
Package ‘pense’
January 27, 2026

Type Package

Title Penalized Elastic Net S/MM-Estimator of Regression

Version 2.5.2

Date 2026-01-26

Copyright See the file COPYRIGHT for copyright details on some of the
functions and algorithms used.

Encoding UTF-8

Biarch true

URL https://dakep.github.io/pense-rpkg/,

https://github.com/dakep/pense-rpkg

BugReports https://github.com/dakep/pense-rpkg/issues

Description Robust penalized (adaptive) elastic net S and M estimators for
linear regression. The adaptive methods are proposed in
Kepplinger, D. (2023) <doi:10.1016/j.csda.2023.107730> and the
non-adaptive methods in
Cohen Freue, G. V., Kepplinger, D., Salibián-Barrera, M., and Smucler, E.
(2019) <doi:10.1214/19-AOAS1269>.
The package implements robust hyper-parameter selection with robust
information sharing cross-validation according to Kepplinger & Wei (2025)
<doi:10.1080/00401706.2025.2540970>.

Depends R (>= 4.1.0), Matrix

Imports Rcpp, methods, parallel, rlang (>= 0.4.0)

LinkingTo Rcpp, RcppArmadillo (>= 0.9.600), testthat

Suggests testthat (>= 2.1.0), robustbase, knitr, rmarkdown, jsonlite,
xml2

License MIT + file LICENSE

NeedsCompilation yes

RoxygenNote 7.3.3

VignetteBuilder knitr

1

https://dakep.github.io/pense-rpkg/
https://github.com/dakep/pense-rpkg
https://github.com/dakep/pense-rpkg/issues
https://doi.org/10.1016/j.csda.2023.107730
https://doi.org/10.1214/19-AOAS1269
https://doi.org/10.1080/00401706.2025.2540970


2 Contents

Author David Kepplinger [aut, cre],
Matías Salibián-Barrera [aut],
Gabriela Cohen Freue [aut]

Maintainer David Kepplinger <david.kepplinger@gmail.com>

Repository CRAN

Date/Publication 2026-01-27 11:40:09 UTC

Contents
cd_algorithm_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
change_cv_measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
coef.pense_cvfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
coef.pense_fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
consistency_const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
elnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
elnet_cv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
enpy_initial_estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
enpy_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
en_admm_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
en_algorithm_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
en_cd_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
en_dal_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
en_lars_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
mloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
mlocscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
mm_algorithm_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
mscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
mscale_algorithm_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
pense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
pense_cv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
plot.pense_cvfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
plot.pense_fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
predict.pense_cvfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
predict.pense_fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
prediction_performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
prinsens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
regmest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
regmest_cv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
residuals.pense_cvfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
residuals.pense_fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
rho_function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
starting_point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
summary.pense_cvfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
tau_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Index 54



cd_algorithm_options 3

cd_algorithm_options Coordinate Descent (CD) Algorithm to Compute Penalized Elastic Net
S-estimates

Description

Set options for the CD algorithm to compute adaptive EN S-estimates.

Usage

cd_algorithm_options(
max_it = 1000,
reset_it = 8,
linesearch_steps = 4,
linesearch_mult = 0.5

)

Arguments

max_it maximum number of iterations.

reset_it number of iterations after which the residuals are re-computed from scratch, to
prevent numerical drifts from incremental updates.

linesearch_steps

maximum number of steps used for line search.

linesearch_mult

multiplier to adjust the step size in the line search.

Value

options for the CD algorithm to compute (adaptive) PENSE estimates.

See Also

mm_algorithm_options to optimize the non-convex PENSE objective function via a sequence of
convex problems.

Other Robust EN algorithms: mm_algorithm_options()



4 coef.pense_cvfit

change_cv_measure Change the Cross-Validation Measure

Description

For cross-validated fits using the RIS-CV strategy, the measure of prediction accuracy can be ad-
justed post-hoc.

Usage

change_cv_measure(
x,
measure = c("wrmspe", "wmape", "tau_size", "wrmspe_cv", "wmape_cv"),
max_solutions = Inf

)

Arguments

x fitted (adaptive) PENSE or M-estimator

measure the measure to use for prediction accuracy

max_solutions consider only this many of the best solutions. If missing, all solutions are con-
sidered.

Value

a pense.cvfit object using the updated measure of prediction accuracy

See Also

Other functions to compute robust estimates with CV: pense_cv(), regmest_cv()

coef.pense_cvfit Extract Coefficient Estimates

Description

Extract coefficients from an adaptive PENSE (or LS-EN) regularization path with hyper-parameters
chosen by cross-validation.



coef.pense_cvfit 5

Usage

## S3 method for class 'pense_cvfit'
coef(
object,
alpha = NULL,
lambda = "min",
se_mult = 1,
sparse = NULL,
standardized = FALSE,
...

)

Arguments

object PENSE with cross-validated hyper-parameters to extract coefficients from.

alpha Either a single number or NULL (default). If given, only fits with the given alpha
value are considered. If lambda is a numeric value and object was fit with
multiple alpha values and no value is provided, the first value in object$alpha
is used with a warning.

lambda either a string specifying which penalty level to use ("min", "se", "{m}-se") or
a single numeric value of the penalty parameter. See details.

se_mult If lambda = "se", the multiple of standard errors to tolerate.

sparse should coefficients be returned as sparse or dense vectors? Defaults to the spar-
sity setting of the given object. Can also be set to sparse = 'matrix', in which
case a sparse matrix is returned instead of a sparse vector.

standardized return the standardized coefficients.

... currently not used.

Value

either a numeric vector or a sparse vector of type dsparseVector of size p + 1, depending on the
sparse argument. Note: prior to version 2.0.0 sparse coefficients were returned as sparse matrix of
type dgCMatrix. To get a sparse matrix as in previous versions, use sparse = 'matrix'.

Hyper-parameters

If lambda = "{m}-se" and object contains fitted estimates for every penalization level in the se-
quence, use the fit the most parsimonious model with prediction performance statistically indistin-
guishable from the best model. This is determined to be the model with prediction performance
within m * cv_se from the best model. If lambda = "se", the multiplier m is taken from se_mult.

By default all alpha hyper-parameters available in the fitted object are considered. This can be
overridden by supplying one or multiple values in parameter alpha. For example, if lambda =
"1-se" and alpha contains two values, the "1-SE" rule is applied individually for each alpha
value, and the fit with the better prediction error is considered.

In case lambda is a number and object was fit for several alpha hyper-parameters, alpha must also
be given, or the first value in object$alpha is used with a warning.



6 coef.pense_fit

See Also

Other functions for extracting components: coef.pense_fit(), predict.pense_cvfit(), predict.pense_fit(),
residuals.pense_cvfit(), residuals.pense_fit()

Examples

# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[[1]][[40]])

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- pense_cv(x, freeny$y, alpha = 0.5,

cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Print a summary of the fit and the cross-validation results.
summary(cv_results)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = '1-se')

coef.pense_fit Extract Coefficient Estimates

Description

Extract coefficients from an adaptive PENSE (or LS-EN) regularization path fitted by pense() or
elnet().

Usage

## S3 method for class 'pense_fit'
coef(object, lambda, alpha = NULL, sparse = NULL, standardized = FALSE, ...)



coef.pense_fit 7

Arguments

object PENSE regularization path to extract coefficients from.

lambda a single number for the penalty level.

alpha Either a single number or NULL (default). If given, only fits with the given alpha
value are considered. If object was fit with multiple alpha values, and no value
is provided, the first value in object$alpha is used with a warning.

sparse should coefficients be returned as sparse or dense vectors? Defaults to the spar-
sity setting in object. Can also be set to sparse = 'matrix', in which case a
sparse matrix is returned instead of a sparse vector.

standardized return the standardized coefficients.

... currently not used.

Value

either a numeric vector or a sparse vector of type dsparseVector of size p + 1, depending on the
sparse argument. Note: prior to version 2.0.0 sparse coefficients were returned as sparse matrix of
type dgCMatrix. To get a sparse matrix as in previous versions, use sparse = 'matrix'.

See Also

coef.pense_cvfit() for extracting coefficients from a PENSE fit with hyper-parameters chosen
by cross-validation

Other functions for extracting components: coef.pense_cvfit(), predict.pense_cvfit(), predict.pense_fit(),
residuals.pense_cvfit(), residuals.pense_fit()

Examples

# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[[1]][[40]])

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- pense_cv(x, freeny$y, alpha = 0.5,

cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Print a summary of the fit and the cross-validation results.
summary(cv_results)

# Extract the coefficients at the penalization level with
# smallest prediction error ...



8 consistency_const

coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = '1-se')

consistency_const Get the Constant for Consistency for the M-Scale and for Efficiency
for the M-estimate of Location

Description

Returns the tuning constants required to achieve the desired breakdown point or efficiency under
the Normal model.

