Package ‘rlas’

January 29, 2026
Type Package

Title Read and Write 'las' and 'laz' Binary File Formats Used for
Remote Sensing Data

Version 1.8.4

Description Read and write 'las' and 'laz' binary file formats. The LAS file format is a public file for-
mat for the interchange of 3-dimensional point cloud data between data users. The LAS specifi-
cations are approved by the American Society for Photogrammetry and Remote Sens-
ing <https://community.asprs.org/leadership-restricted/leadership-content/
public-documents/standards>. The LAZ file format is an open and lossless compres-
sion scheme for binary LAS format versions 1.0 to 1.4 <https://laszip.org/>.

URL https://github.com/r-1lidar/rlas

BugReports https://github.com/r-1lidar/rlas/issues
License GPL-3

Depends R (>=3.6.0)

Imports Rcpp, data.table, utils

RoxygenNote 7.3.3

LinkingTo Rcpp

Suggests tinytest

Encoding UTF-8

NeedsCompilation yes

Author Jean-Romain Roussel [aut, cre, cph],

Florian De Boissieu [aut, ctb] (Enable the support of .lax file and
extra byte attributes),

Martin Isenburg [cph] (Is the author of the LASIlib and LASzip
libraries),

David Auty [ctb] (Reviewed the documentation),

Pierrick Marie [ctb] (Helped to compile LASIib code in R),

Tiago de Conto [ctb] (Implemented the -thin_with_voxel filter method)

Maintainer Jean-Romain Roussel <info@r-1lidar.com>
Repository CRAN
Date/Publication 2026-01-29 17:10:02 UTC

https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards
https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards
https://laszip.org/
https://github.com/r-lidar/rlas
https://github.com/r-lidar/rlas/issues

2 check_las_validity

Contents
check_las_validity 2
COMPIESSION .« . o v v v v ittt e e e e e e e e e e e 3
CIS_tOOIS . . o o o o e 3
extra_bytes_attribute_tools oL o 4
fwf_interpreter e e e e e 5
help_filter e e 6
las_specification_tools 6
public_header_block_tools 9
read.as L L e e 10
read.lasheader 12
write.das L e e e e 13
writelaX L e e 14

Index 15

check_las_validity Check if data and headers respect the LAS specification

Description

las files are normalized files. These functions perform tests of compliance with LAS specification.

Usage

* check_las_validity tests if the data and the header contain information that cannot be writ-
ten into a las file. For example it tests is the intensities do not exeed 65535. It throws an error
for each deviance to the specification. It is useful for testing if modified R objects are still
valid.

e check_las_compliance test if the data and the header contain information that can be written
into a las file but are invalid with repect of the specification. For example it test if the RGB
colors are recoded on 16 bits. It is possible to store colors recorded on 8 bits (0 to 255) but it
is not correct to do that. It throws a warning for each deviance to the specification. It is useful
for testing if the data read from a file are correct.

check_las_validity(header, data)

check_las_compliance(header, data)

Arguments

header a list containing the header of a las file

data a data.frame or a data.table containing a point cloud

compression 3

compression ALTREP utilities

Description

Test if an a vector is compressed using the ALTREP framework

Usage

is_compressed(x)

true_size(x)

Arguments
X an R object
Examples
lazfile <- system.file("extdata”, "example.las”, package = "rlas")

las <- read.las(lazfile)
is_compressed(las)

The difference is more substantial on bigger point clouds (~30%)
object.size(las)
true_size(las)

crs_tools Coordinate Reference System Tools

Description

Functions that update a header to describe coordinates reference system according to the LAS spec-
ifications

Usage

header_get_epsg(header)
header_set_epsg(header, epsg)
header_get_wktcs(header)
header_set_wktcs(header, WKT)

find_epsg_position(header)

https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards
https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards

4 extra_bytes_attribute_tools

Arguments

header list

epsg integer. An EPSG code

WKT string. A string of an WKT OGC CS
See Also

Other header_tools: extra_bytes_attribute_tools, fwf_interpreter(), public_header_block_tools

extra_bytes_attribute_tools
Extra Bytes Attributes Tools

Description

Functions that update a header to describe Extra Bytes Attributes according to the LAS specifica-
tions

