaft of the
arrow.

headnick Size of the nick in the trailing edge of the arrow head as a fraction of length of
arrow head.

col.head, 1wd. head
Colour and line style of the filled arrow head.

col, 1wd Colour and line style of the arrow shaft.

zap Logical value indicating whether the arrow should include a Z-shaped (lightning-
bolt) feature in the middle of the shaft.

zapfraction Size of Z-shaped deviation as a fraction of total arrow length.
pch, cex Plot character and character size for the two end points of the arrow, if do. points=TRUE.
do.plot Logical. Whether to actually perform the plot.
do.points Logical. Whether to display the two end points of the arrow as well.
show.all Internal use only.
Details

The argument x should be an object of class "onearrow” created by the command onearrow.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

onearrow, yardstick

Examples

oa <- onearrow(cells[c(1, 42)1)

oa

plot(oa)

plot(oa, zap=TRUE, do.points=TRUE, col.head="pink"”, col="red")

442 plot.owin

plot.owin Plot a Spatial Window

Description

Plot a two-dimensional window of observation for a spatial point pattern

Usage

S3 method for class 'owin'

plot(x, main, add=FALSE, ..., box, edge=0.04,
type=c("w","n"), show.all=!add,
hatch=FALSE,
hatchargs=list(),
invert=FALSE, do.plot=TRUE,
claim.title.space=FALSE, use.polypath=TRUE,
adj.main=0.5,
background=NULL)

Arguments

X The window to be plotted. An object of class owin, or data which can be con-
verted into this format by as.owin().

main text to be displayed as a title above the plot.

add logical flag: if TRUE, draw the window in the current plot; if FALSE, generate a
new plot.
extra arguments controlling the appearance of the plot. These arguments are
passed to polygon if x is a polygonal or rectangular window, or passed to
image.default if x is a binary mask. Some arguments are passed to plot.default.
See Details.

box logical flag; if TRUE, plot the enclosing rectangular box

edge nonnegative number; the plotting region will have coordinate limits that are 1 +
edge times as large as the limits of the rectangular box that encloses the pattern.

type Type of plot: either "w"” or "n". If type="w" (the default), the window is plotted.
If type="n" and add=TRUE, a new plot is initialised and the coordinate system
is established, but nothing is drawn.

show.all Logical value indicating whether to plot everything including the main title.

hatch logical flag; if TRUE, the interior of the window will be shaded by texture, such
as a grid of parallel lines.

hatchargs List of arguments passed to add. texture to control the texture shading when
hatch=TRUE.

invert logical flag; when the window is a binary pixel mask, the mask colours will be

inverted if invert=TRUE.

do.plot Logical value indicating whether to actually perform the plot.

plot.owin 443

claim.title.space
Logical value indicating whether extra space for the main title should be allo-
cated when declaring the plot dimensions. Should be set to FALSE under normal
conditions.

use.polypath Logical value indicating what graphics capabilities should be used to draw a
polygon filled with colour when the polygon has holes. If TRUE (the default),
then the polygon will be filled using polypath, provided the graphics device
supports this function. If FALSE, the polygon will be decomposed into simple
closed polygons, which will be colour filled using polygon.

adj.main Numeric value specifying the justification of the text in the main title. Possi-
ble values are adj.main=0.5 (the default) specifying that the main title will be
centred, adj.main=0 specifying left-justified text, and adj.main=1 specifying
right-justified text.

background Optional. An object to be plotted underneath the main plot. See the section on
Background.

Details

This is the plot method for the class owin. The action is to plot the boundary of the window on the
current plot device, using equal scales on the x and y axes.

If the window x is of type "rectangle” or "polygonal”, the boundary of the window is plotted
as a polygon or series of polygons. If x is of type "mask” the discrete raster approximation of the
window is displayed as a binary image (white inside the window, black outside).

Graphical parameters controlling the display (e.g. setting the colours) may be passed directly via
the ... arguments, or indirectly reset using spatstat.options.

If add=FALSE (the default), the plot is initialised by calling the base graphics function plot.default
to create the plot area. By default, coordinate axes and axis labels are not plotted. To plot coordi-
nate axes, use the argument axes=TRUE; to plot axis labels, use the argument ann=TRUE and then
specify the labels with x1ab and ylab; see the help file for plot.default for information on these
arguments, and for additional arguments controlling the appearance of the axes. See the Examples
also.

When x is of type "rectangle” or "polygonal”, itis plotted by the R function polygon. To control
the appearance (colour, fill density, line density etc) of the polygon plot, determine the required
argument of polygon and pass it through ... For example, to paint the interior of the polygon in
red, use the argument col="red". To draw the polygon edges in green, use border="green". To
suppress the drawing of polygon edges, use border=NA.

When x is of type "mask"”, it is plotted by image.default. The appearance of the image plot can
be controlled by passing arguments to image.default through The default appearance can
also be changed by setting the parameter par.binary of spatstat.options.

To zoom in (to view only a subset of the window at higher magnification), use the graphical argu-
ments x1im and ylim to specify the desired rectangular field of view. (The actual field of view may
be larger, depending on the graphics device).

Value

none.

444 plot.owin

Background

The argument background specifies an object that will be plotted before the window x is plotted,
and will therefore appear underneath it. The background can be any spatial object in the spatstat
package family. To specify graphical arguments for the background, make it into a layered object
using layered or as. layered, and assign graphical parameters to it using layerplotargs.

Alternatively background can be a single colour value, indicating that the plot should have this
background colour.

Notes on Filled Polygons with Holes

The function polygon can only handle polygons without holes. To plot polygons with holes in a
solid colour, we have implemented two workarounds.

polypath function: The first workaround uses the relatively new function polypath which does
have the capability to handle polygons with holes. However, not all graphics devices support
polypath. The older devices xfig and pictex do not support polypath. On a Windows sys-
tem, the default graphics device windows supports polypath. On a Linux system, the default
graphics device X11(type="X1ib") does not support polypath but X11(type="cairo")
does support it. See X11 and the section on Cairo below.

polygon decomposition: The other workaround involves decomposing the polygonal window into
pieces which do not have holes. This code is experimental but works in all our test cases. If
this code fails, a warning will be issued, and the filled colours will not be plotted.

Troubleshooting: text is clipped

Text that is intended to be drawn in the margins of the plot can sometimes be clipped so that it is
only partly visible or is completely missing. Clipping is not an artefact of spatstat; it is a feature of
base graphics in R. To prevent clipping of text, first ensure that the plot margins are large enough
by setting par('mar"'). In base graphics, some plot functions have the side-effect that they re-set
the clipping region to be a sub-rectangle of the plotting region. To override this and ensure that the
clipping region is as large as possible, set par (xpd=NA) immediately before calling plot.owin.

Cairo graphics on a Linux system

Linux systems support the graphics device X11(type="cairo"”) (see X11) provided the external
library cairo is installed on the computer. See www.cairographics.org for instructions on obtain-
ing and installing cairo. After having installed cairo one needs to re-install R from source so that
it has cairo capabilites. To check whether your current installation of R has cairo capabilities, type
(in R) capabilities()["cairo"]. The default type for X11 is controlled by X11.options. You
may find it convenient to make cairo the default, e.g. via your .Rprofile. The magic incantation
to put into .Rprofile is

setHook (packageEvent ("graphics”, "onLoad"),
function(...) grDevices::X11.options(type="cairo"))

plot.pp3 445

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

owin.object, plot.ppp, polygon, image.default, spatstat.options

Examples

rectangular window
plot(Window(nztrees))
abline(v=148, 1lty=2)

polygonal window

w <- Window(demopat)

plot(w)

plot(w, col="red", border="green", lwd=2)
plot(w, hatch=TRUE, 1lwd=2)

binary mask

we <- as.mask(w)

plot(we)

op <- spatstat.options(par.binary=list(col=grey(c(0.5,1))))
plot(we)

spatstat.options(op)

axis annotation
plot(letterR, axes=TRUE, ann=TRUE, xlab="Easting"”, ylab="Northing")

plot(letterR, ann=TRUE, xlab="Declination”, ylab="Right Ascension")
plot.pp3 Plot a Three-Dimensional Point Pattern
Description

Plots a three-dimensional point pattern.

Usage

S3 method for class 'pp3'

plot(x, ..., eye=NULL, org=NULL, theta=25, phi=15,
type:C(”p“, llnlﬁ, llhll),
box.back=1list(col="pink"),
box.front=list(col="blue"”, lwd=2))

446 plot.pp3

Arguments

X Three-dimensional point pattern (object of class "pp3").
Arguments passed to points controlling the appearance of the points.

eye Optional. Eye position. A numeric vector of length 3 giving the location from
which the scene is viewed.

org Optional. Origin (centre) of the view. A numeric vector of length 3 which will
be at the centre of the view.

theta, phi Optional angular coordinates (in degrees) specifying the direction from which
the scene is viewed: theta is the azimuth and phi is the colatitude. Ignored if
eye is given.

type Type of plot: type="p" for points, type="h" for points on vertical lines, type="n"

for box only.

box.front, box.back
How to plot the three-dimensional box that contains the points. A list of graphi-
cal arguments passed to segments, or a logical value indicating whether or not
to plot the relevant part of the box. See Details.

Details

This is the plot method for objects of class "pp3”. It generates a two-dimensional plot of the point
pattern x and its containing box as if they had been viewed from the location specified by eye (or
from the direction specified by theta and phi).

The edges of the box at the ‘back’ of the scene (as viewed from the eye position) are plotted first.
Then the points are added. Finally the remaining ‘front’ edges are plotted. The arguments box . back
and box. front specify graphical parameters for drawing the back and front edges, respectively.
Alternatively box.back=FALSE specifies that the back edges shall not be drawn.

Note that default values of arguments to plot.pp3 can be set by spatstat.options(”par.pp3").

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pp3, spatstat.options.

Examples

X <- osteo$pts[[1]1]

plot(X, main="Osteocyte lacunae, animal 1, brick 1",
cex=1.5, pch=16)

plot(X, type="h", main="", box.back=1list(lty=3))

plot.ppp

447

plot.ppp

plot a Spatial Point Pattern

Description

Plot a two-dimensional spatial point pattern

Usage

S3 method for class 'ppp'

plot(x, main,

Arguments

X

main

clipwin

chars

cols

use.marks

., clipwin=NULL,
chars=NULL, cols=NULL,
use.marks=TRUE, which.marks=NULL,
add=FALSE, type=c("p","n"),
legend=TRUE,
leg.side=c("left", "bottom", "top"”, "right"),
leg.args=list(),
symap=NULL, maxsize=NULL, meansize=NULL, markscale=NULL,
minsize=NULL, zerosize=NULL,
zap=0.01,
show.window=show.all, show.all=!add, do.plot=TRUE,
multiplot=TRUE,
background=NULL, clip.background=FALSE,
scramble.cols=FALSE)

The spatial point pattern to be plotted. An object of class "ppp”, or data which
can be converted into this format by as.ppp().

text to be displayed as a title above the plot.

extra arguments that will be passed to the plotting functions plot.default,
points and/or symbols. Not all arguments will be recognised.

Optional. A window (object of class "owin"). Only this subset of the image will
be displayed.

the plotting character(s) used to plot points. Either a single character, an integer,
or a vector of single characters or integers. Ignored if symap is given.

the colour(s) used to plot points. Either an integer index from 1 to 8 (indexing
the standard colour palette), a character string giving the name of a colour, or
a string giving the hexadecimal representation of a colour, or a vector of such
integers or strings. See the section on Colour Specification in the help for par.
Ignored if symap is given.

logical flag; if TRUE, plot points using a different plotting symbol for each mark;
if FALSE, only the locations of the points will be plotted, using points().

which.marks

add

type

legend

leg.side
leg.args

symap

maxsize

meansize

markscale

minsize

zerosize

zap

show.window

show.all

do.plot

plot.ppp

Index determining which column of marks to use, if the marks of x are a data
frame. A character or integer vector identifying one or more columns of marks.
If add=FALSE then the default is to plot all columns of marks, in a series of
separate plots. If add=TRUE then only one column of marks can be plotted, and
the default is which.marks=1 indicating the first column of marks.

logical flag; if TRUE, just the points are plotted, over the existing plot. A new
plot is not created, and the window is not plotted.

Type of plot: either "p” or "n". If type="p" (the default), both the points and
the observation window are plotted. If type="n", only the window is plotted.

Logical value indicating whether to add a legend showing the mapping between
mark values and graphical symbols (for a marked point pattern).

Position of legend relative to main plot.

List of additional arguments passed to plot.symbolmap or symbolmap to con-
trol the legend. In addition to arguments documented under plot.symbolmap,
and graphical arguments recognised by symbolmap, the list may also include
the argument sep giving the separation between the main plot and the legend, or
sep. frac giving the separation as a fraction of the largest dimension (maximum
of width and height) of the main plot.

The graphical symbol map to be applied to the marks. An object of class
"symbolmap”; see symbolmap.

Maximum physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with meansize and markscale.
Ignored if symap is given.

Average physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with maxsize and markscale. Ig-
nored if symap is given.

physical scale factor determining the sizes of the circles/squares plotted when
x is a marked point pattern with numerical marks. Mark value will be multi-
plied by markscale to determine physical size. Incompatible with maxsize and
meansize. Ignored if symap is given.

Minimum physical size of the circles/squares plotted when x is a marked point
pattern with numerical marks. Incompatible with zerosize. Ignored if symap
is given.

Physical size of the circle/square representing a mark value of zero, when x
is a marked point pattern with numerical marks. Incompatible with minsize.
Defaults to zero. Ignored if symap is given.

Fraction between 0 and 1. When x is a marked point pattern with numerical
marks, zap is the smallest mark value (expressed as a fraction of the maximum
possible mark) that will be plotted. Any points which have marks smaller in
absolute value than zap * max (abs(marks(x))) will not be plotted.

Logical value indicating whether to plot the observation window of x.

Logical value indicating whether to plot everything including the main title and
the observation window of x.

Logical value determining whether to actually perform the plotting.

plot.ppp 449

multiplot Logical value giving permission to display multiple plots.
background Optional. An object to be plotted underneath the main plot. See the section on
Background.

clip.background

Logical value specifying whether background should be intersected with the
rectangular frame of x.

scramble.cols Logical value. If TRUE, the sequence of colour values will be randomly per-
muted. This is a useful trick when it is desired that adjacent colours in the se-
quence should be easily distinguishable. Applicable only when x is a multitype
point pattern.

Details

This is the plot method for point pattern datasets (of class "ppp", see ppp.object).

First the observation window Window(x) is plotted (if show.window=TRUE). Then the points them-
selves are plotted, in a fashion that depends on their marks, as follows.

unmarked point pattern: If the point pattern does not have marks, or if use.marks = FALSE, then
the locations of all points will be plotted using a single plot character

multitype point pattern: If marks(x) is a factor, then each level of the factor is represented by a
different plot character.

continuous marks: If marks(x) is a numeric vector, the marks are rescaled to the unit interval and
each point is represented by a circle with diameter proportional to the rescaled mark (if the
value is positive) or a square with side length proportional to the absolute value of the rescaled
mark (if the value is negative).

other kinds of marks: If marks(x) is neither numeric nor a factor, then each possible mark will
be represented by a different plotting character. The default is to represent the ith smallest
mark value by points(..., pch=1).

If there are several columns of marks, and if which.marks is missing or NULL, then

¢ if add=FALSE and multiplot=TRUE the default is to plot all columns of marks, in a series of
separate plots, placed side-by-side. The plotting is coordinated by plot.listof, which calls
plot.ppp to make each of the individual plots.

* Otherwise, only one column of marks can be plotted, and the default is which.marks=1 indi-
cating the first column of marks.

Plotting of the window Window(x) is performed by plot.owin. This plot may be modified through
the ... arguments. In particular the extra argument border determines the colour of the window,
if the window is not a binary mask.

Plotting of the points themselves is performed by the function points, except for the case of contin-
uous marks, where it is performed by symbols. Their plotting behaviour may be modified through
the ... arguments.

If the argument symap is given, then it determines the graphical display of the points. It should be a
symbol map (object of class "symbolmap") created by the function symbolmap.

If symap is not given, then the following arguments can be used to specify how the points are plotted:

450 plot.ppp

* The argument chars determines the plotting character or characters used to display the points
(in all cases except for the case of continuous marks). For an unmarked point pattern, this
should be a single integer or character determining a plotting character (see par("pch”)).
For a multitype point pattern, chars should be a vector of integers or characters, of the same
length as levels(marks(x)), and then the ith level or type will be plotted using character
chars[il.

 If chars is absent, but there is an extra argument pch, then this will determine the plotting
character for all points.

* The argument cols determines the colour or colours used to display the points. For an un-
marked point pattern, cols should be a character string determining a colour. For a multitype
point pattern, cols should be a character vector, of the same length as levels(marks(x)):
that is, there is one colour for each possible mark value. The ith level or type will be plotted
using colour cols[i]. For a point pattern with continuous marks, cols can be either a char-
acter string or a character vector specifying colour values: the range of mark values will be
mapped to the specified colours.

* If cols is absent, the colours used to plot the points may be determined by the extra argument
fg (for multitype point patterns) or the extra argument col (for all other cases). Note that
specifying col will also apply this colour to the window itself.

* The default colour for the points is a semi-transparent grey, if this is supported by the plot
device. This behaviour can be suppressed (so that the default colour is non-transparent) by
setting spatstat.options(transparent=FALSE).

* The arguments maxsize, meansize and markscale are incompatible with each other (and
incompatible with symap). The arguments minsize and zerosize are incompatible with
each other (and incompatible with symap). Together, these arguments control the physi-
cal size of the circles and squares which represent the marks in a point pattern with con-
tinuous marks. The size of a circle is defined as its diameter; the size of a square is its
side length. If markscale is given, then a mark value of m is plotted as a circle of diam-
eter m * markscale + zerosize (if m is positive) or a square of side abs(m) * markscale +
zerosize (if m is negative). If maxsize is given, then the largest mark in absolute value,
mmax=max (abs(marks(x))), will be scaled to have physical size maxsize. If meansize is
given, then the average absolute mark value, mmean=mean (abs(marks(x))), will be scaled to
have physical size meansize. If minsize is given, then the minimum mark value, mmean=mean (abs(marks(x))),
will be scaled to have physical size minsize.

* The user can set the default values of these plotting parameters using spatstat.options("par.points”).
To zoom in (to view only a subset of the point pattern at higher magnification), use the graphical
arguments x1im and ylim to specify the rectangular field of view.

The value returned by this plot function is an object of class "symbolmap” representing the mapping
from mark values to graphical symbols. See symbolmap. It can be used to make a suitable legend,
or to ensure that two plots use the same graphics map.

Value

(Invisible) object of class "symbolmap” giving the correspondence between mark values and plot-
ting characters.

plot.ppp 451

Layout of the plot

* Placement of main title: The left-right placement of the main title is controlled by the argu-

nn

ment adj.main passed to plot.owin. To remove the main title, set main="".

* Removing White Space Around The Plot: A frequently-asked question is: How do I remove
the white space around the plot? Currently plot.ppp uses the base graphics system of R, so
the space around the plot is controlled by parameters to par. To reduce the white space, change
the parameter mar. Typically, par(mar=rep(@.5, 4)) is adequate, if there are no annotations
or titles outside the window.

* Drawing coordinate axes and axis labels: Coordinate axes and axis labels are not drawn, by
default. To draw coordinate axes, set axes=TRUE. To draw axis labels, set ann=TRUE and give
values to the arguments x1ab and ylab. See the Examples. Only the default style of axis is
supported; for more control over the placement and style of axes, use the graphics commands
axis and mtext.

The Symbol Map

The behaviour of plot. ppp is different from the behaviour of the base R graphics functions points
and symbols.

In the base graphics functions points and symbols, arguments such as col, pch and cex can be
vectors which specify the representation of each successive point. For example col[3] would
specify the colour of the third point in the sequence of points. If there are 100 points then col
should be a vector of length 100.

In the spatstat function plot.ppp, arguments such as col, pch and cex specify the mapping from
point characteristics to graphical parameters (called the symbol map). For example col[3] speci-
fies the colour of the third type of point in a pattern of points of different types. If there are 4 types
of points then col should be a vector of length 4.

To modify a symbol map, for example to change the colours used without changing anything else,
use update.symbolmap.

Scrambling the colours

When x is a multitype point pattern and cols is given, the argument scramble.cols=TRUE will
cause the sequence of colours in the colour map to be randomly permuted. This is a useful trick
when it is desired that adjacent colours in the sequence should be easily distinguishable. The return
value of plot.ppp will include the randomised colour sequence rather than the original colour
sequence.

Randomisation implies that the appearance of the plot, and the return value, will be different each
time the command is executed. For reproducible results, set the random generator seed using
set.seed.

Background

The argument background specifies an object that will be plotted before the point pattern x is plot-
ted, and will therefore appear underneath it. The background can be any spatial object in the spat-
stat package family. To specify graphical arguments for the background, make it into a layered
object using layered or as. layered, and assign graphical parameters to it using layerplotargs.

452 plot.ppp

Alternatively background can be a single colour value, indicating that the plot should have this
background colour.

Troubleshooting: text is clipped

Text that is intended to be drawn in the margins of the plot can sometimes be clipped so that it is
only partly visible or is completely missing. Clipping is not an artefact of spatstat; it is a feature of
base graphics in R. To prevent clipping of text, first ensure that the plot margins are large enough
by setting par('mar'). In base graphics, some plot functions have the side-effect that they re-set
the clipping region to be a sub-rectangle of the plotting region. To override this and ensure that the
clipping region is as large as possible, set par (xpd=NA) immediately before calling plot. ppp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, default.symbolmap.ppp.
plot, par, points, text.ppp, plot.owin, symbols.

See also the command iplot in the spatstat.gui package.

Examples

plot(cells)
plot(cells, pch=16)

make the plotting symbols larger (for publication at reduced scale)
plot(cells, cex=2)

set it in spatstat.options

oldopt <- spatstat.options(par.points=list(cex=2))
plot(cells)

spatstat.options(oldopt)

multitype
plot(lansing)

marked by a real number
plot(longleaf)

just plot the points
plot(longleaf, use.marks=FALSE)
plot(unmark(longleaf)) # equivalent

point pattern with multiple marks
plot(finpines)
plot(finpines, which.marks="height")

plot.ppp 453

controlling COLOURS of points

plot(cells, cols="blue")

plot(lansing, cols=c("black”, "yellow"”, "green"”,
"blue”,"red"”,"pink"))

plot(longleaf, fg="blue")

plot(lansing, cols=rainbow, scramble.cols=TRUE)

make window purple

plot(lansing, border="purple")

make everything purple

plot(lansing, border="purple"”, cols="purple”, col.main="purple",
leg.args=list(col.axis="purple”))

controlling PLOT CHARACTERS for multitype pattern
plot(lansing, chars = 11:16)
plOt(lanSing, CharS = c(lloll’llhll’llm",II'II’MOII’IIOM>)

multitype pattern mapped to symbols
plot(amacrine, shape=c(”circles”, "squares"), size=0.04)
plot(amacrine, shape="arrows"”, direction=c(0,90), size=0.07)

plot trees as trees!
plot(lansing, shape="arrows", direction=90, cols=1:6)

controlling MARK SCALE for pattern with numeric marks
plot(longleaf, markscale=0.1)

plot(longleaf, maxsize=5)

plot(longleaf, meansize=2)

plot(longleaf, minsize=2)

draw circles of diameter equal to nearest neighbour distance
plot(cells %mark% nndist(cells), markscale=1, legend=FALSE)

inspecting the symbol map
v <- plot(amacrine)
v

variable colours ('cols' not 'col')
plot(longleaf, cols=function(x) ifelse(x < 30, "red”, "black"))

re-using the same mark scale

a <- plot(longleaf)

juveniles <- longleaf[marks(longleaf) < 30]
plot(juveniles, symap=a)

numerical marks mapped to symbols of fixed size with variable colour
ra <- range(marks(longleaf))

colmap <- colourmap(terrain.colors(20), range=ra)

filled plot characters are the codes 21-25

fill colour is indicated by 'bg'

outline colour is 'fg'

sy <- symbolmap(pch=21, bg=colmap, fg=colmap, range=ra)

plot(longleaf, symap=sy)

454

plot.pppmatching

or more compactly..
plot(longleaf, bg=terrain.colors(20), pch=21, cex=1)

plot only the colour map (since the symbols have fixed size and shape)
plot(longleaf, symap=sy, leg.args=list(colour.only=TRUE))

plot with a background
plot(bei %mark% nndist(bei), background=bei.extras$elev)

clipping

plot (humberside)

B <- owin(c(4810, 5190), c(4180, 4430))

plot(B, add=TRUE, border="red")

plot(humberside, clipwin=B, main="Humberside (clipped)")

coordinate axes and labels

plot(humberside, axes=TRUE)

plot(humberside, ann=TRUE, xlab="Easting"”, ylab="Northing")
plot(humberside, axes=TRUE, ann=TRUE, xlab="Easting"”, ylab="Northing")

plot.pppmatching Plot a Point Matching

Description

Plot an object of class "pppmatching” which represents a matching of two planar point patterns.

Usage
S3 method for class 'pppmatching'
plot(x, addmatch = NULL, main = NULL, ..., adjust = 1)
Arguments
X Point pattern matching object (class "pppmatching”) to be plotted.
addmatch Optional. A matrix indicating additional pairs of points that should be matched.
See Details.
main Main title for the plot.
Additional arguments passed to other plot methods.
adjust Adjustment factor for the widths of line segments. A positive number.
Details

The object x represents a matching found between two point patterns X and Y. The matching may
be incomplete. See pppmatching.object for further description.

This function plots the matching by drawing the two point patterns X and Y as red and blue dots
respectively, and drawing line segments between each pair of matched points. The width of the line

plot.psp 455

segments is proportional to the strength of matching. The proportionality constant can be adjusted
using the argument adjust.

Additional graphics arguments . . . control the plotting of the window (and are passed to plot.owin)
and the plotting of the line segments (and are passed to plot. psp, and ultimately to the base graph-
ics function polygon).

The argument addmatch is for use mainly by developers to study algorithms which update the
matching. If addmatch is given, it should be a matrix with dimensions npoints(X) * npoints(Y).
If addmatch[1i, j] > @ then a light grey line segment will be drawn between X[i] and Y[j.

Value

Null.

Author(s)

Dominic Schuhmacher and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

pppmatching.object

Examples

X <- runifrect(7)

Y <- runifrect(7)

am <- r2dtable(1, rep(10,7), rep(10,7))L[1]1]1/10
m2 <- pppmatching(X, Y, am)

plot(m2, adjust=0.3)

plot.psp plot a Spatial Line Segment Pattern

Description

Plot a two-dimensional line segment pattern

Usage

S3 method for class 'psp'

plot(x, ..., main, add=FALSE,
show.all=!add, show.window=show.all, do.plot=TRUE,
use.marks=TRUE,
which.marks=1,
style=c("colour”, "width"”, "none"),
col=NULL,
ribbon=show.all,
ribsep=0.15, ribwid=0.05, ribn=1024,
scale=NULL, adjust=1,

Arguments

X

main
add

show.all

show.window
do.plot

use.marks

which.marks

style

col

ribbon

ribsep
ribwid
ribn

scale

plot.psp

legend=TRUE,

leg.side=c("right"”, "left”, "bottom", "top"),
leg.sep=0.1,

leg.wid=0.1,

leg.args=list(),

leg.scale=1,

negative.args=list(col=2),

background=NULL,

scramble.cols=FALSE)

The line segment pattern to be plotted. An object of class "psp”, or data which
can be converted into this format by as.psp().

extra arguments that will be passed to the plotting functions segments (to plot
the segments) and plot.owin (to plot the observation window).

Character string giving a title for the plot.

Logical. If TRUE, the current plot is not erased; the segments are plotted on top
of the current plot, and the window is not plotted (by default).

Logical value specifying whether to plot everything including the window, main
title, and colour ribbon.

Logical value specifying whether to plot the window.
Logical value indicating whether to actually perform the plot.

Logical value specifying whether to use the marks attached to the segments
(use.marks=TRUE, the default) or to ignore them (use.marks=FALSE).

Index determining which column of marks to use, if the marks of x are a data
frame. A character string or an integer. Defaults to 1 indicating the first column
of marks.

Character string specifying how to represent the mark value of each segment.
If style="colour" (the default) segments are coloured according to their mark
value. If style="width", segments are drawn with a width proportional to their
mark value. If style="none"” the mark values are ignored.

Colour information. If style="width"” or style="none", then col should be
a single value, interpretable as a colour; the line segments will be plotted using
this colour. If style="colour" and x has marks, then the mark values will be
mapped to colours using the information in col, which should be a colour map
(object of class "colourmap") or a vector of colour values.

Logical value indicating whether to display a ribbon showing the colour map (in
which mark values are associated with colours) when style="colour".

Factor controlling the space between the colour ribbon and the image.
Factor controlling the width of the colour ribbon.
Number of different values to display in the colour ribbon.

Optional. Physical scale for representing the mark values of x as physical widths
on the plot, when style="width". There is a sensible default.

plot.psp 457

adjust Optional adjustment factor for scale.
legend Logical value indicating whether to display a legend showing the width map (in

which mark values are associated with segment widths) when style="width".
leg.side Character string (partially matched) specifying where the legend should be plot-

ted, when style="width".
leg.sep Factor controlling the space between the legend and the main plot, when style="width".
leg.wid Factor controlling the width of the legend, when style="width".
leg.args Optional list of additional arguments passed to axis and text.default con-

trolling the appearance of the legend, when style="width".

leg.scale Rescaling factor for labels, when style="width". The values on the numerical
scale printed beside the legend will be multiplied by this rescaling factor.

negative.args Optional list of arguments to polygon to be used when the mark values are
negative.

background Optional. An object to be plotted underneath the main plot. See the section on
Background.

scramble.cols Logical value. If TRUE, the sequence of colour values will be randomly per-
muted. This is a useful trick when it is desired that adjacent colours in the se-
quence should be easily distinguishable. Applicable only when style="colour".

Details

This is the plot method for line segment pattern datasets (of class "psp”, see psp.object). It plots
both the observation window Window(x) and the line segments themselves.

Plotting of the window Window(x) is performed by plot.owin. This plot may be modified through
the . .. arguments.

Plotting of the segments themselves is performed by the standard R function segments. Its plotting
behaviour may also be modified through the ... arguments.

There are three different styles of plotting which apply when the segments have marks (i.e. when
marks(x) is not null):

style="colour” (the default): Segments are plotted with different colours depending on their
mark values. The colour map, associating mark values with colours, is determined by the
argument col. The colour map will be displayed as a vertical colour ribbon to the right of the
plot, if ribbon=TRUE (the default).

style="width"”: Segments are plotted with different widths depending on their mark values. The
expanded segments are plotted using the base graphics function polygon. The width map,
associating mark values with line widths, can be specified by giving the physical scale factor
scale. There is a sensible default scale, which can be adjusted using the adjustment factor
adjust. The width map will be displayed as a vertical stack of lines to the right of the plot, if
legend=TRUE (the default).

style="none" or use.marks=FALSE: Mark information is ignored and the segments are plotted as
thin lines using segments.

If marks(x) is a data frame, the default is to use the first column of marks(x) to determine the
colours or widths. To specify another column, use the argument which.marks.

458 plot.psp

Value

If style="colour”, the result is a colourmap object specifying the association between marks and
colours, if any.

If style="width", the result is a numeric value giving the scaling between the mark values and the
physical widths.

In all cases, the return value also has an attribute "bbox" giving a bounding box for the plot.

Scrambling the colours

When style="colour"”, the argument scramble.cols=TRUE will cause the sequence of colours
in the colour map to be randomly permuted. This is a useful trick when it is desired that adjacent
colours in the sequence should be easily distinguishable. The return value of plot.psp will be the
randomised colour map.

Randomisation implies that the appearance of the plot, and the return value, will be different each
time the command is executed. For reproducible results, set the random generator seed using
set.seed.

Background

The argument background specifies an object that will be plotted before the pattern x is plotted,
and will therefore appear underneath it. The background can be any spatial object in the spatstat
package family. To specify graphical arguments for the background, make it into a layered object
using layered or as.layered, and assign graphical parameters to it using layerplotargs.

Alternatively background can be a single colour value, indicating that the plot should have this
background colour.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

psp.object, plot, par, plot.owin, text.psp, symbols

Examples

X <= psp(runif(20), runif(20), runif(20), runif(20), window=owin())
plot(X)

plot(X, lwd=3)

lettuce <- sample(letters[1:4], 20, replace=TRUE)
marks(X) <- data.frame(A=1:20, B=factor(lettuce))
plot(X)

plot(X, which.marks="B")

plot(X, style="width"”, col="grey")

marks(X) <- factor(letters[1:20])

plot(X)

plot(X, scramble.cols=TRUE)

plot.quad 459

plot.quad Plot a Spatial Quadrature Scheme

Description

Plot a two-dimensional spatial quadrature scheme.

Usage
S3 method for class 'quad'
plot(x, ..., main, add=FALSE, dum=list(), tiles=FALSE)
Arguments
X The spatial quadrature scheme to be plotted. An object of class "quad”.
extra arguments controlling the plotting of the data points of the quadrature
scheme.
main text to be displayed as a title above the plot.
add Logical value indicating whether the graphics should be added to the current

plot if there is one (add=TRUE) or whether a new plot should be initialised
(add=FALSE, the default).

dum list of extra arguments controlling the plotting of the dummy points of the quadra-
ture scheme. See below.

tiles Logical value indicating whether to display the tiles used to compute the quadra-
ture weights.

Details

This is the plot method for quadrature schemes (objects of class "quad”, see quad.object).

First the data points of the quadrature scheme are plotted (in their observation window) using
plot.ppp with any arguments specified in . . .

Then the dummy points of the quadrature scheme are plotted using plot.ppp with any arguments
specified in dum.

By default the dummy points are superimposed onto the plot of data points. This can be overridden
by including the argument add=FALSE in the list dum as shown in the examples. In this case the data
and dummy point patterns are plotted separately.

See par and plot.ppp for other possible arguments controlling the plots.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

460 plot.quadratcount

See Also

quad.object, plot.ppp, par

Examples
Q <- quadscheme(nztrees)
plot(Q, main="NZ trees: quadrature scheme")
oldpar <- par(mfrow=c(2,1))

plot(Q, main="NZ trees"”, dum=list(add=FALSE))
par(oldpar)

plot.quadratcount Plot Quadrat Counts

Description

Given a table of quadrat counts for a spatial point pattern, plot the quadrats which were used, and
display the quadrat count as text in the centre of each quadrat.

Usage

S3 method for class 'quadratcount'

plot(x, ..., add = FALSE,
entries=as.integer(t(x)),
dx = @, dy = 0, show.tiles = TRUE,
textargs = 1list())

Arguments

X Object of class "quadratcount” produced by the function quadratcount.
Additional arguments passed to plot. tess to plot the quadrats.

add Logical. Whether to add the graphics to an existing plot.

entries Vector of numbers to be plotted in each quadrat. The default is to plot the quadrat
counts.

dx, dy Horizontal and vertical displacement of text relative to centroid of quadrat.

show.tiles Logical value indicating whether to plot the quadrats.

textargs List containing extra arguments passed to text.default to control the annota-

tion.

plot.solist 461

Details

This is the plot method for the objects of class "quadratcount” that are produced by the function
quadratcount. Given a spatial point pattern, quadratcount divides the observation window into
disjoint tiles or quadrats, counts the number of points in each quadrat, and stores the result as a
contingency table which also belongs to the class "quadratcount”.

First the quadrats are plotted (provided show. tiles=TRUE, the default). This display can be con-
trolled by passing additional arguments . . . to plot. tess.

Then the quadrat counts are printed using text.default. This display can be controlled using the
arguments dx, dy and textargs.

If entries is given, it should be a vector of length equal to the number of quadrats (the number of
tiles in the tessellation as. tess(x)) containing integer or character values to be displayed in each
quadrat, in the same sequence as tiles(as.tess(x)) or tilenames(as.tess(x)) or the counts

in the transposed table t(x).

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo

See Also

quadratcount, plot. tess, text.default, plot.quadrattest.

Examples

plot(quadratcount (swedishpines, 5))

.net>

plot.solist Plot a List of Spatial Objects

Description

Plots a list of two-dimensional spatial objects.

Usage

S3 method for class 'solist'
plot(x, ..., main, arrange=TRUE,
nrows=NULL, ncols=NULL, main.panel=NULL,
mar.panel=c(2,1,1,2), hsep=0, vsep=0,
panel.begin=NULL, panel.end=NULL, panel.args=NULL,
panel.begin.args=NULL, panel.end.args=NULL, panel.vpad = 0.2,
plotcommand="plot",

462

plot.solist

do.plot=TRUE,

adorn.left=NULL, adorn.right=NULL, adorn.top=NULL, adorn.bottom=NULL,
adorn.size=0.2, adorn.args=list(),

equal.scales=FALSE, halign=FALSE, valign=FALSE)

Arguments

X

main

arrange

nrows, ncols

main.panel

mar.panel

hsep, vsep

An object of the class "solist”, essentially a list of two-dimensional spatial
datasets.

Arguments passed to plot when generating each plot panel.
Overall heading for the plot.

Logical flag indicating whether to plot the objects side-by-side on a single page
(arrange=TRUE) or plot them individually in a succession of frames (arrange=FALSE).

Optional. The number of rows/columns in the plot layout (assuming arrange=TRUE).
You can specify either or both of these numbers.

Optional. A character string, or a vector of character strings, or a vector of
expressions, giving the headings for each plot panel.

Size of the margins outside each plot panel. A numeric vector of length 4 giving
the bottom, left, top, and right margins in that order. (Alternatively the vector
may have length 1 or 2 and will be replicated to length 4). See the section on
Spacing between plots.

Additional horizontal and vertical separation between plot panels, expressed in
the same units as mar . panel.

panel.begin, panel.end

panel.args

Optional. Functions that will be executed before and after each panel is plotted.
See Details.

Optional. Function that determines different plot arguments for different panels.
See Details.

panel.begin.args

panel.end.args

panel.vpad

plotcommand

do.plot

Optional. List of additional arguments for panel.begin when it is a function.
Optional. List of additional arguments for panel.end when it is a function.

Amount of extra vertical space that should be allowed for the title of each panel,
if a title will be displayed. Expressed as a fraction of the height of the panel.
Applies only when equal. scales=FALSE (the default).

Optional. Character string containing the name of the command that should be
executed to plot each panel.

Logical value specifying whether to actually perform the plot.

adorn.left, adorn.right, adorn. top, adorn.bottom

adorn.size

Optional. Functions (with no arguments) that will be executed to generate ad-
ditional plots at the margins (left, right, top and/or bottom, respectively) of
the array of plots. Alternatively they may be objects of class "colourmap” or
"symbolmap”.

Relative width (as a fraction of the other panels’ widths) of the margin plots.

plot.solist 463

adorn.args Optional list of arguments passed to the functions adorn.left, adorn.right,
adorn.top and adorn.bottom if they are functions, or arguments passed to
plot.colourmap or plot.symbolmap as appropriate.

equal.scales Logical value indicating whether the components should be plotted at (approxi-
mately) the same physical scale.

halign, valign Logical values indicating whether panels in a column should be aligned to the
same x coordinate system (halign=TRUE) and whether panels in a row should be
aligned to the same y coordinate system (valign=TRUE). These are applicable
only if equal.scales=TRUE.

Details

This is the plot method for the class "solist"”.

An object of class "solist"” represents a list of two-dimensional spatial datasets. This is the plot
method for such objects.

In the spatstat package, various functions produce an object of class "solist”. These objects can
be plotted in a nice arrangement using plot.solist. See the Examples.

The argument panel.args determines extra graphics parameters for each panel. It should be a
function that will be called as panel.args(i) where i is the panel number. Its return value should
be a list of graphics parameters that can be passed to the relevant plot method. These parameters
override any parameters specified in the ... arguments.

The arguments panel.begin and panel.end determine graphics that will be plotted before and
after each panel is plotted. They may be objects of some class that can be plotted with the generic
plot command. Alternatively they may be functions that will be called as panel.begin(i, vy,
main=main.panel[i]) and panel.end(i, y, add=TRUE) where i is the panel number and y =
xCLi1].

If all entries of x are pixel images, the function image . listof is called to control the plotting. The
arguments equal.ribbon and col can be used to determine the colour map or maps applied.

If equal. scales=FALSE (the default), then the plot panels will have equal height on the plot device
(unless there is only one column of panels, in which case they will have equal width on the plot
device). This means that the objects are plotted at different physical scales, by default.

If equal. scales=TRUE, then the dimensions of the plot panels on the plot device will be propor-
tional to the spatial dimensions of the corresponding components of x. This means that the objects
will be plotted at approximately equal physical scales. If these objects have very different spatial
sizes, the plot command could fail (when it tries to plot the smaller objects at a tiny scale), with an
error message that the figure margins are too large.

The objects will be plotted at exactly equal physical scales, and exactly aligned on the device, under
the following conditions:
* every component of x is a spatial object whose position can be shifted by shift;

* panel.begin and panel.end are either NULL or they are spatial objects whose position can
be shifted by shift;

e adorn.left, adorn.right, adorn. top and adorn.bottom are all NULL.
Another special case is when every component of x is an object of class "fv" representing a func-

tion. If equal. scales=TRUE then all these functions will be plotted with the same axis scales (i.e.
with the same x1im and the same ylim).

464 plot.splitppp

Value

Null.

Spacing between plots

The spacing between individual plots is controlled by the parameters mar . panel, hsep and vsep.

If equal.scales=FALSE, the plot panels are logically separate plots. The margins for each panel
are determined by the argument mar . panel which becomes the graphics parameter mar described
in the help file for par. One unit of mar corresponds to one line of text in the margin. If hsep or
vsep are present, mar . panel is augmented by c(vsep, hsep, vsep, hsep)/2.

If equal. scales=TRUE, all the plot panels are drawn in the same coordinate system which repre-
sents a physical scale. The unit of measurement for mar.panel[1,3] is one-sixth of the greatest
height of any object plotted in the same row of panels, and the unit for mar.panel[2,4] is one-
sixth of the greatest width of any object plotted in the same column of panels. If hsep or vsep are
present, they are interpreted in the same units as mar.panel[2] and mar.panel[1] respectively.

Error messages

If the error message ‘Figure margins too large’ occurs, this generally means that one of the objects
had a much smaller physical scale than the others. Ensure that equal.scales=FALSE and increase
the values of mar . panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.anylist, contour.listof, image.listof, density.splitppp

Examples

D <- solapply(split(amacrine), distmap)

plot(D)
plot(D, main="", equal.ribbon=TRUE,
panel.end=function(i,y,...){contour(y, ...)})
plot.splitppp Plot a List of Point Patterns
Description

Plots a list of point patterns.

plot.splitppp 465

Usage
S3 method for class 'splitppp'
plot(x, ..., main)
Arguments
X A named list of point patterns, typically obtained from split.ppp.

Arguments passed to plot.listof which control the layout of the plot panels,
their appearance, and the plot behaviour in individual plot panels.

main Optional main title for the plot.

Details

This is the plot method for the class "splitppp”. It is typically used to plot the result of the
function split.ppp.

The argument x should be a named list of point patterns (objects of class "ppp”, see ppp.object).
Each of these point patterns will be plotted in turn using plot. ppp.

Plotting is performed by plot.listof.

Value

Null.

Error messages

If the error message ‘Figure margins too large’ occurs, ensure that equal.scales=FALSE and in-
crease the values of mar. panel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

plot.listof for arguments controlling the plot.

split.ppp, plot.ppp, ppp.object.

Examples

Multitype point pattern
plot(split(amacrine))
plot(split(amacrine), main="",
panel.begin=function(i, y, ...) { plot(distmap(y), ribbon=FALSE, ...) })

466

plot.symbolmap

plot.symbolmap

Plot a Graphics Symbol Map

Description

Plot a representation of a graphics symbol map, similar to a plot legend.

Usage

S3 method for class 'symbolmap'

plot(x,

Arguments

X

main
xLlim, ylim
vertical

side

annotate
labelmap

add

do.plot
nsymbols

warn

colour.only

representatives

., main, xlim = NULL, ylim = NULL,

vertical = FALSE,

side = c("bottom”, "left”, "top", "right"),
annotate = TRUE, labelmap = NULL,

add = FALSE, do.plot=TRUE,

nsymbols = NULL, warn = TRUE,
colour.only=FALSE,

representatives=NULL)

Graphics symbol map (object of class "symbolmap").

Additional graphics arguments passed to points, symbols or axis.

Main title for the plot. A character string.

Coordinate limits for the plot. Numeric vectors of length 2.

Logical. Whether to plot the symbol map in a vertical orientation.

Character string specifying the position of the text that annotates the symbols.
Alternatively one of the integers 1 to 4.

Logical. Whether to annotate the symbols with labels.

Transformation of the labels. A function or a scale factor which will be applied
to the data values corresponding to the plotted symbols.

Logical value indicating whether to add the plot to the current plot (add=TRUE)
or to initialise a new plot.

Logical value indicating whether to actually perform the plot.

Optional. The maximum number of symbols that should be displayed. Ignored
if representatives are given.

Logical value specifying whether to issue a warning when the plotted symbol
map does not represent every possible discrete value.

Logical value. If TRUE, the colour map information will be extracted from the
symbol map, and only this colour map will be plotted. If FALSE (the default)
the entire symbol map is plotted, including information about symbol shape and
size as well as colour.

Optional. Vector containing the values of the input data which should be shown
on the plot.

plot.symbolmap 467

Details

A graphics symbol map (object of class "symbolmap") is an association between data values and
graphical symbols.

This command plots the graphics symbol map itself, in the style of a plot legend.