Usage

consistency_const(delta, rho, eps = sqrt(.Machine$double.eps))

efficiency_const(eff, rho, eps = sqrt(.Machine$double.eps))

Arguments

delta desired breakdown point (between 0 and 0.5)

rho the name of the chosen ρ function. See rho_function() for a list of supported
functions.

eps numerical tolerance level for equality comparisons

eff desired asymptotic efficiency (between 0.1 and 0.99).

Value

consistency constant

See Also

Other Robustness control options: mscale_algorithm_options(), rho_function()

Other Robustness control options: mscale_algorithm_options(), rho_function()



elnet 9

elnet Compute the Least Squares (Adaptive) Elastic Net Regularization Path

Description

Compute least squares EN estimates for linear regression with optional observation weights and
penalty loadings.

Usage

elnet(
x,
y,
alpha,
nlambda = 100,
lambda_min_ratio,
lambda,
penalty_loadings,
weights,
intercept = TRUE,
en_algorithm_opts,
sparse = FALSE,
eps = 1e-06,
standardize = TRUE

)

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a
factor with 2 levels.

alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO
penalty, and alpha = 0 the Ridge penalty. Can be a vector of several values, but
alpha = 0 cannot be mixed with other values.

nlambda number of penalization levels.
lambda_min_ratio

Smallest value of the penalization level as a fraction of the largest level (i.e.,
the smallest value for which all coefficients are zero). The default depends on
the sample size relative to the number of variables and alpha. If more observa-
tions than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 *
alpha.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,
nlambda and lambda_min_ratio are ignored.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization
of each coefficient.



10 elnet

weights a vector of positive observation weights.

intercept include an intercept in the model.

en_algorithm_opts

options for the EN algorithm. See en_algorithm_options for details.

sparse use sparse coefficient vectors.

eps numerical tolerance.

standardize standardize variables to have unit variance. Coefficients are always returned in
original scale.

Details

The elastic net estimator for the linear regression model solves the optimization problem

argminµ,β(1/2n)
∑
i

wi(yi − µ− x′
iβ)

2 + λ
∑
j

0.5(1− α)β2
j + αlj |βj |

with observation weights wi and penalty loadings lj .

Value

a list-like object with the following items

alpha the sequence of alpha parameters.

lambda a list of sequences of penalization levels, one per alpha parameter.

estimates a list of estimates. Each estimate contains the following information:

intercept intercept estimate.

beta beta (slope) estimate.

lambda penalization level at which the estimate is computed.

alpha alpha hyper-parameter at which the estimate is computed.

statuscode if > 0 the algorithm experienced issues when computing the estimate.

status optional status message from the algorithm.

call the original call.

See Also

pense() for an S-estimate of regression with elastic net penalty.

coef.pense_fit() for extracting coefficient estimates.

plot.pense_fit() for plotting the regularization path.

Other functions for computing non-robust estimates: elnet_cv()



elnet_cv 11

Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- elnet(x, freeny$y, alpha = c(0.5, 0.75))
plot(regpath)
plot(regpath, alpha = 0.75)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[[1]][[5]],

alpha = 0.75)

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- elnet_cv(x, freeny$y, alpha = c(0.5, 0.75),

cv_repl = 10, cv_k = 4,
cv_measure = "tau")

plot(cv_results, se_mult = 1.5)
plot(cv_results, se_mult = 1.5, what = "coef.path")

# Extract the coefficients at the penalization level with
# smallest prediction error ...
summary(cv_results)
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
summary(cv_results, lambda = "1.5-se")
coef(cv_results, lambda = "1.5-se")

elnet_cv Cross-validation for Least-Squares (Adaptive) Elastic Net Estimates

Description

Perform (repeated) K-fold cross-validation for elnet().

Usage

elnet_cv(
x,
y,
lambda,
cv_k,
cv_repl = 1,
cv_type = "naive",
cv_metric = c("rmspe", "tau_size", "mape", "auroc"),



12 elnet_cv

fit_all = TRUE,
cl = NULL,
...

)

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a
factor with 2 levels.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,
nlambda and lambda_min_ratio are ignored.

cv_k number of folds per cross-validation.

cv_repl number of cross-validation replications.

cv_type what kind of cross-validation should be performed: robust information sharing
(ris) or standard (naive) CV.

cv_metric only for cv_type='naive'. Either a string specifying the performance metric
to use, or a function to evaluate prediction errors in a single CV replication. If
a function, the number of arguments define the data the function receives. If the
function takes a single argument, it is called with a single numeric vector of pre-
diction errors. If the function takes two or more arguments, it is called with the
predicted values as first argument and the true values as second argument. The
function must always return a single numeric value quantifying the prediction
performance. The order of the given values corresponds to the order in the input
data.

fit_all only for cv_type='naive'. If TRUE, fit the model for all penalization levels.
Can also be any combination of "min" and "{x}-se", in which case only mod-
els at the penalization level with smallest average CV accuracy, or within {x}
standard errors, respectively. Setting fit_all to FALSE is equivalent to "min".
Applies to all alpha value.

cl a parallel cluster. Can only be used in combination with ncores = 1.

... Arguments passed on to elnet

alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is
the LASSO penalty, and alpha = 0 the Ridge penalty. Can be a vector of
several values, but alpha = 0 cannot be mixed with other values.

nlambda number of penalization levels.
lambda_min_ratio Smallest value of the penalization level as a fraction of the

largest level (i.e., the smallest value for which all coefficients are zero). The
default depends on the sample size relative to the number of variables and
alpha. If more observations than variables are available, the default is 1e-3
* alpha, otherwise 1e-2 * alpha.

penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for
different penalization of each coefficient.

standardize standardize variables to have unit variance. Coefficients are al-
ways returned in original scale.



elnet_cv 13

weights a vector of positive observation weights.
intercept include an intercept in the model.
sparse use sparse coefficient vectors.
en_algorithm_opts options for the EN algorithm. See en_algorithm_options

for details.
eps numerical tolerance.

Details

The built-in CV metrics are

"tau_size" τ -size of the prediction error, computed by tau_size() (default).

"mape" Median absolute prediction error.

"rmspe" Root mean squared prediction error.

"auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible
for binary responses.

Value

a list-like object with the same components as returned by elnet(), plus the following:

cvres data frame of average cross-validated performance.

See Also

elnet() for computing the LS-EN regularization path without cross-validation.

pense_cv() for cross-validation of S-estimates of regression with elastic net penalty.

coef.pense_cvfit() for extracting coefficient estimates.

plot.pense_cvfit() for plotting the CV performance or the regularization path.

Other functions for computing non-robust estimates: elnet()

Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- elnet(x, freeny$y, alpha = c(0.5, 0.75))
plot(regpath)
plot(regpath, alpha = 0.75)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[[1]][[5]],

alpha = 0.75)

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- elnet_cv(x, freeny$y, alpha = c(0.5, 0.75),



14 enpy_initial_estimates

cv_repl = 10, cv_k = 4,
cv_measure = "tau")

plot(cv_results, se_mult = 1.5)
plot(cv_results, se_mult = 1.5, what = "coef.path")

# Extract the coefficients at the penalization level with
# smallest prediction error ...
summary(cv_results)
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
summary(cv_results, lambda = "1.5-se")
coef(cv_results, lambda = "1.5-se")

enpy_initial_estimates

ENPY Initial Estimates for EN S-Estimators

Description

Compute initial estimates for the EN S-estimator using the EN-PY procedure.

Usage

enpy_initial_estimates(
x,
y,
alpha,
lambda,
bdp = 0.25,
cc,
intercept = TRUE,
penalty_loadings,
enpy_opts = enpy_options(),
mscale_opts = mscale_algorithm_options(),
eps = 1e-06,
sparse = FALSE,
ncores = 1L

)

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n.

alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO
penalty, and alpha = 0 the Ridge penalty. Can be a vector of several values, but
alpha = 0 cannot be mixed with other values.



enpy_options 15

lambda a vector of positive values of penalization levels.

bdp desired breakdown point of the estimator, between 0.05 and 0.5. The actual
breakdown point may be slightly larger/smaller to avoid instabilities of the S-
loss.

cc cutoff value for the rho function. By default, chosen to yield a consistent esti-
mate for the Normal distribution.

intercept include an intercept in the model.
penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization
of each coefficient. Only allowed for alpha > 0.

enpy_opts options for the EN-PY algorithm, created with the enpy_options() function.

mscale_opts options for the M-scale estimation. See mscale_algorithm_options() for de-
tails.

eps numerical tolerance.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.
Not supported on all platforms, in which case a warning is given.