Usage

header_add_extrabytes(header, data, name, desc)

header_add_extrabytes_manual (

header,
name,
desc,
type,
offset = NULL,
scale = NULL,
max = NULL,
min = NULL,
NA_value = NULL
)
Arguments
header list
data vector. Data that must be added in the extrabytes attributes.
name character. The name of the extrabytes attributes to add in the file.
desc character. The description of the extrabytes attributes to add in the file.
type integer. The data type of the extrabytes attributes (page 25 of the spec).
scale, of fset numeric. The scale and offset of the data. NULL if not relevant.
min, max numeric or integer. The minimum and maximum value of the data. NULL if not
relevant.
NA_value numeric or integer. NA is not a valid value. At writing time it will be replaced

by this value that will be considered as NA. NULL if not relevant.

https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards
https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards

fwf_interpreter 5

See Also

Other header_tools: crs_tools, fwf_interpreter(), public_header_block_tools

Examples

data = data.frame(X = c(339002.889, 339002.983, 339002.918),
Y = c(5248000.515, 5248000.478, 5248000.318),
Z = c(975.589, 974.778, 974.471),
gpstime = c(269347.281418006, 269347.281428006, 269347.281438006),
Intensity = c(82L, 54L, 27L),
ReturnNumber = c(1L, 1L, 2L),
NumberOfReturns = c(1L, 1L, 2L),
ScanDirectionFlag = c(1L, 1L, 1L),
EdgeOfFlightline = c(1L, oL, OL),
Classification = c(1L, 1L, 1L),
ScanAngleRank = c(-21L, -21L, -21L),
UserData = c(32L, 32L, 32L),
PointSourceID = c(17L, 17L, 17L),
treeID = c(1L, 1L, 1L))

lasheader = header_create(data)
lasheader[["Variable Length Records"]]

lasheader = header_add_extrabytes(lasheader, data$treelID, "treeID”, "An id for each tree")
lasheader[["Variable Length Records”]]

fwf_interpreter Full Waveform Interpreter

Description

This is an experimental function that may change

Raw full waveform data read from LAS files might be cryptic even with a good understanding of
the LAS specifications. This function interpret the full waveform data as a set of XYZ coordinates
and an amplitude which is the digitized voltage.

Usage

fwf_interpreter(header, data)

Arguments

header list. A header

data data.frame or data.table
Value

A list containing a data. frame per pulse with the XYZ coordinates of the waveform and the voltage
of the record (Amplitude)

6 las_specification_tools

See Also

Other header_tools: crs_tools, extra_bytes_attribute_tools, public_header_block_tools

Examples

Not run:

f <- system.file("extdata”, "fwf.laz", package="rlas")
head <- read.lasheader(f)

data <- read.las(f)

fwf <- fwf_interpreter(head, data)

End(Not run)

help_filter LASIib filter and transform operation

Description

Print the existing LASIib filter and transform commands

Usage

help_filter()

help_transform()

las_specification_tools
A set of function to test conformance with LAS specifications

Description

Tools reserved to developpers and not intended to be used by regular users. The functions return
TRUE or FALSE by default without more information. If behavior is *warning’ functions throw
a warning for each fail and return FALSE if any warning TRUE otherwise. If behavior is ’stop’
functions throw an error for the first fail and return TRUE if O error. If behavior is "vector’ returns
a character vector with the decription of each error an never fail. Is it useful to make a detailed
inspection.