For a map of continuous values (a symbol map which represents a range of numerical values) the
plot will select about nsymbols different values within this range, and plot their graphical represen-
tations.

For a map of discrete inputs (a symbol map which represents a finite set of elements, such as
categorical values) the plot will try to display the graphical representation of every possible input,
up to a maximum of nsymbols items. If there are more than nsymbols possible inputs, a warning
will be issued (if warn=TRUE, the default).

Value

(Invisibly) The symbolmap x with an attribute "bbox" which is a rectangular window (object of
class "owin") giving the region in coordinate space where the symbol map was plotted (or would
have been plotted).

Nonlinear transformation

For a map of continuous values, if representatives is not specified, then the default is to choose
approximately nsymbols values equally spaced within the numerical range.

However, if the symbol map includes a nonlinear transformation (arguments compress and decompress
were passed to symbolmap) or if one of its graphical parameters is a colour map which includes a
nonlinear transformation (arguments compress and decompress were passed to colourmap) then
the representative values will be equally spaced on the compressed scale.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

symbolmap to create a symbol map.

invoke. symbolmap to apply the symbol map to some data and plot the resulting symbols.

Examples

g <- symbolmap(inputs=letters[1:10], pch=11:20)
plot(g)

squares and circles with area proportional to |x]|
For 'squares', size is side length; size = sqrt(area)

For 'circles', size is diameter; size = sqrt(area * 4/pi)
g2 <- symbolmap(range=c(-1,1),
shape=function(x) ifelse(x > @, "circles”, "squares"),

size=function(x) ifelse(x > 0,

468

plot.tess

sqrt(abs(x)*4/pi),
sqrt(abs(x))),
bg = function(x) ifelse(abs(x) < 1, "red"”, "black"))
plot(g2, vertical=TRUE, side="left"”, col.axis="blue"”, cex.axis=2)
plot(g2, representatives=c(-1,0,1))

logarithmic display scale

gl <- symbolmap(range=c(1,1000), pch=21,
bg=function(x) ifelse(x < 50, "red”, "blue"),
cex=function(x) ifelse(x < 100, 1, 2),
compress=10g10)

gl(10)

plot(gl, nsymbols=4)

logarithmic symbol map

gll <- symbolmap(range=c(1,1000),
transform=log1@, size=function(x) { 1 + x },
compress=1og10)

gll(10)

plot(gll, nsymbols=4)

plot.tess Plot a Tessellation

Description

Plots a tessellation, with optional labels for the tiles, and optional filled colour in each tile.

Usage

S3 method for class 'tess'

plot(x, ..., main, add=FALSE,
show.all=!add,
border=NULL,
do.plot=TRUE,
do.labels=!missing(labels),
labels=tilenames(x), labelargs=list(),
do.col=!missing(values),
values=marks(x),
multiplot=TRUE,
col=NULL, ribargs=list())

Arguments
X Tessellation (object of class "tess") to be plotted.
Arguments controlling the appearance of the plot.
main Heading for the plot. A character string.

add Logical. Determines whether the tessellation plot is added to the existing plot.

plot.tess 469

show.all Logical value indicating whether to plot everything including the main title and
the observation window of x.

border Colour of the tile boundaries. A character string or other value specifying a
single colour. Ignored for pixel tessellations.

do.plot Logical value indicating whether to actually perform the plot.

do.labels Logical value indicating whether to show a text label for each tile of the tessel-
lation. The default is TRUE if 1labels are given, and FALSE otherwise.

labels Character vector of labels for the tiles.

labelargs List of arguments passed to text.default to control display of the text labels.

do.col Logical value indicating whether tiles should be filled with colour (for tessella-

tions where the tiles are rectangles or polygons). The default is TRUE if values
are given, and FALSE otherwise.

values A vector of numerical values (or a factor, or vector of character strings) that will
be associated with each tile of the tessellation and which determine the colour of
the tile. The default is the marks of x. If the tessellation is not marked, or if the
argument values=NULL is given, the default is a factor giving the tile identifier.

multiplot Logical value giving permission to display multiple plot panels. This applies
when do.col=TRUE and ncol (values) > 1.

col A vector of colours for each of the values, or a colourmap that maps these
values to colours.

ribargs List of additional arguments to control the plot of the colour map, if do. col=TRUE.
See explanation in plot.im.

Details

This is a method for the generic plot function for the class "tess” of tessellations (see tess).

The window of the tessellation is plotted, and then the tiles of the tessellation are plotted in their
correct positions in the window.

Rectangular or polygonal tiles are plotted individually using plot.owin, while a tessellation repre-
sented by a pixel image is plotted using plot.im. The arguments . . . control the appearance of the
plot, and are passed to segments, plot.owin or plot.im as appropriate.

If do. col=TRUE, then the tiles of the tessellation are filled with colours determined by the argument
values. By default, these values are the marks associated with each of the tiles. If there is more
than one column of marks or values, then the default behaviour (if multiplot=TRUE) is to display
several plot panels, one for each column of mark values. Then the arguments ... are passed to
plot.solist to determine the arrangement of the panels.

If do. 1abels=TRUE, a text label is plotted in the middle of each tile. The text labels are determined
by the argument labels, and default to the names of the tiles given by tilenames(x).

Value

(Invisible) window of class "owin" specifying a bounding box for the plot, or an object of class
"colourmap” specifying the colour map. (In the latter case, the bounding box information is avail-
able as an attribute, and can be extracted using as.owin.)

470 plot.textstring

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

tess

Examples

Rect <- tess(xgrid=0:4,ygrid=0:4)

Diri <- dirichlet(runifrect(7))

plot(Diri)

plot(Rect, border="blue"”, 1lwd=2, 1lty=2)

plot(Rect, do.col=TRUE, border="white")

plot(Rect, do.col=TRUE, values=runif(16), border="white")

B <- Rect[c(1, 2, 5, 7, 9)]

plot(B, hatch=TRUE)

plot(Diri, do.col=TRUE)

plot(Diri, do.col=TRUE, do.labels=TRUE, labelargs=list(col="white"),
ribbon=FALSE)

v <- as.im(function(x,y){factor(round(5 * (x*2 + y*2)))}, W=owin())

levels(v) <- letters[seq(length(levels(v)))]

Img <- tess(image=v)

plot(Img)

plot(Img, col=rainbow(11), ribargs=list(las=1))

a <- tile.areas(Diri)

marks(Diri) <- data.frame(area=a, random=runif (7, max=max(a)))

plot(Diri, do.col=TRUE, equal.ribbon=TRUE)

plot.textstring Plot a Text String

Description

Plots an object of class "textstring”.

Usage
S3 method for class 'textstring'
plot(x, ..., do.plot = TRUE)
Arguments
X Object of class "textstring” to be plotted. This object is created by the com-

mand textstring.
Additional graphics arguments passed to text to control the plotting of text.

do.plot Logical value indicating whether to actually plot the text.

plot.texturemap 471

Details

The argument x should be an object of class "textstring” created by the command textstring.

This function displays the text using text.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

onearrow, yardstick

Examples

W <- Window(humberside)

te <- textstring(centroid.owin(W), txt="Humberside”, cex=2.5)
te

plot(layered(W, te), main="")

plot.texturemap Plot a Texture Map

Description

Plot a representation of a texture map, similar to a plot legend.

Usage

S3 method for class 'texturemap'
plot(x, ..., main, xlim = NULL, ylim = NULL,
vertical = FALSE, axis = TRUE,
side = if(vertical) "right” else "bottom”,
labelmap = NULL, gap = 0.25,
spacing = NULL, add = FALSE)

Arguments
X Texture map object (class "texturemap”).
Additional graphics arguments passed to add. texture or axis.
main Main title for plot.

xLlim, ylim Optional vectors of length 2 giving the = and y limits of the plot.

472 plot.texturemap

vertical Logical value indicating whether to arrange the texture boxes in a vertical col-
umn (vertical=TRUE or a horizontal row (vertical=FALSE, the default).

axis Logical value indicating whether to plot axis-style labels next to the texture
boxes.

side One of the character strings "bottom”, "left”, "top” or "right”, or one
of the integers from 1 to 4, specifying the position of the axis-style labels, if
axis=TRUE.

labelmap Optional. A function which will be applied to the data values (the inputs of the
texture map) before they are displayed on the plot.

gap Separation between texture boxes, as a fraction of the width or height of a box.

spacing Argument passed to add. texture controlling the density of lines in a texture.

Expressed in spatial coordinate units.

add Logical value indicating whether to add the graphics to an existing plot (add=TRUE)
or to initialise a new plot (add=FALSE, the default).

Details

A texture map is an association between data values and graphical textures. An object of class
"texturemap” represents a texture map. Such objects are returned from the plotting function
textureplot, and can be created directly by the function texturemap.

This function plot. texturemap is a method for the generic plot for the class "texturemap”. It
displays a sample of each of the textures in the texture map, in a separate box, annotated by the data
value which is mapped to that texture.

The arrangement and position of the boxes is controlled by the arguments vertical, x1im, ylim
and gap.
Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

texturemap, textureplot, add. texture.

Examples

tm <- texturemap(c("First”, "Second”, "Third"), 2:4, col=2:4)
plot(tm, vertical=FALSE)

abbreviate the labels

plot(tm, labelmap=function(x) substr(x, 1, 2))

plot.yardstick

473

plot.yardstick

Plot a Yardstick or Scale Bar

Description

Plots an object of class "yardstick”.

Usage
S3 method for class 'yardstick'
plot(x, ...,
style=c("arrows"”, "zebra"),
angle = 20, frac = 1/8,
split = FALSE, shrink = 1/4,
pos = NULL,
txt.args=list(),
txt.shift=c(0,0),
zebra.step=NULL, zebra.width=NULL,
zebra.col="black", zebra.scale=1,
zebra.args=list(), zebra.shift=c(0,0),
do.plot = TRUE, do.txt=TRUE)
Arguments
X Object of class "yardstick” to be plotted. This object is created by the com-
mand yardstick.
Additional graphics arguments passed to segments to control the appearance of
the line.
style Character string (partially matched) specifying the style of plot. See Details.
angle Angle between the arrows and the line segment, in degrees. Applies when
style="arrows".
frac Length of arrow as a fraction of total length of the line segment. Applies when
style="arrows".
split Logical. If TRUE, then the line will be broken in the middle, and the text will
be placed in this gap. If FALSE, the line will be unbroken, and the text will be
placed beside the line. Applies when style="arrows".
shrink Fraction of total length to be removed from the middle of the line segment, if
split=TRUE. Applies when style="arrows".
pos Integer (passed to text) determining the position of the annotation text relative
to the line segment, if split=FALSE. Values of 1, 2, 3 and 4 indicate positions
below, to the left of, above and to the right of the line, respectively.
txt.args Optional list of additional arguments passed to text controlling the appearance
of the text. Examples include adj, srt, col, cex, font.
txt.shift Optional numeric vector of length 2 specifying displacement of the text position

relative to the centre of the yardstick.

474

zebra.step
zebra.width
zebra.col

zebra.scale

zebra.args

zebra.shift

do.plot
do.txt

Details

plot.yardstick

Length of each bar in the zebra pattern. Applies when style="zebra".
Width of each bar in the zebra pattern. Applies when style="zebra".
Colour of each bar in the zebra pattern. Applies when style="zebra".

Scale value for numerical labels in the zebra pattern. Physical lengths will be
divided by zebra.scale to determine the corresponding numerical labels.

Optional list of additional arguments passed to text controlling the appearance
of the text annotation for each bar in the zebra pattern. Examples include adj,
srt, col, cex, font.

Optional numeric vector of length 2 specifying displacement of the text annota-
tion for each bar in the zebra pattern.

Logical values specifying whether to actually perform the plot.

Logical value specifying whether to draw text annotation.

A yardstick or scale bar is a line segment, drawn on any spatial graphics display, indicating the scale

of the plot.

* If style="arrows", the line segment is drawn as a pair of arrows pointing from the middle of
the line to the ends of the line. This style is often used in architectural drawings. If angle=0,
the arrow heads are replaced by parallel bars marking the two ends of the line.

o If style="zebra", the line segment is divided into block of length zebra.step and width
zebra.width units. Blocks are drawn alternately as filled rectangles and outlined rectangles,
so that the result resembles a zebra crossing. This style is often used in maps and charts. There
are sensible defaults for zebra.step and zebra.width.

The argument x should be an object of class "yardstick” created by the command yardstick.

Value

A window (class "owin") enclosing the plotted graphics.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

yardstick

Examples

plot(owin(), main="Yardsticks")
ys <- yardstick(as.psp(list(xmid=0.5, ymid=0.1, length=0.4, angle=0),

plot(ys)

window=owin(c(0.2, 0.8), c(0, 0.2))),
txt="1 km")

pointsOnLines 475

ys <- shift(ys, c(9, 0.3))
plot(ys, angle=90, frac=0.08)
ys <- shift(ys, c(9@, 0.3))
plot(ys, split=TRUE)

yt <- shift(ys, c(0, 0.2))
plot(yt, style="z", pos=3, zebra.step=0.1, txt.args=list(offset=0.1))

pointsOnLines Place Points Evenly Along Specified Lines

Description

Given a line segment pattern, place a series of points at equal distances along each line segment.

Usage

pointsOnLines(X, eps = NULL, np = 1000, shortok=TRUE)

Arguments
X A line segment pattern (object of class "psp”).
eps Spacing between successive points.
np Approximate total number of points (incompatible with eps).
shortok Logical. If FALSE, very short segments (of length shorter than eps) will not
generate any points. If TRUE, a very short segment will be represented by its
midpoint.
Details

For each line segment in the pattern X, a succession of points is placed along the line segment. These
points are equally spaced at a distance eps, except for the first and last points in the sequence.

The spacing eps is measured in coordinate units of X.

If eps is not given, then it is determined by eps = len/np where len is the total length of the
segments in X. The actual number of points will then be slightly larger than np.

Value
A point pattern (object of class "ppp") in the same window as X. The result also has an attribute
called "map"” which maps the points to their parent line segments.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

476

See Also

polartess

psp, ppp, runifpointOnLines

Examples

X <= psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <- pointsOnLines(X, eps=0.05)

plot(X, main="")

plot(Y, add=TRUE, pch="+")

polartess

Tessellation Using Polar Coordinates

Description

Create a tessellation with tiles defined by polar coordinates (radius and angle).

Usage

polartess(W,
radii = NULL, angles = NULL,
origin = NULL, sep = "x")

Arguments

W

nradial
nangular

radii

angles

origin

sep

., nradial = NULL, nangular = NULL,

A window (object of class "owin") or anything that can be coerced to a window
using as.owin, such as a point pattern.

Ignored.

Number of tiles in the radial direction. A single integer. Ignored if radii is
given.

Number of tiles in the angular coordinate. A single integer. Ignored if angles
is given.

The numeric values of the radii, defining the tiles in the radial direction. A nu-
meric vector, of length at least 2, containing nonnegative numbers in increasing
order. The value Inf is permitted.

The numeric values of the angles defining the tiles in the angular coordinate.
A numeric vector, of length at least 2, in increasing order, containing angles in
radians.

Location to be used as the origin of the polar coordinates. FEither a numeric
vector of length 2 giving the spatial location of the origin, or one of the strings
"centroid”, "midpoint”, "left"”, "right”, "top”, "bottom”, "topleft”,
"bottomleft”, "topright” or "bottomright"” indicating the location in the
window.

Argument passed to intersect. tess specifying the character string to be used
as a separator when forming the names of the tiles.

pp3 477

Details

A tessellation will be formed from tiles defined by intervals in the polar coordinates r (radial dis-
tance from the origin) or ¢ (angle from the horizontal axis) or both. These tiles look like the cells
on a dartboard.

If the argument radii is given, tiles will be demarcated by circles centred at the origin, with the
specified radii. If radii is absent but nradial is given, then radii will default to a sequence of
nradial+1 radii equally spaced from zero to the maximum possible radius. If neither radii nor
nradial are given, the tessellation will not include circular arc boundaries.

If the argument angles is given, tiles will be demarcated by lines emanating from the origin at the
specified angles. The angular values can be any real numbers; they will be interpreted as angles in
radians modulo 2*pi, but they must be an increasing sequence of numbers. If angles is absent but
nangular is given, then angles will default to a sequence of nangular+1 angles equally spaced
from O to 2*pi. If neither angles nor nangular are given, the tessellation will not include linear
boundaries.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

intersect.tess

To construct other kinds of tessellations, see tess, quadrats, hextess, venn.tess, dirichlet,
delaunay, quantess, bufftess and rpoislinetess.

Examples

Y <- c(2.8, 1.5)
plot(polartess(letterR, nangular=6, radii=(0:4)/2, origin=Y),
do.col=TRUE)

pp3 Three Dimensional Point Pattern

Description

Create a three-dimensional point pattern

Usage

pp3(x, ¥, z, ..., marks=NULL)

478 pPP

Arguments
X, Y, Z Numeric vectors of equal length, containing Cartesian coordinates of points in
three-dimensional space.
Arguments passed to as.box3 to determine the three-dimensional box in which
the points have been observed.
marks Optional. Vector, data frame, or hyperframe of mark values associated with the
points.
Details

An object of class "pp3" represents a pattern of points in three-dimensional space. The points are
assumed to have been observed by exhaustively inspecting a three-dimensional rectangular box.
The boundaries of the box are included as part of the dataset.

Value

Object of class "pp3” representing a three dimensional point pattern. Also belongs to class "ppx".

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau. dk>.

See Also

box3, print.pp3, ppx

Examples

X <= pp3(runif(10), runif(10), runif(10),
box3(c(0,1)),
marks=rnorm(10))

ppp Create a Point Pattern

Description

Creates an object of class "ppp"” representing a point pattern dataset in the two-dimensional plane.

Usage

ppp(x,y, ..., window, marks,
check=TRUE, checkdup=check, drop=TRUE)

ppp 479

Arguments
X Vector of x coordinates of data points
y Vector of y coordinates of data points
window window of observation, an object of class "owin"
arguments passed to owin to create the window, if window is missing
marks (optional) mark values for the points. A vector or data frame.
check Logical value indicating whether to check that all the (z, y) points lie inside the
specified window. Do not set this to FALSE unless you are absolutely sure that
this check is unnecessary. See Warnings below.
checkdup Logical value indicating whether to check for duplicated coordinates. See Warn-
ings below.
drop Logical flag indicating whether to simplify data frames of marks. See Details.
Details

In the spatstat library, a point pattern dataset is described by an object of class "ppp”. This function
creates such objects.

The vectors x and y must be numeric vectors of equal length. They are interpreted as the carte-
sian coordinates of the points in the pattern. Note that x and y are permitted to have length zero,
corresponding to an empty point pattern; this is the default if these arguments are missing.

A point pattern dataset is assumed to have been observed within a specific region of the plane called
the observation window. An object of class "ppp” representing a point pattern contains information
specifying the observation window. This window must always be specified when creating a point
pattern dataset; there is intentionally no default action of “guessing” the window dimensions from
the data points alone.

You can specify the observation window in several (mutually exclusive) ways:

* xrange, yrange specify a rectangle with these dimensions;

* poly specifies a polygonal boundary. If the boundary is a single polygon then poly must be
a list with components x,y giving the coordinates of the vertices. If the boundary consists of
several disjoint polygons then poly must be a list of such lists so that poly[[i]]1$x gives the
x coordinates of the vertices of the :th boundary polygon.

» mask specifies a binary pixel image with entries that are TRUE if the corresponding pixel is
inside the window.

* window is an object of class "owin" specifying the window. A window object can be created
by owin from raw coordinate data. Special shapes of windows can be created by the functions
square, hexagon, regularpolygon, disc and ellipse. See the Examples.

The arguments xrange, yrange or poly or mask are passed to the window creator function owin
for interpretation. See owin for further details.

The argument window, if given, must be an object of class "owin”. It is a full description of the
window geometry, and could have been obtained from owin or as.owin, or by just extracting the
observation window of another point pattern, or by manipulating such windows. See owin or the
Examples below.

480 pPP

The points with coordinates x and y must lie inside the specified window, in order to define a valid
object of this class. Any points which do not lie inside the window will be removed from the point
pattern, and a warning will be issued. See the section on Rejected Points.

The name of the unit of length for the x and y coordinates can be specified in the dataset, using the
argument unitname, which is passed to owin. See the examples below, or the help file for owin.

The optional argument marks is given if the point pattern is marked, i.e. if each data point carries
additional information. For example, points which are classified into two or more different types, or
colours, may be regarded as having a mark which identifies which colour they are. Data recording
the locations and heights of trees in a forest can be regarded as a marked point pattern where the
mark is the tree height.

The argument marks can be either
* a vector, of the same length as x and y, which is interpreted so that marks[i] is the mark
attached to the point (x[i],y[i]). If the mark is a real number then marks should be a

numeric vector, while if the mark takes only a finite number of possible values (e.g. colours
or types) then marks should be a factor.

* adata frame, with the number of rows equal to the number of points in the point pattern. The
ith row of the data frame is interpreted as containing the mark values for the ith point in the
point pattern. The columns of the data frame correspond to different mark variables (e.g. tree
species and tree diameter).

If drop=TRUE (the default), then a data frame with only one column will be converted to a vector,
and a data frame with no columns will be converted to NULL.
See ppp.object for a description of the class "ppp".

Users would normally invoke ppp to create a point pattern, but the functions as.ppp and scanpp
may sometimes be convenient.

Value

An object of class "ppp" describing a point pattern in the two-dimensional plane (see ppp.object).

Invalid coordinate values

The coordinate vectors x and y must contain only finite numerical values. If the coordinates include
any of the values NA, NaN, Inf or -Inf, these will be removed.

Rejected points

The points with coordinates x and y must lie inside the specified window, in order to define a valid
object of class "ppp"”. Any points which do not lie inside the window will be removed from the
point pattern, and a warning will be issued.

The rejected points are still accessible: they are stored as an attribute of the point pattern called
"rejects” (which is an object of class "ppp" containing the rejected points in a large window).
However, rejected points in a point pattern will be ignored by all other functions except plot. ppp.

To remove the rejected points altogether, use as. ppp. To include the rejected points, you will need
to find a larger window that contains them, and use this larger window in a call to ppp.

pppP 481

Warnings

The code will check for problems with the data, and issue a warning if any problems are found. The
checks and warnings can be switched off, for efficiency’s sake, but this should only be done if you
are confident that the data do not have these problems.

Setting check=FALSE will disable all the checking procedures: the check for points outside the
window, and the check for duplicated points. This is extremely dangerous, because points lying
outside the window will break many of the procedures in spatstat, causing crashes and strange
errors. Set check=FALSE only if you are absolutely sure that there are no points outside the window.

If duplicated points are found, a warning is issued, but no action is taken. Duplicated points are not
illegal, but may cause unexpected problems later. Setting checkdup=FALSE will disable the check
for duplicated points. Do this only if you already know the answer.

Methodology and software for spatial point patterns often assume that all points are distinct so
that there are no duplicated points. If duplicated points are present, the consequence could be
an incorrect result or a software crash. To the best of our knowledge, all spatstat code handles
duplicated points correctly. However, if duplicated points are present, we advise using unique. ppp
ormultiplicity.ppp to eliminate duplicated points and re-analyse the data.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, as.ppp, owin.object, owin, as.owin

Examples

some arbitrary coordinates in [0,1]
X <= runif(20)
y <= runif(20)

the following are equivalent

<= ppp(x, y, c(0,1), c(0,1))

<= ppp(x, ¥)

<- ppp(x, y, window=owin(c(@,1),c(0,1)))

> X X H*

++

specify that the coordinates are given in metres

non

X <= ppp(x, vy, c(@,1), c(@,1), unitname=c("metre”, "metres"))

plot(X)

marks

m <- sample(1:2, 20, replace=TRUE)

m <- factor(m, levels=1:2)

X <= ppp(x, y, c(@,1), c(0,1), marks=m)

++

polygonal window
X <= ppp(x, y, poly=list(x=c(0,10,0), y=c(0,0,10)))

circular window of radius 2

482 ppp-object

X <= ppp(x, y, window=disc(2))

copy the window from another pattern
X <- ppp(x, y, window=Window(cells))

ppp.object Class of Point Patterns

Description
A class "ppp" to represent a two-dimensional point pattern. Includes information about the window
in which the pattern was observed. Optionally includes marks.

Details
This class represents a two-dimensional point pattern dataset. It specifies

* the locations of the points
* the window in which the pattern was observed

* optionally, “marks” attached to each point (extra information such as a type label).

If X is an object of type ppp, it contains the following elements:

X vector of x coordinates of data points
y vector of y coordinates of data points
n number of points

window window of observation
(an object of class owin)
marks optional vector or data frame of marks

Users are strongly advised not to manipulate these entries directly.

Objects of class "ppp"” may be created by the function ppp and converted from other types of data
by the function as.ppp. Note that you must always specify the window of observation; there is
intentionally no default action of “guessing” the window dimensions from the data points alone.

Standard point pattern datasets provided with the package include amacrine, betacells, bramblecanes,
cells, demopat, ganglia, lansing, longleaf, nztrees, redwood, simdat and swedishpines.

Point patterns may be scanned from your own data files by scanpp or by using read. table and
as.ppp.
They may be manipulated by the functions [. ppp and superimpose.

Point pattern objects can be plotted just by typing plot(X) which invokes the plot method for
point pattern objects, plot.ppp. See plot.ppp for further information.

There are also methods for summary and print for point patterns. Use summary (X) to see a useful
description of the data.

Patterns may be generated at random by runifpoint, rpoispp, rMaternI, rMaternII, rSSI,
rNeymanScott, rMatClust, and rThomas.

Most functions which are intended to operate on a window (of class owin) will, if presented with a
ppp object instead, automatically extract the window information from the point pattern.

pppdist

Warnings

The internal representation of marks is likely to change in the next release of this package.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin, ppp, as.ppp, [.ppp

Examples

X <= runif(100)

y <= runif(100)

X <= ppp(x, y, c(0,1),c(0,1))

X

if (human <- interactive()) plot(X)

mar <- sample(1:3, 100, replace=TRUE)
mm <- ppp(x, y, c(@,1), c(0,1), marks=mar)
if (human) plot(mm)

points with mark equal to 2

ss <- mm[mm$marks == 2 ,]

if (human) plot(ss)

left half of pattern 'mm'

lu <- owin(c(0,0.5),c(0,1))

mmleft <- mm[, lu]

if (human) plot(mmleft)

if (FALSE) {

input data from file

qq <- scanpp("my.table", unit.square())
interactively build a point pattern
plot(unit.square())

X <- as.ppp(locator(10), unit.square())
plot(X)

3

483

pppdist Distance Between Two Point Patterns

Description

Given two point patterns, find the distance between them based on optimal point matching.

Usage

n n

pppdist(X, Y, type = "spa", cutoff =1, q
ccode = TRUE, auction = TRUE, precision
show.rprimal = FALSE, timelag = 0)

1, matching = TRUE,
NULL, approximation = 10,

484 pppdist

Arguments

X, Y Two point patterns (objects of class "ppp").

type A character string giving the type of distance to be computed. One of "spa” (de-
fault), "ace"” or "mat”, indicating whether the algorithm should find the optimal
matching based on “subpattern assignment”, “assignment only if cardinalities
are equal” or “mass transfer”. See Details.

cutoff The value > 0 at which interpoint distances are cut off.

q The order of the average that is applied to the interpoint distances. May be Inf,
in which case the maximum of the interpoint distances is taken.

matching Logical. Whether to return the optimal matching or only the associated distance.

ccode Logical. If FALSE, R code is used which allows for higher precision, but is much
slower.

auction Logical. By default a version of Bertsekas’ auction algorithm is used to compute
an optimal point matching if type is either "spa” or "ace”. If auctionis FALSE
(or type is "mat") a specialized primal-dual algorithm is used instead. This was
the standard in earlier versions of spatstat, but is several orders of magnitudes
slower.

precision Index controlling accuracy of algorithm. The g-th powers of interpoint distances

will be rounded to the nearest multiple of 10* (-precision). There is a sensible
default which depends on ccode.

approximation If g = Inf, compute distance based on the optimal matching for the correspond-
ing distance of order approximation. Can be Inf, but this makes computations
extremely slow.

show.rprimal Logical. Whether to plot the progress of the primal-dual algorithm. If TRUE,
slow primal-dual R code is used, regardless of the arguments ccode and auction.

timelag Time lag, in seconds, between successive displays of the iterative solution of the
restricted primal problem.

Details

Computes the distance between point patterns X and Y based on finding the matching between
them which minimizes the average of the distances between matched points (if g=1), the maximum
distance between matched points (if g=Inf), and in general the g-th order average (i.e. the 1/qgth
power of the sum of the qth powers) of the distances between matched points. Distances between
matched points are Euclidean distances cut off at the value of cutoff.

The parameter type controls the behaviour of the algorithm if the cardinalities of the point patterns
are different. For the type "spa” (subpattern assignment) the subpattern of the point pattern with the
larger cardinality n that is closest to the point pattern with the smaller cardinality m is determined;
then the g-th order average is taken over n values: the m distances of matched points and n — m
"penalty distances" of value cutoff for the unmatched points. For the type "ace” (assignment only
if cardinalities equal) the matching is empty and the distance returned is equal to cutoff if the
cardinalities differ. For the type "mat” (mass transfer) each point pattern is assumed to have total
mass m (= the smaller cardinality) distributed evenly among its points; the algorithm finds then
the "mass transfer plan" that minimizes the g-th order weighted average of the distances, where the

pppdist 485

weights are given by the transferred mass divided by m. The result is a fractional matching (each
match of two points has a weight in (0, 1]) with the minimized quantity as the associated distance.

The central problem to be solved is the assignment problem (for types "spa” and "ace”) or the more
general transport problem (for type "mat"). Both are well-known problems in discrete optimization,
see e.g. Luenberger (2003).

For the assignment problem pppdist uses by default the forward/backward version of Bertsekas’
auction algorithm with automated epsilon scaling; see Bertsekas (1992). The implemented version
gives good overall performance and can handle point patterns with several thousand points.

For the transport problem a specialized primal-dual algorithm is employed; see Luenberger (2003),
Section 5.9. The C implementation used by default can handle patterns with a few hundreds of
points, but should not be used with thousands of points. By setting show.rprimal = TRUE, some
insight in the working of the algorithm can be gained.

For a broader selection of optimal transport algorithms that are not restricted to spatial point patterns
and allow for additional fine tuning, we recommend the R package transport.

For moderate and large values of g there can be numerical issues based on the fact that the g-th
powers of distances are taken and some positive values enter the optimization algorithm as zeroes
because they are too small in comparison with the larger values. In this case the number of zeroes
introduced is given in a warning message, and it is possible then that the matching obtained is not
optimal and the associated distance is only a strict upper bound of the true distance. As a general
guideline (which can be very wrong in special situations) a small number of zeroes (up to about
50% of the smaller point pattern cardinality m) usually still results in the right matching, and the
number can even be quite a bit higher and usually still provides a highly accurate upper bound for
the distance. These numerical problems can be reduced by enforcing (much slower) R code via the
argument ccode = FALSE.

For q = Inf there is no fast algorithm available, which is why approximation is normally used: for
finding the optimal matching, q is set to the value of approximation. The resulting distance is still
given as the maximum rather than the g-th order average in the corresponding distance computation.
If approximation = Inf, approximation is suppressed and a very inefficient exhaustive search for
the best matching is performed.

The value of precision should normally not be supplied by the user. If ccode = TRUE, this value is
preset to the highest exponent of 10 that the C code still can handle (usually 9). If ccode = FALSE,
the value is preset according to g (usually 15 if q is small), which can sometimes be changed to
obtain less severe warning messages.

Value

Normally an object of class pppmatching that contains detailed information about the parameters
used and the resulting distance. See pppmatching.object for details. If matching = FALSE, only
the numerical value of the distance is returned.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>, URL http://dominic.schuhmache

486 pppdist

References

Bertsekas, D.P. (1992). Auction algorithms for network flow problems: a tutorial introduction.
Computational Optimization and Applications 1, 7-66.

Luenberger, D.G. (2003). Linear and nonlinear programming. Second edition. Kluwer.

Schuhmacher, D. (2014). transport: optimal transport in various forms. R package version 0.6-2
(or later)

Schuhmacher, D. and Xia, A. (2008). A new metric between distributions of point processes. Ad-
vances in Applied Probability 40, 651-672

Schuhmacher, D., Vo, B.-T. and Vo, B.-N. (2008). A consistent metric for performance evaluation
of multi-object filters. IEEE Transactions on Signal Processing 56, 3447-3457.

See Also

pppmatching.object, matchingdist, plot.pppmatching

Examples

equal cardinalities
set.seed(140627)

X <- runifrect(500)

Y <- runifrect(500)

m <- pppdist(X, Y)

m

if(interactive()) {
plot(m)3}

differing cardinalities

X <- runifrect(14)

Y <- runifrect(10)

ml <- pppdist(X, Y, type="spa")
m2 <- pppdist(X, Y, type="ace")
m3 <- pppdist(X, Y, type="mat"”, auction=FALSE)
summary(m1)

summary (m2)

summary (m3)

if(interactive()) {

ml$matrix

m2$matrix

m3$matrix}

q = Inf

X <= runifrect(10)

Y <- runifrect(10)

mx1 <- pppdist(X, Y, g=Inf, matching=FALSE)

mx2 <- pppdist(X, Y, g=Inf, matching=FALSE, ccode=FALSE, approximation=50)
mx3 <- pppdist(X, Y, g=Inf, matching=FALSE, approximation=Inf)
all.equal(mx1,mx2,mx3)

sometimes TRUE

all.equal(mx2,mx3)

very often TRUE

pppmatching 487

pppmatching Create a Point Matching

Description

Creates an object of class "pppmatching” representing a matching of two planar point patterns
(objects of class "ppp").

Usage

pppmatching(X, Y, am, type = NULL, cutoff = NULL, g = NULL,
mdist = NULL)

Arguments
X, Y Two point patterns (objects of class "ppp").
am An npoints(X) by npoints(Y) matrix with entries > 0 that specifies which
points are matched and with what weight; alternatively, an object that can be
coerced to this form by as.matrix.
type A character string giving the type of the matching. One of "spa”, "ace” or
"mat”, or NULL for a generic or unknown matching.
cutoff, q Numerical values specifying the cutoff value > 0 for interpoint distances and the
order g € [1, o0] of the average that is applied to them. NULL if not applicable or
unknown.
mdist Numerical value for the distance to be associated with the matching.
Details

The argument am is interpreted as a "generalized adjacency matrix": if the [i, j1-th entry is positive,
then the i-th point of X and the j-th point of Y are matched and the value of the entry gives the
corresponding weight of the match. For an unweighted matching all the weights should be set to 1.

The remaining arguments are optional and allow to save additional information about the matching.
See the help files for pppdist and matchingdist for details on the meaning of these parameters.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>, URL http://dominic.schuhmache

See Also

pppmatching.object matchingdist

488 pppmatching.object

Examples

a random unweighted complete matching

X <- runifrect(10)

Y <- runifrect(10)

am <- r2dtable(1, rep(1,10), rep(1,10))[[11]1]
generates a random permutation matrix

m <- pppmatching(X, Y, am)

summary (m)

m$matrix

plot(m)

a random weighted complete matching

X <= runifrect(7)

Y <- runifrect(7)

am <- r2dtable(1, rep(10,7), rep(10,7))[[1]1]/10
generates a random doubly stochastic matrix

m2 <- pppmatching(X, Y, am)

summary (m2)

m2$matrix

plot(m2)

m3 <- pppmatching(X, Y, am, "ace")

m4 <- pppmatching(X, Y, am, "mat")

pppmatching.object Class of Point Matchings

Description

A class "pppmatching” to represent a matching of two planar point patterns. Optionally includes
information about the construction of the matching and its associated distance between the point
patterns.

Details

This class represents a (possibly weighted and incomplete) matching between two planar point
patterns (objects of class "ppp").

A matching can be thought of as a bipartite weighted graph where the vertices are given by the two
point patterns and edges of positive weights are drawn each time a point of the first point pattern is
"matched" with a point of the second point pattern.

If mis an object of type pppmatching, it contains the following elements

ppl, pp2 the two point patterns to be matched (vertices)

matrix a matrix specifying which points are matched
and with what weights (edges)
type (optional) a character string for the type of

n on

the matching (one of "spa”, "ace” or "mat")
cutoff (optional) cutoff value for interpoint distances

pppmatching.object 489

q (optional) the order for taking averages of
interpoint distances
distance (optional) the distance associated with the matching

The element matrix is a "generalized adjacency matrix". The numbers of rows and columns match
the cardinalities of the first and second point patterns, respectively. The [i, j]-th entry is positive
if the i-th point of X and the j-th point of Y are matched (zero otherwise) and its value then gives
the corresponding weight of the match. For an unweighted matching all the weights are set to 1.

The optional elements are for saving details about matchings in the context of optimal point match-
ing techniques. type can be one of "spa” (for "subpattern assignment"), "ace"” (for "assignment
only if cardinalities differ") or "mat” (for "mass transfer"). cutoff is a positive numerical value
that specifies the maximal interpoint distance and q is a value in [1, co] that gives the order of the
average applied to the interpoint distances. See the help files for pppdist and matchingdist for
detailed information about these elements.

Objects of class "pppmatching” may be created by the function pppmatching, and are most com-
monly obtained as output of the function pppdist. There are methods plot, print and summary
for this class.

Author(s)

Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>, URL http://dominic.schuhmache

See Also

matchingdist, pppmatching, plot.pppmatching

Examples

a random complete unweighted matching
X <- runifrect(10)
Y <- runifrect(10)
am <- r2dtable(1, rep(1,10), rep(1,10))[[1]1]
generates a random permutation matrix
m <- pppmatching(X, Y, am)
summary (m)
m$matrix
if(interactive()) {
plot(m)
}

an optimal complete unweighted matching
m2 <- pppdist(X,Y)
summary (m2)
m2$matrix
if(interactive()) {
plot(m2)
}

490

ppx

ppx

Multidimensional Space-Time Point Pattern

Description

Creates a multidimensional space-time point pattern with any kind of coordinates and marks.

Usage

ppx(data, domain=NULL, coord.type=NULL, simplify=FALSE)

Arguments

data

domain

coord. type

simplify

Details

The coordinates and marks of the points. A data.frame or hyperframe.

Optional. The space-time domain containing the points. An object in some
appropriate format, or NULL.

Character vector specifying how each column of data should be interpreted:
as a spatial coordinate, a temporal coordinate, a local coordinate or a mark.
Entries are partially matched to the values "spatial”, "temporal”, "local”
and "mark”.

Logical value indicating whether to simplify the result in special cases. If
simplify=TRUE, a two-dimensional point pattern will be returned as an object
of class "ppp", and a three-dimensional point pattern will be returned as an ob-
ject of class "pp3". If simplify=FALSE (the default) then the result is always
an object of class "ppx".

An object of class "ppx" represents a marked point pattern in multidimensional space and/or time.
There may be any number of spatial coordinates, any number of temporal coordinates, any number
of local coordinates, and any number of mark variables. The individual marks may be atomic
(numeric values, factor values, etc) or objects of any kind.

The argument data should contain the coordinates and marks of the points. It should be a data. frame
or more generally a hyperframe (see hyperframe) with one row of data for each point.

Each column of data is either a spatial coordinate, a temporal coordinate, a local coordinate, or a
mark variable. The argument coord. type determines how each column is interpreted. It should be
a character vector, of length equal to the number of columns of data. It should contain strings that
partially match the values "spatial”, "temporal”, "local” and "mark"”. (The first letters will be

sufficient.)

By default (if coord. type is missing or NULL), columns of numerical data are assumed to represent
spatial coordinates, while other columns are assumed to be marks.

Value

Usually an object of class "ppx". If simplify=TRUE the result may be an object of class "ppp" or

npp3n.

print.im

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

pp3, print.ppx

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4),
age=rep(c("old", "new"), 2),
size=runif(4))

X <- ppx(data=df, coord.type=c("s","s"”,"t","m","m"))

X

#' one-dimensional points

#' with marks which are two-dimensional point patterns
val <- sample(10:20, 4)

E <- lapply(val, runifrect)

E

hf <- hyperframe(num=val, e=as.listof(E))

Z <- ppx(data=hf, domain=c(10,20))

z

491

print.im Print Brief Details of an Image

Description

Prints a very brief description of a pixel image object.

Usage
S3 method for class 'im'
print(x, ...)
Arguments
X Pixel image (object of class "im").
Ignored.
Details

A very brief description of the pixel image x is printed.

This is a method for the generic function print.

492 print.owin

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

print, im.object, summary.im

Examples

U <- as.im(letterR)
u

print.owin Print Brief Details of a Spatial Window

Description

Prints a very brief description of a window object.

Usage
S3 method for class 'owin'

print(x, ..., prefix="window: ")
Arguments

X Window (object of class "owin").

Ignored.

prefix Character string to be printed at the start of the output.

Details

A very brief description of the window x is printed.

This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

print, print.ppp, summary.owin

print.ppp 493

Examples

owin() # the unit square

W <- Window(demopat)

W # just says it is polygonal
as.mask(W) # just says it is a binary image
print.ppp Print Brief Details of a Point Pattern Dataset
Description

Prints a very brief description of a point pattern dataset.

Usage
S3 method for class 'ppp'
print(x, ...)
Arguments
X Point pattern (object of class "ppp").
Ignored.
Details

A very brief description of the point pattern x is printed.

This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

print, print.owin, summary.ppp
Examples
cells # plain vanilla point pattern
lansing # multitype point pattern
longleaf # numeric marks

demopat # weird polygonal window

494

print.psp

print.psp Print Brief Details of a Line Segment Pattern Dataset

Description

Prints a very brief description of a line segment pattern dataset.

Usage
S3 method for class 'psp'
print(x, ...)
Arguments
X Line segment pattern (object of class "psp").
Ignored.
Details

A very brief description of the line segment pattern x is printed.

This is a method for the generic function print.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

print, print.owin, summary.psp

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
a

print.quad 495

print.quad Print a Quadrature Scheme

Description

print method for a quadrature scheme.

Usage
S3 method for class 'quad'
print(x,...)
Arguments
X A quadrature scheme object, typically obtained from quadscheme. An object of
class "quad”.
Ignored.
Details

This is the print method for the class "quad”. It prints simple information about the quadrature
scheme.

See quad.object for details of the class "quad”.

Value

none.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

quadscheme, quad.object, plot.quad, summary.quad

Examples

Q <- quadscheme(cells)
Q

496

progressreport

progressreport

Print Progress Reports

Description

Prints Progress Reports during a loop or iterative calculation.

Usage

progressreport(i, n,

Arguments
i
n
every
tick
nperline
charsperline

style

showtime

state

formula

savehistory

Details

every = min(100,max(1, ceiling(n/100))),
tick = 1,

nperline = NULL,

charsperline = getOption("width"),

style = spatstat.options(”progress”),
showtime = NULL,

state=NULL,

formula = (time ~ i),

savehistory=FALSE)

Integer. The current iteration number (from 1 to n).

Integer. The (maximum) number of iterations to be computed.

Optional integer. Iteration number will be printed when i is a multiple of every.
Optional integer. A tick mark or dot will be printed when i is a multiple of tick.
Optional integer. Number of iterations per line of output.

Optional integer. The number of characters in a line of output.

Character string determining the style of display. Options are "tty" (the de-
fault), "tk" and "txtbar". See Details.

Optional. Logical value indicating whether to print the estimated time remain-
ing. Applies only when style="tty".

Optional. A list containing the internal data.

Optional. A model formula expressing the expected relationship between the

iteration number i and the clock time time. Used for predicting the time re-
maining.

Optional. Logical value indicating whether to save the elapsed times at which
progressreport was called.

This is a convenient function for reporting progress during an iterative sequence of calculations or
a suite of simulations.

progressreport 497

e If style="tk" then tcltk::tkProgressBar is used to pop-up a new graphics window show-

ing a progress bar. This requires the package tcltk. As i increases from 1 to n, the bar will
lengthen. The arguments every, tick, nperline, showtime are ignored.

If style="txtbar" then txtProgressBar is used to represent progress as a bar made of text
characters in the R interpreter window. As i increases from 1 to n, the bar will lengthen. The
arguments every, tick, nperline, showtime are ignored.

If style="tty" (the default), then progress reports are printed to the console. This only
seems to work well under Linux. As i increases from 1 to n, the output will be a sequence
of dots (one dot for every tick iterations), iteration numbers (printed when iteration number
is a multiple of every or is less than 4), and optionally the estimated time remaining and the
estimated completion time.

The estimated time remaining will be printed only if style="tty", and the argument state
is given, and either showtime=TRUE, or showtime=NULL and the iterations are slow (defined
as: the estimated time remaining is longer than 3 minutes, or the average time per iteration is
longer than 20 seconds).

The estimated completion time will be printed only if the estimated time remaining is printed
and the remaining time is longer than 10 minutes.

By default, the estimated time remaining is calculated by assuming that each iteration takes the
same amount of time, and extrapolating. Alternatively, if the argument formula is given, then
it should be a model formula, stating the expected relationship between the iteration number
i and the clock time time. This model will be fitted to the history of clock times recorded
so far, and used to predict the time remaining. (The default formula states that clock time is
a linear function of the iteration number, which is equivalent to assuming that each iteration
takes the same amount of time.)

It is optional, but strongly advisable, to use the argument state to store and update the internal data
for the progress reports (such as the cumulative time taken for computation) as shown in the last
example below. This avoids conflicts with other programs that might be calling progressreport
at the same time.