Details

If these manually computed initial estimates are intended as starting points for pense(), they
are by default shared for all penalization levels. To restrict the use of the initial estimates to
the penalty level they were computed for, use as_starting_point(..., specific = TRUE). See
as_starting_point() for details.

References

Cohen Freue, G.V.; Kepplinger, D.; Salibián-Barrera, M.; Smucler, E. Robust elastic net estimators
for variable selection and identification of proteomic biomarkers. Ann. Appl. Stat. 13 (2019), no.
4, 2065–2090 doi:10.1214/19AOAS1269

See Also

Other functions for initial estimates: enpy_options(), prinsens(), starting_point()

enpy_options Options for the ENPY Algorithm

Description

Additional control options for the elastic net Peña-Yohai procedure.

https://doi.org/10.1214/19-AOAS1269


16 enpy_options

Usage

enpy_options(
max_it = 10,
keep_psc_proportion = 0.5,
en_algorithm_opts,
keep_residuals_measure = c("threshold", "proportion"),
keep_residuals_proportion = 0.5,
keep_residuals_threshold = 2,
retain_best_factor = 2,
retain_max = 500

)

Arguments

max_it maximum number of EN-PY iterations.
keep_psc_proportion

how many observations should to keep based on the Principal Sensitivity Com-
ponents.

en_algorithm_opts

options for the LS-EN algorithm. See en_algorithm_options for details.
keep_residuals_measure

how to determine what observations to keep, based on their residuals. If proportion,
a fixed number of observations is kept. If threshold, only observations with
residuals below the threshold are kept.

keep_residuals_proportion

proportion of observations to kept based on their residuals.
keep_residuals_threshold

only observations with (standardized) residuals less than this threshold are kept.
retain_best_factor

only keep candidates that are within this factor of the best candidate. If <= 1,
only keep candidates from the last iteration.

retain_max maximum number of candidates, i.e., only the best retain_max candidates are
retained.

Details

The EN-PY procedure for computing initial estimates iteratively cleans the data of observations
with possibly outlying residual or high leverage. Least-squares elastic net (LS-EN) estimates are
computed on the possibly clean subsets. At each iteration, the Principal Sensitivity Components are
computed to remove observations with potentially high leverage. Among all the LS-EN estimates,
the estimate with smallest M-scale of the residuals is selected. Observations with largest residual
for the selected estimate are removed and the next iteration is started.

Value

options for the ENPY algorithm.



en_admm_options 17

See Also

Other functions for initial estimates: enpy_initial_estimates(), prinsens(), starting_point()

en_admm_options Use the ADMM Elastic Net Algorithm

Description

Use the ADMM Elastic Net Algorithm

Usage

en_admm_options(max_it = 1000, step_size, acceleration = 1)

Arguments

max_it maximum number of iterations.

step_size step size for the algorithm.

acceleration acceleration factor for linearized ADMM.

Value

options for the ADMM EN algorithm.

See Also

Other LS-EN algorithm options: en_algorithm_options, en_cd_options(), en_dal_options(),
en_lars_options()

en_algorithm_options Control the Algorithm to Compute (Weighted) Least-Squares Elastic
Net Estimates

Description

The package supports different algorithms to compute the EN estimate for weighted LS loss func-
tions. Each algorithm has certain characteristics that make it useful for some problems. To select a
specific algorithm and adjust the options, use any of the en_***_options functions.



18 en_cd_options

Details

• en_lars_options(): Use the tuning-free LARS algorithm. This computes exact (up to nu-
merical errors) solutions to the EN-LS problem. It is not iterative and therefore can not benefit
from approximate solutions, but in turn guarantees that a solution will be found.

• en_cd_options(): Use an iterative coordinate descent algorithm which needs O(np) opera-
tions per iteration and converges sub-linearly.

• en_admm_options(): Use an iterative ADMM-type algorithm which needs O(np) operations
per iteration and converges sub-linearly.

• en_dal_options(): Use the iterative Dual Augmented Lagrangian (DAL) method. DAL
needs O(n3p2) operations per iteration, but converges exponentially.

See Also

Other LS-EN algorithm options: en_admm_options(), en_cd_options(), en_dal_options(),
en_lars_options()

en_cd_options Use Coordinate Descent to Solve Elastic Net Problems

Description

Use Coordinate Descent to Solve Elastic Net Problems

Usage

en_cd_options(max_it = 1000, reset_it = 8)

Arguments

max_it maximum number of iterations.

reset_it number of iterations after which the residuals are re-computed from scratch, to
prevent numerical drifts from incremental updates.

See Also

Other LS-EN algorithm options: en_admm_options(), en_algorithm_options, en_dal_options(),
en_lars_options()



en_dal_options 19

en_dal_options Use the DAL Elastic Net Algorithm

Description

Use the DAL Elastic Net Algorithm

Usage

en_dal_options(
max_it = 100,
max_inner_it = 100,
eta_multiplier = 2,
eta_start_conservative = 0.01,
eta_start_aggressive = 1,
lambda_relchange_aggressive = 0.25

)

Arguments

max_it maximum number of (outer) iterations.

max_inner_it maximum number of (inner) iterations in each outer iteration.

eta_multiplier multiplier for the barrier parameter. In each iteration, the barrier must be more
restrictive (i.e., the multiplier must be > 1).

eta_start_conservative

conservative initial barrier parameter. This is used if the previous penalty is
undefined or too far away.

eta_start_aggressive

aggressive initial barrier parameter. This is used if the previous penalty is close.

lambda_relchange_aggressive

how close must the lambda parameter from the previous penalty term be to use
an aggressive initial barrier parameter (i.e., what constitutes "too far").

Value

options for the DAL EN algorithm.

See Also

Other LS-EN algorithm options: en_admm_options(), en_algorithm_options, en_cd_options(),
en_lars_options()



20 mloc

en_lars_options Use the LARS Elastic Net Algorithm

Description

Use the LARS Elastic Net Algorithm

Usage

en_lars_options()

See Also

Other LS-EN algorithm options: en_admm_options(), en_algorithm_options, en_cd_options(),
en_dal_options()

mloc Compute the M-estimate of Location

Description

Compute the M-estimate of location using an auxiliary estimate of the scale.

Usage

mloc(x, scale, rho = "bisquare", eff = 0.9, cc, max_it = 200, eps = 1e-08)

Arguments

x numeric values. Missing values are verbosely ignored.
scale scale of the x values. If omitted, uses the mad().
rho the ρ function to use. See rho_function() for available functions.
eff desired efficiency under the Normal model.
cc value of the tuning constant for the chosen ρ function. If specified, overrides the

desired efficiency.
max_it maximum number of iterations.
eps numerical tolerance to check for convergence.

Value

a single numeric value, the M-estimate of location.

See Also

Other functions to compute robust estimates of location and scale: mlocscale(), mscale(), tau_size()



mlocscale 21

mlocscale Compute the M-estimate of Location and Scale

Description

Simultaneous estimation of the location and scale by means of M-estimates.

Usage

mlocscale(
x,
bdp = 0.25,
eff = 0.9,
scale_cc,
location_rho,
location_cc,
opts = mscale_algorithm_options()

)

Arguments

x numeric values. Missing values are verbosely ignored.

bdp desired breakdown point (between 0 and 0.5).

eff desired efficiency of the location estimate (between 0.1 and 0.99).

scale_cc tuning constant for the ρ function for computing the scale estimate. By default,
chosen to yield a consistent estimate for normally distributed values.

location_rho ρ function for computing the location estimate. If missing, use the same function
as for the scale estimate (opts$rho). See rho_function() for a list of available
ρ functions.

location_cc tuning constant for the location ρ function. By default chosen to yield the desired
efficiency. If this is provided, the desired efficiency is ignored.

opts a list of options for the M-scale estimating equations, See mscale_algorithm_options()
for details.

Value

a vector with 2 elements, the M-estimate of location and the M-scale estimate.

See Also

Other functions to compute robust estimates of location and scale: mloc(), mscale(), tau_size()



22 mscale

mm_algorithm_options MM-Algorithm to Compute Penalized Elastic Net S- and M-Estimates

Description

Additional options for the MM algorithm to compute EN S- and M-estimates.