las_specification_tools

Usage
is_defined_offsets(header, behavior = "bool"”)
is_valid_offsets(header, behavior = "bool")
is_defined_scalefactors(header, behavior = "bool")
is_valid_scalefactors(header, behavior = "bool")
is_defined_filesourceid(header, behavior = "bool")

is_valid_filesourceid(header, behavior)
is_defined_globalencoding(header, behavior = "bool")
is_valid_globalencoding(header, behavior = "bool")
is_defined_version(header, behavior = "bool"”)
is_valid_version(header, behavior = "bool")
is_defined_date(header, behavior = "bool")
is_valid_date(header, behavior = "bool”)
is_defined_pointformat(header, behavior = "bool")
is_valid_pointformat(header, behavior = "bool")
is_defined_extrabytes(header, behavior = "bool")
is_valid_extrabytes(header, behavior = "bool")
is_empty_point_cloud(header, behavior = "bool")
is_defined_coordinates(data, behavior = "bool")
is_valid_XYZ(data, behavior = "bool")
is_valid_Intensity(data, behavior = "bool")

is_valid_ReturnNumber(data, header, behavior = "bool")

is_valid_NumberOfReturns(data, header, behavior = "bool")

is_valid_ScanDirectionFlag(data, behavior = "bool")

is_valid_EdgeOfFlightline(data, behavior = "bool")

las_specification_tools

is_valid_Classification(data, header, behavior = "bool")
is_valid_ScannerChannel(data, behavior = "bool")
is_valid_SyntheticFlag(data, behavior = "bool")
is_valid_KeypointFlag(data, behavior = "bool")
is_valid_WithheldFlag(data, behavior = "bool")
is_valid_OverlapFlag(data, behavior = "bool")
is_valid_ScanAngle(data, behavior = "bool")

is_valid_ScanAngleRank(data, behavior = "bool")

is_valid_UserData(data, behavior = "bool")
is_valid_gpstime(data, behavior = "bool")
is_valid_PointSourceID(data, behavior = "bool")

is_valid_RGB(data, behavior = "bool")

is_valid_NIR(data, behavior = "bool")

is_compliant_ReturnNumber(data, behavior = "bool")
is_compliant_NumberOfReturns(data, behavior = "bool")
is_compliant_ReturnNumber_vs_NumberOfReturns(data, behavior = "bool”)

is_compliant_RGB(data, behavior = "bool")

is_compliant_ScanAngle(data, behavior = "bool")
is_compliant_ScanAngleRank(data, behavior = "bool")
is_NIR_in_valid_format(header, data, behavior = "bool")
is_gpstime_in_valid_format(header, data, behavior = "bool")
is_RGB_in_valid_format(header, data, behavior = "bool")
is_ScanAngle_in_valid_format(header, data, behavior = "bool"”)

is_ScannerChannel_in_valid_format(header, data, behavior = "bool")

public_header_block_tools 9

is_XY_larger_than_bbox(header, data, behavior = "bool")

is_XY_smaller_than_bbox(header, data, behavior = "bool")
is_Z_in_bbox(header, data, behavior = "bool")
is_number_of_points_in_accordance_with_header(header, data, behavior = "bool")

is_number_of_points_by_return_in_accordance_with_header(

header,
data,
behavior = "bool”
)
is_extrabytes_in_accordance_with_data(header, data, behavior = "bool")
Arguments
header a list containing the header of a las file
behavior character. Defines the behavior of the function. *bool’ returns TRUE or FALSE.
warning’ throw a warning for each fails and return FALSE if any warning
TRUE otherwise. ’vector’ returns a character vector of each warning but does
not thrown any warning.
data a data.frame or a data.table containing a point cloud

public_header_block_tools
Public Header Block Tools

Description

Create or update a header for a las file from a dataset. A las file consists of two parts. A header
that describes the data and the data itself. These functions make valid headers (public header block
only) that can be used in write.las.

Usage

header_create(data)

header_update(header, data)

Arguments

data data.frame or data.table

header list. A header

10 read.las

Details

header_create makes a full header from data. header_update modifies the information that needs
to be updated. But most of the original information is not modified, for example point data format
is kept ’as is’.

Value

A list containing the metadata required to write a las file.