Value

If state was NULL, the result is NULL. Otherwise the result is the updated value of state.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

for(i in 1:40) {
#
code that does something...
#

}

progressreport(i, 40)

saving internal state: *recommended*

498 project2segment

sta <- list()
for(i in 1:20) {
some code ...
sta <- progressreport(i, 20, state=sta)

3

#' use text progress bar
sta <- list()
for(i in 1:10) {
some code ...
sta <- progressreport(i, 10, state=sta, style="txtbar")

project2segment Move Point To Nearest Line

Description
Given a point pattern and a line segment pattern, this function moves each point to the closest
location on a line segment.

Usage

project2segment(X, Y)

Arguments

X A point pattern (object of class "ppp").

Y A line segment pattern (object of class "psp").
Details

For each point x in the point pattern X, this function finds the closest line segment y in the line
segment pattern Y. It then ‘projects’ the point x onto the line segment y by finding the position z
along y which is closest to x. This position z is returned, along with supplementary information.

Value

A list with the following components. Each component has length equal to the number of points in
X, and its entries correspond to the points of X.

Xproj Point pattern (object of class "ppp” containing the projected points.

mapXY Integer vector identifying the nearest segment to each point.

d Numeric vector of distances from each point of X to the corresponding projected
point.

tp Numeric vector giving the scaled parametric coordinate 0 < ¢, < 1 of the

position of the projected point along the segment.

project2set 499

For example suppose mapXY[2] = 5 and tp[2] = @.33. Then Y[5] is the line segment lying closest
to X[2]. The projection of the point X[2] onto the segment Y[5] is the point Xproj[2], which lies
one-third of the way between the first and second endpoints of the line segment Y[5].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

nearestsegment for a faster way to determine which segment is closest to each point.

Examples

X <- rsyst(square(1), nx=5)

Y <- as.psp(matrix(runif(20), 5, 4), window=owin())

plot(Y, lwd=3, col="green")

plot(X, add=TRUE, col="red", pch=16)

v <- project2segment(X,Y)

Xproj <- v$Xproj

plot(Xproj, add=TRUE, pch=16)

arrows(Xx, Xy, Xproj$x, Xproj$y, angle=10, length=0.15, col="red")

project2set Find Nearest Point in a Region

Description

For each data point in a point pattern X, find the nearest location in a given spatial region W.

Usage
project2set(X, W, ...)
Arguments
X Point pattern (object of class "ppp").
W Window (object of class "owin") or something acceptable to as.owin.
Arguments passed to as.mask controlling the pixel resolution.
Details

The window W is first discretised as a binary mask using as.mask.
For each data point X[i] in the point pattern X, the algorithm finds the nearest pixel in W.

The result is a point pattern Y containing these nearest points, that is, Y[i] is the nearest point in W
to the point X[i].

500 psp

Value

A point pattern (object of class "ppp") with the same number of points as X in the window W.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

project2segment, nncross

Examples

He <- heather$fine[owin(c(2.8, 7.4), c(4.0, 7.8))]

plot(He, main="project2set"”)

W <- erosion(complement.owin(He), 0.2)
if(require(spatstat.random)) {

X <= runifpoint(4, W)
} else {

X <- ppp(c(6.1, 4.3, 5.7, 4.7), c(5.0, 6.6, 7.5, 4.9), window=W)
3

points(X, col="red")

Y <- project2set(X, He)

points(Y, col="green")

arrows(Xx, Xy, Yx, Yy, angle=15, length=0.2)

psp Create a Line Segment Pattern

Description

Creates an object of class "psp"” representing a line segment pattern in the two-dimensional plane.

Usage

psp(x0,y0, x1, yl, window, marks=NULL,
check=spatstat.options("checksegments"))

Arguments
X0 Vector of x coordinates of first endpoint of each segment
yo Vector of y coordinates of first endpoint of each segment
x1 Vector of x coordinates of second endpoint of each segment

y1 Vector of y coordinates of second endpoint of each segment

psp 501

window window of observation, an object of class "owin"
marks (optional) vector or data frame of mark values
check Logical value indicating whether to check that the line segments lie inside the
window.
Details

In the spatstat library, a spatial pattern of line segments is described by an object of class "psp”.
This function creates such objects.

The vectors x@, y@, x1 and y1 must be numeric vectors of equal length. They are interpreted as the
cartesian coordinates of the endpoints of the line segments.

A line segment pattern is assumed to have been observed within a specific region of the plane called
the observation window. An object of class "psp” representing a point pattern contains information
specifying the observation window. This window must always be specified when creating a point
pattern dataset; there is intentionally no default action of “guessing” the window dimensions from
the data points alone.

The argument window must be an object of class "owin”. It is a full description of the window
geometry, and could have been obtained from owin or as.owin, or by just extracting the observation
window of another dataset, or by manipulating such windows. See owin or the Examples below.

The optional argument marks is given if the line segment pattern is marked, i.e. if each line segment
carries additional information. For example, line segments which are classified into two or more
different types, or colours, may be regarded as having a mark which identifies which colour they
are.

The object marks must be a vector of the same length as x@, or a data frame with number of rows
equal to the length of x@. The interpretation is that marks[i] or marks[1i,] is the mark attached to
the sth line segment. If the marks are real numbers then marks should be a numeric vector, while
if the marks takes only a finite number of possible values (e.g. colours or types) then marks should
be a factor.

See psp.object for a description of the class "psp”.

Users would normally invoke psp to create a line segment pattern, and the function as.psp to
convert data in another format into a line segment pattern.

Value
An object of class "psp"” describing a line segment pattern in the two-dimensional plane (see
psp.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

psp.object, as.psp, owin.object, owin, as.owin.

Function for extracting information from a segment pattern: marks.psp, summary.psp, midpoints.psp,
lengths_psp angles.psp, endpoints.psp

Convert line segments to infinite lines: extrapolate.psp.

502 psp-object

Examples

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
m <- data.frame(A=1:10, B=letters[1:10])
X <= psp(runif(10), runif(10), runif(10), runif(1@), window=owin(), marks=m)

psp.object Class of Line Segment Patterns

Description

A class "psp” to represent a spatial pattern of line segments in the plane. Includes information
about the window in which the pattern was observed. Optionally includes marks.

Details
An object of this class represents a two-dimensional pattern of line segments. It specifies

* the locations of the line segments (both endpoints)
* the window in which the pattern was observed

* optionally, a “mark” attached to each line segment (extra information such as a type label).

If X is an object of type psp, it contains the following elements:

ends data frame with entries x@, y0, x1, y1
giving coordinates of segment endpoints
window window of observation
(an object of class owin)
n number of line segments
marks optional vector or data frame of marks

markformat character string specifying the format of the

LLIT3

marks; “none”, “vector”, or “dataframe”

Users are strongly advised not to manipulate these entries directly.

Objects of class "psp” may be created by the function psp and converted from other types of data
by the function as.psp. Note that you must always specify the window of observation; there is
intentionally no default action of “guessing” the window dimensions from the line segments alone.

Subsets of a line segment pattern may be obtained by the functions [.psp and clip.psp.

Line segment pattern objects can be plotted just by typing plot(X) which invokes the plot method
for line segment pattern objects, plot.psp. See plot.psp for further information.

There are also methods for summary and print for line segment patterns. Use summary (X) to see a
useful description of the data.

Utilities for line segment patterns include midpoints.psp (to compute the midpoints of each seg-
ment), lengths_psp, (to compute the length of each segment), angles.psp, (to compute the angle
of orientation of each segment), and distmap.psp to compute the distance map of a line segment
pattern.

psp2mask

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

psp, as.psp, [.psp

Examples

creating

a <= psp(runif(20),runif(20),runif(20),runif(20), window=owin())
converting from other formats

a <- as.psp(matrix(runif(80), ncol=4), window=owin())

a <- as.psp(data.frame(x0=runif(20), y0=runif(20),

x1=runif(20), yl=runif(20)), window=owin())

clipping

w <- owin(c(0.1,0.7), c(0.2, 0.8))

b <- clip.psp(a, w)

b <- alw]
the last two lines are equivalent.

503

psp2mask Convert Line Segment Pattern to Binary Pixel Mask

Description

Converts a line segment pattern to a binary pixel mask by determining which pixels intersect the

lines.
Usage
psp2mask(x, W=NULL, ...)
as.mask.psp(x, W=NULL, ...)
Arguments
X Line segment pattern (object of class "psp").
W Optional window (object of class "owin") determining the pixel raster.

Optional extra arguments passed to as.mask to determine the pixel resolution.

504 quad.object

Details

The functions psp2mask and as . mask. psp are currently identical. In future versions of the package,
as.mask. psp will be deprecated, and then removed.

This function converts a line segment pattern to a binary pixel mask by determining which pixels
intersect the lines.

The pixel raster is determined by W and the optional arguments If W is missing or NULL, it
defaults to the window containing x. Then W is converted to a binary pixel mask using as.mask.
The arguments . . . are passed to as.mask to control the pixel resolution.

Value

A window (object of class "owin") which is a binary pixel mask (type "mask").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

pixellate.psp, as.mask.

Use pixellate.psp if you want to measure the length of line in each pixel.

Examples

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(psp2mask(X))
plot(X, add=TRUE, col="red")

quad.object Class of Quadrature Schemes

Description

A class "quad” to represent a quadrature scheme.

Details

A (finite) quadrature scheme is a list of quadrature points u; and associated weights w; which is
used to approximate an integral by a finite sum:

JECZE O

Given a point pattern dataset, a Berman-Turner quadrature scheme is one which includes all these
data points, as well as a nonzero number of other (“dummy”) points.

quad.object 505

These quadrature schemes are used to approximate the pseudolikelihood of a point process, in the
method of Baddeley and Turner (2000) (see Berman and Turner (1992)). Accuracy and computation
time both increase with the number of points in the quadrature scheme.

An object of class "quad” represents a Berman-Turner quadrature scheme. It can be passed as an
argument to the model-fitting function ppm, which requires a quadrature scheme.

An object of this class contains at least the following elements:

data: an object of class "ppp”

giving the locations (and marks) of the data points.
dummy: an object of class "ppp”

giving the locations (and marks) of the dummy points.
w: vector of nonnegative weights for the quadrature points

Users are strongly advised not to manipulate these entries directly.

The domain of quadrature is specified by Window(dummy) while the observation window (if this
needs to be specified separately) is taken to be Window(data).

The weights vector w may also have an attribute attr(w, "zeroes") equivalent to the logical vector
(w==0). If this is absent then all points are known to have positive weights.

To create an object of class "quad”, users would typically call the high level function quadscheme.
(They are actually created by the low level function quad.)

Entries are extracted from a "quad” object by the functions x. quad, y.quad, w. quad and marks . quad,
which extract the z coordinates, y coordinates, weights, and marks, respectively. The function
n.quad returns the total number of quadrature points (dummy plus data).

An object of class "quad” can be converted into an ordinary point pattern by the function union. quad
which simply takes the union of the data and dummy points.

Quadrature schemes can be plotted using plot.quad (a method for the generic plot).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

quadscheme, ppm

506 quadratcount

quadratcount Quadrat counting for a point pattern

Description

Divides window into quadrats and counts the numbers of points in each quadrat.

Usage

quadratcount(X, ...)
S3 method for class 'ppp'
quadratcount(X, nx=5, ny=nx, ...,

xbreaks=NULL, ybreaks=NULL, left.open=TRUE,
tess=NULL)

S3 method for class 'splitppp'

quadratcount(X, ...)
Arguments
X A point pattern (object of class "ppp") or a split point pattern (object of class
"splitppp").
nx, ny Numbers of rectangular quadrats in the x and y directions. Incompatible with

xbreaks and ybreaks.
Additional arguments passed to quadratcount. ppp.

xbreaks Numeric vector giving the x coordinates of the boundaries of the rectangular
quadrats. Incompatible with nx.

ybreaks Numeric vector giving the y coordinates of the boundaries of the rectangular
quadrats. Incompatible with ny.

tess Tessellation (object of class "tess” or something acceptable to as. tess) deter-
mining the quadrats. Incompatible with nx, ny, xbreaks, ybreaks.

left.open Logical value specifying whether rectangular quadrats are left-open and right-
closed (1ef't.open=TRUE, the default) or left-closed and right-open (left.open=FALSE).

Details

Quadrat counting is an elementary technique for analysing spatial point patterns. See Diggle (2003).

If X is a point pattern, then by default, the window containing the point pattern X is divided into an
nx * ny grid of rectangular tiles or ‘quadrats’. (If the window is not a rectangle, then these tiles are
intersected with the window.) The number of points of X falling in each quadrat is counted. These
numbers are returned as a contingency table.

If xbreaks is given, it should be a numeric vector giving the = coordinates of the quadrat bound-
aries. If it is not given, it defaults to a sequence of nx+1 values equally spaced over the range of =
coordinates in the window Window(X).

quadratcount 507

Similarly if ybreaks is given, it should be a numeric vector giving the y coordinates of the quadrat
boundaries. It defaults to a vector of ny+1 values equally spaced over the range of y coordinates in
the window. The lengths of xbreaks and ybreaks may be different.

Alternatively, quadrats of any shape may be used. The argument tess can be a tessellation (object
of class "tess") whose tiles will serve as the quadrats.

The algorithm counts the number of points of X falling in each quadrat, and returns these counts as
a contingency table.

The return value is a table which can be printed neatly. The return value is also a member of
the special class "quadratcount”. Plotting the object will display the quadrats, annotated by their
counts. See the examples.

To perform a chi-squared test based on the quadrat counts, use quadrat. test.
To calculate an estimate of intensity based on the quadrat counts, use intensity.quadratcount.
To extract the quadrats used in a quadratcount object, use as. tess.

If X is a split point pattern (object of class "splitppp"” then quadrat counting will be performed
on each of the components point patterns, and the resulting contingency tables will be returned in a
list. This list can be printed or plotted.

Marks attached to the points are ignored by quadratcount.ppp. To obtain a separate contingency
table for each type of point in a multitype point pattern, first separate the different points using
split.ppp, then apply quadratcount.splitppp. See the Examples.

Value

The value of quadratcount.ppp is a contingency table containing the number of points in each
quadrat. The table is also an object of the special class "quadratcount” and there is a plot method
for this class.

The value of quadratcount.splitppp is a list of such contingency tables, each containing the
quadrat counts for one of the component point patterns in X. This list also has the class "solist”
which has print and plot methods.

Treament of data points on the boundary

If the quadrats are rectangular, they are assumed to be left-open and right-closed, by default (1eft. open=TRUE).
Alternatively if left.open=FALSE then rectangular quadrats are left-closed and right-open.

If the quadrats are not rectangular, the treatment of points which lie on the boundary of two quadrats
is undefined, and may depend on the hardware.
Hypothesis testing

To perform a chi-squared test based on the quadrat counts, use quadrat. test.

Warning

If Q is a quadratcount object, the ordering of entries in the table Q may be different from the
ordering of quadrats (tiles in the tessellation as. tess(Q)).

To obtain the entries of the table in the same order as the quadrats, use counts <- as.numeric(t(Q))
or counts <- marks(as.tess(Q)).

508 quadrats

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 2003.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

plot.quadratcount, intensity.quadratcount, quadrats, quadrat. test, tess, hextess, quadratresample,
miplot

Examples

X <- runifrect(50)

quadratcount (X)

quadratcount(X, 4, 5)

quadratcount (X, xbreaks=c(@, 0.3, 1), ybreaks=c(0, 0.4, 0.8, 1))
gX <- quadratcount(X, 4, 5)

plotting:
plot(X, pch="+"
plot(gX, add=TRUE, col="red", cex=1.5, 1lty=2)

irregular window

plot (humberside)

gH <- quadratcount(humberside, 2, 3)

plot(gH, add=TRUE, col="blue"”, cex=1.5, lwd=2)

multitype - split
plot(quadratcount(split(humberside), 2, 3))

quadrats determined by tessellation:

B <- dirichlet(runifrect(6))

gX <- quadratcount(X, tess=B)

plot(X, pch="+"

plot(gX, add=TRUE, col="red"”, cex=1.5, lty=2)

quadrats Divide Region into Quadrats

Description

Divides window into rectangular quadrats and returns the quadrats as a tessellation.

quadrats 509

Usage

quadrats(X, nx = 5, ny = nx, xbreaks = NULL, ybreaks = NULL, keepempty=FALSE)

Arguments
X A window (object of class "owin") or anything that can be coerced to a window
using as.owin, such as a point pattern.
nx, ny Numbers of quadrats in the x and y directions. Incompatible with xbreaks and
ybreaks.
xbreaks Numeric vector giving the = coordinates of the boundaries of the quadrats. In-
compatible with nx.
ybreaks Numeric vector giving the y coordinates of the boundaries of the quadrats. In-
compatible with ny.
keepempty Logical value indicating whether to delete or retain empty quadrats. See Details.
Details

If the window X is a rectangle, it is divided into an nx * ny grid of rectangular tiles or ‘quadrats’.

If X is not a rectangle, then the bounding rectangle of X is first divided into an nx * ny grid of
rectangular tiles, and these tiles are then intersected with the window X.

The resulting tiles are returned as a tessellation (object of class "tess") which can be plotted and
used in other analyses.

If xbreaks is given, it should be a numeric vector giving the x coordinates of the quadrat bound-
aries. If it is not given, it defaults to a sequence of nx+1 values equally spaced over the range of x
coordinates in the window Window(X).

Similarly if ybreaks is given, it should be a numeric vector giving the y coordinates of the quadrat
boundaries. It defaults to a vector of ny+1 values equally spaced over the range of y coordinates in
the window. The lengths of xbreaks and ybreaks may be different.

By default (if keepempty=FALSE), any rectangular tile which does not intersect the window X is ig-
nored, and only the non-empty intersections are treated as quadrats, so the tessellation may consist
of fewer than nx x ny tiles. If keepempty=TRUE, empty intersections are retained, and the tessella-
tion always contains exactly nx * ny tiles, some of which may be empty.

Value

A tessellation (object of class "tess") as described under tess.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

For calculations using quadrats, see quadratcount, quadrat. test, quadratresample

For other kinds of tessellations, see tess, hextess, venn. tess, polartess, dirichlet, delaunay,
guantess, bufftess and rpoislinetess.

510 quadscheme

Examples

W <- square(10)
Z <- quadrats(W, 4, 5)
plot(Z)

plot(quadrats(letterR, 5, 7))

quadscheme Generate a Quadrature Scheme from a Point Pattern

Description

Generates a quadrature scheme (an object of class "quad”) from point patterns of data and dummy

points.
Usage
quadscheme(data, dummy, method="grid"”, ...)
Arguments
data The observed data point pattern. An object of class "ppp"” or in a format recog-
nised by as.ppp()
dummy The pattern of dummy points for the quadrature. An object of class "ppp"” or in
a format recognised by as.ppp() Defaults to default.dummy(data, ...)
method The name of the method for calculating quadrature weights: either "grid” or
"dirichlet".
Parameters of the weighting method (see below) and parameters for constructing
the dummy points if necessary.
Details

This is the primary method for producing a quadrature schemes for use by ppm.

The function ppm fits a point process model to an observed point pattern using the Berman-Turner
quadrature approximation (Berman and Turner, 1992; Baddeley and Turner, 2000) to the pseudo-
likelihood of the model. It requires a quadrature scheme consisting of the original data point pattern,
an additional pattern of dummy points, and a vector of quadrature weights for all these points. Such
quadrature schemes are represented by objects of class "quad”. See quad.object for a description
of this class.

Quadrature schemes are created by the function quadscheme. The arguments data and dummy
specify the data and dummy points, respectively. There is a sensible default for the dummy points
(provided by default.dummy). Alternatively the dummy points may be specified arbitrarily and
given in any format recognised by as.ppp. There are also functions for creating dummy patterns
including corners, gridcentres, stratrand and spokes.

The quadrature region is the region over which we are integrating, and approximating integrals by
finite sums. If dummy is a point pattern object (class "ppp") then the quadrature region is taken to

quadscheme 511

be Window(dummy). If dummy is just a list of x, y coordinates then the quadrature region defaults to
the observation window of the data pattern, Window(data).

If dummy is missing, then a pattern of dummy points will be generated using default.dummy, taking
account of the optional arguments By default, the dummy points are arranged in a rectangular
grid; recognised arguments include nd (the number of grid points in the horizontal and vertical
directions) and eps (the spacing between dummy points). If random=TRUE, a systematic random
pattern of dummy points is generated instead. See default.dummy for details.

If method = "grid" then the optional arguments (for . ..) are (nd, ntile, eps). The quadrature
region (defined above) is divided into an ntile[1] by ntile[2] grid of rectangular tiles. The
weight for each quadrature point is the area of a tile divided by the number of quadrature points in
that tile.

If method="dirichlet"” then the optional arguments are (exact=TRUE, nd, eps). The quadrature
points (both data and dummy) are used to construct the Dirichlet tessellation. The quadrature weight
of each point is the area of its Dirichlet tile inside the quadrature region. If exact == TRUE then this
area is computed exactly using the package deldir; otherwise it is computed approximately by
discretisation.

Value

An object of class "quad” describing the quadrature scheme (data points, dummy points, and
quadrature weights) suitable as the argument Q of the function ppm() for fitting a point process
model.

The quadrature scheme can be inspected using the print and plot methods for objects of class
”quad”.

Error Messages

The following error messages need some explanation. (See also the list of error messages in
ppm. ppp).

“Some tiles with positive area do not contain any quadrature points: relative error = X%” This
is not important unless the relative error is large. In the default rule for computing the quadra-
ture weights, space is divided into rectangular tiles, and the number of quadrature points (data
and dummy points) in each tile is counted. It is possible for a tile with non-zero area to contain
no quadrature points; in this case, the quadrature scheme will contribute a bias to the model-
fitting procedure. A small relative error (less than 2 percent) is not important. Relative
errors of a few percent can occur because of the shape of the window. If the relative error
is greater than about 5 percent, we recommend trying different parameters for the quadra-
ture scheme, perhaps setting a larger value of nd to increase the number of dummy points.
A relative error greater than 10 percent indicates a major problem with the input data. The
quadrature scheme should be inspected by plotting and printing it. (The most likely cause of
this problem is that the spatial coordinates of the original data were not handled correctly, for
example, coordinates of the locations and the window boundary were incompatible.)

“Some tiles with zero area contain quadrature points” This error message is rare, and has no
consequences. It is mainly of interest to programmers. It occurs when the area of a tile is
calculated to be equal to zero, but a quadrature point has been placed in the tile.

512 quadscheme.logi

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283-322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31-38.

See Also

ppm, as.ppp, quad.object, gridweights, dirichletWeights, corners, gridcentres, stratrand,
spokes

Examples

grid weights

Q <- quadscheme(simdat)

Q <- quadscheme(simdat, method="grid")

Q <- quadscheme(simdat, eps=0.5) # dummy point spacing 0.5 units

Q <- quadscheme(simdat, nd=50) # 1 dummy point per tile
Q <- quadscheme(simdat, ntile=25, nd=50) # 4 dummy points per tile

Dirichlet weights
Q <- quadscheme(simdat, method="dirichlet”, exact=FALSE)

random dummy pattern
D <- runifrect(250, Window(simdat))
Q <- quadscheme(simdat, D, method="dirichlet"”, exact=FALSE)

polygonal window
data(demopat)

X <- unmark(demopat)
Q <- quadscheme(X)

mask window
Window(X) <- as.mask(Window(X))
Q <- quadscheme(X)

quadscheme.logi Generate a Logistic Regression Quadrature Scheme from a Point Pat-
tern

Description

Generates a logistic regression quadrature scheme (an object of class "logiquad"” inheriting from
"quad") from point patterns of data and dummy points.

quadscheme.logi 513

Usage

quadscheme.logi(data, dummy, dummytype = "stratrand”,

nd = NULL, mark.repeat = FALSE, ...)
Arguments
data The observed data point pattern. An object of class "ppp” or in a format recog-
nised by as.ppp()
dummy The pattern of dummy points for the quadrature. An object of class "ppp” or in
a format recognised by as.ppp(). If missing a sensible default is generated.
dummytype The name of the type of dummy points to use when "dummy” is missing. Cur-
rently available options are: "stratrand” (default), "binomial”, "poisson”,
"grid" and "transgrid”.
nd Integer, or integer vector of length 2 controlling the intensity of dummy points
when "dummy” is missing.
mark.repeat Repeating the dummy points for each level of a marked data pattern when
"dummy” is missing. (See details.)
Ignored.
Details

This is the primary method for producing a quadrature schemes for use by ppm when the logistic
regression approximation (Baddeley et al. 2013) to the pseudolikelihood of the model is applied
(i.e. when method="1ogi" in ppm).

The function ppm fits a point process model to an observed point pattern. When used with the option
method="logi" it requires a quadrature scheme consisting of the original data point pattern and an
additional pattern of dummy points. Such quadrature schemes are represented by objects of class
"logiquad”.

Quadrature schemes are created by the function quadscheme. logi. The arguments data and dummy
specify the data and dummy points, respectively. There is a sensible default for the dummy points.
Alternatively the dummy points may be specified arbitrarily and given in any format recognised by
as. ppp.

The quadrature region is the region over which we are integrating, and approximating integrals by
finite sums. If dummy is a point pattern object (class "ppp”) then the quadrature region is taken to
be Window(dummy). If dummy is just a list of x, y coordinates then the quadrature region defaults to
the observation window of the data pattern, Window(data).

If dummy is missing, then a pattern of dummy points will be generated, taking account of the optional
arguments dummytype, nd, and mark.repeat.

The currently accepted values for dummytype are:
e "grid"” where the frame of the window is divided into a nd * nd or nd[1] * nd[2] regular
grid of tiles and the centers constitutes the dummy points.
e "transgrid” where a regular grid as above is translated by a random vector.

e "stratrand” where each point of a regular grid as above is randomly translated within its
tile.

514 quantess

* "binomial” where nd * nd or nd[1] * nd[2] points are generated uniformly in the frame of
the window. "poisson” where a homogeneous Poisson point process with intensity nd * nd
or nd[1] * nd[2] is generated within the frame of observation window.

Then if the window is not rectangular, any dummy points lying outside it are deleted.

If data is a multitype point pattern the dummy points should also be marked (with the same levels of
the marks as data). If dummy is missing and the dummy pattern is generated by quadscheme. logi
the default behaviour is to attach a uniformly distributed mark (from the levels of the marks) to each
dummy point. Alternatively, if mark.repeat=TRUE each dummy point is repeated as many times as
there are levels of the marks with a distinct mark value attached to it.

Finally, each point (data and dummy) is assigned the weight 1. The weights are never used and only
appear to be compatible with the class "quad” from which the "logiquad” object inherits.

Value

An object of class "logiquad” inheriting from "quad” describing the quadrature scheme (data
points, dummy points, and quadrature weights) suitable as the argument Q of the function ppm() for
fitting a point process model.

The quadrature scheme can be inspected using the print and plot methods for objects of class
llquadll-

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377-392.

See Also

ppm, as.ppp

Examples

Q <- quadscheme.logi(simdat)

guantess Quantile Tessellation

Description

Divide space into tiles which contain equal amounts of stuff.

quantess 515
Usage
quantess(M, Z, n, ...)

S3 method for class 'owin'
quantess(M, Z, n, ..., type=2, origin=c(0,0), eps=NULL)

S3 method for class 'ppp'
quantess(M, Z, n, ..., type=2, origin=c(0,0), eps=NULL)

S3 method for class 'im'

quantess(M, Z, n, ..., type=2, origin=c(0,0))
Arguments
M A spatial object (such as a window, point pattern or pixel image) determining

the weight or amount of stuff at each location.

Z A spatial covariate (a pixel image or a function(x,y)) or one of the strings "x"
or "y" indicating the Cartesian coordinates x or y, or one of the strings "rad"
or "ang” indicating polar coordinates. The range of values of Z will be broken

into n bands containing equal amounts of stuff.
n Number of bands. A positive integer.
type Integer specifying the rule for calculating quantiles. Passed to quantile.default.

Additional arguments passed to quadrats or tess defining another tessellation
which should be intersected with the quantile tessellation.

—n

origin Location of the origin of polar coordinates, if Z="rad"” or Z="ang". Either a
numeric vector of length 2 giving the location, or a point pattern containing only
one point, or a list with two entries named x and y, or one of the character strings
"centroid”, "midpoint”, "left"”, "right”, "top"”, "bottom”, "topleft”,
"bottomleft”, "topright” or "bottomright” (partially matched).

eps Optional. The size of pixels in the approximation which is used to compute the
quantiles. A positive numeric value, or vector of two positive numeric values.

Details

A quantile tessellation is a division of space into pieces which contain equal amounts of stuff.

The function quantess computes a quantile tessellation and returns the tessellation itself. The
function quantess is generic, with methods for windows (class "owin"), point patterns ("ppp")
and pixel images ("im").

The first argument M (for mass) specifies the spatial distribution of stuff that is to be divided. If M
is a window, the area of the window is to be divided into n equal pieces. If M is a point pattern, the
number of points in the pattern is to be divided into n equal parts, as far as possible. If M is a pixel
image, the pixel values are interpreted as weights, and the rofal weight is to be divided into n equal
parts.

The second argument Z is a spatial covariate. The range of values of Z will be divided into n bands,
each containing the same total weight. That is, we determine the quantiles of Z with weights given
by M.

516 quantile.im

For convenience, additional arguments ... can be given, to further subdivide the tiles of the tes-
sellation. These arguments should be recognised by one of the functions quadrats or tess. The
tessellation determined by these arguments is intersected with the quantile tessellation.

The result of quantess is a tessellation of as.owin(M) determined by the quantiles of Z.

Value

A tessellation (object of class "tess").

Author(s)
Original idea by Ute Hahn. Implemented in spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

See Also

tess, quadrats, quantile, tilenames

Examples

plot(quantess(letterR, "x", 5))

plot(quantess(bronzefilter, "x", 6))
points(unmark(bronzefilter))

plot(quantess(letterR, "rad”, 7, origin=c(2.8, 1.5)))
plot(quantess(letterR, "ang", 7, origin=c(2.8, 1.5)))

opa <- par(mar=c(0,90,2,5))
A <- quantess(Window(bei), bei.extras$elev, 4)
plot(A, ribargs=list(las=1))

B <- quantess(bei, bei.extra$elev, 4)
tilenames(B) <- paste(spatstat.utils::ordinal(1:4), "quartile")
plot(B, ribargs=list(las=1))

points(bei, pch=".", cex=2, col="white")
par(opa)
quantile.im Sample Quantiles of Pixel Image
Description

Compute the sample quantiles of the pixel values of a given pixel image.

Usage

S3 method for class 'im'
quantile(x, ...)

quantilefun.im 517

Arguments
X A pixel image. An object of class "im".
Optional arguments passed to quantile.default. They determine the proba-
bilities for which quantiles should be computed. See quantile.default.
Details

This simple function applies the generic quantile operation to the pixel values of the image x.

This function is a convenient way to inspect an image and to obtain summary statistics. See the
examples.
Value

A vector of quantiles.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

quantile, cut.im, im.object

Examples

artificial image data
Z <- setcov(square(1))

find the quartiles
quantile(Z)

find the deciles
quantile(Z, probs=(0:10)/10)

quantilefun.im Quantile Function for Images

Description

Return the inverse function of the cumulative distribution function of pixel values in an image.

Usage

S3 method for class 'im'
quantilefun(x, ..., type=1)

518 quantilefun.im

Arguments
X Pixel image (object of class "im").
Other arguments passed to methods.
type Integer specifying the type of quantiles, as explained in quantile.default.
Only types 1 and 2 are currently implemented.
Details

Whereas the command quantile calculates the quantiles of a dataset corresponding to desired
probabilities p, the command quantilefun returns a function which can be used to compute any
quantiles of the dataset.

If f <- quantilefun(x) then f is a function such that f(p) is the quantile associated with any
given probability p. For example f(@.5) is the median of the original data, and f(@.99) is the 99th
percentile of the original data.

If x is a pixel image (object of class "im") then the pixel values of x will be extracted and the
quantile function of the pixel values is constructed.

Value

A function in the R language.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

quantilefun, ewcdf, quantile.ewcdf, ecdf, quantile

Examples

image data: terrain elevation
Z <- bei.extra$elev
if(require(spatstat.explore)) {
FE <- spatialcdf(Z, normalise=TRUE)
} else {
FE <- ecdf(zZ[1)
3
QE <- quantilefun(FE)
QE(Q.5) # median elevation
if(interactive()) plot(QE, xlim=c(0,1),
xlab="probability"”, ylab="quantile of elevation")

quasirandom 519

quasirandom Quasirandom Patterns

Description

Generates quasirandom sequences of numbers and quasirandom spatial patterns of points in any
dimension.

Usage
vdCorput(n, base)
Halton(n, bases = c(2, 3), raw = FALSE, simplify = TRUE)

Hammersley(n, bases = 2, raw = FALSE, simplify = TRUE)

Arguments
n Number of points to generate.
base A prime number giving the base of the sequence.
bases Vector of prime numbers giving the bases of the sequences for each coordinate
axis.
raw Logical value indicating whether to return the coordinates as a matrix (raw=TRUE)
or as a spatial point pattern (raw=FALSE, the default).
simplify Argument passed to ppx indicating whether point patterns of dimension 2 or 3
should be returned as objects of class "ppp” or "pp3” respectively (simplify=TRUE,
the default) or as objects of class "ppx" (simplify=FALSE).
Details

The function vdCorput generates the quasirandom sequence of Van der Corput (1935) of length
n with the given base. These are numbers between 0 and 1 which are in some sense uniformly
distributed over the interval.

The function Halton generates the Halton quasirandom sequence of points in d-dimensional space,
where d = length(bases). The values of the i-th coordinate of the points are generated using the
van der Corput sequence with base equal to bases[i].

The function Hammersley generates the Hammersley set of points in d+1-dimensional space, where
d = length(bases). The first d coordinates of the points are generated using the van der Corput
sequence with base equal to bases[i]. The d+1-th coordinate is the sequence 1/n, 2/n, ..., 1.

If raw=FALSE (the default) then the Halton and Hammersley sets are interpreted as spatial point pat-
terns of the appropriate dimension. They are returned as objects of class "ppx" (multidimensional
point patterns) unless simplify=TRUE and d=2 or d=3 when they are returned as objects of class
"ppp” or "pp3". If raw=TRUE, the coordinates are returned as a matrix with n rows and D columns
where D is the spatial dimension.

520 raster.x

Value

For vdCorput, a numeric vector.

n on

For Halton and Hammersley, an object of class "ppp”, "pp3" or "ppx"; or if raw=TRUE, a numeric
matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Van der Corput, J. G. (1935) Verteilungsfunktionen. Proc. Ned. Akad. v. Wetensch. 38: 813-821.

Kuipers, L. and Niederreiter, H. (2005) Uniform distribution of sequences, Dover Publications.

See Also

rQuasi
Examples
vdCorput(10, 2)
plot(Halton(256, c(2,3)))

plot(Hammersley (256, 3))

raster.x Cartesian Coordinates for a Pixel Raster

Description

Return the z and y coordinates of each pixel in a pixel image or binary mask.

Usage

raster.x(w, drop=FALSE)
raster.y(w, drop=FALSE)
raster.xy(w, drop=FALSE)

Arguments
w A pixel image (object of class "im") or a mask window (object of class "owin”
of type "mask").
drop Logical. If TRUE, then coordinates of pixels that lie outside the window are

removed. If FALSE (the default) then the coordinates of every pixel in the con-
taining rectangle are retained.

raster.x 521

Details

The argument w should be either a pixel image (object of class "im") or a mask window (an object
of class "owin" of type "mask").

If drop=FALSE (the default), the functions raster.x and raster.y return a matrix of the same
dimensions as the pixel image or mask itself, with entries giving the x coordinate (for raster.x)
or y coordinate (for raster.y) of each pixel in the pixel grid.

If drop=TRUE, pixels that lie outside the window w (or outside the domain of the image w) are
removed, and raster.x and raster.y return numeric vectors containing the coordinates of the
pixels that are inside the window w.

The function raster.xy returns a list with components x and y which are numeric vectors of equal
length containing the pixel coordinates.

Value

raster.xy returns a list with components x and y which are numeric vectors of equal length con-
taining the pixel coordinates.

If drop=FALSE, raster.x and raster.y return a matrix of the same dimensions as the pixel grid
in w, and giving the value of the x (or y) coordinate of each pixel in the raster.

If drop=TRUE, raster.x and raster.y return numeric vectors.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

owin, as.mask, pixelcentres

Examples

u <- owin(c(-1,1),c(-1,1)) # square of side 2

w <- as.mask(u, eps=0.01) # 200 x 200 grid

X <- raster.x(w)

Y <- raster.y(w)

disc <- owin(c(-1,1), c(-1,1), mask=(X*2 + Y*2 <= 1))
plot(disc)

approximation to the unit disc

522 rectdistmap

rectdistmap Distance Map Using Rectangular Distance Metric

Description

Computes the distance map of a spatial region based on the rectangular distance metric.

Usage

rectdistmap(X, asp = 1, npasses=1, verbose=FALSE)

Arguments

X A window (object of class "owin").

asp Aspect ratio for the metric. See Details.

npasses Experimental.

verbose Logical value indicating whether to print trace information.
Details

This function computes the distance map of the spatial region X using the rectangular distance metric
with aspect ratio asp. This metric is defined so that the set of all points lying at most 1 unit away
from the origin (according to the metric) form a rectangle of width 1 and height asp.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

distmap

Examples

V <- letterR
Frame(V) <- grow.rectangle(Frame(V), 0.5)
plot(rectdistmap(V))

reflect 523
reflect Reflect In Origin
Description
Reflects a geometrical object through the origin.
Usage
reflect(X)
S3 method for class 'im'
reflect(X)
Default S3 method:
reflect(X)
Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").
Details

The object X is reflected through the origin. That is, each point in X with coordinates (x,y) is

mapped to the position (—z, —y).

This is equivalent to applying the affine transformation with matrix diag(c(-1,-1)). It is also

equivalent to rotation about the origin by 180 degrees.

The command reflect is generic, with a method for pixel images and a default method.

Value

Another object of the same type, representing the result of reflection.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

affine, flipxy

Examples

plot(reflect(as.im(letterR)))
plot(reflect(letterR), add=TRUE)

524 regularpolygon

regularpolygon Create A Regular Polygon

Description

Create a window object representing a regular (equal-sided) polygon.

Usage
regularpolygon(n, edge = 1, centre = c(0, @), ...,
align = c("bottom”, "top”, "left”, "right”, "no"))

hexagon(edge = 1, centre = ¢c(0,0), ...,
align = c("bottom”, "top”, "left”, "right”, "no"))

Arguments
n Number of edges in the polygon.
edge Length of each edge in the polygon. A single positive number.
centre Coordinates of the centre of the polygon. A numeric vector of length 2, or a
list(x,y) giving the coordinates of exactly one point, or a point pattern (object
of class "ppp") containing exactly one point.
align Character string specifying whether to align one of the edges with a vertical or
horizontal boundary.
Ignored.
Details

The function regularpolygon creates a regular (equal-sided) polygon with n sides, centred at
centre, with sides of equal length edge. The function hexagon is the special case n=6.

The orientation of the polygon is determined by the argument align. If align="no", one vertex of
the polygon is placed on the x-axis. Otherwise, an edge of the polygon is aligned with one side of
the frame, specified by the value of align.

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

disc, ellipse, owin.

hextess for hexagonal tessellations.

relevel.im 525

Examples

plot(hexagon())
plot(regularpolygon(7))
plot(regularpolygon(7, align="left"))

relevel.im Reorder Levels of a Factor-Valued Image or Pattern

Description

For a pixel image with factor values, or a point pattern with factor-valued marks, the levels of the
factor are re-ordered so that the level ref is first and the others are moved down.

Usage

S3 method for class 'im'
relevel(x, ref, ...)

S3 method for class 'ppp'
relevel(x, ref, ...)

S3 method for class 'ppx'

relevel(x, ref, ...)
Arguments
X A pixel image (object of class "im") with factor values, or a point pattern (object
of class "ppp”, "ppx", "1pp"” or "pp3") with factor-valued marks.
ref The reference level.
Ignored.
Details

These functions are methods for the generic relevel.

If x is a pixel image (object of class "im") with factor values, or a point pattern (object of class

n o on

"ppp”, "ppx", "1pp" or "pp3") with factor-valued marks, the levels of the factor are changed so
that the level specified by ref comes first.

Value

Object of the same kind as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

526

See Also

mergelLevels

Examples

amacrine
relevel(amacrine,

Replace.im

”

on”)

Replace.im

Reset Values in Subset of Image

Description

Reset the values in a subset of a pixel image.

Usage

S3 replacement method for class 'im

xti, 3,

Arguments

X

i

drop

value

Details

., drop=TRUE] <- value

A two-dimensional pixel image. An object of class "im".

Object defining the subregion or subset to be replaced. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or a point
pattern (an object of class "ppp"), or any type of index that applies to a matrix, or
something that can be converted to a point pattern by as. ppp (using the window
of x).

An integer or logical vector serving as the column index if matrix indexing is
being used. Ignored if i is appropriate to some sort of replacement other than
matrix indexing.

Ignored.

Logical value specifying what happens when i and j are both missing. See
Details.

Vector, matrix, factor or pixel image containing the replacement values. Short
vectors will be recycled.

This function changes some of the pixel values in a pixel image. The image x must be an object
of class "im" representing a pixel image defined inside a rectangle in two-dimensional space (see

im.object).

The subset to be changed is determined by the arguments i, j according to the following rules
(which are checked in this order):

1. i is a spatial object such as a window, a pixel image with logical values, or a point pattern; or

Replace.im 527

2. i, j are indices for the matrix as.matrix(x); or

3. i can be converted to a point pattern by as.ppp(i, W=Window(x)), and i is not a matrix.
If i is a spatial window (an object of class "owin"), the values of the image inside this window are
changed.

If i is a point pattern (an object of class "ppp"), then the values of the pixel image at the points of
this pattern are changed.

If i does not satisfy any of the conditions above, then the algorithm tries to interpret i, j as indices
for the matrix as.matrix(x). Either i or j may be missing or blank.

If none of the conditions above are met, and if i is not a matrix, then i is converted into a point
pattern by as.ppp(i, W=Window(x)). Again the values of the pixel image at the points of this
pattern are changed.

If i and j are both missing, as in the call x[] <- value, then all pixel values in x are replaced by
value:

o If drop=TRUE (the default), then this replacement applies only to pixels whose values are
currently defined (i.e. where the current pixel value is not NA). If value is a vector, then its
length must equal the number of pixels whose values are currently defined.

 If drop=FALSE then the replacement applies to all pixels inside the rectangle Frame(x). If
value is a vector, then its length must equal the number of pixels in the entire rectangle.
Value

The image x with the values replaced.

Warning
If you have a 2-column matrix containing the x,y coordinates of point locations, then to prevent
this being interpreted as an array index, you should convert it to a data. frame or to a point pattern.
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.
See Also

im.object, [.im, [, ppp.object, as.ppp, owin.object

Examples

make up an image
X <- setcov(unit.square())
plot(X)

a rectangular subset

W <- owin(c(0,0.5),c(0.2,0.8))
X[W] <- 2

plot(X)

528 requireversion

a polygonal subset

R <- affine(letterR, diag(c(1,1)/2), c(-2,-0.7))
X[R] <- 3

plot(X)

a point pattern
X[cells] <- 10
plot(X)

change pixel value at a specific location
X[list(x=0.1,y=0.2)] <- 7

matrix indexing --- single vector index
X[1:2570] <- 10
plot(X)

matrix indexing using double indices
X[1:257,1:10] <- 5
plot(X)

matrix indexing using a matrix of indices
X[cbind(1:257,1:257)] <- 10
X[cbind(257:1,1:257)] <- 10

plot(X)

Blank indices

Y <- as.im(letterR)

plot(Y)

Y[] <- 42 # replace values only inside the window 'R’
plot(Y)

Y[drop=FALSE] <- 7 # replace all values in the rectangle
plot(Y)

Z <- as.im(letterR)
Z[] <- raster.x(Z, drop=TRUE) # excludes NA

plot(Z)
Z[drop=FALSE] <- raster.y(Z, drop=FALSE) # includes NA
plot(Z)
requireversion Require a Specific Version of a Package
Description

Checks that the version number of a specified package is greater than or equal to the specified
version number. For use in stand-alone R scripts.

Usage

requireversion(pkg, ver, fatal=TRUE)

rescale 529

Arguments
pkg Package name.
ver Character string containing version number.
fatal Logical value indicating whether an error should occur when the package ver-
sion is less than ver.
Details

This function checks whether the installed version of the package pkg is greater than or equal to
ver. By default, an error occurs if this condition is not met.

It is useful in stand-alone R scripts, which often require a particular version of a package in order
to work correctly.

This function should not be used inside a package: for that purpose, the dependence on packages
and versions should be specified in the package description file.
Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

requireversion(spatstat.geom, "1.42-0")
requireversion(spatstat.data, "999.999-999", fatal=FALSE)

rescale Convert dataset to another unit of length

Description

Converts between different units of length in a spatial dataset, such as a point pattern or a window.

Usage

rescale(X, s, unitname)

Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").
S Conversion factor: the new units are s times the old units.

unitname Optional. New name for the unit of length. See unitname.

530 rescale.im

Details

This is generic. Methods are provided for many spatial objects.

The spatial coordinates in the dataset X will be re-expressed in terms of a new unit of length that is
s times the current unit of length given in X. The name of the unit of length will also be adjusted.
The result is an object of the same type, representing the same data, but expressed in the new units.

For example if X is a dataset giving coordinates in metres, then rescale(X, 1000) will take the new
unit of length to be 1000 metres. To do this, it will divide the old coordinate values by 1000 to obtain
coordinates expressed in kilometres, and change the name of the unit of length from "metres” to
"1000 metres”.

If unitname is given, it will be taken as the new name of the unit of length. It should be a valid
name for the unit of length, as described in the help for unitname. For example if X is a dataset
giving coordinates in metres, rescale(X, 1000, "km") will divide the coordinate values by 1000
to obtain coordinates in kilometres, and the unit name will be changed to "km".