Usage

mm_algorithm_options(
max_it = 500,
tightening = c("adaptive", "exponential", "none"),
tightening_steps = 2,
en_algorithm_opts

)

Arguments

max_it maximum number of iterations.

tightening how to make inner iterations more precise as the algorithm approaches a local
minimum.

tightening_steps

for adaptive tightening strategy, how often to tighten until the desired tolerance
is attained.

en_algorithm_opts

options for the inner LS-EN algorithm. See en_algorithm_options for details.

Value

options for the MM algorithm.

See Also

cd_algorithm_options for a direct optimization of the non-convex PENSE loss.

Other Robust EN algorithms: cd_algorithm_options()

mscale Compute the M-Scale of Centered Values

Description

Compute the M-scale without centering the values.

Usage

mscale(x, bdp = 0.25, cc, opts = mscale_algorithm_options())



mscale_algorithm_options 23

Arguments

x numeric values. Missing values are verbosely ignored.

bdp desired breakdown point (between 0 and 0.5).

cc tuning parameters for the chosen rho function. By default, chosen to yield a
consistent estimate for the Normal distribution.

opts a list of options for the M-scale estimation algorithm, see mscale_algorithm_options()
for details.

Value

the M-estimate of scale.

See Also

Other functions to compute robust estimates of location and scale: mloc(), mlocscale(), tau_size()

mscale_algorithm_options

Options for the M-scale Estimation Algorithm

Description

Options for the M-scale Estimation Algorithm

Usage

mscale_algorithm_options(rho = "bisquare", max_it = 200, eps = 1e-08)

Arguments

rho the ρ function to use. See rho_function() for possible values.

max_it maximum number of iterations.

eps numerical tolerance to check for convergence.

Value

options for the M-scale estimation algorithm.

See Also

Other Robustness control options: consistency_const(), rho_function()



24 pense

pense Compute (Adaptive) Elastic Net S-Estimates of Regression

Description

Compute elastic net S-estimates (PENSE estimates) along a grid of penalization levels with optional
penalty loadings for adaptive elastic net.

Usage

pense(
x,
y,
alpha,
nlambda = 50,
nlambda_enpy = 10,
lambda,
lambda_min_ratio,
enpy_lambda,
penalty_loadings,
intercept = TRUE,
bdp = 0.25,
cc,
add_zero_based = TRUE,
enpy_specific = FALSE,
other_starts,
carry_forward = TRUE,
eps = 1e-06,
explore_solutions = 0,
explore_tol = 0.1,
explore_it = 5,
max_solutions = 5,
comparison_tol = sqrt(eps),
sparse = FALSE,
ncores = 1,
standardize = TRUE,
algorithm_opts = mm_algorithm_options(),
mscale_opts = mscale_algorithm_options(),
enpy_opts = enpy_options(),
...

)

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a
factor with 2 levels.



pense 25

alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO
penalty, and alpha = 0 the Ridge penalty. Can be a vector of several values, but
alpha = 0 cannot be mixed with other values.

nlambda number of penalization levels.
nlambda_enpy number of penalization levels where the EN-PY initial estimate is computed.
lambda optional user-supplied sequence of penalization levels. If given and not NULL,

nlambda and lambda_min_ratio are ignored.
lambda_min_ratio

Smallest value of the penalization level as a fraction of the largest level (i.e.,
the smallest value for which all coefficients are zero). The default depends on
the sample size relative to the number of variables and alpha. If more observa-
tions than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 *
alpha.

enpy_lambda optional user-supplied sequence of penalization levels at which EN-PY initial
estimates are computed. If given and not NULL, nlambda_enpy is ignored.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization
of each coefficient. Only allowed for alpha > 0.

intercept include an intercept in the model.
bdp desired breakdown point of the estimator, between 0.05 and 0.5. The actual

breakdown point may be slightly larger/smaller to avoid instabilities of the S-
loss.

cc tuning constant for the S-estimator. Default is chosen based on the breakdown
point bdp. This affects the estimated coefficients only if standardize=TRUE.
Otherwise only the estimated scale of the residuals would be affected.

add_zero_based also consider the 0-based regularization path. See details for a description.
enpy_specific use the EN-PY initial estimates only at the penalization level they are computed

for. See details for a description.
other_starts a list of other staring points, created by starting_point(). If the output of

enpy_initial_estimates() is given, the starting points will be shared among
all penalization levels. Note that if a the starting point is specific to a penalization
level, this penalization level is added to the grid of penalization levels (either the
manually specified grid in lambda or the automatically generated grid of size
nlambda). If standardize = TRUE, the starting points are also scaled.

carry_forward carry the best solutions forward to the next penalty level.
eps numerical tolerance.
explore_solutions

number of solutions to keep after the exploration step. The best explore_solutions
are then iterated to full numerical tolerance eps. If 0, all non-duplicated solu-
tions are kept.

explore_tol, explore_it
numerical tolerance and maximum number of iterations for exploring possible
solutions. The tolerance should be (much) looser than eps to be useful, and the
number of iterations should also be much smaller than the maximum number of
iterations given via algorithm_opts. explore_tol is also used to determine if
two solutions are equal in the exploration stage.



26 pense

max_solutions retain only up to max_solutions unique solutions per penalization level.

comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is
first done on the absolute difference in the value of the objective function at the
solution. If this is less than comparison_tol, two solutions are deemed equal
if the squared difference of the intercepts is less than comparison_tol and the
squared L2 norm of the difference vector is less than comparison_tol.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.
Not supported on all platforms, in which case a warning is given.

standardize logical flag to standardize the x variables prior to fitting the PENSE estimates.
Coefficients are always returned on the original scale. This can fail for variables
with a large proportion of a single value (e.g., zero-inflated data). In this case,
either compute with standardize = FALSE or standardize the data manually.

algorithm_opts options for the MM algorithm to compute the estimates. See mm_algorithm_options()
for details.

mscale_opts options for the M-scale estimation. See mscale_algorithm_options() for de-
tails.

enpy_opts options for the ENPY initial estimates, created with the enpy_options() func-
tion. See enpy_initial_estimates() for details.

... ignored.

Value

a list-like object with the following items

alpha the sequence of alpha parameters.

lambda a list of sequences of penalization levels, one per alpha parameter.

estimates a list of estimates. Each estimate contains the following information:

intercept intercept estimate.
beta beta (slope) estimate.
lambda penalization level at which the estimate is computed.
alpha alpha hyper-parameter at which the estimate is computed.
bdp chosen breakdown-point.
objf_value value of the objective function at the solution.
statuscode if > 0 the algorithm experienced issues when computing the estimate.
status optional status message from the algorithm.

bdp the actual breakdown point used.

call the original call.

Strategies for Using Starting Points

The function supports several different strategies to compute, and use the provided starting points
for optimizing the PENSE objective function.



pense 27

Starting points are computed internally but can also be supplied via other_starts. By default,
starting points are computed internally by the EN-PY procedure for penalization levels supplied in
enpy_lambda (or the automatically generated grid of length nlambda_enpy). By default, starting
points computed by the EN-PY procedure are shared for all penalization levels in lambda (or the
automatically generated grid of length nlambda). If the starting points should be specific to the
penalization level the starting points’ penalization level, set the enpy_specific argument to TRUE.

In addition to EN-PY initial estimates, the algorithm can also use the "0-based" strategy if add_zero_based
= TRUE (by default). Here, the 0-vector is used to start the optimization at the largest penalization
level in lambda. At subsequent penalization levels, the solution at the previous penalization level is
also used as starting point.

At every penalization level, all starting points are explored using the loose numerical tolerance
explore_tol. Only the best explore_solutions are computed to the stringent numerical toler-
ance eps. Finally, only the best max_solutions are retained and carried forward as starting points
for the subsequent penalization level.

See Also

pense_cv() for selecting hyper-parameters via cross-validation.

coef.pense_fit() for extracting coefficient estimates.

plot.pense_fit() for plotting the regularization path.

Other functions to compute robust estimates: regmest()

Examples

# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[[1]][[40]])

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- pense_cv(x, freeny$y, alpha = 0.5,

cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Print a summary of the fit and the cross-validation results.
summary(cv_results)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = '1-se')



28 pense_cv

pense_cv Cross-validation for (Adaptive) PENSE Estimates

Description

Perform (repeated) K-fold cross-validation for pense().

adapense_cv() is a convenience wrapper to compute adaptive PENSE estimates.