See Also

Other header_tools: crs_tools, extra_bytes_attribute_tools, fwf_interpreter()

Examples

lasdata = data.frame(X = c(339002.889, 339002.983, 339002.918),

Y = c(5248000.515, 5248000.478, 5248000.318),
Z = c(975.589, 974.778, 974.471),

gpstime = c(269347.281418006, 269347.281428006, 269347.281438006),
Intensity = c(82L, 54L, 27L),

ReturnNumber = c(1L, 1L, 2L),

NumberOfReturns = c(1L, 1L, 2L),
ScanDirectionFlag = c(1L, 1L, 1L),
EdgeOfFlightline = c(1L, oL, oL),
Classification = c(1L, 1L, 1L),

ScanAngleRank = c(-21L, -21L, -21L),

UserData = c(32L, 32L, 32L),

PointSourceID = c(17L, 17L, 17L),

treeID = c(1L, 1L, 1L))

lasheader = header_create(lasdata)

read.las Read data from a .las or .laz file

Description

Reads data from .las or .1az files according to LAS specifications and returns a data. table labelled
according to LAS specifications. See the ASPRS documentation for the LAS file format. The
optional parameters enable the user to save memory by choosing to load only the attributes they
need. Moreover, the function provides a streaming filter to load only the points of interest into the
memory and hence avoids allocating any superfluous memory.

Usage

read.las(files, select = "x", filter = "", transform = "")

read_and_write.las(

https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards

read.las 11

ifiles,
ofile = "",
select = "x",
filter = "",
polygons = list()
)
Arguments
files array of characters
select character. select only columns of interest to save memory (see details)
filter character. streaming filters - filter data while reading the file (see details)
transform character. streaming transformation - transform data while reading the file (see

details)
ifiles, ofile characters. Streaming operations.

polygons list. Internal use only.

Details

Select: the ’select’ argument specifies the data that will actually be loaded. For example, xyzia’
means that the x, y, and z coordinates, the intensity and the scan angle will be loaded. The sup-
ported entries are t - gpstime, a - scan angle, i - intensity, n - number of returns, r - return number, ¢
- classification, s - synthetic flag, k - keypoint flag, w - withheld flag, o - overlap flag (format 6+), u
- user data, p - point source ID, e - edge of flight line flag, d - direction of scan flag, R - red channel
of RGB color, G - green channel of RGB color, B - blue channel of RGB color, N - near-infrared
channel, C - scanner channel (format 6+), W - Full waveform. Also numbers from 1 to 9 for the
extra bytes data numbers 1 to 9. 0 enables all extra bytes to be loaded and **’ is the wildcard that
enables everything to be loaded from the LAS file.

Note that x, y, z are implicit and always loaded. "xyzia’ is equivalent to ’ia’.

Filter: the ’filter’ argument allows filtering of the point cloud while reading files. rlas relies
on the well-known LAS1ib library written by Martin Isenburg to read the binary files. Thus the
package inherits the filter commands available in LAStools. To use these filters the user can pass
the common commands from LAStools into the parameter 'filter'. Type read.las(filter =
"-help") to display the LAS1ib documentation and the available filters.

Transform: the 'transform’ argument allows transformation of the point cloud while reading files.
rlas relies on the well-known LAS1ib library written by Martin Isenburg to read the binary files.
Thus the package inherits the transform commands available in LAStools. To use these transforma-
tions the user can pass the common commands from LAStools into the parameter 'transform'.
Type read.las(transform="-help”) to display the LAS1ib documentation and the available
transformations.

Value

A data.table

https://rapidlasso.de/product-overview/
https://rapidlasso.de/product-overview/

12 read.lasheader

Full Waveform

The support of full waveform is still in development. The version 1.4.1 introduced the support of
point formats 4, 5, 9 and 10. The current state consists in reading the raw data. We also introduced
the function fwf_interpreter to interpret the raw data into something easier to manipulate (but that
uses more memory). The current behaviour is not set in stone and is prone to design modification
until version 1.5.0 where we aims to get enough insight to lock our engineering choices to something
that suit best the needs.

Examples

lasfile <- system.file("extdata"”, "example.las"”, package="rlas")

lasdata <- read.las(lasfile)

lasdata <- read.las(lasfile, filter = "-keep_first")
lasdata <- read.las(lasfile, filter = "-drop_intensity_below 80")
lasdata <- read.las(lasfile, select = "xyzia")
read.lasheader Read header from a .las or .laz file
Description

Reads header from .las or .laz files according to LAS specifications and returns a list labeled
according to LAS specifications. See the ASPRS documentation for the LAS file format.