Value

Another object of the same type, representing the same data, but expressed in the new units.

Note

The result of this operation is equivalent to the original dataset. If you want to actually change the
coordinates by a linear transformation, producing a dataset that is not equivalent to the original one,
use affine.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Available methods: rescale.im, rescale.layered, rescale.owin, rescale.ppp, rescale.psp
and rescale.unitname.

Other generics: unitname, affine, rotate, shift.

rescale.im Convert Pixel Image to Another Unit of Length

Description

Converts a pixel image to another unit of length.

Usage

S3 method for class 'im'
rescale(X, s, unitname)

rescale.im 531

Arguments
X Pixel image (object of class "im").
s Conversion factor: the new units are s times the old units.
unitname Optional. New name for the unit of length. See unitname.
Details

This is a method for the generic function rescale.

The spatial coordinates of the pixels in X will be re-expressed in terms of a new unit of length that
is s times the current unit of length given in X. (Thus, the coordinate values are divided by s, while
the unit value is multiplied by s).

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

The result is a pixel image representing the same data but re-expressed in a different unit.

Pixel values are unchanged. This may not be what you intended!

Value

Another pixel image (of class "im"), containing the same pixel values, but with pixel coordinates
expressed in the new units.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

im, rescale, unitname, eval.im

Examples

Bramble Canes data: 1 unit = 9 metres
bramblecanes

distance transform
Z <- distmap(bramblecanes)

convert to metres

first alter the pixel values
Zm <- eval.im(9 * Z)

now rescale the pixel coordinates
Z <- rescale(Zm, 1/9)

or equivalently
Z <- rescale(Zm)

532 rescale.owin

rescale.owin Convert Window to Another Unit of Length

Description

Converts a window to another unit of length.

Usage

S3 method for class 'owin'
rescale(X, s, unitname)

Arguments
X Window (object of class "owin").
s Conversion factor: the new units are s times the old units.
unitname Optional. New name for the unit of length. See unitname.
Details

This is a method for the generic function rescale.

The spatial coordinates in the window X (and its window) will be re-expressed in terms of a new
unit of length that is s times the current unit of length given in X. (Thus, the coordinate values are
divided by s, while the unit value is multiplied by s).

The result is a window representing the same region of space, but re-expressed in a different unit.

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.
Value

Another window object (of class "owin") representing the same window, but expressed in the new
units.

Note

The result of this operation is equivalent to the original window. If you want to actually change
the coordinates by a linear transformation, producing a window that is larger or smaller than the
original one, use affine.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

unitname, rescale, rescale.owin, affine, rotate, shift

rescale.ppp 533

Examples

W <- Window(swedishpines)

W
coordinates are in decimetres (0.1 metre)
convert to metres:

rescale(W, 10)
or equivalently

rescale(W)

rescale.ppp Convert Point Pattern to Another Unit of Length

Description

Converts a point pattern dataset to another unit of length.

Usage

S3 method for class 'ppp'
rescale(X, s, unitname)

Arguments
X Point pattern (object of class "ppp").
s Conversion factor: the new units are s times the old units.
unitname Optional. New name for the unit of length. See unitname.
Details

This is a method for the generic function rescale.

The spatial coordinates in the point pattern X (and its window) will be re-expressed in terms of a
new unit of length that is s times the current unit of length given in X. (Thus, the coordinate values
are divided by s, while the unit value is multiplied by s).

The result is a point pattern representing the same data but re-expressed in a different unit.
Mark values are unchanged.

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

Value

Another point pattern (of class "ppp"), representing the same data, but expressed in the new units.

Note

The result of this operation is equivalent to the original point pattern. If you want to actually change
the coordinates by a linear transformation, producing a point pattern that is not equivalent to the
original one, use affine.

534 rescale.psp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

unitname, rescale, rescale.owin, affine, rotate, shift

Examples

Bramble Canes data: 1 unit = 9 metres
convert to metres

bram <- rescale(bramblecanes, 1/9)
or equivalently

bram <- rescale(bramblecanes)

rescale.psp Convert Line Segment Pattern to Another Unit of Length

Description

Converts a line segment pattern dataset to another unit of length.

Usage

S3 method for class 'psp'
rescale(X, s, unitname)

Arguments
X Line segment pattern (object of class "psp").
s Conversion factor: the new units are s times the old units.
unitname Optional. New name for the unit of length. See unitname.
Details

This is a method for the generic function rescale.

The spatial coordinates in the line segment pattern X (and its window) will be re-expressed in terms
of a new unit of length that is s times the current unit of length given in X. (Thus, the coordinate
values are divided by s, while the unit value is multiplied by s).

The result is a line segment pattern representing the same data but re-expressed in a different unit.
Mark values are unchanged.

If s is missing, then the coordinates will be re-expressed in ‘native’ units; for example if the current
unit is equal to 0.1 metres, then the coordinates will be re-expressed in metres.

rescue.rectangle 535

Value
Another line segment pattern (of class "psp"), representing the same data, but expressed in the new
units.

Note

The result of this operation is equivalent to the original segment pattern. If you want to actually
change the coordinates by a linear transformation, producing a segment pattern that is not equivalent
to the original one, use affine.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

units, affine, rotate, shift

Examples

X <- copper$Lines
X

data are in km

convert to metres
rescale(X, 1/1000)

convert data and rename unit
rescale(X, 1/1000, c("metre”, "metres”))

rescue.rectangle Convert Window Back To Rectangle

Description
Determines whether the given window is really a rectangle aligned with the coordinate axes, and if
0, converts it to a rectangle object.

Usage

rescue.rectangle(W)

Arguments

W A window (object of class "owin").

536 restrict.colourmap

Details

This function decides whether the window W is actually a rectangle aligned with the coordinate axes.
This will be true if W is

* arectangle (window object of type "rectangle”);

* a polygon (window object of type "polygonal” with a single polygonal boundary) that is a
rectangle aligned with the coordinate axes;

* a binary mask (window object of type "mask") in which all the pixel entries are TRUE.

If so, the function returns this rectangle, a window object of type "rectangle”. If not, the function
returns W.

Value

Another object of class "owin" representing the same window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

as.owin, owin.object

Examples

w <- owin(poly=list(x=c(0,1,1,0),y=c(0,0,1,1)))
rw <- rescue.rectangle(w)

w <- as.mask(unit.square())
rw <- rescue.rectangle(w)

restrict.colourmap Restrict a Colour Map to a Subset of Values

Description

Given a colour map defined on a range of numerical values or a set of discrete inputs, the command
restricts the range of values to a narrower range, or restricts the set of inputs to a subset, and returns
the associated colour map.

Usage

restrict.colourmap(x, ..., range = NULL, breaks = NULL, inputs = NULL)

rev.colourmap

Arguments

X

range

breaks

inputs

Details

537

Colour map (object of class "colourmap”).
Ignored.

New, restricted range of numerical values to which the colour map will apply.
A numeric vector of length 2 giving the minimum and maximum values of the
input. Incompatible with breaks and inputs.

Vector of breakpoints for the new colour map. A numeric vector with increasing
entries. Incompatible with range and inputs.

Values accepted as inputs for the new colour map. A factor or vector. Incompat-
ible with breaks and range.

This command produces a new colour map y which is consistent with the original colour map x,
except that y is defined on a narrower interval of numeric values, or a smaller set of discrete input

values, than x.

Value

Colour map (object of class "colourmap”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

colourmap

Examples

plot(a <- colourmap(topo.colors(128), range=c(-1,1)))
plot(b <- restrict.colourmap(a, range=c(@,1)))

rev.colourmap

Reverse the Colours in a Colour Map

Description

Reverse the sequence of colour values in a colour map.

Usage

S3 method for class 'colourmap'

rev(x)

538 rexplode

Arguments

X A colour map (object of class "colourmap”).

Details

This is a method for the generic rev for the class of colour maps.

The sequence of colour values in the colour map will be reversed, without changing any other
details.

Value

A colour map (object of class "colourmap”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

colourmap, colouroutputs

Examples

co <- colourmap(rainbow(100), range=c(-1,1))
opa <- par(mfrow=c(1,2))

plot(co, vertical=TRUE)

plot(rev(co), vertical=TRUE)

par(opa)

rexplode Explode a Point Pattern by Displacing Duplicated Points

Description

Given a point pattern which contains duplicated points, separate the duplicated points from each
other by slightly perturbing their positions.

Usage
rexplode(X, ...)

S3 method for class 'ppp'
rexplode(X, radius, ..., nsim = 1, drop = TRUE)

rexplode 539

Arguments
X A point pattern (object of class "ppp").
radius Scale of perturbations. A positive numerical value. The displacement vectors
will be uniformly distributed in a circle of this radius. There is a sensible default.
Alternatively, radius may be a numeric vector of length equal to the number of
points in X, giving a different displacement radius for each data point. Radii
will be restricted to be less than or equal to the distance to the boundary of the
window.
Ignored.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.
Details

Duplicated points in the point pattern X are identified. Each group of duplicated points is then
‘exploded’ by randomly displacing the point locations to form a circular arrangement around the
original position.

This function is an alternative to rjitter.ppp. Whereas rjitter.ppp applies independent random
displacements to each data point, rexplode.ppp applies displacements only to the points that are
duplicated, and the displacements are mutually dependent within each group of duplicates, to ensure
that the displaced points are visually separated from each other.

First the code ensures that the displacement radius for each data point is less than or equal to the
distance to the boundary of the window. Then each group of duplicated points (or data points with
the same location but possibly different mark values) is taken in turn. The first element of the group
is randomly displaced by a vector uniformly distributed in a circle of radius radius. The remaining
elements of the group are then positioned around the original location, at the same distance from
the orginal location, with equal angular spacing from the first point. The result is that each group of
duplicated points becomes a circular pattern centred around the original location.

Value

A point pattern (an object of class "ppp") or a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

rjitter.ppp

Examples

create a pattern containing duplicated points
X <- runifrect(5) %mark% letters[1:5]
X <= X[rep(1:5, 1 + rpois(5, 2))1]

540 rgbim

explode it
Y <- rexplode(X, 0.05)
display
if(interactive()) {
plot(solist(X=X, 'explode(X)'=Y),

nn

main="", cols=2:6, cex=1.25, leg.side="bottom")
}
rgbim Create Colour-Valued Pixel Image
Description

Creates an object of class "im" representing a two-dimensional pixel image whose pixel values are
colours.

Usage

rgbim(R, G, B, A, maxColorValue=255, autoscale=FALSE)
hsvim(H, S, V, A, autoscale=FALSE)

Arguments
R, G, B Pixel images (objects of class "im") or constants giving the red, green, and blue
components of a colour, respectively.
A Optional. Pixel image or constant value giving the alpha (transparency) compo-

nent of a colour.
maxColorValue Maximum colour channel value for R,G,B, A.

H, S,V Pixel images (objects of class "im") or constants giving the hue, saturation, and
value components of a colour, respectively.

autoscale Logical. If TRUE, input values are automatically rescaled to fit the permitted
range. RGB values are scaled to lie between 0 and maxColorValue. HSV values
are scaled to lie between 0 and 1.

Details

These functions take three pixel images, with real or integer pixel values, and create a single pixel
image whose pixel values are colours recognisable to R.

Some of the arguments may be constant numeric values, but at least one of the arguments must
be a pixel image. The image arguments should be compatible (in array dimension and in spatial
position).

rgbim calls rgb to compute the colours, while hsvim calls hsv. See the help for the relevant function
for more information about the meaning of the colour channels.

ripras 541

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

im.object, rgb, hsv.

See colourtools for additional colour tools.

Examples

create three images with values in [0,1]
<- setcov(owin())

<- eval.im(pmin(1,X))

<- Window(X)

<- as.im(function(x,y){(x+1)/2}, W=M)
<- as.im(function(x,y){(y+1)/2}, W=M)
convert

RGB <- rgbim(X, Y, Z, maxColorValue=1)
HSV <- hsvim(X, Y, Z2)

opa <- par(mfrow=c(1,2))

plot(RGB, valuesAreColours=TRUE)
plot(HSV, valuesAreColours=TRUE)
par(opa)

H N < XX X X

ripras Estimate window from points alone

Description
Given an observed pattern of points, computes the Ripley-Rasson estimate of the spatial domain
from which they came.

Usage

ripras(x, y=NULL, shape="convex", f)

Arguments
X vector of x coordinates of observed points, or a 2-column matrix giving x,y
coordinates, or a list with components x,y giving coordinates (such as a point
pattern object of class "ppp".)
y (optional) vector of y coordinates of observed points, if x is a vector.
shape String indicating the type of window to be estimated: either "convex" or "rectangle”.

f (optional) scaling factor. See Details.

542 ripras

Details

Given an observed pattern of points with coordinates given by x and y, this function computes an
estimate due to Ripley and Rasson (1977) of the spatial domain from which the points came.

The points are assumed to have been generated independently and uniformly distributed inside an
unknown domain D.

If shape="convex" (the default), the domain D is assumed to be a convex set. The maximum like-
lihood estimate of D is the convex hull of the points (computed by convexhull.xy). Analogously
to the problems of estimating the endpoint of a uniform distribution, the MLE is not optimal. Ripley
and Rasson’s estimator is a rescaled copy of the convex hull, centred at the centroid of the convex
hull. The scaling factor is 1/sqrt(1 —m/n) where n is the number of data points and m the number
of vertices of the convex hull. The scaling factor may be overridden using the argument f.

If shape="rectangle”, the domain D is assumed to be a rectangle with sides parallel to the coor-
dinate axes. The maximum likelihood estimate of D is the bounding box of the points (computed
by bounding.box.xy). The Ripley-Rasson estimator is a rescaled copy of the bounding box, with
scaling factor (n 4+ 1)/(n — 1) where n is the number of data points, centred at the centroid of the
bounding box. The scaling factor may be overridden using the argument f.

Value

A window (an object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Ripley, B.D. and Rasson, J.-P. (1977) Finding the edge of a Poisson forest. Journal of Applied
Probability, 14, 483 — 491.

See Also

owin, as.owin, bounding.box.xy, convexhull.xy

Examples

X <= runif(30)

y <= runif(30)

w <- ripras(x,y)

plot(owin(), main="ripras(x,y)")
plot(w, add=TRUE)

points(x,y)

X <- runifrect(15)
plot(X, main="ripras(X)")
plot(ripras(X), add=TRUE)

two points insufficient

rjitter 543

ripras(c(0,1),c(9,0))

triangle
ripras(c(0,1,0.5), c(0,0,1))
three collinear points
ripras(c(0,0,0), c(0,1,2))

rjitter Random Perturbation of a Point Pattern

Description

Applies independent random displacements to each point in a point pattern.

Usage
rjitter(X, ...)
S3 method for class 'ppp'

rjitter(X, radius, retry=TRUE, giveup = 10000, trim=FALSE,
., nsim=1, drop=TRUE, adjust=1)

Arguments

X A point pattern (object of class "ppp").

radius Scale of perturbations. A positive numerical value. The displacement vectors
will be uniformly distributed in a circle of this radius. There is a sensible default.
Alternatively, radius may be a numeric vector of length equal to the number of
points in X, giving a different displacement radius for each data point.

retry What to do when a perturbed point lies outside the window of the original point
pattern. If retry=FALSE, the point will be lost; if retry=TRUE, the algorithm
will try again.

giveup Maximum number of unsuccessful attempts.

trim Logical value. If TRUE, the displacement radius for each data point will be con-
strained to be less than or equal to the distance from the data point to the window
boundary. This ensures that all displaced points will fall inside the window.
Ignored.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

adjust Adjustment factor applied to the radius. A numeric value or numeric vector.

544 rjitter

Details

The function rjitter is generic, with methods for point patterns (described here) and for some
other types of geometrical objects.

Each of the points in the point pattern X is subjected to an independent random displacement. The
displacement vectors are uniformly distributed in a circle of radius radius.

If a displaced point lies outside the window, then if retry=FALSE the point will be lost.

However if retry=TRUE, the algorithm will try again: each time a perturbed point lies outside the
window, the algorithm will reject the perturbed point and generate another proposed perturbation
of the original point, until one lies inside the window, or until giveup unsuccessful attempts have
been made. In the latter case, any unresolved points will be included, without any perturbation. The
return value will always be a point pattern with the same number of points as X.

If trim=TRUE, then the displacement radius for each data point will be constrained to be less than or
equal to the distance from the data point to the window boundary. This ensures that the randomly
displaced points will always fall inside the window; no displaced points will be lost and no retrying
will be required. However, it implies that a point lying exactly on the boundary will never be
perturbed.

If adjust is given, the jittering radius will be multiplied by adjust. This allows the user to specify
that the radius should be a multiple of the default radius.

The resulting point pattern has an attribute "radius” giving the value of radius used. If retry=TRUE,
the resulting point pattern also has an attribute "tries” reporting the maximum number of trials
needed to ensure that all jittered points were inside the window.

Value

The result of rjitter.ppp is a point pattern (an object of class "ppp”) or a list of point patterns.

Each point pattern has attributes "radius” and (if retry=TRUE) "tries".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rexplode

Examples

X <- rsyst(owin(), 10, 10)

Y <- rjitter(X, 0.02)

plot(Y)

Z <- rjitter(X)

U <- rjitter(X, 0.025, trim=TRUE)

rlinegrid 545

rlinegrid Generate grid of parallel lines with random displacement

Description

Generates a grid of parallel lines, equally spaced, inside the specified window.

Usage

rlinegrid(angle = 45, spacing = 0.1, win = owin())

Arguments
angle Common orientation of the lines, in degrees anticlockwise from the x axis.
spacing Spacing between successive lines.
win Window in which to generate the lines. An object of class "owin" or something
acceptable to as.owin.
Details

The grid is randomly displaced from the origin.

Value

A line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

psp, rpoisline

Examples

plot(rlinegrid(30, 0.05))

546 rotate.im

rotate Rotate

Description

Applies a rotation to any two-dimensional object, such as a point pattern or a window.

Usage
rotate(X, ...)
Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").
Data specifying the rotation.
Details

This is generic. Methods are provided for point patterns (rotate. ppp) and windows (rotate.owin).

Value

Another object of the same type, representing the result of rotating X through the specified angle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rotate.ppp, rotate.owin

rotate.im Rotate a Pixel Image

Description

Rotates a pixel image

Usage

S3 method for class 'im'
rotate(X, angle=pi/2, ..., centre=NULL)

rotate.infline

Arguments

X

angle

centre

Details

547

A pixel image (object of class "im").
Angle of rotation, in radians.
Ignored.

Centre of rotation. FEither a vector of length 2, or a character string (partially
matched to "centroid”, "midpoint” or "bottomleft”). The default is the
coordinate origin c(0,0).

The image is rotated by the angle specified. Angles are measured in radians, anticlockwise. The
default is to rotate the image 90 degrees anticlockwise.

Value

Another object of class "im" representing the rotated pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

affine.im, shift.im, rotate

Examples

Z <- distmap(letterR)

X <- rotate(2)
plot(X)

Y <- rotate(X, centre="midpoint")

rotate.infline

Rotate or Shift Infinite Lines

Description

Given the coordinates of one or more infinite straight lines in the plane, apply a rotation or shift.

548 rotate.infline

Usage

S3 method for class 'infline'
rotate(X, angle = pi/2, ...)

S3 method for class 'infline'
shift(X, vec = c(0,0), ...)

S3 method for class 'infline'
reflect(X)

S3 method for class 'infline'

flipxy(X)
Arguments
X Object of class "infline"” representing one or more infinite straight lines in the
plane.
angle Angle of rotation, in radians.
vec Translation (shift) vector: a numeric vector of length 2, or a 1ist(x,y), or a
point pattern containing one point.
Ignored.
Details

These functions are methods for the generic shift, rotate, reflect and flipxy for the class
"infline".

An object of class "infline" represents one or more infinite lines in the plane.

Value

Another "infline” object representing the result of the transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

infline

Examples

L <- infline(v=0.5)

plot(square(c(-1,1)), main="rotate lines"”, type="n")
points(@, @, pch=3)

plot(L, col="green")

plot(rotate(L, pi/12), col="red")

plot(rotate(L, pi/6), col="red")

rotate.owin 549

plot(rotate(L, pi/4), col="red")
L <- infline(p=c(0.4, 0.9), theta=pix c(0.2, 0.6))

plot(square(c(-1,1)), main="shift lines”, type="n")
L <- infline(p=c(0.7, 0.8), theta=pix c(0.2, 0.6))
plot(L, col="green")

plot(shift(L, c(-0.5, -0.4)), col="red")

plot(square(c(-1,1)), main="reflect lines”, type="n")
points(@, @, pch=3)

L <- infline(p=c(@0.7, 0.8), theta=pix c(0.2, 0.6))
plot(L, col="green")

plot(reflect(L), col="red")

rotate.owin Rotate a Window

Description

Rotates a window

Usage
S3 method for class 'owin'
rotate(X, angle=pi/2, ..., rescue=TRUE, centre=NULL)
Arguments
X A window (object of class "owin").
angle Angle of rotation.
rescue Logical. If TRUE, the rotated window will be processed by rescue.rectangle.

Optional arguments passed to as.mask controlling the resolution of the rotated
window, if X is a binary pixel mask. Ignored if X is not a binary mask.

centre Centre of rotation. FEither a vector of length 2, or a character string (partially
matched to "centroid”, "midpoint” or "bottomleft”). The default is the
coordinate origin c(0,0).

Details

Rotates the window by the specified angle. Angles are measured in radians, anticlockwise. The
default is to rotate the window 90 degrees anticlockwise. The centre of rotation is the origin, by
default, unless centre is specified.

Value

Another object of class "owin" representing the rotated window.

550

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin.object

Examples
w <- owin(c(0,1),c(0,1))
v <- rotate(w, pi/3)
e <- rotate(w, pi/2, centre="midpoint")
plot(v)
w <- as.mask(letterR)
v <- rotate(w, pi/5)

rotate.ppp

rotate.ppp Rotate a Point Pattern

Description

Rotates a point pattern

Usage
S3 method for class 'ppp'
rotate(X, angle=pi/2, ..., centre=NULL)
Arguments
X A point pattern (object of class "ppp").
angle Angle of rotation.

Arguments passed to rotate.owin affecting the handling of the observation

window, if it is a binary pixel mask.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid”, "midpoint” or "bottomleft”). The default is the

coordinate origin c(0,9).

Details

The points of the pattern, and the window of observation, are rotated about the origin by the angle
specified. Angles are measured in radians, anticlockwise. The default is to rotate the pattern 90

degrees anticlockwise. If the points carry marks, these are preserved.

rotate.psp 551

Value

Another object of class "ppp"” representing the rotated point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, rotate.owin

Examples

X <- rotate(cells, pi/3)
plot(X)

rotate.psp Rotate a Line Segment Pattern

Description

Rotates a line segment pattern

Usage
S3 method for class 'psp'
rotate(X, angle=pi/2, ..., centre=NULL)
Arguments
X A line segment pattern (object of class "psp").
angle Angle of rotation.

Arguments passed to rotate.owin affecting the handling of the observation
window, if it is a binary pixel mask.

centre Centre of rotation. Fither a vector of length 2, or a character string (partially
matched to "centroid”, "midpoint” or "bottomleft"”). The default is the
coordinate origin c(0,@).

Details

The line segments of the pattern, and the window of observation, are rotated about the origin by the
angle specified. Angles are measured in radians, anticlockwise. The default is to rotate the pattern
90 degrees anticlockwise. If the line segments carry marks, these are preserved.

Value

Another object of class "psp” representing the rotated line segment pattern.

552 round.ppp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

psp.object, rotate.owin, rotate.ppp

Examples

oldpar <- par(mfrow=c(2,1))

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, main="original")

Y <- rotate(X, pi/4)

plot(Y, main="rotated")

par(oldpar)

round. ppp Apply Numerical Rounding to Spatial Coordinates

Description

Apply numerical rounding to the spatial coordinates of a point pattern.

Usage

S3 method for class 'ppp'
round(x, digits =0, ...)

S3 method for class 'pp3'
round(x, digits = 0, ...)

S3 method for class 'ppx'

round(x, digits =0, ...)

Arguments
X A spatial point pattern in any dimension (object of class "ppp"”, "pp3" or "ppx").
digits integer indicating the number of decimal places.

Additional arguments passed to the default method.

Details

These functions are methods for the generic function round. They apply numerical rounding to the
spatial coordinates of the point pattern x.

rounding.ppp 553

Value

A point pattern object, of the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

rounding. ppp to determine whether numbers have been rounded.

round in the Base package.

Examples

round(cells, 1)

rounding.ppp Detect Numerical Rounding

Description
Given a numeric vector, or an object containing numeric spatial coordinates, determine whether the
values have been rounded to a certain number of decimal places.

Usage

S3 method for class 'ppp'
rounding(x)

S3 method for class 'pp3'
rounding(x)

S3 method for class 'ppx'
rounding(x)
Arguments

X A point pattern (object of class ppp, pp3 or ppx).

Details

The functions documented here are methods for the generic rounding. They determine whether the
coordinates of a spatial object have been rounded to a certain number of decimal places.

* If the coordinates of the points in x are not all integers, then rounding(x) returns the smallest
number of digits d after the decimal point such that round(coords(x), digits=d) is iden-
tical to coords(x). For example if rounding(x) = 2 then the coordinates of the points in x
appear to have been rounded to 2 decimal places, and are multiples of 0.01.

554 rQuasi

 If all the coordinates of the points in x are integers, then rounding(x) returns -d, where
d is the smallest number of digits before the decimal point such that round(coords(x),
digits=-d) is identical to coords(x). For example if rounding(x) = -3 then the coordi-
nates of all points in x are multiples of 1000. If rounding(x) = @ then the entries of x are
integers but not multiples of 10.

* If all coordinates of points in x are equal to 0, a value of O is returned.

Value

An integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

round. ppp, rounding

Examples

rounding(cells)

rQuasi Generate Quasirandom Point Pattern in Given Window

Description

Generates a quasirandom pattern of points in any two-dimensional window.

Usage
rQuasi(n, W, type = c("Halton”, "Hammersley"), ...)
Arguments
n Maximum number of points to be generated.
W Window (object of class "owin") in which to generate the points.
type String identifying the quasirandom generator.
Arguments passed to the quasirandom generator.
Details

This function generates a quasirandom point pattern, using the quasirandom sequence generator
Halton or Hammersley as specified.

If W is a rectangle, exactly n points will be generated.

If W is not a rectangle, n points will be generated in the containing rectangle as.rectangle (W), and
only the points lying inside W will be retained.

rsyst 555

Value

Point pattern (object of class "ppp") inside the window W.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>.

See Also

Halton

Examples

plot(rQuasi(256, letterR))

rsyst Simulate systematic random point pattern

Description

Generates a “systematic random” pattern of points in a window, consisting of a grid of equally-
spaced points with a random common displacement.

Usage
rsyst(win=square(1), nx=NULL, ny=nx, ..., dx=NULL, dy=dx,
nsim=1, drop=TRUE)
Arguments
win A window. An object of class owin, or data in any format acceptable to as.owin().
nx Number of columns of grid points in the window. Incompatible with dx.
ny Number of rows of grid points in the window. Incompatible with dy.
Ignored.
dx Spacing of grid points in x direction. Incompatible with nx.
dy Spacing of grid points in y direction. Incompatible with ny.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

556 run.simplepanel

Details
This function generates a “systematic random” pattern of points in the window win. The pattern
consists of a rectangular grid of points with a random common displacement.

The grid spacing in the x direction is determined either by the number of columns nx or by the
horizontal spacing dx. The grid spacing in the y direction is determined either by the number of
rows ny or by the vertical spacing dy.

The grid is then given a random displacement (the common displacement of the grid points is a
uniformly distributed random vector in the tile of dimensions dx, dy).

Some of the resulting grid points may lie outside the window win: if they do, they are deleted. The
result is a point pattern inside the window win.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well
as in simulating random point patterns.
Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rstrat, runifpoint, quadscheme

Examples

X <- rsyst(nx=10)
plot(X)

polygonal boundary
X <- rsyst(letterR, 5, 10)
plot(X)

run.simplepanel Run Point-and-Click Interface

Description

Execute various operations in a simple point-and-click user interface.

Usage

run.simplepanel (P, popup=TRUE, verbose = FALSE)
clear.simplepanel (P)
redraw.simplepanel (P, verbose = FALSE)

run.simplepanel 557

Arguments
P An interaction panel (object of class "simplepanel”, created by simplepanel
or grow.simplepanel).
popup Logical. If popup=TRUE (the default), the panel will be displayed in a new popup
window. If popup=FALSE, the panel will be displayed on the current graphics
window if it already exists, and on a new window otherwise.
verbose Logical. If TRUE, debugging information will be printed.
Details

These commands enable the user to run a simple, robust, point-and-click interface to any R code.
The interface is implemented using only the basic graphics package in R.

The argument P is an object of class "simplepanel”, created by simplepanel or grow.simplepanel,
which specifies the graphics to be displayed and the actions to be performed when the user interacts
with the panel.

The command run.simplepanel (P) activates the panel: the display is initialised and the graphics
system waits for the user to click the panel. While the panel is active, the user can only interact with
the panel; the R command line interface and the R GUI cannot be used. When the panel terminates
(typically because the user clicked a button labelled Exit), control returns to the R command line
interface and the R GUL

The command clear.simplepanel (P) clears all the display elements in the panel, resulting in a
blank display except for the title of the panel.

The command redraw.simplepanel (P) redraws all the buttons of the panel, according to the
redraw functions contained in the panel.

If popup=TRUE (the default), run.simplepanel begins by calling dev.new so that a new popup
window is created; this window is closed using dev.off when run.simplepanel terminates. If
popup=FALSE, the panel will be displayed on the current graphics window if it already exists, and
on a new window otherwise; this window is not closed when run.simplepanel terminates.

For more sophisticated control of the graphics focus (for example, to use the panel to control
the display on another window), initialise the graphics devices yourself using dev.new or simi-
lar commands; save these devices in the shared environment env of the panel P; and write the
click/redraw functions of P in such a way that they access these devices using dev.set. Then use
run.simplepanel with popup=FALSE.

Value

The return value of run.simplepanel(P) is the value returned by the exit function of P. See
simplepanel.

The functions clear.simplepanel and redraw.simplepanel return NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

558 run.simplepanel

See Also

simplepanel

Examples

if(interactive()) {
make boxes (alternatively use layout.boxes())
Bminus <- square(1)
Bvalue <- shift(Bminus, c(1.2, 0))
Bplus <- shift(Bvalue, c(1.2, 0))
Bdone <- shift(Bplus, c(1.2, 0))
myboxes <- list(Bminus, Bvalue, Bplus, Bdone)
myB <- do.call(boundingbox,myboxes)

make environment containing an integer count
myenv <- new.env()
assign("answer”, @, envir=myenv)

what to do when finished: return the count.
myexit <- function(e) { return(get("answer”, envir=e)) }

button clicks

decrement the count

Cminus <- function(e, xy) {
ans <- get("answer”, envir=e)
assign("answer”, ans - 1, envir=e)
return(TRUE)

}

display the count (clicking does nothing)

Cvalue <- function(...) { TRUE }

increment the count

Cplus <- function(e, xy) {

ans <- get("answer”, envir=e)
assign("answer"”, ans + 1, envir=e)
return(TRUE)

3

quit button

Cdone <- function(e, xy) { return(FALSE) }

myclicks <- list(”-"=Cminus,
value=Cvalue,
"+"=Cplus,

done=Cdone)

redraw the button that displays the current value of the count
Rvalue <- function(button, nam, e) {

plot(button, add=TRUE)

ans <- get("answer"”, envir=e)

text(centroid.owin(button), labels=ans)

return(TRUE)

runifrect 559

make the panel
P <- simplepanel(”Counter”,
B=myB, boxes=myboxes,
clicks=myclicks,
redraws = list(NULL, Rvalue, NULL, NULL),
exit=myexit, env=myenv)

run.simplepanel (P)

}

runifrect Generate N Uniform Random Points in a Rectangle

Description
Generate a random point pattern, containing n independent uniform random points, inside a speci-
fied rectangle.

Usage

runifrect(n, win = owin(c(@, 1), c(@, 1)), nsim = 1, drop = TRUE)

Arguments
n Number of points.
win Rectangular window in which to simulate the pattern. An object of class "owin”
or something acceptable to as.owin, which must specify a rectangle.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.
Details

This function is a slightly faster version of runifpoint for the special case where the window is a
rectangle.

The function generates n independent random points, uniformly distributed in the window win, by
assigning uniform random values to the cartesian coordinates.

For normal usage we recommend runifpoint because it is more flexible. However, runifrect is
slightly faster (when the window is a rectangle), and may be preferable in very computationally-
demanding tasks.

Value

A point pattern (an object of class "ppp") if nsim=1 and drop=TRUE, otherwise a list of point
patterns.

560 scalardilate

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, owin.object, runifpoint, rpoispp, rpoint

Examples

42 random points in the unit square
pp <- runifrect(42)

scalardilate Apply Scalar Dilation

Description

Applies scalar dilation to a plane geometrical object, such as a point pattern or a window, relative
to a specified origin.

Usage
scalardilate(X, f, ...)

S3 method for class 'im'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'owin'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'ppp'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'psp'
scalardilate(X, f, ..., origin=NULL)

Default S3 method:

scalardilate(X, f, ...)
Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-

tern (object of class "ppp"”), a window (object of class "owin"), a pixel image
(class "im") and so on.

f Scalar dilation factor. A finite number greater than zero.

Ignored by the methods.

scaletointerval 561

origin Origin for the scalar dilation. Either a vector of 2 numbers, or one of the char-
acter strings "centroid”, "midpoint”, "left”, "right"”, "top"”, "bottom”,
"topleft”, "bottomleft”, "topright"” or "bottomright” (partially matched).

Details

This command performs scalar dilation of the object X by the factor f relative to the origin specified
by origin.

The function scalardilate is generic, with methods for windows (class "owin"), point patterns
(class "ppp"), pixel images (class "im"), line segment patterns (class "psp”) and a default method.

If the argument origin is not given, then every spatial coordinate is multiplied by the factor f.

If origin is given, then scalar dilation is performed relative to the specified origin. Effectively, X
is shifted so that origin is moved to c(@,@), then scalar dilation is performed, then the result is
shifted so that c(0,0) is moved to origin.

This command is a special case of an affine transformation: see affine.

Value

Another object of the same type, representing the result of applying the scalar dilation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

affine, shift

Examples

plot(letterR)
plot(scalardilate(letterR, 0.7, origin="left"), col="red"”, add=TRUE)

scaletointerval Rescale Data to Lie Between Specified Limits

Description

Rescales a dataset so that the values range exactly between the specified limits.

Usage

scaletointerval(x, from=0, to=1, xrange=range(x))
Default S3 method:

scaletointerval(x, from=0, to=1, xrange=range(x))
S3 method for class 'im'

scaletointerval(x, from=0, to=1, xrange=range(x))

562 scanpp

Arguments
X Data to be rescaled.
from, to Lower and upper endpoints of the interval to which the values of x should be
rescaled.
xrange Optional range of values of x that should be mapped to the new interval.
Details

These functions rescale a dataset x so that its values range exactly between the limits from and to.
The method for pixel images (objects of class "im") applies this scaling to the pixel values of x.

Rescaling cannot be performed if the values in x are not interpretable as numeric, or if the values in
x are all equal.

Value

An object of the same type as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

scale

Examples

X <- as.im(function(x,y) {x+y+3}, unit.square())

summary (X)
Y <- scaletointerval(X)
summary (Y)
scanpp Read Point Pattern From Data File
Description

Reads a point pattern dataset from a text file.

Usage

scanpp(filename, window, header=TRUE, dir="", factor.marks=NULL, ...)

scanpp 563

Arguments
filename String name of the file containing the coordinates of the points in the point pat-
tern, and their marks if any.
window Window for the point pattern. An object of class "owin".
header Logical flag indicating whether the first line of the file contains headings for the
columns. Passed to read. table.
dir String containing the path name of the directory in which filename is to be

found. Default is the current directory.

factor.marks Logical vector (or NULL) indicating whether marks are to be interpreted as
factors. Defaults to NULL which means that strings will be interpreted as factors
while numeric variables will not. See details.

Ignored.

Details
This simple function reads a point pattern dataset from a file containing the cartesian coordinates of
its points, and optionally the mark values for these points.

The file identified by filename in directory dir should be a text file that can be read using read. table.
Thus, each line of the file (except possibly the first line) contains data for one point in the point pat-
tern. Data are arranged in columns. There should be either two columns (for an unmarked point
pattern) or more columns (for a marked point pattern).

If header=FALSE then the first two columns of data will be interpreted as the x and y coordinates of
points. Remaining columns, if present, will be interpreted as containing the marks for these points.

If header=TRUE then the first line of the file should contain string names for each of the columns of
data. If there are columns named x and y then these will be taken as the cartesian coordinates, and
any remaining columns will be taken as the marks. If there are no columns named x and y then the
first and second columns will be taken as the cartesian coordinates.

If a logical vector is provided for factor.marks the length should equal the number of mark
columns (a shorter factor.marks is recycled to this length). This vector is then used to deter-
mine which mark columns should be interpreted as factors. Note: Strings will not be interpreted as
factors if the corresponding entry in factor.marks is FALSE.

Note that there is intentionally no default for window. The window of observation should be speci-
fied. If you really need to estimate the window, use the Ripley-Rasson estimator ripras.

Value

A point pattern (an object of class "ppp”, see ppp.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

ppp.object, ppp, as.ppp, ripras

564 selfcrossing.psp

Examples

files installed with spatstat, for demonstration
d <- system.file("rawdata”, "finpines”, package="spatstat.data")
if(nzchar(d)) {
W <- owin(c(-5,5), c(-8,2))
X <- scanpp("finpines.txt"”, dir=d, window=W)
print(X)
}
d <- system.file("rawdata”, "amacrine”, package="spatstat.data")
if(nzchar(d)) {
W <- owin(c(@, 1060/662), c(0, 1))
Y <- scanpp("amacrine.txt"”, dir=d, window=W, factor.marks=TRUE)
print(Y)
}

selfcrossing.psp Crossing Points in a Line Segment Pattern

Description

Finds any crossing points between the line segments in a line segment pattern.

Usage
selfcrossing.psp(A)

Arguments

A Line segment pattern (object of class "psp"”).

Details

This function finds any crossing points between different line segments in the line segment pattern
A.

A crossing point occurs whenever one of the line segments in A intersects another line segment in
A, at a nonzero angle of intersection.

Value

Point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

crossing.psp, psp.object, ppp.object.

selfcut.psp 565

Examples

a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(a, col="green", main="selfcrossing.psp”)

P <- selfcrossing.psp(a)

plot(P, add=TRUE, col="red")

selfcut.psp Cut Line Segments Where They Intersect

Description

Finds any crossing points between the line segments in a line segment pattern, and cuts the segments
into pieces at these crossing-points.

Usage
selfcut.psp(A, ..., eps)
Arguments
A Line segment pattern (object of class "psp").
eps Optional. Smallest permissible length of the resulting line segments. There is a
sensible default.
Ignored.
Details

This function finds any crossing points between different line segments in the line segment pattern
A, and cuts the line segments into pieces at these intersection points.

A crossing point occurs whenever one of the line segments in A intersects another line segment in
A, at a nonzero angle of intersection.

Value

Another line segment pattern (object of class "psp"”) in the same window as A with the same kind
of marks as A.

The result also has an attribute "camefrom” indicating the provenance of each segment in the result.
For example camefrom[3]=2 means that the third segment in the result is a piece of the second
segment of A.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

566 sessionLibs

See Also

selfcrossing.psp

Examples

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Y <- selfcut.psp(X)

n <- nsegments(Y)

plot(Y %mark% factor(sample(seg_len(n), n, replace=TRUE)))

sessionLibs Print Names and Version Numbers of Libraries Loaded

Description

Prints the names and version numbers of libraries currently loaded by the user.

Usage

sessionLibs()

Details

This function prints a list of the libraries loaded by the user in the current session, giving just their
name and version number. It obtains this information from sessionInfo.

This function is not needed in an interactive R session because the package startup messages will
usually provide this information.

Its main use is in an Sweave script, where it is needed because the package startup messages are not
printed.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

sessionInfo

Examples

sessionLibs()

setcov 567

setcov Set Covariance of a Window

Description

Computes the set covariance function of a window.

Usage
setcov(W, V=W, ...)
Arguments
W A window (object of class "owin".
\% Optional. Another window.
Optional arguments passed to as.mask to control the pixel resolution.
Details

The set covariance function of a region W in the plane is the function C(v) defined for each vector
v as the area of the intersection between W and W + v, where W +- v is the set obtained by shifting
(translating) W by v.

We may interpret C'(v) as the area of the set of all points = in W such that = + v also lies in W.

This command computes a discretised approximation to the set covariance function of any plane
region W represented as a window object (of class "owin”, see owin.object). The return value
is a pixel image (object of class "im") whose greyscale values are values of the set covariance
function.

The set covariance is computed using the Fast Fourier Transform, unless W is a rectangle, when an
exact formula is used.

If the argument V is present, then setcov (W, V) computes the set cross-covariance function C(z)
defined for each vector x as the area of the intersection between W and V' + z.

Value
A pixel image (an object of class "im") representing the set covariance function of W, or the cross-
covariance of W and V.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

imcov, owin, as.owin, erosion

568 shift

Examples

w <- owin(c(0,1),c(0,1))
v <- setcov(w)
plot(v)

shift Apply Vector Translation

Description

Applies a vector shift of the plane to a geometrical object, such as a point pattern or a window.

Usage
shift(X, ...)
Arguments
X Any suitable dataset representing a two-dimensional object, such as a point pat-
tern (object of class "ppp"), or a window (object of class "owin").
Arguments determining the shift vector.
Details

This is generic. Methods are provided for point patterns (shift.ppp) and windows (shift.owin).

The object is translated by the vector vec.

Value

Another object of the same type, representing the result of applying the shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

shift.ppp, shift.owin, rotate, affine, periodify

shift.im 569

shift.im Apply Vector Translation To Pixel Image

Description

Applies a vector shift to a pixel image

Usage
S3 method for class 'im'

shift(X, vec=c(0,0), ..., origin=NULL)
Arguments

X Pixel image (object of class "im").

vec Vector of length 2 representing a translation.

Ignored
origin Location that will be shifted to the origin. Either a numeric vector of length 2

giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid”, "midpoint”,
"left”, "right”, "top", "bottom”, "topleft"”, "bottomleft"”, "topright”
or "bottomright” (partially matched).

Details

The spatial location of each pixel in the image is translated by the vector vec. This is a method for
the generic function shift.

If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0,0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid”, "midpoint”, "left"”, "right”, "top"”, "bottom", "topleft”,
"bottomleft”, "topright"” or "bottomright” (partially matched). If origin="centroid” then
the centroid of the window will be shifted to the origin. If origin="midpoint" then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft"” then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so
on.

Value

Another pixel image (of class "im") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

570 shift.owin

See Also
shift

Examples

make up an image
X <- setcov(unit.square())
plot(X)

Y <- shift(X, c(10,10))
plot(Y)

no discernible difference except coordinates are different

shift(X, origin="c")

shift.owin Apply Vector Translation To Window

Description

Applies a vector shift to a window

Usage
S3 method for class 'owin'

shift(X, vec=c(0,0), ..., origin=NULL)
Arguments

X Window (object of class "owin").

vec Vector of length 2 representing a translation.

Ignored
origin Location that will be shifted to the origin. Either a numeric vector of length 2

giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid”, "midpoint”,
"left”, "right”, "top"”, "bottom”, "topleft"”, "bottomleft"”, "topright”
or "bottomright” (partially matched).

Details

The window is translated by the vector vec. This is a method for the generic function shift.

If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0,0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid”, "midpoint”, "left"”, "right”, "top"”, "bottom", "topleft”,
"bottomleft”, "topright” or "bottomright"” (partially matched). If origin="centroid” then

shift.ppp 571

the centroid of the window will be shifted to the origin. If origin="midpoint"” then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft" then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so
on.

Value

Another window (of class "owin") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

shift, shift.ppp, periodify, rotate, affine, centroid.owin

Examples

W <- owin(c(0,1),c(0,1))

X <= shift(W, c(2,3))

plot(W)

no discernible difference except coordinates are different
shift(W, origin="top")

shift.ppp Apply Vector Translation To Point Pattern

Description

Applies a vector shift to a point pattern.

Usage
S3 method for class 'ppp'

shift(X, vec=c(0,0), ..., origin=NULL)
Arguments

X Point pattern (object of class "ppp").

vec Vector of length 2 representing a translation.

Ignored
origin Location that will be shifted to the origin. Either a numeric vector of length 2

giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid”, "midpoint”,
"left”, "right”, "top"”, "bottom”, "topleft"”, "bottomleft"”, "topright”
or "bottomright” (partially matched).

572 shift.ppx

Details

The point pattern, and its window, are translated by the vector vec.
This is a method for the generic function shift.

If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0,0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid”, "midpoint”, "left"”, "right”, "top"”, "bottom"”, "topleft”,
"bottomleft”, "topright"” or "bottomright” (partially matched). If origin="centroid” then
the centroid of the window will be shifted to the origin. If origin="midpoint" then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft" then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so
on.