Usage

pense_cv(
x,
y,
standardize = TRUE,
lambda,
cv_k,
cv_repl = 1,
cv_type = c("ris", "naive"),
cv_metric = c("tau_size", "mape", "rmspe", "auroc"),
ris_min_similarity = 0.5,
fit_all = TRUE,
fold_starts = c("full", "enpy", "both"),
cv_algorithm_opts,
cl = NULL,
...

)

adapense_cv(x, y, alpha, alpha_preliminary = 0, exponent = 1, ...)

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a
factor with 2 levels.

standardize whether to standardize the x variables prior to fitting the PENSE estimates. Can
also be set to "cv_only", in which case the input data is not standardized, but
the training data in the CV folds is scaled to match the scaling of the input data.
Coefficients are always returned on the original scale. This can fail for variables
with a large proportion of a single value (e.g., zero-inflated data). In this case,
either compute with standardize = FALSE or standardize the data manually.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,
nlambda and lambda_min_ratio are ignored.

cv_k number of folds per cross-validation.

cv_repl number of cross-validation replications.



pense_cv 29

cv_type what kind of cross-validation should be performed: robust information sharing
(ris) or standard (naive) CV.

cv_metric only for cv_type='naive'. Either a string specifying the performance metric
to use, or a function to evaluate prediction errors in a single CV replication. If
a function, the number of arguments define the data the function receives. If the
function takes a single argument, it is called with a single numeric vector of pre-
diction errors. If the function takes two or more arguments, it is called with the
predicted values as first argument and the true values as second argument. The
function must always return a single numeric value quantifying the prediction
performance. The order of the given values corresponds to the order in the input
data.

ris_min_similarity

minimum average similarity of the CV solutions to be considered (between 0
and 1). If no CV solution satisfies this lower bound, the best CV solution will
be used regardless of similarity.

fit_all only for cv_type='naive'. If TRUE, fit the model for all penalization levels.
Can also be any combination of "min" and "{x}-se", in which case only mod-
els at the penalization level with smallest average CV accuracy, or within {x}
standard errors, respectively. Setting fit_all to FALSE is equivalent to "min".
Applies to all alpha value.

fold_starts how to determine starting values in the cross-validation folds. If "full" (de-
fault), use the best solution from the fit to the full data as starting value. This
implies fit_all=TRUE. If "enpy" compute separate ENPY initial estimates in
each fold. The option "both" uses both. These starts are in addition to the starts
provided in other_starts.

cv_algorithm_opts

Override algorithm options for the CV iterations. This is usually not necessary,
unless the user wants to change the number of solutions retained for the CV
training data.

cl a parallel cluster. Can only be used in combination with ncores = 1.

... Arguments passed on to pense

nlambda number of penalization levels.
lambda_min_ratio Smallest value of the penalization level as a fraction of the

largest level (i.e., the smallest value for which all coefficients are zero). The
default depends on the sample size relative to the number of variables and
alpha. If more observations than variables are available, the default is 1e-3
* alpha, otherwise 1e-2 * alpha.

nlambda_enpy number of penalization levels where the EN-PY initial estimate
is computed.

penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for
different penalization of each coefficient. Only allowed for alpha > 0.

enpy_lambda optional user-supplied sequence of penalization levels at which
EN-PY initial estimates are computed. If given and not NULL, nlambda_enpy
is ignored.

other_starts a list of other staring points, created by starting_point(). If
the output of enpy_initial_estimates() is given, the starting points will



30 pense_cv

be shared among all penalization levels. Note that if a the starting point is
specific to a penalization level, this penalization level is added to the grid
of penalization levels (either the manually specified grid in lambda or the
automatically generated grid of size nlambda). If standardize = TRUE, the
starting points are also scaled.

intercept include an intercept in the model.
bdp desired breakdown point of the estimator, between 0.05 and 0.5. The actual

breakdown point may be slightly larger/smaller to avoid instabilities of the
S-loss.

cc tuning constant for the S-estimator. Default is chosen based on the break-
down point bdp. This affects the estimated coefficients only if standardize=TRUE.
Otherwise only the estimated scale of the residuals would be affected.

eps numerical tolerance.
explore_solutions number of solutions to keep after the exploration step.

The best explore_solutions are then iterated to full numerical tolerance
eps. If 0, all non-duplicated solutions are kept.

explore_tol,explore_it numerical tolerance and maximum number of iter-
ations for exploring possible solutions. The tolerance should be (much)
looser than eps to be useful, and the number of iterations should also be
much smaller than the maximum number of iterations given via algorithm_opts.
explore_tol is also used to determine if two solutions are equal in the ex-
ploration stage.

max_solutions retain only up to max_solutions unique solutions per penal-
ization level.

comparison_tol numeric tolerance to determine if two solutions are equal.
The comparison is first done on the absolute difference in the value of the
objective function at the solution. If this is less than comparison_tol, two
solutions are deemed equal if the squared difference of the intercepts is less
than comparison_tol and the squared L2 norm of the difference vector is
less than comparison_tol.

add_zero_based also consider the 0-based regularization path. See details for
a description.

enpy_specific use the EN-PY initial estimates only at the penalization level
they are computed for. See details for a description.

carry_forward carry the best solutions forward to the next penalty level.
sparse use sparse coefficient vectors.
ncores number of CPU cores to use in parallel. By default, only one CPU core

is used. Not supported on all platforms, in which case a warning is given.
algorithm_opts options for the MM algorithm to compute the estimates. See

mm_algorithm_options() for details.
mscale_opts options for the M-scale estimation. See mscale_algorithm_options()

for details.
enpy_opts options for the ENPY initial estimates, created with the enpy_options()

function. See enpy_initial_estimates() for details.
alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO

penalty, and alpha = 0 the Ridge penalty. Can be a vector of several values, but
alpha = 0 cannot be mixed with other values.



pense_cv 31

alpha_preliminary

alpha parameter for the preliminary estimate.

exponent the exponent for computing the penalty loadings based on the preliminary esti-
mate.

Details

The built-in CV metrics are

"tau_size" τ -size of the prediction error, computed by tau_size() (default).

"mape" Median absolute prediction error.

"rmspe" Root mean squared prediction error.

"auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible
for binary responses.

adapense_cv() is a convenience wrapper which performs 3 steps:

1. compute preliminary estimates via pense_cv(..., alpha = alpha_preliminary),

2. computes the penalty loadings from the estimate beta with best prediction performance by
adapense_loadings = 1 / abs(beta)^exponent, and

3. compute the adaptive PENSE estimates via pense_cv(..., penalty_loadings = adapense_loadings).

Value

a list-like object with the same components as returned by pense(), plus the following:

cvres data frame of average cross-validated performance.

a list-like object as returned by pense_cv() plus the following

preliminary the CV results for the preliminary estimate.

exponent exponent used to compute the penalty loadings.

penalty_loadings penalty loadings used for the adaptive PENSE estimate.

See Also

pense() for computing regularized S-estimates without cross-validation.

coef.pense_cvfit() for extracting coefficient estimates.

plot.pense_cvfit() for plotting the CV performance or the regularization path.

Other functions to compute robust estimates with CV: change_cv_measure(), regmest_cv()

Other functions to compute robust estimates with CV: change_cv_measure(), regmest_cv()



32 plot.pense_cvfit

Examples

# Compute the adaptive PENSE regularization path for Freeny's
# revenue data (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

## Either use the convenience function directly ...
set.seed(123)
ada_convenience <- adapense_cv(x, freeny$y, alpha = 0.5,

cv_repl = 2, cv_k = 4)

## ... or compute the steps manually:
# Step 1: Compute preliminary estimates with CV
set.seed(123)
preliminary_estimate <- pense_cv(x, freeny$y, alpha = 0,

cv_repl = 2, cv_k = 4)
plot(preliminary_estimate, se_mult = 1)

# Step 2: Use the coefficients with best prediction performance
# to define the penalty loadings:
prelim_coefs <- coef(preliminary_estimate, lambda = 'min')
pen_loadings <- 1 / abs(prelim_coefs[-1])

# Step 3: Compute the adaptive PENSE estimates and estimate
# their prediction performance.
set.seed(123)
ada_manual <- pense_cv(x, freeny$y, alpha = 0.5,

cv_repl = 2, cv_k = 4,
penalty_loadings = pen_loadings)

# Visualize the prediction performance and coefficient path of
# the adaptive PENSE estimates (manual vs. automatic)
def.par <- par(no.readonly = TRUE)
layout(matrix(1:4, ncol = 2, byrow = TRUE))
plot(ada_convenience$preliminary)
plot(preliminary_estimate)
plot(ada_convenience)
plot(ada_manual)
par(def.par)

plot.pense_cvfit Plot Method for Penalized Estimates With Cross-Validation

Description

Plot the cross-validation performance or the coefficient path for fitted penalized elastic net S- or
LS-estimates of regression.



plot.pense_cvfit 33

Usage

## S3 method for class 'pense_cvfit'
plot(x, what = c("cv", "coef.path"), alpha = NULL, se_mult = 1, ...)

Arguments

x fitted estimates with cross-validation information.

what plot either the CV performance or the coefficient path.

alpha If what = "cv", only CV performance for fits with matching alpha are plot-
ted. In case alpha is missing or NULL, all fits in x are plotted. If what =
"coef.path", plot the coefficient path for the fit with the given hyper-parameter
value or, in case alpha is missing, for the first value in x$alpha.

se_mult if plotting CV performance, multiplier of the estimated SE.