Usage
read. lasheader(file)

Arguments

file filepath character string to the .las or .laz file

Value

Alist

See Also

Other rlas: write.las()

Examples

lazfile <- system.file("extdata”, "example.las"”, package="rlas")
lasheader <- read.lasheader(lazfile)

https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards

write.las 13

write.las Write a .las or .laz file

Description

Write a .las or .laz file. The user provides a table with the data in columns. Column names must
respect the specified allowed names (see details). A correct and complete header must also be
provided. This header can optionally be generated with header_create.

Usage

write.las(file, header, data)

Arguments
file character. file path to .las or .laz file
header list. Can be partially recycled from another file (see read.lasheader) and updated
with header_update or generated with header_create.
data data.frame or data.table that contains the data to write in the file. Column names
must respect the imposed nomenclature (see details)
Details

Allowed names are "X", "Y", "Z", "gpstime", "Intensity", "ReturnNumber", "NumberOfReturns",
"ScanDirectionFlag", "EdgeOfFlightline", "Classification", "ScanAngle", "UserData", "PointSour-
celD", "R", "G", "B", "NIR". All other extra columns will be written in extra bytes attributes only
if the header specifically states these data should be saved into extra bytes attributes. To use the
full potential of the function write.las it is recommended users read the complete specifications
of the LAS file format. Otherwise users can rely on automated procedures that are expected to be
sufficient for most usages.

Value

void

See Also

Other rlas: read.lasheader ()

Examples

lasdata = data.frame(X = c(339002.889, 339002.983, 339002.918),

Y = c(5248000.515, 5248000.478, 5248000.318),

Z = c(975.589, 974.778, 974.471),

gpstime = c(269347.281418006, 269347.281428006, 269347.281438006),
Intensity = c(82L, 54L, 27L),

ReturnNumber = c(1L, 1L, 2L),

NumberOfReturns = c(1L, 1L, 2L),

https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards

14 writelax

ScanDirectionFlag = c(1L, 1L, 1L),
EdgeOfFlightline = c(1L, oL, oL),
Classification = c(1L, 1L, 1L),
ScanAngleRank = c(-21L, -21L, -21L),
UserData = c(32L, 32L, 32L),
PointSourceID = c(17L, 17L, 17L))

lasheader = header_create(lasdata)
file = file.path(tempdir(), "temp.las")

write.las(file, lasheader, lasdata)

writelax Write a .lax file from a .las or .laz file

Description

Write a lax file from a las or laz file. A lax file is a tiny file which can come with a las or laz
and which spatially index the data to make faster spatial queries. It has been invented by Martin
Isenburg in LASIib. rlas support lax file and enable to write a lax file with default settings. For more
options, use lasindex from binaries provided by LASIib (for more informations see references)

Usage

writelax(file, verbose = FALSE)

Arguments
file character. filename of .las or .laz file
verbose boolean. Verbose switch.
References
https://rapidlasso.com/

https://rapidlasso.com/2012/12/03/lasindex-spatial-indexing-of-lidar-data/
https://github.com/LAStools/LAStools

Index

* header_tools
crs_tools, 3
extra_bytes_attribute_tools, 4
fwf_interpreter, 5
public_header_block_tools, 9

x rlas
read.lasheader, 12
write.las, 13

check_las_compliance
(check_las_validity), 2
check_las_validity, 2
compression, 3
crs_tools, 3, 5, 6, 10