Value

Another point pattern (of class "ppp") representing the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

shift, shift.owin, periodify, rotate, affine

Examples

X <- shift(cells, c(2,3))

plot(X)

no discernible difference except coordinates are different
plot(cells, pch=16)

plot(shift(cells, c(0.03,0.03)), add=TRUE)

shift(cells, origin="mid")

shift.ppx Apply Vector Translation To Box Or Point Pattern In Arbitrary Dimen-
sion

Description

Applies a vector shift to a box or point pattern in arbitrary dimension (object of class "boxx" or
prxll)'

shift.ppx 573

Usage
S3 method for class 'boxx'
shift(X, vec= 0, ...)
S3 method for class 'ppx'
shift(X, vec = 0, ..., spatial = TRUE, temporal = TRUE, local = TRUE)
Arguments
X Box or point pattern in arbitrary dimension (object of class "boxx" or "ppx").
vec Either a single numeric or a vector of the same length as the dimension of the

spatial and/or temporal and/or local domain.

Ignored

spatial, temporal, local

Logical to indicate whether or not to shift this type of coordinates for the ppx
method.

Details

This is a method for the generic function shift.

Value

For shift.boxx, another "boxx" object and for shift.ppx another "ppx" object. In both cases the
new object represents the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

shift, boxx, ppx

Examples

vec <- c(2,3)

dom <- boxx(c(0,1), c(0,1))

X <- ppx(coords(cells), domain = dom)
shift(dom, vec)

Xs <- shift(X, vec)

Xs

head(coords(X), n = 3)
head(coords(Xs), n = 3)

574 shift.psp
shift.psp Apply Vector Translation To Line Segment Pattern

Description

Applies a vector shift to a line segment pattern.
Usage

S3 method for class 'psp'

shift(X, vec=c(0,0), ..., origin=NULL)
Arguments

X Line Segment pattern (object of class "psp").

vec Vector of length 2 representing a translation.

Ignored
origin Location that will be shifted to the origin. Either a numeric vector of length 2

giving the location, or a point pattern containing only one point, or a list with two
entries named x and y, or one of the character strings "centroid”, "midpoint”,
"left”, "right”, "top"”, "bottom”, "topleft"”, "bottomleft"”, "topright”

or "bottomright” (partially matched).

Details

The line segment pattern, and its window, are translated by the vector vec.

This is a method for the generic function shif't.

If origin is given, the argument vec will be ignored; instead the shift will be performed so that
the specified geometric location is shifted to the coordinate origin (0,0). The argument origin
should be either a numeric vector of length 2 giving the spatial coordinates of a location, or one of
the character strings "centroid”, "midpoint”, "left"”, "right"”, "top"”, "bottom", "topleft”,
"bottomleft”, "topright” or "bottomright"” (partially matched). If origin="centroid” then
the centroid of the window will be shifted to the origin. If origin="midpoint" then the centre of
the bounding rectangle of the window will be shifted to the origin. If origin="bottomleft"” then
the bottom left corner of the bounding rectangle of the window will be shifted to the origin, and so

on.

Value

Another line segment pattern (of class "psp”) representing the result of applying the vector shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

sidelengths.owin 575

See Also

shift, shift.owin, shift.ppp, periodify, rotate, affine

Examples

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
plot(X, col="red")

Y <- shift(X, c(0.05,0.05))

plot(Y, add=TRUE, col="blue")

shift(Y, origin="mid")

sidelengths.owin Side Lengths of Enclosing Rectangle of a Window

Description

Computes the side lengths of the (enclosing rectangle of) a window.

Usage

S3 method for class 'owin'
sidelengths(x)

S3 method for class 'owin'
shortside(x)

Arguments

X A window whose side lengths will be computed. Object of class "owin".

Details

The functions shortside and sidelengths are generic. The functions documented here are the
methods for the class "owin".

sidelengths.owin computes the side-lengths of the enclosing rectangle of the window x.

For safety, both functions give a warning if the window is not a rectangle. To suppress the warning,
first convert the window to a rectangle using as.rectangle.

shortside.owin computes the minimum of the two side-lengths.

Value

For sidelengths.owin, a numeric vector of length 2 giving the side-lengths (z then y) of the
enclosing rectangle. For shortside.owin, a numeric value.

576 simplepanel

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

shortside, sidelengths for the generic functions.
area.owin, diameter.owin, perimeter for other geometric calculations on "owin" objects.

owin, as.owin.

Examples

w <- owin(c(9,2),c(-1,3))
sidelengths(w)
shortside(as.rectangle(letterR))

simplepanel Simple Point-and-Click Interface Panels

Description

These functions enable the user to create a simple, robust, point-and-click interface to any R code.

Usage

simplepanel(title, B, boxes, clicks,
redraws=NULL, exit = NULL, env)

grow.simplepanel (P, side = c("right”, "left", "top"”, "bottom"),

len = NULL, new.clicks, new.redraws=NULL, ..., aspect)
Arguments
title Character string giving the title of the interface panel.
B Bounding box of the panel coordinates. A rectangular window (object of class
"owin")
boxes A list of rectangular windows (objects of class "owin") specifying the placement

of the buttons and other interactive components of the panel.

clicks A list of R functions, of the same length as boxes, specifying the operations to
be performed when each button is clicked. Entries can also be NULL indicating
that no action should occur. See Details.

redraws Optional list of R functions, of the same length as boxes, specifying how to
redraw each button. Entries can also be NULL indicating a simple default. See
Details.

simplepanel 577

exit An R function specifying actions to be taken when the interactive panel termi-
nates.
env An environment that will be passed as an argument to all the functions in

clicks, redraws and exit.

P An existing interaction panel (object of class "simplepanel”).

side Character string identifying which side of the panel P should be grown to ac-
commodate the new buttons.

len Optional. Thickness of the new panel area that should be grown to accommodate
the new buttons. A single number in the same units as the coordinate system of
P.

new.clicks List of R functions defining the operations to be performed when each of the

new buttons is clicked.

new.redraws Optional. List of R functions, of the same length as new. clicks, defining how
to redraw each of the new buttons.

Arguments passed to layout . boxes to determine the layout of the new buttons.

aspect Optional. Aspect ratio (height/width) of the new buttons.

Details

These functions enable the user to create a simple, robust, point-and-click interface to any R code.

The functions simplepanel and grow.simplepanel create an object of class "simplepanel”.
Such an object defines the graphics to be displayed and the actions to be performed when the user
interacts with the panel.

The panel is activated by calling run.simplepanel.

The function simplepanel creates a panel object from basic data. The function grow. simplepanel
modifies an existing panel object P by growing an additional row or column of buttons.

For simplepanel,

* The spatial layout of the panel is determined by the rectangles B and boxes.

* The argument clicks must be a list of functions specifying the action to be taken when
each button is clicked (or NULL to indicate that no action should be taken). The list entries
should have names (but there are sensible defaults). Each function should be of the form
function(env, xy) where env is an environment that may contain shared data, and xy gives
the coordinates of the mouse click, in the format 1ist(x, y). The function returns TRUE if the
panel should continue running, and FALSE if the panel should terminate.

* The argument redraws, if given, must be a list of functions specifying the action to be taken
when each button is to be redrawn. Each function should be of the form function(button,
name, env) where button is a rectangle specifying the location of the button in the current
coordinate system; name is a character string giving the name of the button; and env is the
environment that may contain shared data. The function returns TRUE if the panel should
continue running, and FALSE if the panel should terminate. If redraws is not given (or if one
of the entries in redraws is NULL), the default action is to draw a pink rectangle showing the
button position, draw the name of the button in the middle of this rectangle, and return TRUE.

578 simplepanel

* The argument exit, if given, must be a function specifying the action to be taken when the
panel terminates. (Termination occurs when one of the clicks functions returns FALSE). The
exit function should be of the form function(env) where env is the environment that may
contain shared data. Its return value will be used as the return value of run.simplepanel.

* The argument env should be an R environment. The panel buttons will have access to this
environment, and will be able to read and write data in it. This mechanism is used to exchange
data between the panel and other R code.

For grow.simplepanel,

* the spatial layout of the new boxes is determined by the arguments side, len, aspect and by
the additional . .. arguments passed to layout.boxes.

* the argument new. clicks should have the same format as clicks. It implicitly specifies the
number of new buttons to be added, and the actions to be performed when they are clicked.

* the optional argument new.redraws, if given, should have the same format as redraws. It
specifies the actions to be performed when the new buttons are clicked.

Value

An object of class "simplepanel”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

run.simplepanel, layout.boxes

Examples

make boxes (alternatively use layout.boxes())
Bminus <- square(1)

Bvalue <- shift(Bminus, c(1.2, 0))

Bplus <- shift(Bvalue, c(1.2, 0))

Bdone <- shift(Bplus, c(1.2, 0))

myboxes <- list(Bminus, Bvalue, Bplus, Bdone)
myB <- do.call(boundingbox,myboxes)

make environment containing an integer count
myenv <- new.env()
assign("answer”, @, envir=myenv)

what to do when finished: return the count.
myexit <- function(e) { return(get("answer"”, envir=e)) }

button clicks

decrement the count

Cminus <- function(e, xy) {
ans <- get("answer"”, envir=e)

simplify.owin 579

assign("answer”, ans - 1, envir=e)
return(TRUE)

}

display the count (clicking does nothing)

Cvalue <- function(...) { TRUE }

increment the count

Cplus <- function(e, xy) {
ans <- get("answer"”, envir=e)
assign("answer"”, ans + 1, envir=e)
return(TRUE)

}

'Clear' button

Cclear <- function(e, xy) {
assign("answer”, 0, envir=e)
return(TRUE)

3

quit button

Cdone <- function(e, xy) { return(FALSE) }

myclicks <- list(”-"=Cminus,
value=Cvalue,
"+"=Cplus,

done=Cdone)

redraw the button that displays the current value of the count
Rvalue <- function(button, nam, e) {

plot(button, add=TRUE)

ans <- get("answer"”, envir=e)

text(centroid.owin(button), labels=ans)

return(TRUE)

make the panel
P <- simplepanel("Counter”,
B=myB, boxes=myboxes,
clicks=myclicks,
redraws = list(NULL, Rvalue, NULL, NULL),
exit=myexit, env=myenv)
print it
P
show what it looks like
redraw.simplepanel (P)

(type run.simplepanel(P) to run the panel interactively)

add another button to right
Pplus <- grow.simplepanel(P, "right"”, new.clicks=list(clear=Cclear))

simplify.owin Approximate a Window by a Simpler Polygon

580 simplify.owin

Description

Given a window, this function finds a simpler polygon that approximates it.

Usage

simplify.owin(W, dmin)

Arguments
W The window which is to be simplied. An object of class "owin".
dmin Numeric value. The smallest permissible length of an edge.
Details

This function simplifies a polygon W by recursively deleting the shortest edge of W until all remaining
edges are longer than the specified minimum length dmin, or until there are only three edges left.

The argument W must be a window (object of class "owin"). If W is a rectangle, it is returned without
alteration. If Wis a binary mask, it is first converted to a polygonal window (with many small vertical
and horizontal edges), then simplified.

Value

Another window (object of class "owin") of type "polygonal”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

fillholes.owin, owin

Examples

plot(letterR, col="red")
plot(simplify.owin(letterR, 0.3), col="blue"”, add=TRUE)

W <- Window(chorley)

plot(W)

WS <- simplify.owin(W, 2)

plot (WS, add=TRUE, border="green")
points(vertices(WS))

solapply 581

solapply Apply a Function Over a List and Obtain a List of Objects

Description

Applies the function FUN to each element of the list X, and returns the result as a list of class
"solist” or "anylist" as appropriate.

Usage
anylapply (X, FUN, ...)
solapply(X, FUN, ..., check = TRUE, promote = TRUE, demote = FALSE)
Arguments
X A list.
FUN Function to be applied to each element of X.

. Additional arguments to FUN.

check, promote, demote
Arguments passed to solist which determine how to handle different classes
of objects.

Details

These convenience functions are similar to lapply except that they return a list of class "solist”
or "anylist”.

In both functions, the result is computed by lapply (X, FUN, ...).

In anylapply the result is converted to a list of class "anylist” and returned.

In solapply the result is converted to a list of class "solist" if possible, using as.solist. If this
is not possible, then the behaviour depends on the argument demote. If demote=TRUE the result will
be returned as a list of class "anylist"”. If demote=FALSE (the default), an error occurs.

Value

A list, usually of class "solist”.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

solist, anylist.

582 solist

Examples

solapply(waterstriders, distmap)

solist List of Two-Dimensional Spatial Objects

Description

Make a list of two-dimensional spatial objects.

Usage
solist(..., check=TRUE, promote=TRUE, demote=FALSE, .NameBase)
Arguments
e Any number of objects, each representing a two-dimensional spatial dataset.
check Logical value. If TRUE, check that each of the objects is a 2D spatial object.
promote Logical value. If TRUE, test whether all objects belong to the same class, and if
so, promote the list of objects to the appropriate class of list.
demote Logical value determining what should happen if any of the objects is not a 2D
spatial object: if demote=FALSE (the default), a fatal error occurs; if demote=TRUE,
a list of class "anylist" is returned.
.NameBase Optional. Character string. If the . . . arguments have no names, then the entries
of the resulting list will be given names that start with . NameBase.
Details

This command creates an object of class "solist” (spatial object list) which represents a list of
two-dimensional spatial datasets. The datasets do not necessarily belong to the same class.

Typically the intention is that the datasets in the list should be treated in the same way, for ex-
ample, they should be plotted side-by-side. The spatstat package provides a plotting function,
plot.solist, and many other functions for this class.

In the spatstat package, various functions produce an object of class "solist”. For example,
when a point pattern is split into several point patterns by split.ppp, or an image is split into
several images by split.im, the result is of class "solist".

If check=TRUE then the code will check whether all objects in ... belong to the classes of two-
dimensional spatial objects defined in the spatstat package. They do not have to belong to the same
class. Set check=FALSE for efficiency, but only if you are sure that all the objects are valid.

If some of the objects in ... are not two-dimensional spatial objects, the action taken depends on
the argument demote. If demote=TRUE, the result will belong to the more general class "anylist”
instead of "solist". If demote=FALSE (the default), an error occurs.

If promote=TRUE then the code will check whether all the objects ... belong to the same class. If
they are all point patterns (class "ppp"), the result will also belong to the class "ppplist”. If they
are all pixel images (class "im"), the result will also belong to the class "imlist".

Use as.solist to convert alistto a "solist"”.

solutionset 583

Value

A list, usually belonging to the class "solist".

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.solist, anylist, solapply

Examples

solist(cells, distmap(cells), quadratcount(cells))
solist(cells, japanesepines, redwood, .NameBase="Pattern")

solutionset Evaluate Logical Expression Involving Pixel Images and Return Re-
gion Where Expression is True

Description

Given a logical expression involving one or more pixel images, find all pixels where the expression
is true, and assemble these pixels into a window.

Usage
solutionset(..., envir)
Arguments
An expression in the R language, involving one or more pixel images.
envir Optional. The environment in which to evaluate the expression.
Details

Given a logical expression involving one or more pixel images, this function will find all pixels
where the expression is true, and assemble these pixels into a spatial window.

Pixel images in spatstat are represented by objects of class "im" (see im.object). These are
essentially matrices of pixel values, with extra attributes recording the pixel dimensions, etc.

Suppose X is a pixel image. Then solutionset(abs(X) > 3) will find all the pixels in X for which
the pixel value is greater than 3 in absolute value, and return a window containing all these pixels.

If X and Y are two pixel images, solutionset(X > Y) will find all pixels for which the pixel value
of X is greater than the corresponding pixel value of Y, and return a window containing these pixels.

In general, . .. can be any logical expression involving pixel images.

584 spatdim

The code first tries to evaluate the expression using eval.im. This is successful if the expression
involves only (a) the names of pixel images, (b) scalar constants, and (c) functions which are vec-
torised. There must be at least one pixel image in the expression. The expression expr must be
vectorised. See the Examples.

If this is unsuccessful, the code then tries to evaluate the expression using pixel arithmetic. This is
successful if all the arithmetic operations in the expression are listed in Math. im.
Value

A spatial window (object of class "owin”, see owin.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

im.object, owin.object, eval.im, levelset

Examples

test images
X <- as.im(function(x,y) { x*2 - y*2 }, unit.square())
Y <- as.im(function(x,y) { 3 * x + y - 1}, unit.square())

W <- solutionset(abs(X) > 0.1)
W <- solutionset(X > Y)
W <- solutionset(X + Y >= 1)

area(solutionset(X < Y))

solutionset(distmap(cells) < 0.05)

spatdim Spatial Dimension of a Dataset

Description

Extracts the spatial dimension of an object in the spatstat package.

Usage
spatdim(X, intrinsic=FALSE)

Arguments
X Object belonging to any class defined in the spatstat package.
intrinsic Logical value indicating whether to return the number of intrinsic dimensions.

See Details.

spatstat.options 585

Details

This function returns the number of spatial coordinate dimensions of the dataset X. The results for
some of the more common types of objects are as follows:

object class dimension

"ppp” 2
"1pp” 2
n pp3 n 3
"ppx" number of spatial dimensions
"owin" 2
"psp” 2
"ppm” 2

Note that time dimensions are not counted.

Some spatial objects are lower-dimensional subsets of the space in which they live. This lower
number of dimensions is returned if intrinsic=TRUE. For example, a dataset on a linear network
(an object X of class "1innet”, "1pp"”, "linim”, "linfun” or "lintess") returns spatdim(X) =
2 but spatdim(X, intrinsic=TRUE) =1.

If X is not a recognised spatial object, the result is NA.

Value

An integer, or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

spatdim(lansing)

A <- osteo$pts[[1]]
spatdim(A)
spatdim(domain(A))

spatstat.options Internal Options in Spatstat Package

Description
Allows the user to examine and reset the values of global parameters which control actions in the
spatstat package.

Usage

spatstat.options(...)
reset.spatstat.options()

586 spatstat.options

Arguments

Either empty, or a succession of parameter names in quotes, or a succession of
name=value pairs. See below for the parameter names.

Details

The function spatstat.options allows the user to examine and reset the values of global parame-
ters which control actions in the spatstat package. It is analogous to the system function options.

The function reset.spatstat.options resets all the global parameters in spatstat to their origi-
nal, default values.

The global parameters of interest to the user are:

checkpolygons Logical flag indicating whether the functions owin and as. owin should apply very
strict checks on the validity of polygon data. These strict checks are no longer necessary, and
the default is checkpolygons=FALSE. See also fixpolygons below.

checksegments Logical flag indicating whether the functions psp and as.psp should check the
validity of line segment data (in particular, checking that the endpoints of the line segments
are inside the specified window). It is advisable to leave this flag set to TRUE.

dpp.maxmatrix Integer specifying the maximum size of matrices generated by dppeigen. De-
faults to 2424.

eroded.intensity Logical flag affecting the behaviour of the score and pseudo-score residual func-
tions Gcom, Gres Kcom, Kres, psstA, psstG, psst. The flag indicates whether to compute
intensity estimates on an eroded window (eroded.intensity=TRUE) or on the original data
window (eroded. intensity=FALSE, the default).

expand The default expansion factor (area inflation factor) for expansion of the simulation window
in rmh (see rmhcontrol). Initialised to 2.

expand.polynom Logical. Whether expressions involving polynom in a model formula should be
expanded, so that polynom(x,2) is replaced by x + I(x*2) and so on. Initialised to TRUE.

fastpois Logical. Whether to use a fast algorithm (introduced in spatstat 1.42-3) for simulating
the Poisson point process in rpoispp when the argument lambda is a pixel image. Initialised
to TRUE. Should be set to FALSE if needed to guarantee repeatability of results computed using
earlier versions of spatstat.

fastthin Logical. Whether to use a fast C language algorithm (introduced in spatstat 1.42-3) for
random thinning in rthin when the argument P is a single number. Initialised to TRUE. Should
be set to FALSE if needed to guarantee repeatability of results computed using earlier versions
of spatstat.

fastK.lgep Logical. Whether to use fast or slow algorithm to compute the (theoretical) K -function
of a log-Gaussian Cox process for use in 1gcp.estK or Kmodel. The slow algorithm uses ac-
curate numerical integration; the fast algorithm uses Simpson’s Rule for numerical integration,
and is about two orders of magnitude faster. Initialised to FALSE.

fixpolygons Logical flag indicating whether the functions owin and as.owin should repair errors
in polygon data. For example, self-intersecting polygons and overlapping polygons will be
repaired. The default is fixpolygons=TRUE.

fftw Logical value indicating whether the two-dimensional Fast Fourier Transform should be com-
puted using the package fftwtools, instead of the fft function in the stats package. This
affects the speed of density.ppp, density.psp, blur setcov and Smooth. ppp.

spatstat.options 587

gpclib Defunct. This parameter was used to permit or forbid the use of the package gpclib, because
of its restricted software licence. This package is no longer needed.

huge.npoints The maximum value of n for which runif(n) will not generate an error (possible
errors include failure to allocate sufficient memory, and integer overflow of n). An attempt to
generate more than this number of random points triggers a warning from runifpoint and
other functions. Defaults to 1e6.

image.colfun Function determining the default colour map for plot.im. When called with one
integer argument n, this function should return a character vector of length n specifying n
different colours.

Kcom.remove.zeroes Logical value, determining whether the algorithm in Kcom and Kres removes
or retains the contributions to the function from pairs of points that are identical. If these are
retained then the function has a jump at = 0. Initialised to TRUE.

maxedgewt Edge correction weights will be trimmed so as not to exceed this value. This applies
to the weights computed by edge.Trans or edge.Ripley and used in Kest and its relatives.

maxmatrix The maximum permitted size (rows times columns) of matrices generated by spat-
stat’s internal code. Used by ppm and predict.ppm (for example) to decide when to split a
large calculation into blocks. Defaults to 2#24=16777216.

monochrome Logical flag indicating whether graphics should be plotted in grey scale (nonochrome=TRUE)
or in colour (monochrome=FALSE, the default).

n.bandwidth Integer. Number of trial values of smoothing bandwidth to use for cross-validation
in bw. relrisk and similar functions.

ndummy.min The minimum number of dummy points in a quadrature scheme created by default.dummy.
Either an integer or a pair of integers giving the minimum number of dummy points in the x
and y directions respectively.

ngrid.disc Number of points in the square grid used to compute a discrete approximation to the
areas of discs in arealLoss and areaGain when exact calculation is not available. A single
integer.

npixel Default number of pixels in a binary mask or pixel image. Either an integer, or a pair of
integers, giving the number of pixels in the x and y directions respectively.

nvoxel Default number of voxels in a 3D image, typically for calculating the distance transform in
F3est. Initialised to 4 megavoxels: nvoxel = 222 = 4194304.

par.binary List of arguments to be passed to the function image when displaying a binary image
mask (in plot.owin or plot.ppp). Typically used to reset the colours of foreground and
background.

par.contour List of arguments controlling contour plots of pixel images by contour. im.

par.fv List of arguments controlling the plotting of functions by plot. fv and its relatives.

par.persp List of arguments to be passed to the function persp when displaying a real-valued
image, such as the fitted surfaces in plot.ppm.

par.points List of arguments controlling the plotting of point patterns by plot. ppp.

par.pp3 List of arguments controlling the plotting of three-dimensional point patterns by plot.pp3.

print.ppm.SE Default rule used by print.ppm to decide whether to calculate and print standard
errors of the estimated coefficients of the model. One of the strings "always”, "never”
or "poisson” (the latter indicating that standard errors will be calculated only for Poisson
models). The default is "poisson” because the calculation for non-Poisson models can take
a long time.

588 spatstat.options

progress Character string determining the style of progress reports printed by progressreport.
Either "tty", "tk"” or "txtbar". For explanation of these options, see progressreport.

project.fast Logical. If TRUE, the algorithm of project.ppm will be accelerated using a shorcut.
Initialised to FALSE.

psstA.ngrid Single integer, controlling the accuracy of the discrete approximation of areas com-
puted in the function psstA. The area of a disc is approximated by counting points on an n X n
grid. Initialised to 32.

psstA.nr Single integer, determining the number of distances r at which the function psstA will
be evaluated (in the default case where argument r is absent). Initialised to 30.

psstG.remove.zeroes Logical value, determining whether the algorithm in psstG removes or re-
tains the contributions to the function from pairs of points that are identical. If these are
retained then the function has a jump at » = 0. Initialised to TRUE.

rmh.p, rmh.q, rmh.nrep New default values for the parameters p, q and nrep in the Metropolis-
Hastings simulation algorithm. These override the defaults in rmhcontrol.default.

scalable Logical flag indicating whether the new code in rmh.default which makes the results
scalable (invariant to change of units) should be used. In order to recover former behaviour
(so that previous results can be reproduced) set this option equal to FALSE. See the “Warning”
section in the help for rmh () for more detail.

terse Integer between O and 4. The level of terseness (brevity) in printed output from many func-
tions in spatstat. Higher values mean shorter output. A rough guide is the following:

0 Full output

Avoid wasteful output

Remove space between paragraphs
Suppress extras such as standard errors
Compress text, suppress internal warnings

AW -

The value of terse is initialised to 0.

transparent Logical value indicating whether default colour maps are allowed to include semi-
transparent colours, where possible. Default is TRUE. Currently this only affects plot. ppp.

units.paren The kind of parenthesis which encloses the text that explains a unitname. This text is
seen in the text output of functions like print.ppp and in the graphics generated by plot. fv.
The value should be one of the character strings ' (', '[', '{' or ''. The defaultis '(".

If no arguments are given, the current values of all parameters are returned, in a list.

If one parameter name is given, the current value of this parameter is returned (not in a list, just the
value).

If several parameter names are given, the current values of these parameters are returned, in a list.

If name=value pairs are given, the named parameters are reset to the given values, and the previous
values of these parameters are returned, in a list.

Value

Either a list of parameters and their values, or a single value. See Details.

spatstat.options 589

Internal parameters

The following parameters may also be specified to spatstat.options but are intended for software
development or testing purposes.

closepairs.newcode Logical. Whether to use new version of the code for closepairs. Initialised
to TRUE.

crossing.psp.useCall Logical. Whether to use new version of the code for crossing.psp. Ini-
tialised to TRUE.

crosspairs.newcode Logical. Whether to use new version of the code for crosspairs. Initialised
to TRUE.

densityC Logical. Indicates whether to use accelerated C code (densityC=TRUE) or interpreted R
code (densityC=FALSE) to evaluate density.ppp(X, at="points"). Initialised to TRUE.

exactdt.checks.data Logical. Do not change this value, unless you are Adrian Baddeley <Adrian.Baddeley@curtin.edu.:

fasteval One of the strings 'off', 'on' or 'test' determining whether to use accelerated C code
to evaluate the conditional intensity of a Gibbs model. Initialised to 'on'.

old.morpho.psp Logical. Whether to use old R code for morphological operations. Initialise to
FALSE.

selfcrossing.psp.useCall Logical. Whether to use new version of the code for selfcrossing.psp.
Initialised to TRUE.

use.Krect Logical. Whether to use specialised code for the K-function in a rectangular window.
Initialised to TRUE.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

options

Examples

save current values whatever they are
oldopt <- spatstat.options()

spatstat.options(”"npixel”)
spatstat.options(npixel=150)
spatstat.options(npixel=c(100,200))

spatstat.options(par.binary=1list(col=grey(c(0.5,1))))

spatstat.options(par.persp=list(theta=-30,phi=40,d=4))
see help(persp.default) for other options

revert to the state at the beginning of these examples
spatstat.options(oldopt)

590 split.hyperframe

revert to 'factory defaults'
reset.spatstat.options()

split.hyperframe Divide Hyperframe Into Subsets and Reassemble

Description

split divides the data x into subsets defined by f. The replacement form replaces values corre-
sponding to such a division.

Usage

S3 method for class 'hyperframe'
split(x, f, drop = FALSE, ...)

S3 replacement method for class 'hyperframe'

split(x, f, drop = FALSE, ...) <- value
Arguments
X Hyperframe (object of class "hyperframe").
f a factor in the sense that as. factor(f) defines the grouping, or a list of such

factors in which case their interaction is used for the grouping.

drop logical value, indicating whether levels that do not occur should be dropped
from the result.

value a list of hyperframes which arose (or could have arisen) from the command
split(x,f,drop=drop).

Ignored.

Details

These are methods for the generic functions split and split<- for hyperframes (objects of class
"hyperframe").

A hyperframe is like a data frame, except that its entries can be objects of any kind. The behaviour
of these methods is analogous to the corresponding methods for data frames.

Value

The value returned from split.hyperframe is a list of hyperframe containing the values for the
groups. The components of the list are named by the levels of f (after converting to a factor, or if
already a factor and drop = TRUE, dropping unused levels).

The replacement method split<-.hyperframe returns a new hyperframe x for which split(x,f)
equals value.

split.im 591

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

hyperframe, [.hyperframe

Examples

split(pyramidal, pyramidal$group)

split.im Divide Image Into Sub-images

Description

Divides a pixel image into several sub-images according to the value of a factor, or according to the
tiles of a tessellation.

Usage
S3 method for class 'im'
split(x, f, ..., drop = FALSE)
Arguments
X Pixel image (object of class "im").
f Splitting criterion. Either a tessellation (object of class "tess") or a pixel image
with factor values.
Ignored.
drop Logical value determining whether each subset should be returned as a pixel im-

ages (drop=FALSE) or as a one-dimensional vector of pixel values (drop=TRUE).

Details

This is a method for the generic function split for the class of pixel images. The image x will be
divided into subsets determined by the data f. The result is a list of these subsets.
The splitting criterion may be either
* atessellation (object of class "tess"). Each tile of the tessellation delineates a subset of the
spatial domain.

* a pixel image (object of class "im") with factor values. The levels of the factor determine
subsets of the spatial domain.

592 split.ppp

If drop=FALSE (the default), the result is a list of pixel images, each one a subset of the pixel image
X, obtained by restricting the pixel domain to one of the subsets. If drop=TRUE, then the pixel values
are returned as numeric vectors.

Value

If drop=FALSE, a list of pixel images (objects of class "im"). It is also of class "solist"” so that it
can be plotted immediately.

If drop=TRUE, a list of numeric vectors.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

by.im, tess, im

Examples

W <- square(1)

X <= as.im(function(x,y){sqrt(x*2+y*2)}, W)
Y <- dirichlet(runifrect(12, W))
plot(split(X,Y))

split.ppp Divide Point Pattern into Sub-patterns

Description

Divides a point pattern into several sub-patterns, according to their marks, or according to any
user-specified grouping.

Usage
S3 method for class 'ppp'
split(x, f = marks(x), drop=FALSE, un=NULL, reduce=FALSE, ...)
S3 replacement method for class 'ppp'
split(x, f = marks(x), drop=FALSE, un=NULL, ...) <- value
Arguments

A two-dimensional point pattern. An object of class "ppp”.

f Data determining the grouping. Either a factor, a logical vector, a pixel image
with factor values, a tessellation, a window, or the name of one of the columns
of marks.

drop Logical. Determines whether empty groups will be deleted.

split.ppp 593

un Logical. Determines whether the resulting subpatterns will be unmarked (i.e.
whether marks will be removed from the points in each subpattern).

reduce Logical. Determines whether to delete the column of marks used to split the
pattern, when the marks are a data frame.

Other arguments are ignored.

value List of point patterns.

Details
The function split.ppp divides up the points of the point pattern x into several sub-patterns ac-
cording to the values of f. The result is a list of point patterns.
The argument f may be
* afactor, of length equal to the number of points in x. The levels of f determine the destination

of each point in x. The ith point of x will be placed in the sub-pattern split.ppp(x)$1 where
1="F[i].

* apixel image (object of class "im") with factor values. The pixel value of f at each point of x
will be used as the classifying variable.

* atessellation (object of class "tess"). Each point of x will be classified according to the tile
of the tessellation into which it falls.

* a window (object of class "owin"). Each point of x will be classified according to whether it
falls inside or outside this window.

* the character string "marks”, if marks(x) is a factor.
* a character string, matching the name of one of the columns of marks, if marks(x) is a data

frame. This column should be a factor.

If f is missing, then it will be determined by the marks of the point pattern. The pattern x can be
either

* a multitype point pattern (a marked point pattern whose marks vector is a factor). Then f
is taken to be the marks vector. The effect is that the points of each type are separated into
different point patterns.

» a marked point pattern with a data frame of marks, containing at least one column that is a
factor. The first such column will be used to determine the splitting factor f.
Some of the sub-patterns created by the split may be empty. If drop=TRUE, then empty sub-patterns
will be deleted from the list. If drop=FALSE then they are retained.

The argument un determines how to handle marks in the case where x is a marked point pattern.
If un=TRUE then the marks of the points will be discarded when they are split into groups, while if
un=FALSE then the marks will be retained.

If f and un are both missing, then the default is un=TRUE for multitype point patterns and un=FALSE
for marked point patterns with a data frame of marks.

If the marks of x are a data frame, then split(x, reduce=TRUE) will discard only the column of
marks that was used to split the pattern. This applies only when the argument f is missing.

The result of split.ppp has class "splitppp” and can be plotted using plot.splitppp.

594 split.ppp

The assignment function split<-.ppp updates the point pattern x so that it satisfies split(x, f,
drop, un) = value. The argument value is expected to be a list of point patterns, one for each
level of f. These point patterns are expected to be compatible with the type of data in the original
pattern Xx.

Splitting can also be undone by the function superimpose, but this typically changes the ordering
of the data.

Value

The value of split.ppp is a list of point patterns. The components of the list are named by the
levels of f. The list also has the class "splitppp”.

The assignment form split<-.ppp returns the updated point pattern x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

cut.ppp, plot.splitppp, superimpose, im, tess, ppp.object

Examples

(1) Splitting by marks

Multitype point pattern: separate into types
u <- split(amacrine)

plot them
plot(split(amacrine))

the following are equivalent:
amon <- split(amacrine)$on
amon <- unmark(amacrine[amacrine$marks == "on"])
amon <- subset(amacrine, marks == "on", -marks)

the following are equivalent:
amon <- split(amacrine, un=FALSE)$on
amon <- amacrine[amacrine$marks == "on"]

Scramble the locations of the 'on' cells
X <- amacrine
u <- split(x)
u$on <- runifrect(npoints(amon), Window(amon))
split(X) <- u

Point pattern with continuous marks
trees <- longleaf

cut the range of tree diameters into three intervals

split.ppx 595

using cut.ppp

long3 <- cut(trees, breaks=3)
now split them

long3split <- split(long3)

(2) Splitting by a factor
Unmarked point pattern
swedishpines
cut & split according to nearest neighbour distance
f <- cut(nndist(swedishpines), 3)
u <- split(swedishpines, f)
(3) Splitting over a tessellation
tes <- tess(xgrid=seq(@,96,length=5),ygrid=seq(0,100,length=5))
v <- split(swedishpines, tes)
(4) how to apply an operation to selected points:
split into components, transform desired component, then un-split
e.g. apply random jitter to 'on' points only
X <- amacrine
Y <- split(X)
Y$on <- rjitter(Y$on, 0.1)
split(X) <- Y
split.ppx Divide Multidimensional Point Pattern into Sub-patterns
Description

Divides a multidimensional point pattern into several sub-patterns, according to their marks, or
according to any user-specified grouping.

Usage
S3 method for class 'ppx'
split(x, f = marks(x), drop=FALSE, un=NULL, ...)
Arguments
A multi-dimensional point pattern. An object of class "ppx".
f Data determining the grouping. Either a factor, a logical vector, or the name of
one of the columns of marks.
drop Logical. Determines whether empty groups will be deleted.
un Logical. Determines whether the resulting subpatterns will be unmarked (i.e.

whether marks will be removed from the points in each subpattern).

Other arguments are ignored.

596 split.ppx

Details
The generic command split allows a dataset to be separated into subsets according to the value of
a grouping variable.

The function split.ppx is a method for the generic split for the class "ppx" of multidimensional
point patterns. It divides up the points of the point pattern x into several sub-patterns according to
the values of f. The result is a list of point patterns.

The argument f may be
* afactor, of length equal to the number of points in x. The levels of f determine the destination

of each point in x. The ith point of x will be placed in the sub-pattern split.ppx(x)$1 where
1=~[i].

* the character string "marks”, if marks(x) is a factor.

* a character string, matching the name of one of the columns of marks, if marks(x) is a data

frame or hyperframe. This column should be a factor.

If f is missing, then it will be determined by the marks of the point pattern. The pattern x can be
either

* a multitype point pattern (a marked point pattern whose marks vector is a factor). Then f
is taken to be the marks vector. The effect is that the points of each type are separated into
different point patterns.

* a marked point pattern with a data frame or hyperframe of marks, containing at least one

column that is a factor. The first such column will be used to determine the splitting factor f.

Some of the sub-patterns created by the split may be empty. If drop=TRUE, then empty sub-patterns
will be deleted from the list. If drop=FALSE then they are retained.

The argument un determines how to handle marks in the case where x is a marked point pattern.
If un=TRUE then the marks of the points will be discarded when they are split into groups, while if
un=FALSE then the marks will be retained.

If f and un are both missing, then the default is un=TRUE for multitype point patterns and un=FALSE
for marked point patterns with a data frame of marks.

The result of split.ppx has class "splitppx” and "anylist”. There are methods for print,
summary and plot.

Value
A list of point patterns. The components of the list are named by the levels of f. The list also has
the class "splitppx” and "anylist".

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppx, plot.anylist

spokes 597

Examples

df <- data.frame(x=runif(4),y=runif(4),t=runif(4),
age=factor(rep(c(”old”, "new"), 2)),
size=runif(4))

X <- ppx(data=df, coord.type=c("s","s","t","m","m"))

X

split(X)

spokes Spokes pattern of dummy points

Description
Generates a pattern of dummy points in a window, given a data point pattern. The dummy points
lie on the radii of circles emanating from each data point.
Usage
spokes(x, y, nrad = 3, nper = 3, fctr = 1.5, Mdefault = 1)

Arguments
X Vector of x coordinates of data points, or a list with components x and y, or a
point pattern (an object of class ppp).
y Vector of y coordinates of data points. Ignored unless x is a vector.
nrad Number of radii emanating from each data point.
nper Number of dummy points per radius.
fctr Scale factor. Length of largest spoke radius is fctr x M where M is the mean
nearest neighbour distance for the data points.
Mdefault Value of M to be used if x has length 1.
Details

This function is useful in creating dummy points for quadrature schemes (see quadscheme).
Given the data points, the function creates a collection of nrad * nper * length(x) dummy points.

Around each data point (x[i],y[i]) there are nrad * nper dummy points, lying on nrad radii
emanating from (x[i],y[i]), with nper dummy points equally spaced along each radius.

The (equal) spacing of dummy points along each radius is controlled by the factor fctr. The
distance from a data point to the furthest of its associated dummy points is fctr * M where M is the
mean nearest neighbour distance for the data points.

If there is only one data point the nearest neighbour distance is infinite, so the value Mdefault will
be used in place of M.

If x is a point pattern, then the value returned is also a point pattern, which is clipped to the win-
dow of x. Hence there may be fewer than nrad * nper * length(x) dummy points in the pattern
returned.

598 square

Value

If argument x is a point pattern, a point pattern with window equal to that of x. Otherwise a list with
two components x and y. In either case the components x and y of the value are numeric vectors
giving the coordinates of the dummy points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, quadscheme, inside.owin, gridcentres, stratrand

Examples

dat <- runifrect(10)

dum <- spokes(datx, daty, 5, 3, 0.7)
plot(dum)

Q <- quadscheme(dat, dum, method="dirichlet")
plot(Q, tiles=TRUE)

square Square Window

Description

Creates a square window

Usage

square(r=1, unitname=NULL)
unit.square()

Arguments
r Numeric. The side length of the square, or a vector giving the minimum and
maximum coordinate values.
unitname Optional. Name of unit of length. Either a single character string, or a vector of

two character strings giving the singular and plural forms, respectively.

stratrand 599

Details

If r is a number, square(r) is a shortcut for creating a window object representing the square
[0, 7] x [0, r]. It is equivalent to the command owin(c(@,r),c(0,r)).

If r is a vector of length 2, then square(r) creates the square with x and y coordinates ranging
from r[1] to rf2].

unit.square creates the unit square [0, 1] x [0, 1]. It is equivalent to square(1) or square() or
owin(c(0,1),c(0,1)).

These commands are included for convenience, and to improve the readability of some code.

Value

An object of class "owin" (see owin.object) specifying a window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin.object, owin

Examples

W <- square(10)
W <- square(c(-1,1))

stratrand Stratified random point pattern

Description
Generates a “stratified random” pattern of points in a window, by dividing the window into rectan-
gular tiles and placing k random points in each tile.

Usage

stratrand(window, nx, ny, k = 1)

Arguments
window A window. An object of class owin, or data in any format acceptable to as.owin().
nx Number of tiles in each row.
ny Number of tiles in each column.

k Number of random points to generate in each tile.

600 stratrand

Details

The bounding rectangle of window is divided into a regular nxz x ny grid of rectangular tiles. In
each tile, k random points are generated independently with a uniform distribution in that tile.

Note that some of these grid points may lie outside the window, if window is not of type "rectangle”.
The function inside.owin can be used to select those grid points which do lie inside the window.
See the examples.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well
as in simulating random point patterns.

Value

A list with two components x and y, which are numeric vectors giving the coordinates of the random
points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, quadscheme, inside.owin, gridcentres

Examples

w <- unit.square()

Xy <- stratrand(w, 10, 10)
plot(w)

points(xy)

polygonal boundary

bdry <- list(x=c(0.1,0.3,0.7,0.4,0.2),
y=c(0.1,0.1,0.5,0.7,0.3))

w <- owin(c(@,1), c(0,1), poly=bdry)

Xy <- stratrand(w, 10, 10, 3)

plot(w)

points(xy)

determine which grid points are inside polygon
ok <- inside.owin(xyx, xyy, w)

plot(w)

points(xy$x[ok], xy$y[ok])

subset.hyperframe 601

subset.hyperframe Subset of Hyperframe Satisfying A Condition

Description

Given a hyperframe, return the subset specified by imposing a condition on each row, and optionally
by choosing only some of the columns.

Usage
S3 method for class 'hyperframe'
subset(x, subset, select, ...)
Arguments
X A hyperframe pattern (object of class "hyperframe”.
subset Logical expression indicating which points are to be kept. The expression may

involve the names of columns of x and will be evaluated by with.hyperframe.
select Expression indicating which columns of marks should be kept.

Arguments passed to [. hyperframe such as drop and strip.

Details

This is a method for the generic function subset. It extracts the subset of rows of x that satisfy the
logical expression subset, and retains only the columns of x that are specified by the expression
select. The result is always a hyperframe.

The argument subset determines the subset of rows that will be extracted. It should be a logical
expression. It may involve the names of columns of x. The default is to keep all points.

The argument select determines which columns of x will be retained. It should be an expression
involving the names of columns (which will be interpreted as integers representing the positions
of these columns). For example if there are columns named A to Z, then select=D:F is a valid
expression and means that columns D, E and F will be retained. Similarly select=-(A:C) is valid
and means that columns A to C will be deleted. The default is to retain all columns.

Setting subset=FALSE will remove all the rows. Setting select=FALSE will remove all the columns.

The result is always a hyperframe.

Value

A hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

602 subset.ppp

See Also

subset, [.hyperframe

Examples

a <- subset(flu, virustype=="wt")

aa <- subset(flu, minnndist(pattern) > 10)

aaa <- subset(flu, virustype=="wt", select = -pattern)
subset.ppp Subset of Point Pattern Satisfying A Condition
Description

Given a point pattern, return the subset of points which satisfy a specified condition.

Usage

S3 method for class 'ppp'
subset(x, subset, select, drop=FALSE, ...)

S3 method for class 'pp3'
subset(x, subset, select, drop=FALSE, ...)

S3 method for class 'ppx'

subset(x, subset, select, drop=FALSE, ...)
Arguments
X A point pattern (object of class "ppp"”, "1pp”, "pp3" or "ppx").
subset Logical expression indicating which points are to be kept. The expression may

involve the names of spatial coordinates (x, y, etc), the marks, and (if there is
more than one column of marks) the names of individual columns of marks.
Missing values are taken as false. See Details.

select Expression indicating which columns of marks should be kept. The names of
columns of marks can be used in this expression, and will be treated as if they
were column indices. See Details.

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

Ignored.

subset.ppp 603

Details

This is a method for the generic function subset. It extracts the subset of points of x that satisfy
the logical expression subset, and retains only the columns of marks that are specified by the
expression select. The result is always a point pattern, with the same window as x.

The argument subset determines the subset of points that will be extracted. It should be a logical
expression. It may involve the variable names x and y representing the Cartesian coordinates; the
names of other spatial coordinates or local coordinates; the name marks representing the marks;
and (if there is more than one column of marks) the names of individual columns of marks. The
default is to keep all points.

The argument select determines which columns of marks will be retained (if there are several
columns of marks). It should be an expression involving the names of columns of marks (which
will be interpreted as integers representing the positions of these columns). For example if there are
columns of marks named A to Z, then select=D:F is a valid expression and means that columns D,
E and F will be retained. Similarly select=-(A:C) is valid and means that columns A to C will be
deleted. The default is to retain all columns.

Setting subset=FALSE will produce an empty point pattern (i.e. containing zero points) in the same
window as x. Setting select=FALSE or select= -marks will remove all the marks from x.

The argument drop determines whether to remove unused levels of a factor, if the resulting point
pattern is multitype (i.e. the marks are a factor) or if the marks are a data frame in which some of
the columns are factors.

The result is always a point pattern, of the same class as x. Spatial coordinates (and local coordi-
nates) are always retained. To extract only some columns of marks or coordinates as a data frame,
use subset(as.data.frame(x), ...)

Value
A point pattern of the same class as x, in the same spatial window as x. The result is a subset of x,
possibly with some columns of marks removed.

Other kinds of subset arguments

Alternatively the argument subset can be any kind of subset index acceptable to [.ppp, [.pp3,
[.ppx. This argument selects which points of x will be retained.