... currently ignored.

See Also

Other functions for plotting and printing: plot.pense_fit(), prediction_performance(), summary.pense_cvfit()

Examples

# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[[1]][[40]])

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- pense_cv(x, freeny$y, alpha = 0.5,

cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Print a summary of the fit and the cross-validation results.
summary(cv_results)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = '1-se')



34 plot.pense_fit

plot.pense_fit Plot Method for Penalized Estimates

Description

Plot the coefficient path for fitted penalized elastic net S- or LS-estimates of regression.

Usage

## S3 method for class 'pense_fit'
plot(x, alpha, ...)

Arguments

x fitted estimates.

alpha Plot the coefficient path for the fit with the given hyper-parameter value. If
missing of NULL, the first value in x$alpha is used.

... currently ignored.

See Also

Other functions for plotting and printing: plot.pense_cvfit(), prediction_performance(),
summary.pense_cvfit()

Examples

# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[[1]][[40]])

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- pense_cv(x, freeny$y, alpha = 0.5,

cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Print a summary of the fit and the cross-validation results.
summary(cv_results)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)



predict.pense_cvfit 35

# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = '1-se')

predict.pense_cvfit Predict Method for PENSE Fits

Description

Predict response values using a PENSE (or LS-EN) regularization path with hyper-parameters cho-
sen by cross-validation.

Usage

## S3 method for class 'pense_cvfit'
predict(object, newdata, alpha = NULL, lambda = "min", se_mult = 1, ...)

Arguments

object PENSE with cross-validated hyper-parameters to extract coefficients from.
newdata an optional matrix of new predictor values. If missing, the fitted values are

computed.
alpha Either a single number or NULL (default). If given, only fits with the given alpha

value are considered. If lambda is a numeric value and object was fit with
multiple alpha values and no value is provided, the first value in object$alpha
is used with a warning.

lambda either a string specifying which penalty level to use ("min", "se", "{m}-se") or
a single numeric value of the penalty parameter. See details.

se_mult If lambda = "se", the multiple of standard errors to tolerate.
... currently not used.

Value

a numeric vector of residuals for the given penalization level.

Hyper-parameters

If lambda = "{m}-se" and object contains fitted estimates for every penalization level in the se-
quence, use the fit the most parsimonious model with prediction performance statistically indistin-
guishable from the best model. This is determined to be the model with prediction performance
within m * cv_se from the best model. If lambda = "se", the multiplier m is taken from se_mult.

By default all alpha hyper-parameters available in the fitted object are considered. This can be
overridden by supplying one or multiple values in parameter alpha. For example, if lambda =
"1-se" and alpha contains two values, the "1-SE" rule is applied individually for each alpha
value, and the fit with the better prediction error is considered.

In case lambda is a number and object was fit for several alpha hyper-parameters, alpha must also
be given, or the first value in object$alpha is used with a warning.



36 predict.pense_fit

See Also

Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_fit(),
residuals.pense_cvfit(), residuals.pense_fit()

Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- elnet(x, freeny$y, alpha = 0.75)

# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],

lambda = regpath$lambda[[1]][[10]])

# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[[1]][[5]])

# Select penalization level via cross-validation
set.seed(123)
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5,

cv_repl = 10, cv_k = 4)

# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

# Extract the residuals at the "best" penalization level
residuals(cv_results)
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = "1.5-se")

predict.pense_fit Predict Method for PENSE Fits

Description

Predict response values using a PENSE (or LS-EN) regularization path fitted by pense(), regmest()
or elnet().

Usage

## S3 method for class 'pense_fit'
predict(object, newdata, alpha = NULL, lambda, ...)



predict.pense_fit 37

Arguments

object PENSE regularization path to extract residuals from.

newdata an optional matrix of new predictor values. If missing, the fitted values are
computed.

alpha Either a single number or NULL (default). If given, only fits with the given alpha
value are considered. If object was fit with multiple alpha values, and no value
is provided, the first value in object$alpha is used with a warning.

lambda a single number for the penalty level.

... currently not used.

Value

a numeric vector of residuals for the given penalization level.

See Also

Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(),
residuals.pense_cvfit(), residuals.pense_fit()

Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- elnet(x, freeny$y, alpha = 0.75)

# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],

lambda = regpath$lambda[[1]][[10]])

# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[[1]][[5]])

# Select penalization level via cross-validation
set.seed(123)
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5,

cv_repl = 10, cv_k = 4)

# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

# Extract the residuals at the "best" penalization level
residuals(cv_results)
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = "1.5-se")



38 prediction_performance

prediction_performance

Prediction Performance of Adaptive PENSE Fits

Description

Extract the prediction performance of one or more (adaptive) PENSE fits.

Usage

prediction_performance(..., alpha = NULL, lambda = "min", se_mult = 1)

## S3 method for class 'pense_pred_perf'
print(x, ...)

Arguments

... one or more (adaptive) PENSE fits with cross-validation information.

alpha Either a numeric vector or NULL (default). If given, only fits with the given
alpha value are considered. If lambda is a numeric value and object was fit
with multiple alpha values, the parameter alpha must not be missing.

lambda either a string specifying which penalty level to use ("min", "se", "{x}-se") or
a single numeric value of the penalty parameter. See details.

se_mult If lambda = "se", the multiple of standard errors to tolerate.

x an object with information on prediction performance created with prediction_performance().

Details

If lambda = "se" and the cross-validation was performed with multiple replications, use the penalty
level whit prediction performance within se_mult of the best prediction performance.

Value

a data frame with details about the prediction performance of the given PENSE fits. The data frame
has a custom print method summarizing the prediction performances.

See Also

summary.pense_cvfit() for a summary of the fitted model.

Other functions for plotting and printing: plot.pense_cvfit(), plot.pense_fit(), summary.pense_cvfit()



prinsens 39

prinsens Principal Sensitivity Components

Description

Compute Principal Sensitivity Components for Elastic Net Regression

Usage

prinsens(
x,
y,
alpha,
lambda,
intercept = TRUE,
penalty_loadings,
en_algorithm_opts,
eps = 1e-06,
sparse = FALSE,
ncores = 1L

)

Arguments

x n by p matrix of numeric predictors.
y vector of response values of length n.
alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO

penalty, and alpha = 0 the Ridge penalty. Can be a vector of several values, but
alpha = 0 cannot be mixed with other values.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,
nlambda and lambda_min_ratio are ignored.

intercept include an intercept in the model.
penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization
of each coefficient. Only allowed for alpha > 0.

en_algorithm_opts

options for the LS-EN algorithm. See en_algorithm_options for details.
eps numerical tolerance.
sparse use sparse coefficient vectors.
ncores number of CPU cores to use in parallel. By default, only one CPU core is used.

Not supported on all platforms, in which case a warning is given.

Value

a list of principal sensitivity components, one per element in lambda. Each PSC is itself a list with
items lambda, alpha, and pscs.



40 regmest

References

Cohen Freue, G.V.; Kepplinger, D.; Salibián-Barrera, M.; Smucler, E. Robust elastic net estimators
for variable selection and identification of proteomic biomarkers. Ann. Appl. Stat. 13 (2019), no.
4, 2065–2090 doi:10.1214/19AOAS1269

Pena, D., and Yohai, V.J. A Fast Procedure for Outlier Diagnostics in Large Regression Problems.
J. Amer. Statist. Assoc. 94 (1999). no. 446, 434–445. doi:10.2307/2670164

See Also

Other functions for initial estimates: enpy_initial_estimates(), enpy_options(), starting_point()

regmest Compute (Adaptive) Elastic Net M-Estimates of Regression

Description

Compute elastic net M-estimates along a grid of penalization levels with optional penalty loadings
for adaptive elastic net.