extra_bytes_attribute_tools, 4, 4, 6, 10

find_epsg_position (crs_tools), 3
fwf_interpreter, 4, 5,5, 10, 12

header_add_extrabytes
(extra_bytes_attribute_tools),
4

header_add_extrabytes_manual
(extra_bytes_attribute_tools),
4

header_create, 13

header_create
(public_header_block_tools), 9

header_get_epsg (crs_tools), 3

header_get_wktcs (crs_tools), 3

header_set_epsg (crs_tools), 3

header_set_wktcs (crs_tools), 3

header_update, 13

header_update
(public_header_block_tools), 9

help_filter, 6

help_transform (help_filter), 6

is_compliant_NumberOfReturns
(las_specification_tools), 6

15

is_compliant_ReturnNumber
(las_specification_tools), 6

is_compliant_ReturnNumber_vs_NumberOfReturns

(las_specification_tools), 6
is_compliant_RGB
(las_specification_tools), 6
is_compliant_ScanAngle
(las_specification_tools), 6
is_compliant_ScanAngleRank
(las_specification_tools), 6
is_compressed (compression), 3
is_defined_coordinates
(las_specification_tools), 6
is_defined_date
(las_specification_tools), 6
is_defined_extrabytes
(las_specification_tools), 6
is_defined_filesourceid
(las_specification_tools), 6
is_defined_globalencoding
(las_specification_tools), 6
is_defined_offsets
(las_specification_tools), 6
is_defined_pointformat
(las_specification_tools), 6
is_defined_scalefactors
(las_specification_tools), 6
is_defined_version
(las_specification_tools), 6
is_empty_point_cloud
(las_specification_tools), 6
is_extrabytes_in_accordance_with_data
(las_specification_tools), 6
is_gpstime_in_valid_format
(las_specification_tools), 6
is_NIR_in_valid_format
(las_specification_tools), 6

is_number_of_points_by_return_in_accordance_with_header

(las_specification_tools), 6

16

INDEX

is_number_of_points_in_accordance_with_headeris_valid_ScanDirectionFlag

(las_specification_tools), 6
is_RGB_in_valid_format
(las_specification_tools), 6
is_ScanAngle_in_valid_format
(las_specification_tools), 6
is_ScannerChannel_in_valid_format
(las_specification_tools), 6
is_valid_Classification
(las_specification_tools), 6
is_valid_date
(las_specification_tools), 6
is_valid_EdgeOfFlightline
(las_specification_tools), 6
is_valid_extrabytes
(las_specification_tools), 6
is_valid_filesourceid
(las_specification_tools), 6
is_valid_globalencoding
(las_specification_tools), 6
is_valid_gpstime
(las_specification_tools), 6
is_valid_Intensity
(las_specification_tools), 6
is_valid_KeypointFlag
(las_specification_tools), 6
is_valid_NIR (las_specification_tools),
6
is_valid_NumberOfReturns
(las_specification_tools), 6
is_valid_offsets
(las_specification_tools), 6
is_valid_OverlapFlag
(las_specification_tools), 6
is_valid_pointformat
(las_specification_tools), 6
is_valid_PointSourceID
(las_specification_tools), 6
is_valid_ReturnNumber
(las_specification_tools), 6
is_valid_RGB (las_specification_tools),
6
is_valid_scalefactors
(las_specification_tools), 6
is_valid_ScanAngle
(las_specification_tools), 6
is_valid_ScanAngleRank
(las_specification_tools), 6

(las_specification_tools), 6
is_valid_ScannerChannel
(las_specification_tools), 6
is_valid_SyntheticFlag
(las_specification_tools), 6
is_valid_UserData
(las_specification_tools), 6
is_valid_version
(las_specification_tools), 6
is_valid_WithheldFlag
(las_specification_tools), 6
is_valid_XYZ (las_specification_tools),
6
is_XY_larger_than_bbox
(las_specification_tools), 6
is_XY_smaller_than_bbox
(las_specification_tools), 6
is_Z_in_bbox (las_specification_tools),
6

las_specification_tools, 6
public_header_block_tools, 4-6,9

read. las, 10
read.lasheader, 12, 13
read_and_write.las (read.las), 10

true_size (compression), 3

write.las, 9, 12,13
writelax, 14

	check_las_validity
	compression
	crs_tools
	extra_bytes_attribute_tools
	fwf_interpreter
	help_filter
	las_specification_tools
	public_header_block_tools
	read.las
	read.lasheader
	write.las
	writelax
	Index