Warning: if the argument subset is a window, this is interpreted as specifying the subset of points
that fall inside that window, but the resulting point pattern has the same window as the original
pattern x.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

subset,

L.ppp, [.pp3, [.ppx

604 subset.psp

Examples

plot(subset(cells, x > 0.5))

subset(amacrine, marks == "on")

subset(amacrine, marks == "on", drop=TRUE)
subset(redwood, nndist(redwood) > 0.04)
subset(finpines, select=height)

subset(finpines, diameter > 2, height)
subset(nbfires, year==1999 & ign.src == "campfire”,

select=cause:fnl.size)

if(require(spatstat.random)) {
a <- subset(rpoispp3(40), z > 0.5)
3

subset.psp Subset of Line Segment Satisfying A Condition

Description

Given a line segment pattern, return the subset of segments which satisfy a specified condition.

Usage
S3 method for class 'psp'
subset(x, subset, select, drop=FALSE, ...)
Arguments
X A line segment pattern (object of class "psp").
subset Logical expression indicating which points are to be kept. The expression may

involve the names of spatial coordinates of the segment endpoints (x0, yo, x1,
y1), the marks, and (if there is more than one column of marks) the names of
individual columns of marks. Missing values are taken as false. See Details.

select Expression indicating which columns of marks should be kept. The names of
columns of marks can be used in this expression, and will be treated as if they
were column indices. See Details.

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

Ignored.

subset.psp 605

Details

This is a method for the generic function subset. It extracts the subset of x consisting of those
segments that satisfy the logical expression subset, and retains only the columns of marks that
are specified by the expression select. The result is always a line segment pattern, with the same
window as Xx.

The argument subset determines the subset that will be extracted. It should be a logical expression.
It may involve the variable names x@, y@, x1, y1 representing the Cartesian coordinates of the
segment endpoints; the name marks representing the marks; and (if there is more than one column
of marks) the names of individual columns of marks. The default is to keep all segments.

The argument select determines which columns of marks will be retained (if there are several
columns of marks). It should be an expression involving the names of columns of marks (which
will be interpreted as integers representing the positions of these columns). For example if there are
columns of marks named A to Z, then select=D:F is a valid expression and means that columns D,
E and F will be retained. Similarly select=-(A:C) is valid and means that columns A to C will be
deleted. The default is to retain all columns.

Setting subset=FALSE will produce an empty point pattern (i.e. containing zero points) in the same
window as x. Setting select=FALSE or select= -marks will remove all the marks from x.

The argument drop determines whether to remove unused levels of a factor, if the resulting point
pattern is multitype (i.e. the marks are a factor) or if the marks are a data frame in which some of
the columns are factors.

The result is always a line segment pattern. To extract only some columns of marks as a data frame,
use subset(as.data.frame(x), ...)

Value

A line segment pattern (object of class "psp"”) in the same spatial window as x. The result is a
subset of x, possibly with some columns of marks removed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

subset, [.psp.

Examples

plot(nbw.seg)

plot(subset(nbw.seg, x0 < 500 & y@ < 800), add=TRUE, lwd=6)
subset(nbw.seg, type == "island")

subset(nbw.seg, type == "coast”, select= -type)
subset(nbw.seg, type %in% c("island”, "coast"”), select= FALSE)

606

summary.anylist

summary.anylist Summary of a List of Things

Description

Prints a useful summary of each item in a list of things.

Usage
S3 method for class 'anylist'
summary (object, ...)
Arguments
object An object of class "anylist".
Ignored.
Details

This is a method for the generic function summary.

An object of the class "anylist” is effectively a list of things which are intended to be treated in a

similar way. See anylist.

This function extracts a useful summary of each of the items in the list.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

anylist, summary, plot.anylist

Examples

x <= anylist(A=runif(10), B=runif(10), C=runif(10))

summary (x)

summary.distfun 607

summary.distfun Summarizing a Function of Spatial Location

Description

Prints a useful summary of a function of spatial location.

Usage

S3 method for class 'distfun'
summary (object, ...)

S3 method for class 'funxy'

summary (object, ...)
Arguments
object An object of class "distfun” or "funxy" representing a function of spatial
coordinates.

Arguments passed to as.mask controlling the pixel resolution used to compute
the summary.

Details

These are the summary methods for the classes "funxy"” and "distfun”.

An object of class "funxy" represents a function of spatial location, defined in a particular region
of space. This includes objects of the special class "distfun” which represent distance functions.

The summary method computes a summary of the function values. The function is evaluated on
a grid of locations using as.im and numerical values at these locations are summarised using
summary.im. The pixel resolution for the grid of locations is determined by the arguments . . .
which are passed to as.mask.
Value
For summary. funxy the result is an object of class "summary. funxy”. For summary.distfun the
result is an object of class "summary.distfun”. There are print methods for these classes.
Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.
See Also

distfun, funxy

608 summary.im

Examples

f <- function(x,y) { x*2 + y*2 - 1}
g <- funxy(f, square(2))
summary(g)

summary (distfun(cells))
summary (distfun(cells), dimyx=256)

summary.im Summarizing a Pixel Image

Description

summary method for class "im".

Usage
S3 method for class 'im'
summary (object, ...)
S3 method for class 'summary.im'
print(x, ...)
Arguments
object A pixel image.
Ignored.
X Object of class "summary.im" as returned by summary. im.
Details

This is a method for the generic summary for the class "im"”. An object of class "im" describes a
pixel image. See im.object) for details of this class.

summary . im extracts information about the pixel image, and print.summary.im prints this infor-
mation in a comprehensible format.

In normal usage, print.summary. imis invoked implicitly when the user calls summary. im without
assigning its value to anything. See the examples.

The information extracted by summary . im includes

range The range of the image values.
mean The mean of the image values.

integral The “integral” of the image values, calculated as the sum of the image values multiplied
by the area of one pixel.

dim The dimensions of the pixel array: dim[1] is the number of rows in the array, corresponding
to the y coordinate.

summary.listof 609

Value

summary . im returns an object of class "summary.im", while print.summary. im returns NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

mean.im, integral.im, anyNA.im

Examples

make an image

X <- as.im(function(x,y) {x*2}, unit.square())
summarize it
summary (X)

save the summary
s <- summary(X)

print it
print(X)

s

extract stuff
X$dim

X$range

X$integral

summary.listof Summary of a List of Things

Description

Prints a useful summary of each item in a list of things.

Usage
S3 method for class 'listof’
summary (object, ...)
Arguments
object An object of class "listof".
Ignored.
Details

This is a method for the generic function summary.
An object of the class "listof"” is effectively a list of things which are all of the same class.

This function extracts a useful summary of each of the items in the list.

610 summary.owin

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

summary, plot.listof

Examples

x <= list(A=runif(10), B=runif(10), C=runif(10))
class(x) <- c("listof"”, class(x))
summary (x)

summary.owin Summary of a Spatial Window

Description

Prints a useful description of a window object.

Usage
S3 method for class 'owin'
summary (object, ...)
Arguments
object Window (object of class "owin").
Ignored.
Details

A useful description of the window object is printed.

This is a method for the generic function summary.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

summary, summary.ppp, print.owin

summary.ppp 611

Examples

summary(owin()) # the unit square

W <- Window(demopat) # weird polygonal window
summary (W) # describes it

summary(as.mask(W)) # demonstrates current pixel resolution

summary . ppp Summary of a Point Pattern Dataset

Description

Prints a useful summary of a point pattern dataset.

Usage
S3 method for class 'ppp'

summary (object, ..., checkdup=TRUE)
Arguments

object Point pattern (object of class "ppp").

Ignored.

checkdup Logical value indicating whether to check for the presence of duplicate points.

Details

A useful summary of the point pattern object is printed.
This is a method for the generic function summary.

If checkdup=TRUE, the pattern will be checked for the presence of duplicate points, using duplicated. ppp.
This can be time-consuming if the pattern contains many points, so the checking can be disabled by
setting checkdup=FALSE.

If the point pattern was generated by simulation using rmh, the parameters of the algorithm are
printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

summary, summary.owin, print.ppp

612

Examples

summary(cells) # plain vanilla point pattern

multitype point pattern
woods <- lansing

summary(woods) # tabulates frequencies of each mark

numeric marks
trees <- longleaf

summary(trees) # prints summary.default(marks(trees))

weird polygonal window
summary (demopat) # describes it

summary.psp

summary . psp Summary of a Line Segment Pattern Dataset

Description

Prints a useful summary of a line segment pattern dataset.

Usage
S3 method for class 'psp'
summary (object, ...)
Arguments
object Line segment pattern (object of class "psp").
Ignored.
Details

A useful summary of the line segment pattern object is printed.

This is a method for the generic function summary.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

summary, summary.owin, print.psp

summary.quad 613

Examples

a <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
summary(a) # describes it

summary.quad Summarizing a Quadrature Scheme

Description

summary method for class "quad”.

Usage
S3 method for class 'quad'
summary (object, ..., checkdup=FALSE)
S3 method for class 'summary.quad'
print(x, ..., dp=3)
Arguments
object A quadrature scheme.
Ignored.
checkdup Logical value indicating whether to test for duplicated points.
dp Number of significant digits to print.
X Object of class "summary.quad” returned by summary . quad.
Details

This is a method for the generic summary for the class "quad”. An object of class "quad” describes
a quadrature scheme, used to fit a point process model. See quad.object) for details of this class.

summary . quad extracts information about the quadrature scheme, and print. summary.quad prints
this information in a comprehensible format.

In normal usage, print.summary.quad is invoked implicitly when the user calls summary.quad
without assigning its value to anything. See the examples.

Value
summary.quad returns an object of class "summary.quad”, while print.summary.quad returns
NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

614 summary.solist

Examples

make a quadrature scheme

Q <- quadscheme(runifrect(42))
summarize it

summary (Q)

save the summary

s <- summary(Q)

print it

print(s)

s

extract total quadrature weight
swall$sum

summary.solist Summary of a List of Spatial Objects

Description

Prints a useful summary of each entry in a list of two-dimensional spatial objects.

Usage
S3 method for class 'solist'
summary (object, ...)
Arguments
object An object of class "solist”.
Ignored.
Details

This is a method for the generic function summary.
An object of the class "solist” is effectively a list of two-dimensional spatial datasets. See solist.

This function extracts a useful summary of each of the datasets.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

solist, summary, plot.solist

summary.splitppp 615

Examples

x <- solist(cells, japanesepines, redwood)
summary (x)

summary.splitppp Summary of a Split Point Pattern

Description

Prints a useful summary of a split point pattern.

Usage
S3 method for class 'splitppp'
summary (object, ...)
Arguments
object Split point pattern (object of class "splitppp”, effectively a list of point pat-

terns, usually created by split.ppp).
Ignored.

Details

This is a method for the generic function summary.

An object of the class "splitppp"” is effectively a list of point patterns (objects of class "ppp")
representing different sub-patterns of an original point pattern.

This function extracts a useful summary of each of the sub-patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

summary, split, split.ppp

Examples

summary(split(amacrine))

616

superimpose

superimpose

Superimpose Several Geometric Patterns

Description

Superimpose any number of point patterns or line segment patterns.

Usage

superimpose(...)

S3 method for class 'ppp'
superimpose(..., W=NULL, check=TRUE)

S3 method for class 'psp'
superimpose(..., W=NULL, check=TRUE)

S3 method for class 'splitppp'
superimpose(..., W=NULL, check=TRUE)

S3 method for class 'ppplist'
superimpose(..., W=NULL, check=TRUE)

Default S3 method:
superimpose(...)

Arguments

check

Details

Any number of arguments, each of which represents either a point pattern or a
line segment pattern or a list of point patterns.

Optional. Data determining the window for the resulting pattern. Either a win-
dow (object of class "owin", or something acceptable to as.owin), or a function

which returns a window, or one of the strings "convex”, "rectangle”, "bbox"
or "none".

Logical value (passed to ppp or psp as appropriate) determining whether to
check the geometrical validity of the resulting pattern.

This function is used to superimpose several geometric patterns of the same kind, producing a single
pattern of the same kind.

The function superimpose is generic, with methods for the class ppp of point patterns, the class psp
of line segment patterns, and a default method. There is also a method for 1pp, described separately
in superimpose. lpp.

The dispatch to a method is initially determined by the class of the first argumentin

superimpose 617

e default: If the first argument is not an object of class ppp or psp, then the default method
superimpose.default is executed. This checks the class of all arguments, and dispatches to
the appropriate method. Arguments of class ppplist can be handled.

* ppp: If the first . .. argument is an object of class ppp then the method superimpose. ppp is
executed. All arguments in ... must be either ppp objects or lists with components x and y.
The result will be an object of class ppp.

* psp: If the first . . . argument is an object of class psp then the psp method is dispatched and
all . .. arguments must be psp objects. The result is a psp object.

The patterns are not required to have the same window of observation.

The window for the superimposed pattern is controlled by the argument W.

» If Wis a window (object of class "W" or something acceptable to as.owin) then this determines
the window for the superimposed pattern.

o If Wis NULL, or the character string "none”, then windows are extracted from the geomet-
ric patterns, as follows. For superimpose.psp, all arguments ... are line segment patterns
(objects of class "psp"); their observation windows are extracted; the union of these win-
dows is computed; and this union is taken to be the window for the superimposed pattern.
For superimpose. ppp and superimpose.default, the arguments . . . are inspected, and any
arguments which are point patterns (objects of class "ppp") are selected; their observation
windows are extracted, and the union of these windows is taken to be the window for the
superimposed point pattern. For superimpose.default if none of the arguments is of class
"ppp" then no window is computed and the result of superimpose isa list(x,y).

n on

* If W is one of the strings "convex”, "rectangle” or "bbox" then a window for the superim-
posed pattern is computed from the coordinates of the points or the line segments as follows.

"bbox": the bounding box of the points or line segments (see bounding.box. xy);
"convex": the Ripley-Rasson estimator of a convex window (see ripras);

"rectangle”: the Ripley-Rasson estimator of a rectangular window (using ripras with ar-
gument shape="rectangle”).

* If Wis a function, then this function is used to compute a window for the superimposed pattern
from the coordinates of the points or the line segments. The function should accept input of
the form 1ist(x,y) and is expected to return an object of class "owin”. Examples of such
functions are ripras and bounding.box. xy.

The arguments ... may be marked patterns. The marks of each component pattern must have
the same format. Numeric and character marks may be “mixed”. If there is such mixing then the
numeric marks are coerced to character in the combining process. If the mark structures are all data
frames, then these data frames must have the same number of columns and identical column names.

If the arguments ... are given in the form name=value, then the names will be used as an extra
column of marks attached to the elements of the corresponding patterns.

Value

For superimpose. ppp, a point pattern (object of class "ppp"). For superimpose.default, either a
point pattern (object of class "ppp") ora list(x,y). For superimpose.psp, a line segment pattern
(object of class "psp").

618 symbolmap

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

concatxy, quadscheme.

Examples

superimposing point patterns

pl <- runifrect(30)

p2 <- runifrect(42)

s1 <- superimpose(pl,p2) # Unmarked pattern.

p3 <- list(x=rnorm(20),y=rnorm(20))

s2 <- superimpose(p3,p2,pl1) # Default method gets called.

s2a <- superimpose(pl,p2,p3) # Same as s2 except for order of points.

s3 <- superimpose(clyde=p1,irving=p2) # Marked pattern; marks a factor
with levels "clyde" and "irving";
warning given.

marks(p1) <- factor(sample(LETTERS[1:3],30,TRUE))

marks(p2) <- factor(sample(LETTERS[1:3],42,TRUE))

s5 <- superimpose(clyde=p1,irving=p2) # Marked pattern with extra column

marks(p2) <- data.frame(a=marks(p2),b=runif(42))

s6 <- try(superimpose(pl,p2)) # Gives an error.

marks(p1) <- data.frame(a=marks(p1),b=1:30)

s7 <- superimpose(pl,p2) # 0.K.

how to make a 2-type point pattern with types "a” and "b"
u <- superimpose(a = runifrect(10), b = runifrect(20))

how to make a 2-type point pattern with types 1 and 2

u <- superimpose(”1" = runifrect(10), "2" = runifrect(20))
superimposing line segment patterns

X <- as.psp(matrix(runif(20), 5, 4), window=owin())

Y <- as.psp(matrix(runif(40), 10, 4), window=owin())

Z <- superimpose(X, Y)

being unreasonable
Not run:
if (FALSE) {
crud <- try(superimpose(pl,p2,X,Y)) # Gives an error, of course!

}

End(Not run)

symbolmap Graphics Symbol Map

symbolmap 619

Description

Create a graphics symbol map that associates data values with graphical symbols.

Usage
symbolmap(..., range = NULL, inputs = NULL,
transform = NULL, compress = transform, decompress = NULL)
Arguments
Named arguments specifying the graphical parameters. See Details.
range Optional. Range of numbers that are mapped. A numeric vector of length 2
giving the minimum and maximum values that will be mapped. Incompatible
with inputs.
inputs Optional. A vector containing all the data values that will be mapped to symbols.
Incompatible with range.
transform Optional. Experimental. An R function which should applied to input data for
the symbol map before the graphics parameters . . . are determined. See section
on Nonlinear transformation.
compress Optional. Experimental. An R function determining a nonlinear transformation
of the domain of the symbol map, to be used when the symbol map is plotted.
See section on Nonlinear transformation.
decompress Experimental. An R function giving the inverse function of compress, if compress
is specified.
Details

A graphical symbol map is an association between data values and graphical symbols. The com-
mand symbolmap creates an object of class "symbolmap” that represents a graphical symbol map.

Once a symbol map has been created, it can be applied to any suitable data to generate a plot of
those data. This makes it easy to ensure that the same symbol map is used in two different plots.
The symbol map can be plotted as a legend to the plots, and can also be plotted in its own right.

The possible values of data that will be mapped are specified by range or inputs.
* if range is given, it should be a numeric vector of length 2 giving the minimum and maximum
values of the range of numbers that will be mapped. These limits must be finite.

* if inputs is given, it should be a vector of any atomic type (e.g. numeric, character, logical,
factor). This vector contains all the possible data values that will be mapped.

* If neither range nor inputs is given, it is assumed that the possible values are real numbers.
The association of data values with graphical symbols is specified by the other arguments . . . which

are given in name=value form. These arguments specify the kinds of symbols that will be used, the
sizes of the symbols, and graphics parameters for drawing the symbols.

Each graphics parameter can be either a single value, for example shape="circles”, ora function(x)
which determines the value of the graphics parameter as a function of the data x, for example

620 symbolmap

shape=function(x) ifelse(x > @, "circles”, "squares”). Colourmaps (see colourmap) are
also acceptable because they are functions.

Currently recognised graphics parameters, and their allowed values, are:

n

shape The shape of the symbol: currently either "circles”, "squares”, "arrows”, "crossticks
or NA. This parameter takes precedence over pch. (Crossticks are used only for point patterns
on a linear network).

size The size of the symbol: a positive number or zero.

pch Graphics character code: a positive integer, or a single character. See par.

cex Graphics character expansion factor.

cols Colour of plotting characters.

fg,bg Colour of foreground (or symbol border) and background (or symbol interior).
col,lwd,Ity Colour, width and style of lines.

etch Logical. If TRUE, each symbol is surrounded by a border drawn in the opposite colour, which
improves its visibility against the background. Default is FALSE.

direction,headlength,headangle,arrowtype Numeric parameters of arrow symbols, applicable when
shape="arrows". Here direction is the direction of the arrow in degrees anticlockwise from
the = axis; headlength is the length of the head of the arrow in coordinate units; headangle
is the angle subtended by the point of the arrow; and arrowtype is an integer code specifying
which ends of the shaft have arrowheads attached (0 means no arrowheads, 1 is an arrowhead
at the start of the shaft, 2 is an arrowhead at the end of the shaft, and 3 is arrowheads at both
ends).

A vector of colour values is also acceptable for the arguments col, cols, fg,bg if range is speci-
fied.

Value

An object of class "symbolmap”.

Nonlinear transformation

e The argument transform defines a transformation that will be applied to the input data for
the symbol map.
If transform is given, it should be an R function. All input data for the symbol map will
first be transformed by this function, before the graphical parameters specified by ... are
determined.
A typical example would be a logarithmic symbol map defined by transform=1og10 to-
gether with something like size = function(x) { 3 * x }. This would mean that a numerical
value z will be represented on the plot by a circle of diameter size(transform(z)) =3 *
log10(z) on the physical scale of the plot.

* The arguments compress and decompress define a transformation of the range of numbers
that is used only when the symbol map is plotted.

A typical example would be a logarithmic symbol map defined by compress = log1@ and
decompress = function(x) { 10*x }.

symbolmap 621

The arguments compress and decompress have no effect on the interpretation of the other
arguments. They only affect the way in which the symbol map is plotted by plot.symbolmap.
For a continuous symbol map, the range of input values is plotted on the compressed scale,
but annotated on the original scale. See the Examples.

If transform is given, then the default value of compress is the same function transform. This
reflects the fact that, when the user has specified that the input data should be transformed to an-
other scale in order to determine their graphical representation, it would usually be appropriate to
display the symbol map legend on the same transformed scale. However this can be overridden by
specifying another value for compress, including NULL.

The arguments transform, compress and decompress should be functions which are vectorised
(i.e. if x is a vector then compress(x) and decompress(x) are also vectors of the same length as x)
and increasing (if x <y then compress(x) < compress(y) and decompress(x) < decompress(y).

The argument decompress is not needed in the following cases:

 If compress is the function 1og10, then decompress is taken to be its inverse function(x) {
10"x 3.

e If compress is a cumulative distribution function (of class "ecdf"”, "ewcdf"” or "interpolatedCDF")

then decompress is taken to be its inverse function decompress = quantilefun(compress).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.
See Also

plot.symbolmap to plot the symbol map itself.

invoke. symbolmap to apply the symbol map to some data and plot the resulting symbols.
update. symbolmap to change the symbol map.
There are methods for print and summary for symbol maps.
Examples
g <- symbolmap(inputs=letters[1:10], pch=11:20)
gl <- symbolmap(range=c(0,100), size=function(x) x/50)

squares and circles with area proportional to |x]|
For 'squares', size is side length; size = sqrt(area)

For 'circles', size is diameter; size = sqrt(area * 4/pi)
g2 <- symbolmap(shape=function(x) ifelse(x > @, "circles”, "squares"),
size=function(x) sqrt(ifelse(x > 0,
abs(x)*4/pi,
abs(x))),

bg = function(x) ifelse(abs(x) < 1, "red”, "black"))

colmap <- colourmap(topo.colors(20), range=c(0,10))
g3 <- symbolmap(pch=21, bg=colmap, range=c(@,10))
plot(g3)

622

tess

logarithmic symbol map
gm <- symbolmap(range=c(1,1000), pch=21, transform=logl@,

size=function(x) { x + 1 })

input value x is plotted as a circle of diameter = logl@(x) + 1.

em(100)

plot(gm, nsymbols=4)
note logarithmic scale of legend, because compress=transform by default.

logarithmic display scale only
gl <- symbolmap(range=c(1,1000), pch=21, compress=logl0@)

gl(10)

plot(gl, nsymbols=4)
gu <- symbolmap(range=c(1,1000), pch=21)

gu(10)

plot(gu, nsymbols=4)
log transformation 'compress' does not affect symbol map itself

tess

Create a Tessellation

Description

Creates an object of class "tess” representing a tessellation of a spatial region.

Usage

tess(...,

Arguments

xgrid, ygrid
tiles
image
window

marks
keepempty

unitname

xgrid = NULL, ygrid = NULL, tiles = NULL, image = NULL,
window=NULL, marks=NULL, keepempty=FALSE, unitname=NULL, check=TRUE)

Ignored.

Cartesian coordinates of vertical and horizontal lines determining a grid of rect-
angles. Incompatible with other arguments.

List of tiles in the tessellation. A list, each of whose elements is a window
(object of class "owin"). Incompatible with other arguments.

Pixel image (object of class "im") which specifies the tessellation. Incompatible
with other arguments.

Optional. The spatial region which is tessellated (i.e. the union of all the tiles).
An object of class "owin".

Optional vector, data frame or hyperframe of marks associated with the tiles.
Logical flag indicating whether empty tiles should be retained or deleted.
Optional. Name of unit of length. Either a single character string, or a vector of
two character strings giving the singular and plural forms, respectively. If this
argument is missing or NULL, information about the unitname will be extracted

from the other arguments. If this argument is given, it overrides any other infor-
mation about the unitname.

tess 623

check Logical value indicating whether to check the validity of the input data. It is
strongly recommended to use the default value check=TRUE.

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. This command creates an object of class "tess” that represents a tessellation.

Three types of tessellation are supported:

rectangular: tiles are rectangles, with sides parallel to the x and y axes. They may or may not have
equal size and shape. The arguments xgrid and ygrid determine the positions of the vertical
and horizontal grid lines, respectively. (See quadrats for another way to do this.)

tile list: tiles are arbitrary spatial regions. The argument tiles is a list of these tiles, which are
objects of class "owin".

pixel image: Tiles are subsets of a fine grid of pixels. The argument image is a pixel image (object
of class "im") with factor values. Each level of the factor represents a different tile of the
tessellation. The pixels that have a particular value of the factor constitute a tile.

The optional argument window specifies the spatial region formed by the union of all the tiles. In
other words it specifies the spatial region that is divided into tiles by the tessellation. If this argument
is missing or NULL, it will be determined by computing the set union of all the tiles. This is a time-
consuming computation. For efficiency it is advisable to specify the window. Note that the validity
of the window will not be checked.

Empty tiles may occur, either because one of the entries in the list tiles is an empty window, or
because one of the levels of the factor-valued pixel image image does not occur in the pixel data.
When keepempty=TRUE, empty tiles are permitted. When keepempty=FALSE (the default), tiles are
not allowed to be empty, and any empty tiles will be removed from the tessellation.

There are methods for print, plot, [and [<- for tessellations. Use tiles to extract the list of
tiles in a tessellation, tilenames to extract the names of the tiles, and tile. areas to compute their
areas.

The tiles may have marks, which can be extracted by marks. tess and changed by marks<-. tess.

Tessellations can be used to classify the points of a point pattern, in split.ppp, cut.ppp and
by . ppp.

To construct particular tessellations, see quadrats, hextess, dirichlet, delaunay, venn.tess,
polartess, quantess, bufftess and rpoislinetess.
Value

An object of class "tess” representing the tessellation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

624 test.crossing.psp

See Also
marks.tess, plot.tess, [.tess, as.tess, tiles, intersect.tess, split.ppp, cut.ppp, by.ppp,
bdist.tiles, tile.areas, as.function.tess.

To construct particular tessellations, see quadrats, hextess, venn. tess, polartess, dirichlet,
delaunay, quantess and rpoislinetess.

To divide space into pieces containing equal amounts of stuff, use quantess.

To convert a tessellation to a function, for use as a spatial covariate (associating a numerical value
with each tile of the tessellation) use as. function. tess.

Examples
A <- tess(xgrid=0:4,ygrid=0:4)
A
plot(A)
B <- Alc(1, 2, 5, 7, 9)]
B

v <- as.im(function(x,y){factor(round(5 * (x*2 + y*2)))}, W=owin())
levels(v) <- letters[seq(length(levels(v)))]
E <- tess(image=v)

plot(E)
G <- tess(image=v, marks=toupper(levels(v)), unitname="km")
G
test.crossing.psp Check Whether Segments Cross
Description

Determine whether there is a crossing (intersection) between each pair of line segments.

Usage

test.crossing.psp(A, B)
test.selfcrossing.psp(A)

Arguments

A B Line segment patterns (objects of class "psp”).

Details

These functions decide whether the given line segments intersect each other.

If A and B are two spatial patterns of line segments, test.crossing.psp(A, B) returns a logical
matrix in which the entry on row i, column j is equal to TRUE if segment A[i] has an intersection
with segment B[j].

If A is a pattern of line segments, test.selfcross.psp(A) returns a symmetric logical matrix in
which the entry on row i, column j is equal to TRUE if segment A[i] has an intersection with
segment ALJ].

text.ppp 625

Value

A logical matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp

Examples

B <- edges(letterR)
if(require(spatstat.random)) {

A <- rpoisline(5, Frame(B))
} else {

FB <- Frame(B)

A <- as.psp(from=runifrect(5, FB), to=runifrect(5, FB))
3

MA <- test.selfcrossing.psp(A)

MAB <- test.crossing.psp(A, B)

text.ppp Add Text Labels to Spatial Pattern

Description

Plots a text label at the location of each point in a spatial point pattern, or each object in a spatial
pattern of objects.

Usage

S3 method for class 'ppp'
text(x, ...)

S3 method for class 'psp
text(x, ...)

Arguments

X A spatial point pattern (object of class "ppp"), or a spatial pattern of line seg-
ments (class "psp").

Additional arguments passed to text.default.

626 texturemap

Details

These functions are methods for the generic text. A text label is added to the existing plot, at the
location of each point in the point pattern x, or near the location of the midpoint of each segment in
the segment pattern x.

Additional arguments . .. are passed to text.default and may be used to control the placement
of the labels relative to the point locations, and the size and colour of the labels.

By default, the labels are the serial numbers 1 to n, where n is the number of points or segments in
x. This can be changed by specifying the argument labels, which should be a vector of length n.
Value

Null.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

text.default

Examples

plot(cells)
text(cells, pos=2)

plot(Frame(cells))
text(cells, cex=1.5)

texturemap Texture Map

Description

Create a map that associates data values with graphical textures.

Usage
texturemap(inputs, textures, ...)

Arguments
inputs A vector containing all the data values that will be mapped to textures.
textures Optional. A vector of integer codes specifying the textures to which the inputs

will be mapped.
Other graphics parameters such as col, lwd, 1ty.

textureplot 627

Details

A texture map is an association between data values and graphical textures. The command texturemap
creates an object of class "texturemap” that represents a texture map.

Once a texture map has been created, it can be applied to any suitable data to generate a texture plot
of those data using textureplot. This makes it easy to ensure that the same texture map is used in
two different plots. The texture map can also be plotted in its own right.

The argument inputs should be a vector containing all the possible data values (such as the levels
of a factor) that are to be mapped.

The textures should be integer values between 1 and 8, representing the eight possible textures
described in the help for add. texture. The default is textures = 1:n where n is the length of
inputs.

Value

An object of class "texturemap” representing the texture map.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

textureplot

Examples

texturemap(letters[1:4], 2:5, col=1:4, lwd=2)

textureplot Plot Image or Tessellation Using Texture Fill

Description

For a factor-valued pixel image, this command plots each level of the factor using a different texture.
For a tessellation, each tile is plotted using a different texture.

Usage

textureplot(x, ...,
main, add=FALSE, clipwin=NULL, do.plot = TRUE,
border=NULL, col = NULL, lwd = NULL, 1ty = NULL, spacing = NULL,
textures=1:8,
legend=TRUE,
leg.side=c("right"”, "left”, "bottom", "top"),
legsep=0.1, legwid=0.2)

628 textureplot

Arguments

X A tessellation (object of class "tess"” or something acceptable to as. tess) with
at most 8§ tiles, or a pixel image (object of class "im" or something acceptable to
as.im) whose pixel values are a factor with at most 8 levels.
Other arguments passed to add. texture.

main Character string giving a main title for the plot.

add Logical value indicating whether to draw on the current plot (add=TRUE) or to
initialise a new plot (add=FALSE).

clipwin Optional. A window (object of class "owin"). Only this subset of the image will
be displayed.

do.plot Logical. Whether to actually do the plot.

border Colour for drawing the boundaries between the different regions. The default
(border=NULL) means to use par("fg"). Use border=NA to omit borders.

col Numeric value or vector giving the colour or colours in which the textures should
be plotted.

lwd Numeric value or vector giving the line width or widths to be used.

1ty Numeric value or vector giving the line type or types to be used.

spacing Numeric value or vector giving the spacing parameter for the textures.

textures Textures to be used for each level. Either a texture map (object of class "texturemap”)
or a vector of integer codes (to be interpreted by add. texture).

legend Logical. Whether to display an explanatory legend.

leg.side Position of legend relative to main plot.

legsep Separation between legend and main plot, as a fraction of the shortest side length
of the main plot.

legwid Width (if vertical) or height (if horizontal) of the legend as a fraction of the
shortest side length of the main plot.

Details

If x is a tessellation, then each tile of the tessellation is plotted and filled with a texture using
add.texture.

If x is a factor-valued pixel image, then for each level of the factor, the algorithm finds the region
where the image takes this value, and fills the region with a texture using add. texture.

Value
(Invisible) A texture map (object of class "texturemap") associating a texture with each level of
the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

tile.areas 629

See Also

im, plot.im, add. texture.

Examples

nd <- if(interactive()) 128 else 32

Z <- setcov(owin(), dimyx=nd)

Zcut <- cut(Z, 3, labels=c("Lo", "Med", "Hi"))
textureplot(Zcut)
textureplot(dirichlet(runifrect(6)))

tile.areas Compute Areas of Tiles in a Tessellation

Description

Computes the area of each tile in a tessellation.

Usage

tile.areas(x)

Arguments

X A tessellation (object of class "tess").

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

This command computes the area of each of the tiles that make up the tessellation x. The result is a
numeric vector in the same order as the tiles would be listed by tiles(x).

Value

A numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

tess, tiles, tilenames, tiles.empty

630

Examples

A <-
tile.
v <-
E <-
tile.

tile.centroids

tess(xgrid=0:2,ygrid=0:2)

areas(A)

as.im(function(x,y){factor(round(x*2 + y*2))}, W=owin())
tess(image=v)

areas(E)

tile.centroids Compute Centroids of Tiles in a Tessellation

Description

Finds the centroid of each tile in a tessellation and returns them as a point pattern.

Usage

tile.centroids(x)

Arguments

X

Details

A tessellation (object of class "tess").

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

This command determines the centroid of each of the tiles that make up the tessellation x using
centroid.owin. The result is a point pattern containing the centroids, listed in the same order as

the tiles

Value

would be listed by tiles(x).

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

tess, tile.areas

tileindex 631

Examples

A <- tess(xgrid=0:2,ygrid=0:2)
plot(A, main="")
plot(tile.centroids(A), add=TRUE)
D <- dirichlet(runifrect(6))
plot(D)

plot(tile.centroids(D), add=TRUE)

tileindex Determine Which Tile Contains Each Given Point

Description
Given a tessellation and a list of spatial points, determine which tile of the tessellation contains each
of the given points.

Usage

tileindex(x, y, Z, close.gaps=TRUE, all.inside=FALSE)

Arguments
Y Spatial coordinates. Numeric vectors of equal length. (Alternatively y may be
missing and x may be an object containing spatial coordinates).
z A tessellation (object of class "tess").
close.gaps Logical value specifying whether all points x,y lying inside the window of Z
must be classified as belonging to a tile. This avoids the effect of numerical
errors in the tile geometry. See Details.
all.inside Logical value specifying whether all points x, y should be classified as lying
inside a tile. This implies that points lying outside the window will be assigned
to the closest tile. See Details.
Details

This function determines which tile of the tessellation Z contains each of the spatial points with
coordinates (x[i1,y[i]).

The result is a factor, of the same length as x and y, indicating which tile contains each point. The
levels of the factor are the names of the tiles of Z.

A point lying outside the window containing the tessellation is assigned the value NA by default.
However if all. inside=TRUE is specified, then every point will be assigned to the closest tile, and
no NA values are returned.

It is possible that, due to numerical error, a point lying inside the window may not be classified as
belonging to any of the tiles of Z. If this occurs, the default behaviour is to assign the point to the
closest tile. This can be suppressed by setting close.gaps=FALSE (and all.inside=FALSE); in
that case, NA values are returned for such points.

632 tilenames

Value

A factor, of the same length as x and y, whose levels are the names of the tiles of Z. The factor
values may include NA unless all.inside=TRUE was specified.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

cut.ppp and split.ppp to divide up the points of a point pattern according to a tessellation.

as.function. tess to create a function whose value is the tile index.

Examples

X <= runifrect(7)

V <- dirichlet(X)

tileindex(0.1, 0.4, V)
tileindex(list(x=0.1, y=0.4), Z=V)
tileindex(X, Z=V)

tilenames Names of Tiles in a Tessellation

Description

Extract or Change the Names of the Tiles in a Tessellation.

Usage

tilenames(x)
tilenames(x) <- value

S3 method for class 'tess'
tilenames(x)

S3 replacement method for class 'tess'
tilenames(x) <- value

Arguments

X A tessellation (object of class "tess").

value Character vector giving new names for the tiles.

tiles 633

Details

These functions extract or change the names of the tiles that make up the tessellation x.

If the tessellation is a regular grid, the tile names cannot be changed.

Value

tilenames returns a character vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

tess, tiles

Examples

D <- dirichlet(runifrect(10))

tilenames(D)
tilenames(D) <- paste("Cell”, 1:10)
tilenames(D)
tiles Extract List of Tiles in a Tessellation
Description

Extracts a list of the tiles that make up a tessellation.

Usage
tiles(x)

Arguments

X A tessellation (object of class "tess").

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. See tess.

The tiles that make up the tessellation x are returned in a list.

634

Value

A list of windows (objects of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

tess, tilenames, tile.areas, tiles.empty

Examples

A <- tess(xgrid=0:2,ygrid=0:2)

tiles(A)

v <- as.im(function(x,y){factor(round(x*2 + y*2))3}, W=owin())
E <- tess(image=v)

tiles(E)

tiles.empty

tiles.empty Check For Empty Tiles in a Tessellation

Description

Checks whether each tile in a tessellation is empty or non-empty.

Usage
tiles.empty(x)

Arguments

X A tessellation (object of class "tess").

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger

spatial region. See tess.

It is possible for some tiles of a tessellation to be empty. For example, this can happen when the
tessellation x is obtained by restricting another tessellation y to a smaller spatial domain w.

The function tiles.empty checks whether each tile is empty or non-empty. The result is a logical
vector, with entries equal to TRUE when the corresponding tile is empty. Results are given in the

same order as the tiles would be listed by tiles(x).

Value

A logical vector.

timed 635

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

tess, tiles, tilenames, tile.areas

Examples

A <- tess(xgrid=0:2,ygrid=0:2)

tiles.empty(A)

v <- as.im(function(x,y){factor(round(x*2 + y*2))3}, W=owin())
E <- tess(image=v)

tiles.empty(E)

timed Record the Computation Time

Description

Saves the result of a calculation as an object of class "timed"” which includes information about the
time taken to compute the result. The computation time is printed when the object is printed.

Usage
timed(x, ..., starttime = NULL, timetaken = NULL)
Arguments
X An expression to be evaluated, or an object that has already been evaluated.
starttime The time at which the computation is defined to have started. The default is the
current time. Ignored if timetaken is given.
timetaken The length of time taken to perform the computation. The default is the time
taken to evaluate x.
Ignored.
Details

This is a simple mechanism for recording how long it takes to perform complicated calculations
(usually for the purposes of reporting in a publication).

If x is an expression to be evaluated, timed(x) evaluates the expression and measures the time taken
to evaluate it. The result is saved as an object of the class "timed". Printing this object displays the
computation time.

If x is an object which has already been computed, then the time taken to compute the object can be
specified either directly by the argument timetaken, or indirectly by the argument starttime.

636 timeTaken

* timetaken is the duration of time taken to perform the computation. It should be the differ-
ence of two clock times returned by proc. time. Typically the user sets begin <- proc. time()
before commencing the calculations, then end <- proc.time() after completing the calcula-
tions, and then sets timetaken <- end - begin.

* starttime is the clock time at which the computation started. It should be a value that was
returned by proc.time at some earlier time when the calculations commenced. When timed
is called, the computation time will be taken as the difference between the current clock time
and starttime. Typically the user sets begin <- proc.time() before commencing the cal-
culations, and when the calculations are completed, the user calls result <- timed(result,
starttime=begin).

If the result of evaluating x belongs to other S3 classes, then the result of timed(x, ...) also
inherits these classes, and printing the object will display the appropriate information for these
classes as well.

Value

An object inheriting the class "timed".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

timeTaken to extract the time taken.
Examples
timed(minnndist(cells))

answer <- timed(42, timetaken=4.1e17)
answer

timeTaken Extract the Total Computation Time

Description

Given an object or objects that contain timing information (reporting the amount of computer time
taken to compute each object), this function extracts the timing data and evaluates the total time
taken.

Usage

timeTaken(..., warn=TRUE)

transmat 637

Arguments
One or more objects of class "timed" containing timing data.
warn Logical value indicating whether a warning should be issued if some of the
arguments do not contain timing information.
Details

An object of class "timed"” contains information on the amount of computer time that was taken to
compute the object. See timed.

This function extracts the timing information from one or more such objects, and calculates the total
time.

Value

An object inheriting the class "timed".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

timed

Examples

A <- timed(minnndist(bei))

B <- timed(minnndist(redwood))
A

B

timeTaken(A,B)

transmat Convert Pixel Array Between Different Conventions

Description

This function provides a simple way to convert arrays of pixel data between different display con-
ventions.

Usage

transmat(m, from, to)

638 transmat

Arguments

m A matrix.

from, to Specifications of the spatial arrangement of the pixels. See Details.
Details

Pixel images are handled by many different software packages. In virtually all of these, the pixel
values are stored in a matrix, and are accessed using the row and column indices of the matrix.
However, different pieces of software use different conventions for mapping the matrix indices
[¢, 7] to the spatial coordinates (z, y).

¢ In the Cartesian convention, the first matrix index ¢ is associated with the first Cartesian
coordinate x, and j is associated with y. This convention is used in image.default.

* In the European reading order convention, a matrix is displayed in the spatial coordinate
system as it would be printed in a page of text: ¢ is effectively associated with the negative y
coordinate, and j is associated with x. This convention is used in some image file formats.

* In the spatstat convention, ¢ is associated with the increasing y coordinate, and j is associ-
ated with x. This is also used in some image file formats.

To convert between these conventions, use the function transmat. If a matrix m contains pixel image
data that is correctly displayed by software that uses the Cartesian convention, and we wish to con-
vert it to the European reading convention, we can type mm <- transmat(m, from="Cartesian”,
to="European"). The transformed matrix mm will then be correctly displayed by software that uses
the European convention.

Each of the arguments from and to can be one of the names "Cartesian”, "European” or "spatstat”
(partially matched) or it can be a list specifying another convention. For example to=1ist(x="-1i",
y="-3")! specifies that rows of the output matrix are expected to be displayed as vertical columns
in the plot, starting at the right side of the plot, as in the traditional Chinese, Japanese and Korean
writing order.

Value

Another matrix obtained by rearranging the entries of m.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

opa <- par(mfrow=c(1,2))

image in spatstat format

Z <- bei.extra$elev

plot(Z, main="plot.im", ribbon=FALSE)

m <- as.matrix(Z)

convert matrix to format suitable for display by image.default

triangulate.owin 639

Y <- transmat(m, from="spatstat”, to="Cartesian")
image(Y, asp=0.5, main="image.default"”, axes=FALSE)
par(opa)

triangulate.owin Decompose Window into Triangles

Description
Given a spatial window, this function decomposes the window into disjoint triangles. The result is
a tessellation of the window in which each tile is a triangle.

Usage

triangulate.owin(W)

Arguments

W Window (object of class "owin").

Details

The window W will be decomposed into disjoint triangles. The result is a tessellation of W in which
each tile is a triangle. All triangle vertices lie on the boundary of the original polygon.

The window is first converted to a polygonal window using as.polygonal. The vertices of the
polygonal window are extracted, and the Delaunay triangulation of these vertices is computed using
delaunay. Each Delaunay triangle is intersected with the window: if the result is not a triangle, the
triangulation procedure is applied recursively to this smaller polygon.

Value

Tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

tess, delaunay, as.polygonal

Examples

plot(triangulate.owin(letterR))

640 trim.rectangle

trim.rectangle Cut margins from rectangle

Description

Trims a margin from a rectangle.

Usage

trim.rectangle(W, xmargin=0, ymargin=xmargin)

Arguments
W A window (object of class "owin"). Must be of type "rectangle”.
xmargin Width of horizontal margin to be trimmed. A single nonnegative number, or a
vector of length 2 indicating margins of unequal width at left and right.
ymargin Height of vertical margin to be trimmed. A single nonnegative number, or a
vector of length 2 indicating margins of unequal width at bottom and top.
Details

This is a simple convenience function to trim off a margin of specified width and height from each
side of a rectangular window. Unequal margins can also be trimmed.
Value

Another object of class "owin" representing the window after margins are trimmed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

grow.rectangle, erosion, owin.object

Examples

w <- square(10)
trim a margin of width 1 from all four sides
square9 <- trim.rectangle(w, 1)

trim margin of width 3 from the right side
and margin of height 4 from top edge.
v <- trim.rectangle(w, c(9,3), c(0,4))

tweak.colourmap 641

tweak. colourmap Change Colour Values in a Colour Map

Description

Assign new colour values to some of the entries in a colour map.

Usage
tweak.colourmap(m, col, ..., inputs=NULL, range=NULL)
Arguments
m A colour map (object of class "colourmap”).
inputs Input values to the colour map, to be assigned new colours. Incompatible with
range.
range Numeric vector of length 2 specifying a range of numerical values which should
be assigned a new colour. Incompatible with inputs.
col Replacement colours for the specified inputs or the specified range of values.
Other arguments are ignored.
Details

This function changes the colour map m by assigning new colours to each of the input values speci-
fied by inputs, or by assigning a single new colour to the range of input values specified by range.

The modified colour map is returned.

Value

Another colour map (object of class "colourmap").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

colourmap, interp.colourmap, colouroutputs, colourtools.

Examples

co <- colourmap(rainbow(32), range=c(0,1))
plot(tweak.colourmap(co, inputs=c(0.5, 0.6), "white"))
plot(tweak.colourmap(co, range=c(0.5,0.6), "white"))

642 union.quad

union.quad Union of Data and Dummy Points

Description

Combines the data and dummy points of a quadrature scheme into a single point pattern.

Usage

union.quad(Q)

Arguments

Q A quadrature scheme (an object of class "quad").

Details

The argument Q should be a quadrature scheme (an object of class "quad”, see quad.object for
details).

This function combines the data and dummy points of Q into a single point pattern. If either the data
or the dummy points are marked, the result is a marked point pattern.

The function as. ppp will perform the same task.

Value

A point pattern (of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

quad.object, as.ppp

Examples

Q <- quadscheme(simdat, default.dummy(simdat))
U <- union.quad(Q)
plot(U)

equivalent:
U <- as.ppp(Q)

unique.ppp 643

unique.ppp Extract Unique Points from a Spatial Point Pattern

Description

Removes any points that are identical to other points in a spatial point pattern.

Usage

S3 method for class 'ppp'
unique(x, ..., warn=FALSE)

S3 method for class 'ppx'

unique(x, ..., warn=FALSE)
Arguments
X A spatial point pattern (object of class "ppp” or "ppx").
Arguments passed to duplicated.ppp or duplicated.data. frame.
warn Logical. If TRUE, issue a warning message if any duplicated points were found.
Details

These are methods for the generic function unique for point pattern datasets (of class "ppp”, see
ppp.object, or class "ppx").

This function removes duplicate points in x, and returns a point pattern.

Two points in a point pattern are deemed to be identical if their x, y coordinates are the same, and
their marks are the same (if they carry marks). This is the default rule: see duplicated.ppp for
other options.

Value

Another point pattern object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, duplicated.ppp, multiplicity.ppp

Examples

X <- ppp(c(1,1,0.5), c(2,2,1), window=square(3))
unique(X)
unique(X, rule="deldir")

644 uniquemap.ppp

uniquemap.ppp Map Duplicate Entries to Unique Entries

Description

Determine whether points in a point pattern are duplicated, choose a unique representative for each
set of duplicates, and map the duplicates to the unique representative.

Usage

S3 method for class 'ppp'
uniquemap(x)

S3 method for class 'lpp'
uniquemap(x)

S3 method for class 'ppx
uniquemap(x)

Arguments

non non

X A point pattern (object of class "ppp"”, "1pp”, "pp3" or "ppx").

Details

The function uniquemap is generic, with methods for point patterns, and a default method.

This function determines whether any points of x are duplicated, and constructs a mapping of the
indices of x so that all duplicates are mapped to a unique representative index.

The result is an integer vector u such that u[j] = i if the points x[i] and x[j] are identical and
point i has been chosen as the unique representative. The entry u[i] = i means either that point i
is unique, or that it has been chosen as the unique representative of its equivalence class.

Value

An integer vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unique.ppp, duplicated.ppp, uniquemap.default

unitname 645

Examples

Y <- runifrect(4)
X <- Y[c(1,2,3,4,2,1)]
uniquemap(X)

unitname Name for Unit of Length

Description

Inspect or change the name of the unit of length in a spatial dataset.

Usage

unitname(x)
unitname(x) <- value
S3 method for class 'im'

unitname(x)
S3 method for class 'owin'
unitname(x)
S3 method for class 'ppp'
unitname(x)
S3 method for class 'psp'
unitname(x)
S3 method for class 'quad'
unitname(x)
S3 method for class 'tess'
unitname(x)

S3 replacement method for class 'im
unitname(x) <- value

S3 replacement method for class 'owin
unitname(x) <- value

S3 replacement method for class 'ppp
unitname(x) <- value

S3 replacement method for class 'psp'
unitname(x) <- value

S3 replacement method for class 'quad'
unitname(x) <- value

S3 replacement method for class 'tess'
unitname(x) <- value
Arguments
X A spatial dataset. Either a point pattern (object of class "ppp"), a line segment

pattern (object of class "psp”), a window (object of class "owin"), a pixel im-
age (object of class "im"), a tessellation (object of class "tess"), a quadrature
scheme (object of class "quad"), or a fitted point process model (object of class
"ppm" or "kppm" or "slrm" or "dppm” or "minconfit").

646 unitname

value Name of the unit of length. See Details.

Details

Spatial datasets in the spatstat package may include the name of the unit of length. This name is
used when printing or plotting the dataset, and in some other applications.

unitname(x) extracts this name, and unitname(x) <- value sets the name to value.

A valid name is either

* asingle character string
* avector of two character strings giving the singular and plural forms of the unit name

* alist of length 3, containing two character strings giving the singular and plural forms of the
basic unit, and a number specifying the multiple of this unit.

Note that re-setting the name of the unit of length does not affect the numerical values in x. It
changes only the string containing the name of the unit of length. To rescale the numerical values,
use rescale.

Value

The return value of unitname is an object of class "unitname"” containing the name of the unit of
length in x. There are methods for print, summary, as.character, rescale and compatible.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rescale, owin, ppp

Examples

X <- runifrect(20)

if the unit of length is 1 metre:
unitname(X) <- c("metre”, "metres")

if the unit of length is 6 inches:
unitname(X) <- list("inch”, "inches"”, 6)

unmark 647

unmark Remove Marks

Description

Remove the mark information from a spatial dataset.

Usage
unmark (X)
S3 method for class 'ppp'
unmark (X)
S3 method for class 'splitppp'
unmark (X)
S3 method for class 'psp'
unmark (X)
S3 method for class 'ppx'
unmark (X)
Arguments
X A point pattern (object of class "ppp”), a split point pattern (object of class
"splitppp”), a line segment pattern (object of class "psp"”) or a multidimen-
sional space-time point pattern (object of class "ppx").
Details

A ‘mark’ is a value attached to each point in a spatial point pattern, or attached to each line segment
in a line segment pattern, etc.

The function unmark is a simple way to remove the marks from such a dataset.

Value

An object of the same class as X with any mark information deleted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, psp.object
Examples
hicks <- lansing[lansing$marks == "hickory", 1]

plot(hicks) # still a marked point pattern, but only 1 value of marks
plot(unmark(hicks)) # unmarked

648 unstack.ppp

unstack. ppp Separate Multiple Columns of Marks

Description
Given a spatial pattern with several columns of marks, take one column at a time, and return a list
of spatial patterns each having only one column of marks.

Usage

S3 method for class 'ppp'
unstack(x, ...)

S3 method for class 'psp'
unstack(x, ...)

S3 method for class 'tess'

unstack(x, ...)
Arguments
X A spatial point pattern (object of class "ppp"”) or a spatial pattern of line seg-
ments (object of class "psp”) or a spatial tessellation (object of class "tess").
Ignored.
Details

The functions defined here are methods for the generic unstack. The functions expect a spatial
object x which has several columns of marks; they separate the columns, and return a list of spatial
objects, each having only one column of marks.

If x has several columns of marks (i.e. marks(x) is a matrix, data frame or hyperframe with several
columns), then y <- unstack(x) is a list of spatial objects, each of the same kind as x. The jth
entry y[[j]1] is equivalent to x except that it only includes the jth column of marks(x).

If x has no marks, or has only a single column of marks, the result is a list consisting of one entry,
which is x.
Value

A list, of class "solist”, whose entries are objects of the same type as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

unstack.solist

See Also

unstack
unstack.msr

See also methods for the generic split such as split.ppp.

Examples

finpines
unstack(finpines)

649

unstack.solist Unstack Each Spatial Object in a List of Objects

Description

Given a list of two-dimensional spatial objects, apply

Usage

S3 method for class 'solist'
unstack(x, ...)

S3 method for class 'layered'

unstack(x, ...)
Arguments
X An object of class "solist"” or "layered” representing a list of two-dimensional
spatial objects.
Ignored.
Details

The functions defined here are methods for the generic unstack. They expect the argument x to be

a list of spatial objects, of class "solist"” or "layered”.

Each spatial object in the list x will be unstacked by applying the relevant method for unstack.

This means that

* a marked point pattern with several columns of marks will be separated into several point

patterns, each having a single column of marks

* a measure with k-dimensional vector values will be separated into & measures with scalar

values

The resulting unstacked objects will be collected into a list of the same kind as x. Typically the

length of unstack(x) is greater than the length of x.

650 update.symbolmap

Value

A list belonging to the same class as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unstack

unstack.msr, unstack. ppp, unstack.psp

Examples

A <- solist(finpines=finpines, cells=cells)

A

unstack(A)

B <- layered(fin=finpines, loc=unmark(finpines),
plotargs=list(list(), list(pch=16)))

B

plot(B)

unstack(B)

plot(unstack(B))

update.symbolmap Update a Graphics Symbol Map.

Description

This command updates the object using the arguments given.

Usage
S3 method for class 'symbolmap'
update(object, ...)
Arguments
object Graphics symbol map (object of class "symbolmap").

Additional or replacement arguments to symbolmap.

Details
This is a method for the generic function update for the class "symbolmap"” of graphics symbol
maps. It updates the object using the parameters given in the extra arguments

The extra arguments must be given in the form name=value and must be recognisable to symbolmap.
They override any parameters of the same name in object.

venn.tess 651

Value

Another object of class "symbolmap".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

symbolmap to create a graphics symbol map.

Examples

g <- symbolmap(size=function(x) x/50)

g

update(g, range=c(0,1))

update(g, size=42)

update(g, shape="squares"”, range=c(@,1))

venn.tess Tessellation Delimited by Several Sets

Description

Given a list of windows, construct the tessellation formed by all combinations of inclusion/exclusion
of these windows.

Usage
venn.tess(..., window = NULL, labels=FALSE)
Arguments
Sets which delimit the tessellation. Any number of windows (objects of class
"owin") or tessellations (objects of class "tess").
window Optional. The bounding window of the resulting tessellation. If not specified,
the default is the union of all the arguments
labels Logical value, specifying whether to attach marks to each tile that reveal how it

was formed.

652 vertices

Details

The arguments ... may be any number of windows. This function constructs a tessellation, like
a Venn diagram, whose boundaries are made up of the boundaries of these sets. Each tile of the
tessellation is defined by one of the possible combinations in which each set is either included or
excluded.

If the arguments . . . are named, then the resulting tiles will also have tile names, which identify the
inclusion/exclusion combinations defining each tile. See the Examples.

If 1abels=TRUE then the tiles have marks which indicate the inclusion/exclusion combinations
defining each tile. See the Examples.

Value

A tessellation (object of class "tess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

intersect. tess.

To construct other kinds of tessellations, see tess, quadrats, hextess, polartess, dirichlet,
delaunay, quantess and rpoislinetess.

Examples

A <- square(1)

B <- square(c(-0.5,0.5))

W <- square(c(-1, 1.5))

V <- venn.tess(A=A, B=B, window=W)

\'

plot(V, do.labels=TRUE)

Vlab <- venn.tess(A=A, B=B, window=W, labels=TRUE)
marks(Vlab)

vertices Vertices of a Window

Description

Finds the vertices of a window, or similar object.

vertices 653

Usage

vertices(w)

S3 method for class 'owin'
vertices(w)

Arguments

w A window (object of class "owin") or similar object.

Details

This function computes the vertices (‘corners’) of a spatial window or other object.

For vertices.owin, the argument w should be a window (an object of class "owin", see owin.object
for details).

If w is a rectangle, the coordinates of the four corner points are returned.

If w is a polygonal window (consisting of one or more polygons), the coordinates of the vertices of
all polygons are returned.

If w is a binary mask, then a ‘boundary pixel’ is defined to be a pixel inside the window which has
at least one neighbour outside the window. The coordinates of the centres of all boundary pixels are
returned.

Value

A list with components x and y giving the coordinates of the vertices.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

owin.object.

Examples

vert <- vertices(letterR)

plot(letterR, main="Polygonal vertices")
points(vert)

plot(letterR, main="Boundary pixels")
points(vertices(as.mask(letterR)))

654 volume

volume Volume of an Object

Description

Computes the volume of a spatial object such as a three-dimensional box.

Usage

volume (x)

Arguments

X An object whose volume will be computed.

Details

This function computes the volume of an object such as a three-dimensional box.

The function volume is generic, with methods for the classes "box3" (three-dimensional boxes) and
"boxx" (multi-dimensional boxes).

There is also a method for the class "owin"” (two-dimensional windows), which is identical to
area.owin, and a method for the class "linnet"” of linear networks, which returns the length of
the network.

Value

The numerical value of the volume of the object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

area.owin, volume.box3, volume.boxx.

where.max 655

where.max Find Location of Maximum in a Pixel Image

Description

Finds the spatial location(s) where a given pixel image attains its maximum or minimum value.

Usage

where.max(x, first = TRUE)
where.min(x, first = TRUE)

Arguments
X A pixel image (object of class "im") or data that can be converted to a pixel
image by as.im.
first Logical value. If TRUE (the default), then only one location will be returned. If
FALSE, then all locations where the maximum is achieved will be returned.
Details

This function finds the spatial location or locations where the pixel image x attains its maximum or
minimum value. The result is a point pattern giving the locations.

If first=TRUE (the default), then only one location will be returned, namely the location with the
smallest y coordinate value which attains the maximum or minimum. This behaviour is analogous
to the functions which.min and which.max.

If first=FALSE, then the function returns the locations of all pixels where the maximum (or mini-
mum) value is attained. This could be a large number of points.
Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Summary.im for computing the minimum and maximum of pixel values; eval.im and Math.im
for mathematical expressions involving images; solutionset for finding the set of pixels where a
statement is true.

Examples

D <- distmap(letterR, invert=TRUE)
plot(D)
plot(where.max(D), add=TRUE, pch=16, cols="green")

656 whichhalfplane

whichhalfplane Test Which Side of Infinite Line a Point Falls On

Description

Given an infinite line and a spatial point location, determine which side of the line the point falls
on.

Usage

whichhalfplane(L, x, y = NULL)

Arguments
L Object of class "infline"” specifying one or more infinite straight lines in two
dimensions.
X, Yy Arguments acceptable to xy . coords specifying the locations of the points.
Details

An infinite line L divides the two-dimensional plane into two half-planes. This function returns a
matrix M of logical values in which M[i, j] = TRUE if the jth spatial point lies below or to the left of
the ith line.

Value

A logical matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

infline

Examples

L <- infline(p=runif(3), theta=runif (3, max=2*pi))
X <= runifrect(4)
whichhalfplane(L, X)

Window 657

Window Extract or Change the Window of a Spatial Object

Description
Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract or change the window in which the object is defined.
Usage
Window(X, ...)
Window(X, ...) <- value

S3 method for class 'ppp'
Window(X, ...)

S3 replacement method for class 'ppp
Window(X, ...) <- value

S3 method for class 'quad'
Window(X, ...)

S3 replacement method for class 'quad'
Window(X, ...) <- value

S3 method for class 'psp'
Window(X, ...)

S3 replacement method for class
Window(X, ...) <- value

psp

S3 method for class 'im'
Window(X, ...)

S3 replacement method for class 'im

Window(X, ...) <- value
Arguments
X A spatial object such as a point pattern, line segment pattern or pixel image.

Extra arguments. They are ignored by all the methods listed here.

value Another window (object of class "owin") to be used as the window for X.

658 Window

Details

The functions Window and Window<- are generic.
Window(X) extracts the spatial window in which X is defined.
Window(X) <- W changes the window in which X is defined to the new window W, and discards any
data outside W. In particular:
 If X is a point pattern (object of class "ppp") then Window(X) <- W discards any points of X
which fall outside W.

 If X is a quadrature scheme (object of class "quad”) then Window(X) <- W discards any points
of X which fall outside W, and discards the corresponding quadrature weights.

 If X is a line segment pattern (object of class "psp”) then Window(X) <- W clips the segments
of X to the boundaries of W.

* If X is a pixel image (object of class "im") then Window(X) <- W has the effect that pixels lying
outside W are retained but their pixel values are set to NA.

Many other classes of spatial object have a method for Window, but not Window<-. See Window. tess.

Value

The result of Window is a window (object of class "owin").

The result of Window<- is the updated object X, of the same class as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window. ppm

Examples

point patterns

Window(cells)

X <- demopat

Window(X)

Window(X) <- as.rectangle(Window(X))

line segment patterns

X <= psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Window(X)

Window(X) <- square(0.5)

images

Z <- setcov(owin())
Window(Z)

Window(Z) <- square(@.5)

Window.tess 659

Window. tess Extract Window of Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract the window in which the object is defined.

Usage

S3 method for class 'quadratcount'
Window(X, ...)

S3 method for class 'tess'
Window(X, ...)

S3 method for class 'layered'
Window(X, ...)

S3 method for class 'distfun'
Window(X, ...)

S3 method for class 'nnfun'
Window(X, ...)

S3 method for class 'funxy'
Window(X, ...)

Arguments
X A spatial object.
Ignored.
Details

These are methods for the generic function Window which extract the spatial window in which the
object X is defined.

Value

An object of class "owin" (see owin.object) specifying an observation window.

660 with.hyperframe

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window, Window. ppp, Window. psp.

owin.object

Examples

A <- quadratcount(cells, 4)
Window(A)

with.hyperframe Evaluate an Expression in Each Row of a Hyperframe

Description

An expression, involving the names of columns in a hyperframe, is evaluated separately for each
row of the hyperframe.

Usage

S3 method for class 'hyperframe'
with(data, expr, ...,
simplify = TRUE,
ee = NULL, enclos=NULL)

Arguments

data A hyperframe (object of class "hyperframe") containing data.

expr An R language expression to be evaluated.
Ignored.

simplify Logical. If TRUE, the return value will be simplified to a vector whenever possi-
ble.

ee Alternative form of expr, as an object of class "expression”.

enclos An environment in which to search for objects that are not found in the hyper-

frame. Defaults to parent.frame().

yardstick 661

Details

This function evaluates the expression expr in each row of the hyperframe data. It is a method for
the generic function with.

The argument expr should be an R language expression in which each variable name is either
the name of a column in the hyperframe data, or the name of an object in the parent frame (the
environment in which with was called.) The argument ee can be used as an alternative to expr and
should be an expression object (of class "expression”).

For each row of data, the expression will be evaluated so that variables which are column names
of data are interpreted as the entries for those columns in the current row.

For example, if a hyperframe h has columns called A and B, then with(h, A !=B) inspects each
row of data in turn, tests whether the entries in columns A and B are equal, and returns the n logical
values.

Value

Normally a list of length n (where n is the number of rows) containing the results of evaluating the
expression for each row. If simplify=TRUE and each result is a single atomic value, then the result
is a vector or factor containing the same values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

hyperframe, plot.hyperframe

Examples

generate Poisson point patterns with intensities 10 to 100

H <- hyperframe(L=seq(10,100, by=10))
if(require(spatstat.random)) {

X <= with(H, rpoispp(L))

} else {
X <= with(H, runifrect(rpois(1, L)))
3
yardstick Text, Arrow or Scale Bar in a Diagram
Description

Create spatial objects that represent a text string, an arrow, or a yardstick (scale bar).

662 yardstick

Usage

textstring(x, y, txt = NULL, ...)

onearrow(x@, yo, x1, y1, txt = NULL, ...)

yardstick(x@, y@, x1, y1, txt = NULL, ...)

Arguments

X,y Coordinates where the text should be placed.

X0, y0, x1, y1 Spatial coordinates of both ends of the arrow or yardstick. Alternatively x@ can
be a point pattern (class "ppp") containing exactly two points, or a line segment
pattern (class "psp") consisting of exactly one line segment.

txt The text to be displayed beside the line segment. Either a character string or an
expression.

Additional named arguments for plotting the object.
Details

These commands create objects that represent components of a diagram:

* textstring creates an object that represents a string of text at a particular spatial location.
* onearrow creates an object that represents an arrow between two locations.
» yardstick creates an object that represents a scale bar: a line segment indicating the scale of
the plot.
To display the relevant object, it should be plotted, using plot. See the help files for the plot
methods plot.textstring, plot.onearrow and plot.yardstick.

These objects are designed to be included as components in a layered object or a solist. This
makes it possible to build up a diagram consisting of many spatial objects, and to annotate the
diagram with arrows, text and so on, so that ultimately the entire diagram is plotted using plot.

Value

An object of class "diagramobj” which also belongs to one of the special classes "textstring”,
"onearrow"” or "yardstick"”. There are methods for plot, print, "["” and shift.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.textstring, plot.onearrow, plot.yardstick.

zapsmall.im 663

Examples

X <- rescale(swedishpines)
plot(X, pch=16, main="")
yd <- yardstick(0,0,1,1, "diagonal”)
yy <- yardstick(X[1:2])
ys <- yardstick(as.psp(list(xmid=4, ymid=0.5, length=1, angle=0),
window=Window(X)),
txt="1 m")
ys
plot(ys, angle=90)
scalardilate(ys, 2)

zapsmall.im Rounding of Pixel Values

Description
Modifies a pixel image, identifying those pixels that have values very close to zero, and replacing
the value by zero.

Usage

zapsmall.im(x, digits)

Arguments

X Pixel image (object of class "im").

digits Argument passed to zapsmall indicating the precision to be used.
Details

The function zapsmall is applied to each pixel value of the image x.

Value

Another pixel image.

Author(s)
Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

zapsmall

Examples

Z <- as.im(function(x,y) { exp(-40x(x+y)) 3}, square(1), dimyx=32)
zapsmall.im(Z)

Index

x Dirichlet tessellation
dirichlet, 172

* (Geometrical transformations

affine, 23
affine.im, 24
affine.owin, 25
affine.ppp, 26
affine.psp, 27
affine.tess, 28

* 10
scanpp, 562

x Linear network
is.linim, 293
is.linnet, 294
is.1lpp, 295

x Tessellation
as.data.frame. tess, 49
as.function.tess, 52
as. tess, 80
bufftess, 93
chop. tess, 100
connected. tess, 128
Extract.tess, 228
hextess, 250
integral.tessfun, 272
intersect. tess, 284
marks. tess, 318
plot.tess, 468
polartess, 476
quantess, 514
tess, 622
venn. tess, 651

* Three-dimensional
as.box3, 41
box3, 91
closepairs.pp3, 108
crossdist.pp3, 144
diameter.box3, 166
methods.box3, 331

664

methods. pp3, 337
nncross.pp3, 354
nndist.pp3, 362
nnwhich.pp3, 375
pairdist.pp3, 395
plot.pp3, 445
pp3, 477

x attribute

im.object, 263
metric.object, 341
owin.object, 387
ppp.object, 482
pppmatching.object, 488
psp.object, 502
quad.object, 504

* color

as.colourmap, 43
beachcolours, 85
colourmap, 113
colouroutputs, 115
colourtools, 117
default.image.colours, 156
interp.colourmap, 279
pHcolourmap, 410
plot.colourmap, 422
restrict.colourmap, 536
rev.colourmap, 537
tweak.colourmap, 641

+ datagen

box3, 91

boxx, 92
default.dummy, 155
disc, 177

discs, 181
ellipse, 200
gridcentres, 238
gridweights, 239
hextess, 250

im, 259

INDEX 665

infline, 267 plot.listof, 437
owin, 385 plot.onearrow, 440
pixelquad, 418 plot.owin, 442
pp3, 477 plot.pp3, 445
ppp, 478 plot.ppp, 447
pppmatching, 487 plot.pppmatching, 454
ppx, 490 plot.psp, 455
psp, 500 plot.quad, 459
quadrats, 508 plot.quadratcount, 460
guadscheme, 510 plot.solist, 461
quadscheme.logi, 512 plot.splitppp, 464
quasirandom, 519 plot.symbolmap, 466
regularpolygon, 524 plot. tess, 468
rexplode, 538 plot.textstring, 470
rgbim, 540 plot.texturemap, 471
rjitter, 543 plot.yardstick, 473
rlinegrid, 545 symbolmap, 618
rQuasi, 554 text.ppp, 625
rsyst, 555 texturemap, 626
runifrect, 559 textureplot, 627
spokes, 597 transmat, 637
square, 598 update. symbolmap, 650
stratrand, 599 yardstick, 661
tess, 622 * iplot

x data clickbox, 101
sessionlLibs, 566 clickdist, 102

* environment clickpoly, 103
requireversion, 528 clickppp, 104

* hplot identify.ppp, 256
add. texture, 22 identify.psp, 257
contour.im, 129 identify. tess, 258
contour.imlist, 131 run.simplepanel, 556
default.colourmap, 153 simplepanel, 576
default.image.colours, 156 * iteration
default.symbolmap, 157 applynbd, 34
default.symbolmap.ppp, 158 * list
invoke.symbolmap, 287 anylist, 31
layered, 306 as.solist, 79
layerplotargs, 307 Extract.anylist, 207
persp.im, 403 Extract.solist, 225
persp.ppp, 405 solapply, 581
perspPoints, 408 solist, 582
plot.anylist, 419 * manip
plot.colourmap, 422 anylist, 31
plot.hyperframe, 424 append. psp, 33
plot.im, 426 as.box3, 41
plot.imlist, 433 as.data.frame.hyperframe, 44

plot.layered, 435 as.data.frame.ppp, 47

666

as.data.frame.psp, 48
as.function.im, 50
as.function.owin, 51
as.function.tess, 52
as.hyperframe, 53
as.hyperframe.ppx, 54
as.im, 56
as.layered, 61
as.mask, 63
as.owin, 68
as.polygonal, 71
as.ppp, 72

as.psp, 75
as.rectangle, 77
as.solist, 79
as.tess, 80
bufftess, 93

by.im, 95

by . ppp, 96
cbind.hyperframe, 98
commonGrid, 119
compatible, 120
compatible.im, 121
concatxy, 123

coords, 138
crossing.psp, 149
delaunay, 162
delaunayDistance, 163
dirichlet, 172
dirichletAreas, 173
dirichletVertices, 174
discretise, 180
domain, 191

edges, 195
edges2triangles, 196
edges2vees, 197
edit.hyperframe, 198
edit.ppp, 199
endpoints.psp, 201
eval.im, 206
Extract.anylist, 207
Extract.hyperframe, 208
Extract.im, 211
Extract.layered, 214
Extract.listof, 215
Extract.owin, 217
Extract.ppp, 218
Extract.ppx, 221

Extract.psp, 223
Extract.quad, 224
Extract.solist, 225
Extract.splitppp, 227
Extract.tess, 228
Frame, 234
grow.boxx, 240
grow.rectangle, 241
harmonise, 243
harmonise.im, 244
harmonise.owin, 245
harmoniselLevels, 246
headtail, 248
hyperframe, 253

im, 259

im.apply, 261
interp.im, 280
is.convex, 291
is.empty, 292

is.im, 293
is.linim, 293
is.linnet, 294
is.1lpp, 295
is.marked, 295
is.marked.ppp, 296
is.multitype, 297
is.multitype.ppp, 298
is.na.hyperframe, 299
is.na.solist, 300
is.owin, 302

is.ppp, 303
is.rectangle, 304
levelset, 310

lut, 313

marks, 315
marks.psp, 317
marks. tess, 318
mergelLevels, 329

nearest.raster.point, 347

nearestValue, 349
nestsplit, 350
nobjects, 378
npoints, 379
nsegments, 380
nvertices, 381
owin2mask, 389
padimage, 391
periodify, 401

INDEX

pixelcentres, 411
pixellate, 412
pixellate.owin, 413
pixellate.ppp, 414
pixellate.psp, 416
pointsOnLines, 475
polartess, 476
psp2mask, 503
quantess, 514
raster.x, 520
relevel.im, 525
Replace.im, 526
rescue.rectangle, 535
rexplode, 538

rgbim, 540
rjitter, 543
rotate.infline, 547
round. ppp, 552
selfcrossing.psp, 564
selfcut.psp, 565
shift, 568
shift.im, 569
shift.owin, 570
shift.ppp, 571
shift.ppx, 572
shift.psp, 574
solapply, 581

solist, 582
solutionset, 583
split.hyperframe, 590
split.im, 591
split.ppp, 592
split.ppx, 595
subset.hyperframe, 601
subset. ppp, 602
subset.psp, 604
superimpose, 616
tile.areas, 629
tile.centroids, 630
tileindex, 631
tilenames, 632

tiles, 633
tiles.empty, 634
transmat, 637
triangulate.owin, 639
trim.rectangle, 640
union.quad, 642
unitname, 645

667

unmark, 647
unstack. ppp, 648
unstack.solist, 649
whichhalfplane, 656
Window, 657

Window. tess, 659
with.hyperframe, 660

* math

affine, 23
affine.im, 24
affine.owin, 25
affine.ppp, 26
affine.psp, 27
affine.tess, 28
angles.psp, 30
area.owin, 37
areaGain, 38
arealoss, 40
bdist.pixels, 81
bdist.points, 83
bdist.tiles, 84
border, 86
boundingcircle, 90
centroid.owin, 99
chop. tess, 100
clip.infline, 105
closepairs, 106
closepairs.pp3, 108
closetriples, 110
closing, 111
complement.owin, 122
connected, 124
connected. ppp, 127
connected. tess, 128
convexmetric, 135
convolve.im, 137
covering, 141
crossdist, 142
crossdist.default, 143
crossdist.pp3, 144
crossdist.ppp, 145
crossdist.ppx, 146
crossdist.psp, 147
deltametric, 164
diameter, 165
diameter.box3, 166
diameter.boxx, 167
diameter.owin, 169

668

dilated.areas, 170
dilation, 171
dirichletAreas, 173
dirichletVertices, 174
discpartarea, 179
distfun, 183
distmap, 185
distmap.owin, 186
distmap.ppp, 188
distmap.psp, 190
eroded. areas, 202
erosion, 203
erosionAny, 205
extrapolate.psp, 229
fardist, 230
fillholes.owin, 231
flipxy, 232
framedist.pixels, 235
funxy, 237
has.close, 247
imcov, 264
incircle, 265
inside.boxx, 268
inside.owin, 269
integral.im, 271
integral.tessfun, 272
intersect.boxx, 281
intersect.owin, 282
intersect. tess, 284
invoke.metric, 286
is.connected, 289
is.connected. ppp, 290
is.subset.owin, 305
lengths_psp, 309
matchingdist, 321
maxnndist, 327
midpoints.psp, 342
MinkowskiSum, 343
nearestsegment, 348
nncross, 351
nncross.pp3, 354
nncross. ppx, 357
nndist, 359
nndist.pp3, 362
nndist.ppx, 364
nndist.psp, 366
nnfun, 367

nnmap, 369

nnwhich, 373
nnwhich.pp3, 375
nnwhich.ppx, 377
opening, 382
overlap.owin, 384
pairdist, 392
pairdist.default, 393
pairdist.pp3, 395
pairdist.ppp, 396
pairdist.ppx, 398
pairdist.psp, 399
perimeter, 400
pppdist, 483
project2segment, 498
project2set, 499
quadratcount, 506
rectdistmap, 522
reflect, 523
rescale, 529
rescale.im, 530
rescale.owin, 532
rescale.ppp, 533
rescale.psp, 534
rotate, 546
rotate.im, 546
rotate.owin, 549
rotate.ppp, 550
rotate.psp, 551
rounding.ppp, 553
scalardilate, 560
setcov, 567
sidelengths.owin, 575
simplify.owin, 579
test.crossing.psp, 624
venn. tess, 651
vertices, 652
volume, 654
where.max, 655

* methods

anyNA.im, 32
as.data.frame.im, 45
as.data.frame.owin, 46
as.data.frame. tess, 49
as.matrix.im, 66
as.matrix.owin, 67
by.im, 95

by . ppp, 96

cut.im, 150

INDEX

INDEX

cut.ppp, 151
duplicated.ppp, 193
hist.funxy, 251
hist.im, 252
is.boxx, 288
is.NAobject, 301
levelset.distfun, 312
Math.im, 323
Math.imlist, 325
mean.im, 328
methods.box3, 331
methods.boxx, 332
methods.distfun, 333
methods. funxy, 335
methods. layered, 336
methods.pp3, 337
methods.unitname, 340
NAobject, 346
nnmark, 371
quantile.im, 516
scaletointerval, 561
split.im, 591
split.ppp, 592
split.ppx, 595
summary.anylist, 606
summary.distfun, 607
summary.im, 608
summary.listof, 609
summary.owin, 610
summary . ppp, 611
summary . psp, 612
summary.quad, 613
summary.solist, 614
summary.splitppp, 615
unique.ppp, 643
uniquemap.ppp, 644
zapsmall.im, 663

* metric

invoke.metric, 286

* models

intensity, 273

* nonparametric

intensity.ppp, 274
intensity.psp, 277

intensity.quadratcount, 278

quantilefun.im, 517

+ package
spatstat.geom-package, 12

* print

print.im, 491
print.owin, 492
print.ppp, 493
print.psp, 494
print.quad, 495
progressreport, 496

* programming

applynbd, 34
eval.im, 206
im.apply, 261
levelset, 310
markstat, 319
solutionset, 583
with.hyperframe, 660

* smooth

nnmark, 371

* spatial

add.texture, 22
affine, 23
affine.im, 24
affine.owin, 25
affine.ppp, 26
affine.psp, 27
affine.tess, 28
angles.psp, 30
anyNA.im, 32
append.psp, 33
applynbd, 34
area.owin, 37
areaGain, 38
arealoss, 40
as.box3, 41
as.colourmap, 43

as.data.frame.hyperframe, 44

as.data.frame.im, 45
as.data.frame.owin, 46
as.data.frame.ppp, 47
as.data.frame.psp, 48
as.data.frame. tess, 49
as.function.im, 50
as.function.owin, 51
as.function. tess, 52
as.hyperframe, 53
as.hyperframe.ppx, 54
as.im, 56
as.layered, 61
as.mask, 63

669

670

as.matrix.im, 66
as.matrix.owin, 67
as.owin, 68
as.polygonal, 71
as.ppp, 72
as.psp, 75
as.rectangle, 77
as.solist, 79

as. tess, 80
bdist.pixels, 81
bdist.points, 83
bdist.tiles, 84
beachcolours, 85
border, 86
bounding.box.xy, 87
boundingbox, 88
boundingcircle, 90
box3, 91

boxx, 92
bufftess, 93
by.im, 95

by . ppp, 96
cbind.hyperframe, 98
centroid.owin, 99
chop. tess, 100
clickbox, 101
clickdist, 102
clickpoly, 103
clickppp, 104
clip.infline, 105
closepairs, 106
closepairs.pp3, 108
closetriples, 110
closing, 111
colourmap, 113
colouroutputs, 115
commonGrid, 119
compatible, 120
compatible.im, 121
complement.owin, 122
concatxy, 123
connected, 124
connected. ppp, 127
connected. tess, 128
contour.im, 129
contour.imlist, 131
convexhull, 132
convexhull.xy, 133

convexify, 134
convexmetric, 135
convolve.im, 137
coords, 138

corners, 140
covering, 141
crossdist, 142
crossdist.default, 143
crossdist.pp3, 144
crossdist.ppp, 145
crossdist.ppx, 146
crossdist.psp, 147
crossing.psp, 149
cut.im, 150
cut.ppp, 151
default.colourmap, 153
default.dummy, 155
default.symbolmap, 157
default.symbolmap.ppp, 158
delaunay, 162
delaunayDistance, 163
deltametric, 164
diameter, 165
diameter.box3, 166
diameter.boxx, 167
diameter.owin, 169
dilated.areas, 170
dilation, 171
dirichlet, 172
dirichletAreas, 173
dirichletVertices, 174
dirichletWeights, 175
disc, 177
discpartarea, 179
discretise, 180

discs, 181

distfun, 183
distmap, 185
distmap.owin, 186
distmap.ppp, 188
distmap.psp, 190
domain, 191
duplicated.ppp, 193
edges, 195
edges2triangles, 196
edges2vees, 197
edit.hyperframe, 198
edit.ppp, 199

INDEX

INDEX

ellipse, 200
endpoints.psp, 201
eroded. areas, 202
erosion, 203
erosionAny, 205
eval.im, 206
Extract.anylist, 207

Extract.hyperframe, 208

Extract.im, 211
Extract.layered, 214
Extract.listof, 215
Extract.owin, 217
Extract.ppp, 218
Extract.ppx, 221
Extract.psp, 223
Extract.quad, 224
Extract.solist, 225
Extract.splitppp, 227
Extract.tess, 228
extrapolate.psp, 229
fardist, 230
fillholes.owin, 231
flipxy, 232

Frame, 234
framedist.pixels, 235
funxy, 237
gridcentres, 238
gridweights, 239
grow.boxx, 240
grow.rectangle, 241
harmonise, 243
harmonise.im, 244
harmonise.owin, 245
has.close, 247
headtail, 248
hextess, 250
hist.funxy, 251
hist.im, 252
hyperframe, 253
identify.ppp, 256
identify.psp, 257
identify. tess, 258
im, 259

im.apply, 261
im.object, 263
imcov, 264
incircle, 265
infline, 267

inside.boxx, 268
inside.owin, 269
integral.im, 271
integral.tessfun, 272
intensity, 273
intensity.ppp, 274
intensity.psp, 277

intensity.quadratcount, 278

interp.colourmap, 279
interp.im, 280
intersect.boxx, 281
intersect.owin, 282
intersect. tess, 284
invoke.metric, 286
invoke.symbolmap, 287
is.boxx, 288
is.connected, 289
is.connected. ppp, 290
is.convex, 291
is.empty, 292

is.im, 293
is.linim, 293
is.linnet, 294
is.1pp, 295
is.marked, 295
is.marked.ppp, 296
is.multitype, 297
is.multitype.ppp, 298
is.na.hyperframe, 299
is.na.solist, 300
is.owin, 302

is.ppp, 303
is.rectangle, 304
is.subset.owin, 305
layered, 306
layerplotargs, 307
lengths_psp, 309
levelset, 310
levelset.distfun, 312
lut, 313

marks, 315
marks.psp, 317

marks. tess, 318
markstat, 319
matchingdist, 321
Math.im, 323
Math.imlist, 325
maxnndist, 327

672

mean.im, 328
mergelLevels, 329
methods.box3, 331
methods.boxx, 332
methods.distfun, 333
methods. funxy, 335
methods. layered, 336
methods.pp3, 337
methods. ppx, 339
methods.unitname, 340
metric.object, 341
midpoints.psp, 342
MinkowskiSum, 343
multiplicity.ppp, 345
nearest.raster.point, 347
nearestsegment, 348
nearestValue, 349
nestsplit, 350
nncross, 351
nncross.pp3, 354
nncross. ppx, 357
nndist, 359
nndist.pp3, 362
nndist.ppx, 364
nndist.psp, 366
nnfun, 367

nnmap, 369

nnmark, 371
nnwhich, 373
nnwhich.pp3, 375
nnwhich.ppx, 377
nobjects, 378
npoints, 379
nsegments, 380
nvertices, 381
opening, 382
overlap.owin, 384
owin, 385
owin.object, 387
owin2mask, 389
padimage, 391
pairdist, 392
pairdist.default, 393
pairdist.pp3, 395
pairdist.ppp, 396
pairdist.ppx, 398
pairdist.psp, 399
perimeter, 400

periodify, 401
persp.im, 403
persp.ppp, 405
perspPoints, 408
pHcolourmap, 410
pixelcentres, 411
pixellate, 412
pixellate.owin, 413
pixellate.ppp, 414
pixellate.psp, 416
pixelquad, 418
plot.anylist, 419
plot.colourmap, 422
plot.hyperframe, 424
plot.im, 426
plot.imlist, 433
plot.layered, 435
plot.listof, 437
plot.onearrow, 440
plot.owin, 442
plot.pp3, 445
plot.ppp, 447
plot.pppmatching, 454
plot.psp, 455
plot.quad, 459
plot.quadratcount, 460
plot.solist, 461
plot.splitppp, 464
plot.symbolmap, 466
plot.tess, 468
plot.textstring, 470
plot.texturemap, 471
plot.yardstick, 473
pointsOnLines, 475
polartess, 476

pp3, 477

ppp, 478
ppp.object, 482
pppdist, 483
pppmatching, 487
pppmatching.object, 488
ppx, 490
print.im, 491
print.owin, 492
print.ppp, 493
print.psp, 494
print.quad, 495
project2segment, 498

INDEX

INDEX 673

project2set, 499 shift, 568

psp, 500 shift.im, 569
psp.object, 502 shift.owin, 570
psp2mask, 503 shift.ppp, 571
quad.object, 504 shift.ppx, 572
guadratcount, 506 shift.psp, 574
quadscheme, 510 sidelengths.owin, 575
quadscheme. logi, 512 simplify.owin, 579
quantess, 514 solapply, 581
qguantile.im, 516 solist, 582
quantilefun.im, 517 solutionset, 583
quasirandom, 519 spatstat.geom-package, 12
raster.x, 520 spatstat.options, 585
rectdistmap, 522 split.hyperframe, 590
reflect, 523 split.im, 591
regularpolygon, 524 split.ppp, 592
relevel.im, 525 split.ppx, 595
Replace.im, 526 spokes, 597

rescale, 529 square, 598
rescale.im, 530 stratrand, 599
rescale.owin, 532 subset.hyperframe, 601
rescale.ppp, 533 subset. ppp, 602
rescale.psp, 534 subset.psp, 604
rescue.rectangle, 535 summary.anylist, 606
restrict.colourmap, 536 summary.distfun, 607
rev.colourmap, 537 summary . im, 608
rexplode, 538 summary.listof, 609
rgbim, 540 summary.owin, 610
ripras, 541 summary . ppp, 611
rjitter, 543 summary.psp, 612
rlinegrid, 545 summary.quad, 613
rotate, 546 summary.solist, 614
rotate.im, 546 summary.splitppp, 615
rotate.infline, 547 superimpose, 616
rotate.owin, 549 symbolmap, 618
rotate.ppp, 550 tess, 622

rotate.psp, 551 test.crossing.psp, 624
round. ppp, 552 text.ppp, 625
rounding.ppp, 553 texturemap, 626
rQuasi, 554 textureplot, 627
rsyst, 555 tile.areas, 629
runifrect, 559 tile.centroids, 630
scalardilate, 560 tileindex, 631
scaletointerval, 561 tilenames, 632
scanpp, 562 tiles, 633
selfcrossing.psp, 564 tiles.empty, 634
selfcut.psp, 565 transmat, 637

setcov, 567 triangulate.owin, 639

674

trim.rectangle, 640
tweak.colourmap, 641
union.quad, 642
unique.ppp, 643
uniquemap.ppp, 644
unitname, 645
unmark, 647
unstack. ppp, 648
unstack.solist, 649
update.symbolmap, 650
venn. tess, 651
vertices, 652
volume, 654
where.max, 655
whichhalfplane, 656
Window, 657
Window. tess, 659
with.hyperframe, 660
yardstick, 661
zapsmall.im, 663
* univar
mean.im, 328
quantile.im, 516
scaletointerval, 561
zapsmall.im, 663
« utilities
bounding.box.xy, 87
boundingbox, 88
convexhull, 132
convexhull.xy, 133
convexify, 134
corners, 140
dirichletWeights, 175
layout.boxes, 308
multiplicity.ppp, 345
quadrats, 508
ripras, 541
run.simplepanel, 556
simplepanel, 576
timed, 635
timeTaken, 636
[,209,215,218, 222, 223,225, 527
.anylist (Extract.anylist), 207
.hyperframe, 255, 591, 601, 602
.hyperframe (Extract.hyperframe), 208
.im, 17, 50, 150, 260, 263, 264, 272, 527
.im(Extract.im), 211
.layered, 20, 307, 308, 436

| T e O e A s I e O |

INDEX

.layered (Extract. layered), 214

.owin (Extract.owin), 217

.pp3, 603

.ppp, 14, 152, 224, 225, 482, 483, 603

.ppp (Extract.ppp), 218

.ppx, 603

.ppx (Extract.ppx), 221

.psp, 17, 502, 503, 605

.psp (Extract.psp), 223

.quad (Extract.quad), 224

.solist (Extract.solist), 225

.splitppp (Extract.splitppp), 227

.tess, 18, 624

[.tess (Extract.tess), 228

[<-.im, 17

[<-.tess, I8

[<-.anylist (Extract.anylist), 207

[<-.hyperframe (Extract.hyperframe), 208

[<-.im(Replace.im), 526

[<-.layered (Extract.layered), 214

[<-.listof (Extract.listof), 215

[<-.ppp (Extract.ppp), 218

[<-.solist (Extract.solist), 225

[<-.splitppp (Extract.splitppp), 227

[<-.tess (Extract.tess), 228

LL, 210

[[.data.frame, 210

[[.hyperframe (Extract.hyperframe), 208

[[<-.hyperframe (Extract.hyperframe),
208

[[<-.layered (Extract.layered), 214

[[<-.solist (Extract.solist), 225

$,210

$.hyperframe (Extract.hyperframe), 208

$<-.hyperframe (Extract.hyperframe), 208

%mark% (marks), 315

rrarrarrrrarrra

abline, 267

add. texture, 22, 442,471, 472, 627-629

affine, 14, 15,23, 25-30, 232, 233, 334, 337,
388, 523, 530, 532-535, 561, 568,
571, 572,575

affine.distfun (methods.distfun), 333

affine.im, 17, 24, 24, 26-28, 30, 547

affine.layered (methods.layered), 336

affine.owin, 24, 25, 25, 26-28, 30, 388

affine.ppp, 24-26, 26, 28

affine.psp, 18, 24-27,27

affine.tess, 19,28

INDEX

aggregate, 361

amacrine, 296-299, 482

angles.psp, 18, 30, 202, 229, 310, 343, 501,
502

anyDuplicated, /94

anyDuplicated.ppp (duplicated.ppp), 193

anyDuplicated.ppx (duplicated.ppp), 193

anylapply, 32

anylapply (solapply), 581

anylist, 31, 208, 581, 583, 606

anyNA, 32

anyNA.im, 32, 329, 609

append. psp, 33

apply, 34-36, 207, 320, 321

applynbd, 21, 34, 108, 320, 321

area (area.owin), 37

area.owin, 16, 37, 169, 384, 388, 401, 576,
654

areaGain, 38, 41, 587

Arealnter, 3941

arealLoss, 39, 40, 587

array, 66

as.anylist, 79

as.anylist (anylist), 31

as.array.im(as.matrix.im), 66

as.box3, 19,41, 92, 167, 478

as.boxx, 42, 268, 269

as.colourmap, 43

as.data.frame, 44, 47, 48, 54, 55

as.data.frame.default, 45, 46, 49

as.data.frame.hyperframe, 20, 44, 255

as.data.frame.im, 16, 45,47, 49

as.data.frame.owin, 15, 46, 49

as.data.frame.ppp, 47, 249

as.data.frame.ppx, 249

as.data.frame.ppx (as.hyperframe.ppx),
54

as.data.frame.psp, 17, 48, 249

as.data.frame. tess, 49

as.function.im, /6, 50

as.function.owin, 51

as.function.tess, 19,52,272, 273, 624, 632

as.hyperframe, 19, 20, 53, 55, 98, 254, 255

as.hyperframe.ppx, 54, 54, 255

as.
as.
as.
as.
as.
.mask, 15, 16, 24, 25, 57,63, 67,72, 81, 82,

as

as.
as.
as.
as.
as.
as.

as

as.
as.
as.
as.
as.

675

im.owin, 15, 51

im.ppp, 14, 59, 60

im.ppp (pixellate.ppp), 414
layered, 61, 307, 431, 444,451, 458
layered.msr, 63

90, 94, 95, 112, 119, 120, 124, 128,
141, 164,171,177, 178, 180—-182,
185-188, 190, 200, 201, 204, 230,
236, 240, 278, 282-284, 305, 312,
348, 369, 371, 372, 383, 388-390,
411,413,415,417, 418, 499, 503,
504, 521, 549, 567, 607

mask.psp, 18

mask. psp (psp2mask), 503

matrix.im, 16, 66, 67, 260, 263, 264

matrix.owin, 66, 67

matrix.ppx (as.hyperframe.ppx), 54

owin, 15, 37, 38, 63, 64, 68, 72, 74, 76-78,
86, 88, 89, 99, 100, 112, 132, 133,
140, 169, 170, 172, 195, 203, 204,
238, 245, 246, 265, 270, 282, 305,
311, 383, 385, 386, 388, 400, 401,
418,442, 469, 476,479, 481, 499,
501, 509, 536, 542, 545, 555, 559,
567,576, 586, 599, 616, 617

.owin.data.frame, 47
as.
as.
as.
as.
as.

owin.lpp, 71

owin.ppm, 71

owin.rmhmodel, 71

polygonal, 15, 16, 64, 65,71, 400, 639

ppp, 13, 34,72, 155,179, 181, 211-213,
447, 480-483, 510, 512-514, 526,
527,563, 642

psp, 17, 33,75, 456, 501-503, 586

rectangle, 65,77, 89, 99, 388, 575

solist, 32,79, 581-583

tess, 18, 80, 284, 285, 506, 507, 624, 628

tess.tessfun, /19

atan2, 30
axis, 423, 424, 428, 429, 451, 457, 466, 471
axisTicks, 428, 429

barplot, 252, 253
bdist.pixels, 16, 81, 83, 84, 236, 388

as.

as.

im, 16, 56, 67, 120, 184, 207, 244, 251,
260, 263, 264, 335, 368, 412-416,
607,628, 655

im.function, 335

bdist.points, 16, 82, 83, 84, 388
bdist.tiles, 16, 18, 82, 83, 84, 624
beachcolourmap, 20, 404, 430
beachcolourmap (beachcolours), 85

676

beachcolours, 85, 404, 430

betacells, 482

blur, 350, 586

border, 15, 86

bounding.box.xy, 87, 133, 542, 617

boundingbox, 15, 78, 88, 283, 388

boundingcentre (boundingcircle), 90

boundingcircle, 90

boundingradius (boundingcircle), 90

box3, 19,41,91, 241, 331, 341,478

boxx, 19, 42,92, 168, 241, 268, 269, 282, 289,
333,573

bramblecanes, 482

bufftess, 93, 477, 509, 623

bw.relrisk, 587

by, 95, 97

by.im, 95, 592

by .ppp, 14, 96, 623, 624

c, 306, 337

c.layered (methods.layered), 336

cbind, 98

cbind.hyperframe, 20, 98, 255

cells, 482

centroid.owin, 16,99, 266, 571, 630

chop. tess, 18, 100, 106, 268

chull, 291

clear.simplepanel (run.simplepanel), 556

clickbox, 15, 101, 103—-105

clickdist, 16, 102, 102, 104, 105

clickpoly, 15, 102, 103, 103, 105

clickppp, 13, 102-104, 104, 256

clip.infline, 101, 105, 268

clip.psp, 502

closepairs, 106, 110, 111, 394, 589

closepairs.pp3, 108, 108

closetriples, 110

closing, 15,111, 383, 388

cm.colors, 404, 430

col2hex (colourtools), 117

col2rghb, 117,119

colourmap, 20, 44, 86, 113, 116, 119, 130,
155,160, 280, 315,403,411, 423
424,427,429, 433, 458, 467, 469,
537, 538, 620, 641

colouroutputs, 715, 115, 538, 641

colouroutputs<- (colouroutputs), 115

colours, 115

colourtools, 86, 115, 116,117, 280, 541, 641

INDEX

commonGrid, 15, 17, 119, 122, 244-246
compatible, 120, 243, 340, 646
compatible.fasp, 121
compatible.fv, 121
compatible.im, 17, 120, 121, 121, 207, 244
compatible.unitname, 121
compatible.unitname (methods.unitname),
340
complement.owin, 15, 122, 292, 386, 388, 389
complementarycolour (colourtools), 117
Complex.im, 329
Complex.im(Math.im), 323
Complex.imlist (Math.imlist), 325
concatxy, 123, 618
connected, 124, 289, 290
connected.im, /7, 128
connected.owin, 16, 128, 129
connected. pp3 (connected. ppp), 127
connected. ppp, 14, 125, 126, 127, 291
connected. tess, 18, 125, 126, 128
contour, 335
contour.default, 59, 129, 130, 428
contour. funxy (methods. funxy), 335
contour.im, 16, 129, 131, 132, 335, 405, 433,
587
contour.imlist, 131
contour.listof, 422, 440, 464
contour.listof (contour.imlist), 131
convexhull, 14-16, 132, 133, 135
convexhull.xy, 88, 132, 133, 162, 292, 542
convexify, 134
convexmetric, 135, 287, 342
convolve.im, 17,137, 265
coords, 14, 19, 138
coords.ppx, 147, 364, 377, 398
coords<- (coords), 138
corners, 140, 156, 510, 512
covering, 141
crossdist, 21, 142, 143148, 393, 394,
396-398, 400
crossdist.default, /142, 143, 146
crossdist.pp3, 21, 144
crossdist.ppp, 142, 144, 145
crossdist.ppx, 21, 146
crossdist.psp, 142, 144, 146, 147
crossing.psp, 18, 149, 564, 589
crosspairs, 589
crosspairs (closepairs), 106

INDEX

crosspairs.pp3 (closepairs.pp3), 108

cut, 150-152

cut.default, 94, 150-152

cut.im, 17,94, 95, 150, 260, 263, 517

cut.ppp, 14, 52, 97, 151, 219, 594, 623, 624,
632

data.frame, 58, 60, 254, 255

default.colourmap, 153

default.dummy, 155, 510, 511, 587

default.image.colours, 156, 433

default.n.tiling, 156

default.symbolmap, 157, 161

default.symbolmap.ppp, 158, 158, 452

delaunay, 14, 18, 95, 162, 163, 173,477, 509,
623, 624, 639, 652

delaunayDistance, 14, 162, 163

deldir, 173

deltametric, 164

demopat, 482

density.ppp, 16, 59, 416, 586

density.psp, 586

density.splitppp, 422, 440, 464

densityfun, 59

dev.capabilities, 430

dev.new, 557

dev.off, 557

dev.set, 557

diameter, 91, 165, 388

diameter.box3, 19, 92, 166, 166

diameter.boxx, 19, 93, 166, 167

diameter.owin, 16, 38, 166, 169, 388, 401,
576

dilated.areas, 16,41, 170

dilation, 15,86, 87,95, 112,170, 171, 204,
242, 344, 383, 388

dilationAny, 172

dilationAny (MinkowskiSum), 343

dirichlet, 14, 18, 95, 162, 163, 172, 174,
175,477,509, 623, 624, 652

dirichletAreas, 173, 175

dirichletEdges (dirichletVertices), 174

dirichletVertices, 173, 174, 174

dirichletWeights, 175, 240, 512

disc, 15,171,177, 179, 182, 183, 201, 386,
479, 524

discpartarea, 179

discretise, /14, 180

discs, 178, 181

677

distfun, 21, 59, 183, 186, 189-191, 312, 334
335, 368, 607

distfun.owin, 16

distfun.psp, I8

distmap, 21, 39, 59, 94, 95, 164, 165, 170,
184, 185, 185, 187-191, 263, 266,
371,522

distmap.owin, 16, 82, 185, 186, 186, 189, 191

distmap.ppp, 185, 186, 188, 188, 191

distmap.psp, 18, 185, 186, 188, 189, 190,
349, 502

domain, 191, 192

domain.lpp, 193

domain.ppm, /93

domain.quadrattest, 193

domain.rmhmodel, /93

dppeigen, 586

duplicated, /194

duplicated.data.frame, 194, 643

duplicated.ppp, 14, 193, 346, 611, 643, 644

duplicated.ppx (duplicated.ppp), 193

duplicatedxy, 194

ecdf, 518

edge.Ripley, 587

edge.Trans, 587

edges, 16, 17,77, 169, 195

edges2triangles, 196, 197

edges2vees, 196, 197

edit, 198, 199, 249

edit.data.frame, 198-200

edit.hyperframe, 198, 200

edit.im(edit.ppp), 199

edit.ppp, 14, 198, 199

edit.psp (edit.ppp), 199

ellipse, 15,178,200, 386, 479, 524

endpoints.psp, 17, 31,201, 229, 310, 343,
501

eroded.areas, 16, 170, 202, 204, 388

eroded.volumes, 19, 92, 93

eroded.volumes (diameter.box3), 166

eroded.volumes.boxx, 19, 93

eroded. volumes.boxx (diameter.boxx), 167

erosion, 15,82, 83,86, 87, 112, 172, 203,
203, 205, 242, 265, 292, 383, 388,
567, 640

erosionAny, 204, 205, 344

eval.im, 17, 122,206, 260, 262-264, 272,
323-326, 531, 584, 655

678

ewcdf, 518
exactdt, 2/
expression, 425
Extract.anylist, 207
Extract.hyperframe, 208
Extract.im, 211
Extract.layered, 214
Extract.listof, 215
Extract.owin, 217
Extract.ppp, 218
Extract.ppx, 221
Extract.psp, 223
Extract.quad, 224
Extract.solist, 225
Extract.splitppp, 227
Extract.tess, 228
extrapolate.psp, 18, 31, 202, 229, 310, 343,
501

F3est, 587

factor, 330

fardist, 230

fillholes.owin, 231, 580

flipxy, 14, 15,18, 24, 27-29, 232,232, 334,
337,523, 548

flipxy.distfun (methods.distfun), 333

flipxy.infline (rotate.infline), 547

flipxy.layered (methods.layered), 336

flipxy.tess, I8

flipxy.tess (affine.tess), 28

fourierbasis, 233

fourierbasisraw (fourierbasis), 233

Frame, 15, 193, 234

Frame<- (Frame), 234

framedist.pixels, 82, 235

funxy, 237, 335, 607

G3est, 145, 363

ganglia, 482

Gcom, 586

Gest, 144, 146, 148, 360, 361
Gres, 586

gridcenters (gridcentres), 238
gridcentres, 156, 238, 510, 512, 598, 600
gridweights, 176,239, 512
grow.box3 (grow.boxx), 240
grow.boxx, 240
grow.rectangle, 241, 241, 640
grow.simplepanel, 557

INDEX

grow.simplepanel (simplepanel), 576

Halton, 554, 555

Halton (quasirandom), 519

Hammersley, 554

Hammersley (quasirandom), 519

harmonise, 243, 244, 245, 341

harmonise.fv, 243

harmonise.im, 17, 120, 122, 207, 243, 244,
246, 262, 323, 325

harmonise.owin, 245

harmonise.unitname (methods.unitname),
340

harmoniselLevels, 246

harmonize (harmonise), 243

harmonize.im (harmonise.im), 244

harmonize.owin (harmonise.owin), 245

harmonize.unitname (methods.unitname),
340

has.close, 247

head, 249

head.hyperframe, 20

head.ppp (headtail), 248

head.ppx (headtail), 248

head.psp (headtail), 248

head. tess (headtail), 248

headtail, 248

heat.colors, 404, 430

hexagon, 251, 386, 479

hexagon (regularpolygon), 524

hexgrid (hextess), 250

hextess, 18, 95, 250, 477, 508, 509, 524, 623
624, 652

hist, 251-253

hist.default, 252, 253

hist.funxy, 251

hist.im, 17,251,252, 263,433

hsv, 540, 541

hsvim, /6

hsvim (rgbhim), 540

hyperframe, 20, 44, 53-55, 98, 210, 253, 268,
316, 425, 426, 490, 591, 661

identify, 256-259
identify.default, 256
identify.ppp, 14, 104, 105, 256, 258
identify.psp, 257
identify. tess, 258

INDEX

im, 13, 16, 96, 97, 259, 263, 264, 392, 416,
531,592, 594, 629
im.apply, 17, 207, 261
im.object, 33, 58, 126, 128, 130, 150, 151,
206, 207,212, 213, 253, 260, 263,
293,311, 329, 403, 405, 427, 433,
492,517,526, 527, 541, 583, 584,
608
image, 587
image.default, 59, 423, 427430, 432, 433,
442, 443, 445, 638
image.im(plot.im), 426
image.imlist (plot.imlist), 433
image.listof, 421, 422, 439, 440, 463, 464
image.listof (plot.imlist), 433
imcov, 17, 138, 264, 567
incircle, 16, 265
infline, 101, 106, 229, 267, 548, 656
inradius, 16
inradius (incircle), 265
inside.boxx, 268
inside.owin, 16, 238, 239, 269, 598, 600
integral, 271-273
integral.im, 17,271, 609
integral.tessfun, 19, 52,272
intensity, 20, 273, 275-279
intensity.ppm, 274, 275
intensity.ppp, 274, 274
intensity.ppx, 276
intensity.psp, 277
intensity.quadratcount, 278, 507, 508
intensity.splitppp (intensity.ppp), 274
interp.colourmap, 20, 115, 116, 119, 279,
641
interp.colours (colourtools), 117
interp.im, 17,280
intersect.boxx, 281
intersect.owin, 16, 217,282, 282, 285, 292,
384
intersect. tess, I8, 229, 284, 476, 477, 624,
652
invoke.metric, 136, 286, 342
invoke.symbolmap, 287, 467, 621
is.boxx, 288, 333
is.colour (colourtools), 117
is.connected, 289, 29]
is.connected. ppp, 289, 290, 290
is.convex, 16, 132,291

679

is.empty, 283, 292

is.grey (colourtools), 117
is.im, 17,293

is.linim, 293
is.linnet, 294

is.1lpp, 295
is.marked, 295, 297
is.marked.ppm, 296, 297
is.marked. ppp, 296, 296
is.mask, 16

is.mask (is.rectangle), 304
is.multitype, 297, 299
is.multitype.ppm, 298, 299
is.multitype.ppp, 298, 298
is.na.hyperframe, 299, 346, 347
is.na.solist, 300, 346, 347
is.NAobject, 301, 346, 347
is.owin, 302
is.polygonal, 16
is.polygonal (is.rectangle), 304
is.ppp, 303

is.psp, 17
is.rectangle, 16, 304
is.subset.owin, /6, 283, 305

K3est, 396

Kcom, 586, 587

Kcross, 108

Kest, 108, 393, 394, 397, 587
Kmeasure, 16, 263

Kmodel, 586

Kovesi, 157, 430

Kres, 586, 587

lansing, 482

lapply, 326, 581

layered, 20, 62, 63, 70, 215, 306, 307, 308,
337,431,435, 436, 444, 451, 458,
662

layerplotargs, 307, 307, 431, 436, 444, 451,
458

layerplotargs<- (layerplotargs), 307

layout.boxes, 308, 577, 578

lengths, 310

lengths_psp, 18, 31, 202, 229, 309, 343, 501,
502

letterR, 15

levels, 246, 247

levels.im, 247

680

levelset, 17,310, 312, 584
levelset.distfun, 312
levelset.im, 312
lgcp.estk, 586
lineardirichlet, 173
lines, 409

locator, 102—-105
longleaf, 296-299, 482
lut, 715,313

marks, 14, 315, 317-319

marks.psp, 17, 31, 202, 310, 317, 343, 501

marks. tess, 318, 623, 624

marks<-, 13

marks<-.psp, 17

marks<- (marks), 315

marks<-.psp (marks.psp), 317

marks<-.tess (marks. tess), 318

markstat, 21, 35, 36, 108, 319

marktable, 35, 36, 320, 321, 372

matchingdist, 321, 486, 487, 489

Math.im, 323, 326, 329, 584, 655

Math.imlist, 325

matrix, 260

maxnndist, 327, 361

mean, 329

mean.im, 17, 263, 328, 609

median, 329

median.im (mean.im), 328

mergelevels, 247, 329, 526

methods.box3, 331

methods.boxx, 289, 332

methods.distfun, 185, 312, 333

methods. funxy, 185, 334, 335

methods. layered, 307, 308, 336

methods.pp3, 337

methods. ppx, 339

methods.unitname, 340

metric.object, 135, 136, 145, 187, 188, 190,
286, 341, 352

midpoints.psp, 17, 31, 202, 229, 310, 342,
501, 502

MinkowskiSum, 205, 343

minnndist, 361

minnndist (maxnndist), 327

miplot, 508

mtext, 428, 429, 451

multiplicity (multiplicity.ppp), 345

multiplicity.ppp, 194, 345, 481, 643

INDEX

NAobject, 300-302, 346

nearest.raster.point, 15, 347, 388

nearestsegment, 18, 191, 348, 499

nearestValue, 349

nestsplit, 350

nncross, 18, 21, 108, 189-191, 351, 360, 361,
363, 365, 374-378, 500

nncross.pp3, 21, 354

nncross. ppx, 357

nndist, 21, 108, 142, 144-148, 248, 327, 353,
356, 358, 359, 363, 365-367,
374-378, 393, 394, 396398, 400

nndist.pp3, 21, 360, 361, 362

nndist.ppp, 286, 367

nndist.ppx, 21, 360, 361, 364

nndist.psp, 360, 361, 366

nnfun, 21, 59, 367

nnmap, 21, 59, 369

nnmark, /4, 371

nnwhich, 21, 360, 361, 363, 365, 372, 373,
376, 378

nnwhich.pp3, 21, 374, 375

nnwhich.ppx, 21, 377

nobjects, 378

npoints, 14, 19, 379, 379, 381

nsegments, 380

nvertices, 381

nztrees, 482

onearrow, 440, 441, 471

onearrow (yardstick), 661

opening, 15, 112,292, 382, 388

Ops.im(Math.im), 323

Ops.imlist (Math.imlist), 325

options, 586, 589

overlap.owin, 283, 384

owin, 13,15,23,37,71,72,78,88, 89, 100,
112,122, 123, 132, 133, 140, 169,
170, 172, 178, 179, 201, 203, 204,
223,231, 238, 265, 270, 292, 304,
383, 385, 388, 442, 443, 479483,
501, 502, 521, 524, 542, 555, 567,
576, 580, 586, 599, 646

owin.object, 38, 58, 65, 69-71, 74, 77, 82,
99,122, 123, 169, 178, 201, 203,
213,219, 224,242,270, 283, 303,
311,347, 348, 385, 386, 387, 401,
445,481, 501, 527, 536, 550, 560,
567, 584, 599, 640, 653, 659, 660

INDEX

owin2mask, 65, 389

padimage, 391
pairdist, 21, 142, 144148, 361, 363, 365,
392, 396-399
pairdist.default, 393, 393, 397
pairdist.pp3, 21, 395
pairdist.ppp, 393, 396, 400
pairdist.ppx, 21, 398
pairdist.psp, 393, 397, 399
palette, 118, 119
paletteindex (colourtools), 117
par, 103, 105, 159, 421, 425, 430-432, 439,
444,447,451, 452, 458-460, 464,
620
parent.frame, 660
pdf.options, 431
perimeter, 16, 38, 169, 195, 388, 400, 576
periodify, 14, 15, 18,401, 568, 571, 572, 575
persp, 335, 407, 587
persp.default, 403, 404, 406, 407
persp.funxy (methods. funxy), 335
persp.im, 16, 130, 263, 264, 335, 403, 408
409, 433
persp.ppp, 14, 405
perspContour (perspPoints), 408
persplLines, 405
persplLines (perspPoints), 408
perspPoints, 405, 408
perspSegments (perspPoints), 408
pHcolour (pHcolourmap), 410
pHcolourmap, 410
pictex, 444
pixelcentres, 16, 17,411, 521
pixellate, 16,412, 414-417
pixellate.linnet, 65
pixellate.owin, 15,412, 413,413
pixellate.ppp, 14, 65, 412414, 414
pixellate.psp, 18, 65,412, 413,416, 504
pixelquad, 418
plot, 335, 339, 419, 425, 436, 437, 452, 458,
462, 469, 472, 505
plot.anylist, 31, 208, 419, 464, 596, 606
plot.colourmap, 20, 114, 115,420, 422, 463
plot.default, 430, 442, 443, 447
plot.funxy, 184, 185, 237, 368
plot.funxy (methods. funxy), 335
plot.fv, 587, 588
plot.hyperframe, 20, 255, 424, 661

681

plot.im, 16, 130, 157,213, 263, 264, 335,
405, 426, 434, 435, 469, 587, 629
plot.imlist, 431,433
plot.infline (infline), 267
plot.layered, 20, 306, 307, 435
plot.linim, 157
plot.listof, 216, 437,449, 465, 610
plot.onearrow, 440, 662
plot.owin, 15, 23, 258, 388, 406, 431, 442,
449,451, 452, 455-458, 469, 587
plot.pp3, 19, 445, 587
plot.ppm, 587
plot.ppp, 14, 159, 161, 256, 445, 447, 459,
460, 465, 480, 482, 587, 588
plot.pppmatching, 454, 486, 489
plot.ppx (methods.ppx), 339
plot.psp, 17,257,455, 455, 502
plot.quad, 459, 495, 505
plot.quadratcount, 460, 508
plot.quadrattest, 461
plot.solist, 131, 132,226, 434, 435, 461,
469, 582, 614
plot.splitppp, 227, 464, 593, 594
plot.symbolmap, 288, 420, 448, 463, 466, 621
plot.tess, I8, 258, 259, 460, 461, 468, 624
plot.tessfun, 19
plot.textstring, 470, 662
plot.texturemap, 471
plot.yardstick, 473, 662
points, 159, 409, 446, 447, 449, 451, 452, 466
points.default, 406
pointsOnLines, 18, 475
polartess, 18, 95, 476, 509, 623, 624, 652
polyclip, 282
polygon, 101, 103, 442—445, 455, 457
polynom, 586
polypath, 443, 444
pp3, 13, 19,41, 92, 139, 338, 446, 477, 491
ppm, 418, 419, 505, 510-514, 587
ppm. ppp, 511
ppp, 13,73, 74,97, 139, 162, 173, 181, 316,
386, 476, 478, 482, 483, 563, 616,
646
ppp.object, 36, 73, 74, 83, 150, 152, 156,
194,202,213, 219, 303, 316, 321,
346, 371, 380, 386, 449, 452, 465,
480, 481, 482, 527, 551, 560, 563,
564, 594, 643, 647

682

pppdist, 21, 322, 483, 487, 489

pppmatching, 487, 489

pppmatching.object, 322, 454, 455,
485487, 488

ppx, 13, 19, 55, 93, 139, 222, 268, 316, 340,
478, 490, 519, 573, 596

predict.ppm, 587

print, 267, 331-333, 338-341, 491-494

print.box3 (methods.box3), 331

print.boxx (methods.boxx), 332

print.default, 340

print.im, 263,491

print.infline (infline), 267

print.listof, 438, 440

print.owin, 388, 492, 493, 494, 610

print.pp3, 380, 478

print.pp3 (methods.pp3), 337

print.ppm, 587

print.ppp, 492, 493, 588, 611

print.ppx, 380, 491

print.ppx (methods.ppx), 339

print.psp, 17,494, 612

print.quad, 495

print.summary.im (summary.im), 608

print.summary.pp3 (methods.pp3), 337

print.summary.quad (summary.quad), 613

print.unitname (methods.unitname), 340

proc.time, 636

progressreport, 496, 588

project.ppm, 588

project2segment, I8, 190, 191, 349, 498, 500

project2set, 499

ps.options, 431

psp, 13, 17,31, 33,76, 77, 106, 229, 476, 500,
502, 503, 545, 586, 616, 625

psp.object, 76, 77, 150, 202, 224, 318, 381
457, 458, 501, 502, 552, 564, 647

psp2mask, 65, 417, 503

psst, 586

psstA, 586, 588

psstG, 586, 588

quad.object, 73, 140, 156, 176, 225, 239
240, 418, 419, 459, 460, 495, 504,
510,512, 598, 600, 613, 642

quadrat.test, 80, 507-509

quadratcount, 20, 80, 81, 278, 279, 460, 461,
506, 509

quadratresample, 508, 509

INDEX

quadrats, 18, 95, 350,477, 508, 508, 515
516,623, 624, 652

quadscheme, 124, 140, 156, 238, 239, 418,
419, 495, 505, 510, 556, 597, 598,
600, 618

quadscheme. logi, 512

quantess, 18, 95, 351,477, 509, 514, 623,
624, 652

quantile, 516-518

quantile.default, 515,517, 518

quantile.ewcdf, 518

quantile.im, 17, 263, 329,516

quantilefun, 115,314, 518, 621

quantilefun.im, 517

quasirandom, 519

quote, 425

rainbow, /54

raster.x, 15, 386, 388, 520

raster.xy, 15,412

raster.xy (raster.x), 520

raster.y, 15, 386, 388

raster.y (raster.x), 520

rasterImage, 430, 432

rbind, 98

rbind.hyperframe, 20, 255

rbind.hyperframe (cbind.hyperframe), 98

read. table, 482, 563

rectdistmap, 522

redraw.simplepanel (run.simplepanel),
556

redwood, 482

reflect, 14, 24, 29, 30, 137, 138, 233, 334,
337,523, 548

reflect.default, 30

reflect.distfun (methods.distfun), 333

reflect.im, 30

reflect.infline (rotate.infline), 547

reflect.layered (methods.layered), 336

reflect.tess, I8

reflect.tess (affine.tess), 28

regularpolygon, 386, 479, 524

relevel, 330, 525

relevel.im, 525

relevel.ppp (relevel.im), 525

relevel.ppx (relevel.im), 525

Replace.im, 526

requireversion, 528

INDEX

rescale, 189, 275,277, 334, 336, 337, 340,
529, 531-534, 646
rescale.distfun (methods.distfun), 333
rescale.im, 530, 530
rescale.layered, 530
rescale.layered (methods.layered), 336
rescale.owin, 530, 532, 532, 534
rescale.ppp, 530, 533
rescale.psp, 530, 534
rescale.unitname, 530

rescale.unitname (methods.unitname), 340

rescue.rectangle, 25, 535, 549

reset.default.image.colours
(default.image.colours), 156

reset.spatstat.options
(spatstat.options), 585

restrict.colourmap, /15,536

rev, 538

rev.colourmap, /15, 537

rexplode, 538, 544

rgb, 117, 118, 154, 540, 541

rgb2hex (colourtools), 117

rgb2hsv, 118, 119

rgb2hsva (colourtools), 117

rgbim, 16, 540

ripras, 15,88, 133, 541, 563, 617

rjitter, 14,543

rjitter.ppp, 539

rlinegrid, 18, 545

rMatClust, 482

rMaternlI, 482

rMaternlI, 482

rmh, 70, 586, 588, 611

rmh.default, 588

rmhcontrol, 586

rmhcontrol.default, 588

rNeymanScott, 482

rotate, 14, 15, 24-30, 233, 334, 337, 388,
530, 532, 534, 535, 546, 547, 548,
568, 571, 572,575

rotate.distfun (methods.distfun), 333

rotate.im, 17, 30, 546

rotate.infline, 268, 547

rotate.layered (methods.layered), 336

rotate.owin, 30, 388, 546, 549, 550-552

rotate.ppp, 546, 550, 552

rotate.psp, 18, 551

rotate.tess, /I8

683

rotate.tess (affine. tess), 28
round, 552-554

round. pp3 (round.ppp), 552
round. ppp, 552, 554

round. ppx (round.ppp), 552
rounding, 553, 554

rounding.pp3 (rounding.ppp), 553
rounding.ppp, 553, 553
rounding.ppx (rounding.ppp), 553
rpoint, 560

rpoisline, 545
rpoislinetess, 95,477, 509, 623, 624, 652
rpoispp, 482, 560, 586
rQuasi, 520, 554

rSsi, 482

rstrat, 556

rsyst, 14, 555

rthin, 586

rThomas, 482
run.simplepanel, 556, 577, 578
runifpoint, 482, 556, 559, 560, 587
runifpointOnLines, 476
runifrect, 13,559

samecolour (colourtools), 117

scalardilate, 14, 29, 30, 334, 337, 560

scalardilate.distfun (methods.distfun),
333

scalardilate.im, 30

scalardilate.layered (methods.layered),
336

scalardilate.owin, 30

scalardilate.tess (affine. tess), 28

scale, 332, 333, 339, 562

scale.boxx (methods.boxx), 332

scale.default, 332, 339

scale.ppx (methods.ppx), 339

scaletointerval, 17, 561

scanpp, 482, 562

segments, 406, 407, 409, 440, 446, 456, 457,
469, 473

selfcrossing.psp, 18, 150, 564, 566, 589

selfcut.psp, 18, 565

sessionInfo, 566

sessionLibs, 566

set.seed, 154, 161,451, 458

setcov, 16, 263, 265, 384, 567, 586

setmarks (marks), 315

setminus.owin, 16, 95

684

setminus.owin (intersect.owin), 282

shift, 14, 15, 24-30, 233, 334, 337, 388, 402,
421,439,463, 530, 532, 534, 535,
548, 561, 568, 569-575, 662

shift.boxx (shift.ppx), 572

shift.distfun (methods.distfun), 333

shift.im, 17, 30, 547, 569

shift.infline (rotate.infline), 547

shift.layered (methods.layered), 336

shift.owin, 30, 388, 568, 570, 572, 575

shift.ppp, 568, 571,571, 575

shift.ppx, 572

shift.psp, 18,574

shift.tess, I8

shift.tess (affine.tess), 28

shortside, 576

shortside (diameter.box3), 166

shortside.box3, /19

shortside.boxx, 19

shortside.boxx (diameter.boxx), 167

shortside.owin (sidelengths.owin), 575

sidelengths, 576

sidelengths (diameter.box3), 166

sidelengths.boxx (diameter.boxx), 167

sidelengths.owin, 575

simdat, 482

simplepanel, 309, 557, 558, 576

simplify.owin, 15,72, 134, 231, 400, 579

Smooth. ppp, 59, 350, 372, 416, 586

Smoothfun, 59

solapply, 79, 326, 581, 583

solist, 32,79, 226, 581, 582, 614, 662

solutionset, 17, 264, 311, 583, 655

spatdim, 584

spatialcdf, 252, 253

spatstat.geom (spatstat.geom-package),
12

spatstat.geom-package, 12

spatstat.options, 14, 15, 59, 64, 65, 130,
161, 262, 335,433, 443, 445, 446,
450, 585

split, 590, 591, 596, 615, 649

split.hyperframe, 255, 590

split.im, 96, 582, 591

split.ppp, 14, 52, 63,97, 219, 227, 350, 351,
361, 374, 465, 507, 582,592, 615,
623, 624, 632, 649

split.ppx, 595

INDEX

split<-.hyperframe (split.hyperframe),
590
split<-.ppp (split.ppp), 592
spokes, 156, 510, 512, 597
square, 15, 386, 479, 598
stratrand, 156, 239, 510, 512, 598, 599
subset, 601-603, 605
subset.hyperframe, 20, 601
subset.pp3, 19
subset.pp3 (subset.ppp), 602
subset.ppp, 14, 152, 219, 602
subset.ppx, 19
subset.ppx (subset.ppp), 602
subset.psp, 17, 604
summary, 17, 20, 338, 340, 606-615
summary.anylist, 208, 606
summary.distfun, /85, 607
summary . funxy, 237
summary . funxy (summary.distfun), 607
Summary.im, 329, 655
Summary.im (Math.im), 323
summary.im, 253, 263, 329, 492, 607, 608
Summary.imlist (Math.imlist), 325
summary.listof, 216, 609
summary.owin, 388, 492, 610, 611, 612
summary.pp3 (methods.pp3), 337
summary . ppp, 493, 610, 611
summary.psp, 17, 31, 202, 310, 343, 494, 501,
612
summary . quad, 495, 613
summary.solist, 226, 614
summary.splitppp, 227, 615
summary.unitname (methods.unitname), 340
superimpose, 14, 18, 33, 123, 124, 482, 594,
616
Sweave, 566
swedishpines, 482
symbolmap, 159, 161, 288, 448-450, 467, 618,
650, 651
symbols, 159, 447,449, 451, 452, 458, 466

tail, 249
tail.hyperframe, 20
tail.ppp (headtail), 248
tail.ppx (headtail), 248
tail.psp (headtail), 248
tail.tess (headtail), 248
terrain.colors, 404, 430

INDEX

tess, 13,18, 81, 84, 95-97, 126, 128, 152,
162, 173,228, 229, 251, 285, 350,
469, 470, 477, 508, 509, 515, 516,
592,594, 622, 629, 630, 633-635,
639, 652

test.crossing.psp, 624

test.selfcrossing.psp
(test.crossing.psp), 624

text, 470, 471,473, 474, 626

text.default, 257, 258, 457, 460, 461, 469,
625, 626

text.ppp, 452, 625

text.psp, 458

text.psp (text.ppp), 625

textstring, 470, 471

textstring (yardstick), 661

texturemap, 23, 472, 626

textureplot, 23, 472, 627, 627

tile.areas, 18, 623, 624, 629, 630, 634, 635

tile.centroids, 630

tileindex, 52, 631

tilenames, 516, 623, 629, 632, 634, 635

tilenames<- (tilenames), 632

tiles, 18, 229, 623, 624, 629, 633, 633, 635

tiles.empty, 629, 634, 634

timed, 635, 637

timeTaken, 636, 636

to.grey, 431

to.grey (colourtools), 117

to.opaque (colourtools), 117

to.saturated (colourtools), 117

to.transparent (colourtools), 117

topo.colors, 404, 430

trans3d, 405

transmat, 17, 637

triangulate.owin, /6, 639

trim.rectangle, 242, 640

Tstat, 111

tweak.colourmap, 20, 115, 116, 119, 280, 641

txtProgressBar, 497

union.owin, 16, 183

union.owin (intersect.owin), 282
union.quad, 505, 642
unique.ppp, 14, 194, 346, 481, 643, 644
unique.ppx (unique.ppp), 643
uniquemap, 644
uniquemap.default, 644
uniquemap.lpp (uniquemap.ppp), 644

685

uniquemap.ppp, /4, 644
uniquemap.ppx (uniquemap.ppp), 644
unit.square (square), 598
unitname, 92, 93, 184, 186, 187, 189, 191,
237,331-333, 338-341, 361, 363,
365, 367, 393, 396-398, 400,
529-534, 645
unitname.box3, 19
unitname.box3 (methods.box3), 331
unitname.boxx (methods.boxx), 332
unitname.pp3, 19
unitname.pp3 (methods.pp3), 337
unitname.ppx, 19
unitname.ppx (methods.ppx), 339
unitname<- (unitname), 645
unitname<-.box3 (methods.box3), 331
unitname<-.boxx (methods.boxx), 332
unitname<-.pp3 (methods.pp3), 337
unitname<-.ppx (methods.ppx), 339
units, 535
unmark, 14, 219, 222, 316, 319, 647
unmark.psp, 17
unmark.tess (marks.tess), 318
unstack, 648-650
unstack.layered (unstack.solist), 649
unstack.msr, 649, 650
unstack. ppp, 648, 650
unstack.psp, 650
unstack.psp (unstack.ppp), 648
unstack.solist, 649
unstack. tess (unstack.ppp), 648
update, 650
update.symbolmap, 159, 451, 621, 650

vdCorput (quasirandom), 519
venn.tess, I8, 95,477, 509, 623, 624, 651
vertices, 291, 292, 382, 652

View, 249

volume, 654

volume.box3, 19, 92, 654

volume.box3 (diameter.box3), 166
volume.boxx, 19, 93, 654

volume.boxx (diameter.boxx), 167
volume.owin (area.owin), 37

where.max, 655
where.min (where.max), 655
which.max, 655
which.min, 655

686

whichhalfplane, 268, 656

Window, 15, 193, 235, 657, 659, 660
Window.distfun (Window. tess), 659
Window. funxy (Window. tess), 659
Window.layered (Window. tess), 659
Window.nnfun (Window. tess), 659
Window. ppm, 658

Window. ppp, 660

Window. psp, 660
Window.quadratcount (Window. tess), 659
Window. tess, 658, 659

Window<- (Window), 657

with, 661
with.hyperframe, 20, 255, 426, 601, 660

X11, 444

X11.options, 444

xfig, 444

Xy .coords, 280, 288, 408, 656

yardstick, 441,471,473, 474, 661

zapsmall, 663
zapsmall.im, 17, 663

INDEX

	spatstat.geom-package
	add.texture
	affine
	affine.im
	affine.owin
	affine.ppp
	affine.psp
	affine.tess
	angles.psp
	anylist
	anyNA.im
	append.psp
	applynbd
	area.owin
	areaGain
	areaLoss
	as.box3
	as.boxx
	as.colourmap
	as.data.frame.hyperframe
	as.data.frame.im
	as.data.frame.owin
	as.data.frame.ppp
	as.data.frame.psp
	as.data.frame.tess
	as.function.im
	as.function.owin
	as.function.tess
	as.hyperframe
	as.hyperframe.ppx
	as.im
	as.layered
	as.mask
	as.matrix.im
	as.matrix.owin
	as.owin
	as.polygonal
	as.ppp
	as.psp
	as.rectangle
	as.solist
	as.tess
	bdist.pixels
	bdist.points
	bdist.tiles
	beachcolours
	border
	bounding.box.xy
	boundingbox
	boundingcircle
	box3
	boxx
	bufftess
	by.im
	by.ppp
	cbind.hyperframe
	centroid.owin
	chop.tess
	clickbox
	clickdist
	clickpoly
	clickppp
	clip.infline
	closepairs
	closepairs.pp3
	closetriples
	closing
	colourmap
	colouroutputs
	colourtools
	commonGrid
	compatible
	compatible.im
	complement.owin
	concatxy
	connected
	connected.ppp
	connected.tess
	contour.im
	contour.imlist
	convexhull
	convexhull.xy
	convexify
	convexmetric
	convolve.im
	coords
	corners
	covering
	crossdist
	crossdist.default
	crossdist.pp3
	crossdist.ppp
	crossdist.ppx
	crossdist.psp
	crossing.psp
	cut.im
	cut.ppp
	default.colourmap
	default.dummy
	default.image.colours
	default.symbolmap
	default.symbolmap.ppp
	delaunay
	delaunayDistance
	deltametric
	diameter
	diameter.box3
	diameter.boxx
	diameter.owin
	dilated.areas
	dilation
	dirichlet
	dirichletAreas
	dirichletVertices
	dirichletWeights
	disc
	discpartarea
	discretise
	discs
	distfun
	distmap
	distmap.owin
	distmap.ppp
	distmap.psp
	domain
	duplicated.ppp
	edges
	edges2triangles
	edges2vees
	edit.hyperframe
	edit.ppp
	ellipse
	endpoints.psp
	eroded.areas
	erosion
	erosionAny
	eval.im
	Extract.anylist
	Extract.hyperframe
	Extract.im
	Extract.layered
	Extract.listof
	Extract.owin
	Extract.ppp
	Extract.ppx
	Extract.psp
	Extract.quad
	Extract.solist
	Extract.splitppp
	Extract.tess
	extrapolate.psp
	fardist
	fillholes.owin
	flipxy
	fourierbasis
	Frame
	framedist.pixels
	funxy
	gridcentres
	gridweights
	grow.boxx
	grow.rectangle
	harmonise
	harmonise.im
	harmonise.owin
	harmoniseLevels
	has.close
	headtail
	hextess
	hist.funxy
	hist.im
	hyperframe
	identify.ppp
	identify.psp
	identify.tess
	im
	im.apply
	im.object
	imcov
	incircle
	infline
	inside.boxx
	inside.owin
	integral.im
	integral.tessfun
	intensity
	intensity.ppp
	intensity.ppx
	intensity.psp
	intensity.quadratcount
	interp.colourmap
	interp.im
	intersect.boxx
	intersect.owin
	intersect.tess
	invoke.metric
	invoke.symbolmap
	is.boxx
	is.connected
	is.connected.ppp
	is.convex
	is.empty
	is.im
	is.linim
	is.linnet
	is.lpp
	is.marked
	is.marked.ppp
	is.multitype
	is.multitype.ppp
	is.na.hyperframe
	is.na.solist
	is.NAobject
	is.owin
	is.ppp
	is.rectangle
	is.subset.owin
	layered
	layerplotargs
	layout.boxes
	lengths_psp
	levelset
	levelset.distfun
	lut
	marks
	marks.psp
	marks.tess
	markstat
	matchingdist
	Math.im
	Math.imlist
	maxnndist
	mean.im
	mergeLevels
	methods.box3
	methods.boxx
	methods.distfun
	methods.funxy
	methods.layered
	methods.pp3
	methods.ppx
	methods.unitname
	metric.object
	midpoints.psp
	MinkowskiSum
	multiplicity.ppp
	NAobject
	nearest.raster.point
	nearestsegment
	nearestValue
	nestsplit
	nncross
	nncross.pp3
	nncross.ppx
	nndist
	nndist.pp3
	nndist.ppx
	nndist.psp
	nnfun
	nnmap
	nnmark
	nnwhich
	nnwhich.pp3
	nnwhich.ppx
	nobjects
	npoints
	nsegments
	nvertices
	opening
	overlap.owin
	owin
	owin.object
	owin2mask
	padimage
	pairdist
	pairdist.default
	pairdist.pp3
	pairdist.ppp
	pairdist.ppx
	pairdist.psp
	perimeter
	periodify
	persp.im
	persp.ppp
	perspPoints
	pHcolourmap
	pixelcentres
	pixellate
	pixellate.owin
	pixellate.ppp
	pixellate.psp
	pixelquad
	plot.anylist
	plot.colourmap
	plot.hyperframe
	plot.im
	plot.imlist
	plot.layered
	plot.listof
	plot.onearrow
	plot.owin
	plot.pp3
	plot.ppp
	plot.pppmatching
	plot.psp
	plot.quad
	plot.quadratcount
	plot.solist
	plot.splitppp
	plot.symbolmap
	plot.tess
	plot.textstring
	plot.texturemap
	plot.yardstick
	pointsOnLines
	polartess
	pp3
	ppp
	ppp.object
	pppdist
	pppmatching
	pppmatching.object
	ppx
	print.im
	print.owin
	print.ppp
	print.psp
	print.quad
	progressreport
	project2segment
	project2set
	psp
	psp.object
	psp2mask
	quad.object
	quadratcount
	quadrats
	quadscheme
	quadscheme.logi
	quantess
	quantile.im
	quantilefun.im
	quasirandom
	raster.x
	rectdistmap
	reflect
	regularpolygon
	relevel.im
	Replace.im
	requireversion
	rescale
	rescale.im
	rescale.owin
	rescale.ppp
	rescale.psp
	rescue.rectangle
	restrict.colourmap
	rev.colourmap
	rexplode
	rgbim
	ripras
	rjitter
	rlinegrid
	rotate
	rotate.im
	rotate.infline
	rotate.owin
	rotate.ppp
	rotate.psp
	round.ppp
	rounding.ppp
	rQuasi
	rsyst
	run.simplepanel
	runifrect
	scalardilate
	scaletointerval
	scanpp
	selfcrossing.psp
	selfcut.psp
	sessionLibs
	setcov
	shift
	shift.im
	shift.owin
	shift.ppp
	shift.ppx
	shift.psp
	sidelengths.owin
	simplepanel
	simplify.owin
	solapply
	solist
	solutionset
	spatdim
	spatstat.options
	split.hyperframe
	split.im
	split.ppp
	split.ppx
	spokes
	square
	stratrand
	subset.hyperframe
	subset.ppp
	subset.psp
	summary.anylist
	summary.distfun
	summary.im
	summary.listof
	summary.owin
	summary.ppp
	summary.psp
	summary.quad
	summary.solist
	summary.splitppp
	superimpose
	symbolmap
	tess
	test.crossing.psp
	text.ppp
	texturemap
	textureplot
	tile.areas
	tile.centroids
	tileindex
	tilenames
	tiles
	tiles.empty
	timed
	timeTaken
	transmat
	triangulate.owin
	trim.rectangle
	tweak.colourmap
	union.quad
	unique.ppp
	uniquemap.ppp
	unitname
	unmark
	unstack.ppp
	unstack.solist
	update.symbolmap
	venn.tess
	vertices
	volume
	where.max
	whichhalfplane
	Window
	Window.tess
	with.hyperframe
	yardstick
	zapsmall.im
	Index