Usage

regmest(
x,
y,
alpha,
nlambda = 50,
lambda,
lambda_min_ratio,
scale,
starting_points,
penalty_loadings,
intercept = TRUE,
eff = 0.9,
rho = "mopt",
cc,
eps = 1e-06,
explore_solutions = 10,
explore_tol = 0.1,
max_solutions = 1,
comparison_tol = sqrt(eps),
sparse = FALSE,
ncores = 1,
standardize = TRUE,
algorithm_opts = mm_algorithm_options(),
add_zero_based = TRUE,
mscale_bdp = 0.25,
mscale_opts = mscale_algorithm_options()

)

https://doi.org/10.1214/19-AOAS1269
https://doi.org/10.2307/2670164


regmest 41

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a
factor with 2 levels.

alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO
penalty, and alpha = 0 the Ridge penalty.

nlambda number of penalization levels.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,
nlambda and lambda_min_ratio are ignored.

lambda_min_ratio

Smallest value of the penalization level as a fraction of the largest level (i.e.,
the smallest value for which all coefficients are zero). The default depends on
the sample size relative to the number of variables and alpha. If more observa-
tions than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 *
alpha.

scale fixed scale of the residuals.
starting_points

a list of staring points, created by starting_point(). The starting points are
shared among all penalization levels.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization
of each coefficient. Only allowed for alpha > 0.

intercept include an intercept in the model.

eff the desired asymptotic efficiency of the M-estimator under the Normal model.

rho which ρ function to use (see rho_function() for the list of supported options).

cc manually specified cutoff constant for the chosen ρ function. If specified, over-
rides the eff argument.

eps numerical tolerance.
explore_solutions

number of solutions to compute up to the desired precision eps.

explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser
than eps to be useful.

max_solutions only retain up to max_solutions unique solutions per penalization level.

comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is
first done on the absolute difference in the value of the objective function at the
solution. If this is less than comparison_tol, two solutions are deemed equal
if the squared difference of the intercepts is less than comparison_tol and the
squared L2 norm of the difference vector is less than comparison_tol.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used.
Not supported on all platforms, in which case a warning is given.



42 regmest

standardize logical flag to standardize the x variables prior to fitting the M-estimates. Coef-
ficients are always returned on the original scale. This can fail for variables with
a large proportion of a single value (e.g., zero-inflated data). In this case, either
compute with standardize = FALSE or standardize the data manually.

algorithm_opts options for the MM algorithm to compute estimates. See mm_algorithm_options()
for details.

add_zero_based also consider the 0-based regularization path in addition to the given starting
points.

mscale_bdp, mscale_opts
options for the M-scale estimate used to standardize the predictors (if standardize
= TRUE).

Value

a list-like object with the following items

alpha the sequence of alpha parameters.

lambda a list of sequences of penalization levels, one per alpha parameter.

scale the used scale of the residuals.

estimates a list of estimates. Each estimate contains the following information:

intercept intercept estimate.
beta beta (slope) estimate.
lambda penalization level at which the estimate is computed.
alpha alpha hyper-parameter at which the estimate is computed.
objf_value value of the objective function at the solution.
statuscode if > 0 the algorithm experienced issues when computing the estimate.
status optional status message from the algorithm.

call the original call.

See Also

regmest_cv() for selecting hyper-parameters via cross-validation.

coef.pense_fit() for extracting coefficient estimates.

plot.pense_fit() for plotting the regularization path.

Other functions to compute robust estimates: pense()

Examples

# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- regmest(x, freeny$y, alpha = c(0.5, 0.85), scale = 2)
plot(regpath)



regmest_cv 43

# Extract the coefficients at a certain penalization level
coef(regpath, alpha = 0.85, lambda = regpath$lambda[[2]][[40]])

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- regmest_cv(x, freeny$y, alpha = c(0.5, 0.85), scale = 2,

cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Print a summary of the fit and the cross-validation results.
summary(cv_results)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = '1-se')

regmest_cv Cross-validation for (Adaptive) Elastic Net M-Estimates

Description

Perform (repeated) K-fold cross-validation for regmest().

adamest_cv() is a convenience wrapper to compute adaptive elastic-net M-estimates.

Usage

regmest_cv(
x,
y,
standardize = TRUE,
lambda,
cv_k,
cv_repl = 1,
cv_type = "naive",
cv_metric = c("tau_size", "mape", "rmspe", "auroc"),
fit_all = TRUE,
cl = NULL,
...

)

adamest_cv(x, y, alpha, alpha_preliminary = 0, exponent = 1, ...)



44 regmest_cv

Arguments

x n by p matrix of numeric predictors.

y vector of response values of length n. For binary classification, y should be a
factor with 2 levels.

standardize whether to standardize the x variables prior to fitting the PENSE estimates. Can
also be set to "cv_only", in which case the input data is not standardized, but
the training data in the CV folds is scaled to match the scaling of the input data.
Coefficients are always returned on the original scale. This can fail for variables
with a large proportion of a single value (e.g., zero-inflated data). In this case,
either compute with standardize = FALSE or standardize the data manually.

lambda optional user-supplied sequence of penalization levels. If given and not NULL,
nlambda and lambda_min_ratio are ignored.

cv_k number of folds per cross-validation.

cv_repl number of cross-validation replications.

cv_type what kind of cross-validation should be performed: robust information sharing
(ris) or standard (naive) CV.

cv_metric only for cv_type='naive'. Either a string specifying the performance metric
to use, or a function to evaluate prediction errors in a single CV replication. If
a function, the number of arguments define the data the function receives. If the
function takes a single argument, it is called with a single numeric vector of pre-
diction errors. If the function takes two or more arguments, it is called with the
predicted values as first argument and the true values as second argument. The
function must always return a single numeric value quantifying the prediction
performance. The order of the given values corresponds to the order in the input
data.

fit_all only for cv_type='naive'. If TRUE, fit the model for all penalization levels.
Can also be any combination of "min" and "{x}-se", in which case only mod-
els at the penalization level with smallest average CV accuracy, or within {x}
standard errors, respectively. Setting fit_all to FALSE is equivalent to "min".
Applies to all alpha value.

cl a parallel cluster. Can only be used in combination with ncores = 1.

... Arguments passed on to regmest

scale fixed scale of the residuals.
nlambda number of penalization levels.
lambda_min_ratio Smallest value of the penalization level as a fraction of the

largest level (i.e., the smallest value for which all coefficients are zero). The
default depends on the sample size relative to the number of variables and
alpha. If more observations than variables are available, the default is 1e-3
* alpha, otherwise 1e-2 * alpha.

penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for
different penalization of each coefficient. Only allowed for alpha > 0.

starting_points a list of staring points, created by starting_point(). The
starting points are shared among all penalization levels.

intercept include an intercept in the model.



regmest_cv 45

add_zero_based also consider the 0-based regularization path in addition to
the given starting points.

rho which ρ function to use (see rho_function() for the list of supported
options).

eff the desired asymptotic efficiency of the M-estimator under the Normal
model.

cc manually specified cutoff constant for the chosen ρ function. If specified,
overrides the eff argument.

eps numerical tolerance.
explore_solutions number of solutions to compute up to the desired preci-

sion eps.
explore_tol numerical tolerance for exploring possible solutions. Should be

(much) looser than eps to be useful.
max_solutions only retain up to max_solutions unique solutions per penal-

ization level.
comparison_tol numeric tolerance to determine if two solutions are equal.

The comparison is first done on the absolute difference in the value of the
objective function at the solution. If this is less than comparison_tol, two
solutions are deemed equal if the squared difference of the intercepts is less
than comparison_tol and the squared L2 norm of the difference vector is
less than comparison_tol.

sparse use sparse coefficient vectors.
ncores number of CPU cores to use in parallel. By default, only one CPU core

is used. Not supported on all platforms, in which case a warning is given.
algorithm_opts options for the MM algorithm to compute estimates. See

mm_algorithm_options() for details.
mscale_bdp,mscale_opts options for the M-scale estimate used to standard-

ize the predictors (if standardize = TRUE).

alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO
penalty, and alpha = 0 the Ridge penalty.

alpha_preliminary

alpha parameter for the preliminary estimate.

exponent the exponent for computing the penalty loadings based on the preliminary esti-
mate.

Details

The built-in CV metrics are

"tau_size" τ -size of the prediction error, computed by tau_size() (default).

"mape" Median absolute prediction error.

"rmspe" Root mean squared prediction error.

"auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible
for binary responses.

adamest_cv() is a convenience wrapper which performs 3 steps:



46 regmest_cv

1. compute preliminary estimates via regmest_cv(..., alpha = alpha_preliminary),

2. computes the penalty loadings from the estimate beta with best prediction performance by
adamest_loadings = 1 / abs(beta)^exponent, and

3. compute the adaptive PENSE estimates via regmest_cv(..., penalty_loadings = adamest_loadings).

Value

a list-like object as returned by regmest(), plus the following components:

cvres data frame of average cross-validated performance.

a list-like object as returned by adamest_cv() plus the following components:

exponent value of the exponent.

preliminary CV results for the preliminary estimate.

penalty_loadings penalty loadings used for the adaptive elastic net M-estimate.

See Also

regmest() for computing regularized S-estimates without cross-validation.

coef.pense_cvfit() for extracting coefficient estimates.

plot.pense_cvfit() for plotting the CV performance or the regularization path.

Other functions to compute robust estimates with CV: change_cv_measure(), pense_cv()

Other functions to compute robust estimates with CV: change_cv_measure(), pense_cv()

Examples

# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- regmest(x, freeny$y, alpha = c(0.5, 0.85), scale = 2)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, alpha = 0.85, lambda = regpath$lambda[[2]][[40]])

# What penalization level leads to good prediction performance?
set.seed(123)
cv_results <- regmest_cv(x, freeny$y, alpha = c(0.5, 0.85), scale = 2,

cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Print a summary of the fit and the cross-validation results.
summary(cv_results)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)



residuals.pense_cvfit 47

# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = '1-se')

residuals.pense_cvfit Extract Residuals

Description

Extract residuals from a PENSE (or LS-EN) regularization path with hyper-parameters chosen by
cross-validation.

Usage

## S3 method for class 'pense_cvfit'
residuals(object, alpha = NULL, lambda = "min", se_mult = 1, ...)

Arguments

object PENSE with cross-validated hyper-parameters to extract coefficients from.

alpha Either a single number or NULL (default). If given, only fits with the given alpha
value are considered. If lambda is a numeric value and object was fit with
multiple alpha values and no value is provided, the first value in object$alpha
is used with a warning.

lambda either a string specifying which penalty level to use ("min", "se", "{m}-se") or
a single numeric value of the penalty parameter. See details.

se_mult If lambda = "se", the multiple of standard errors to tolerate.

... currently not used.

Value

a numeric vector of residuals for the given penalization level.

Hyper-parameters

If lambda = "{m}-se" and object contains fitted estimates for every penalization level in the se-
quence, use the fit the most parsimonious model with prediction performance statistically indistin-
guishable from the best model. This is determined to be the model with prediction performance
within m * cv_se from the best model. If lambda = "se", the multiplier m is taken from se_mult.

By default all alpha hyper-parameters available in the fitted object are considered. This can be
overridden by supplying one or multiple values in parameter alpha. For example, if lambda =
"1-se" and alpha contains two values, the "1-SE" rule is applied individually for each alpha
value, and the fit with the better prediction error is considered.

In case lambda is a number and object was fit for several alpha hyper-parameters, alpha must also
be given, or the first value in object$alpha is used with a warning.



48 residuals.pense_fit

See Also

Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(),
predict.pense_fit(), residuals.pense_fit()

Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- elnet(x, freeny$y, alpha = 0.75)

# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],

lambda = regpath$lambda[[1]][[10]])

# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[[1]][[5]])

# Select penalization level via cross-validation
set.seed(123)
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5,

cv_repl = 10, cv_k = 4)

# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

# Extract the residuals at the "best" penalization level
residuals(cv_results)
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = "1.5-se")

residuals.pense_fit Extract Residuals

Description

Extract residuals from a PENSE (or LS-EN) regularization path fitted by pense(), regmest() or
elnet().

Usage

## S3 method for class 'pense_fit'
residuals(object, alpha = NULL, lambda, ...)



residuals.pense_fit 49

Arguments

object PENSE regularization path to extract residuals from.

alpha Either a single number or NULL (default). If given, only fits with the given alpha
value are considered. If object was fit with multiple alpha values, and no value
is provided, the first value in object$alpha is used with a warning.

lambda a single number for the penalty level.

... currently not used.

Value

a numeric vector of residuals for the given penalization level.

See Also

Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(),
predict.pense_fit(), residuals.pense_cvfit()

Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])

regpath <- elnet(x, freeny$y, alpha = 0.75)

# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],

lambda = regpath$lambda[[1]][[10]])

# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[[1]][[5]])

# Select penalization level via cross-validation
set.seed(123)
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5,

cv_repl = 10, cv_k = 4)

# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

# Extract the residuals at the "best" penalization level
residuals(cv_results)
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = "1.5-se")



50 starting_point

rho_function List Available Rho Functions

Description

List Available Rho Functions

Usage

rho_function(rho, convex_ok = TRUE)

Arguments

rho the name of the ρ function to check for existence.

convex_ok if convex ρ function is acceptable or not.

Value

if rho is missing returns a vector of supported ρ function names, otherwise the internal integer
representation of the ρ function.

See Also

Other Robustness control options: consistency_const(), mscale_algorithm_options()

starting_point Create Starting Points for the PENSE Algorithm

Description

Create a starting point for starting the PENSE algorithm in pense(). Multiple starting points can
be created by combining starting points via c(starting_point_1, starting_point_2, ...).

Usage

starting_point(beta, intercept, lambda, alpha)

as_starting_point(object, specific = FALSE, ...)

## S3 method for class 'enpy_starting_points'
as_starting_point(object, specific = FALSE, ...)

## S3 method for class 'pense_fit'
as_starting_point(object, specific = FALSE, alpha, lambda, ...)

## S3 method for class 'pense_cvfit'



starting_point 51

as_starting_point(
object,
specific = FALSE,
alpha,
lambda = c("min", "se"),
se_mult = 1,
...

)

Arguments

beta beta coefficients at the starting point. Can be a numeric vector, a sparse vector of
class dsparseVector, or a sparse matrix of class dgCMatrix with a single column.

intercept intercept coefficient at the starting point.

lambda optionally either a string specifying which penalty level to use ("min" or "se")
or a numeric vector of the penalty levels to extract from object. Penalization
levels not present in object are ignored with a warning. If NULL, all estimates
in object are extracted. If a numeric vector, alpha must be given and a single
number.

alpha optional value for the alpha hyper-parameter. If given, only estimates with
matching alpha values are extracted. Values not present in object are ignored
with a warning.

object an object with estimates to use as starting points.

specific whether the estimates should be used as starting points only at the penalization
level they are computed for. Defaults to using the estimates as starting points for
all penalization levels.

... further arguments passed to or from other methods.

se_mult If lambda = "se", the multiple of standard errors to tolerate.

Details

A starting points can either be shared, i.e., used for every penalization level PENSE estimates are
computed for, or specific to one penalization level. To create a specific starting point, provide the
penalization parameters lambda and alpha. If lambda or alpha are missing, a shared starting point
is created. Shared and specific starting points can all be combined into a single list of starting
points, with pense() handling them correctly. Note that specific starting points will lead to the
lambda value being added to the grid of penalization levels. See pense() for details.

Starting points computed via enpy_initial_estimates() are by default shared starting points but
can be transformed to specific starting points via as_starting_point(..., specific = TRUE).

When creating starting points from cross-validated fits, it is possible to extract only the estimate
with best CV performance (lambda = "min"), or the estimate with CV performance statistically
indistinguishable from the best performance (lambda = "se"). This is determined to be the estimate
with prediction performance within se_mult * cv_se from the best model.

Value

an object of type starting_points to be used as starting point for pense().



52 summary.pense_cvfit

See Also

Other functions for initial estimates: enpy_initial_estimates(), enpy_options(), prinsens()

summary.pense_cvfit Summarize Cross-Validated PENSE Fit

Description

If lambda = "se" and object contains fitted estimates for every penalization level in the sequence,
extract the coefficients of the most parsimonious model with prediction performance statistically
indistinguishable from the best model. This is determined to be the model with prediction perfor-
mance within se_mult * cv_se from the best model.

Usage

## S3 method for class 'pense_cvfit'
summary(object, alpha, lambda = "min", se_mult = 1, ...)

## S3 method for class 'pense_cvfit'
print(x, alpha, lambda = "min", se_mult = 1, ...)

Arguments

object, x an (adaptive) PENSE fit with cross-validation information.

alpha Either a single number or missing. If given, only fits with the given alpha value
are considered. If lambda is a numeric value and object was fit with multiple
alpha values, the parameter alpha must not be missing.

lambda either a string specifying which penalty level to use ("min", "se", "{x}-se") or
a single numeric value of the penalty parameter. See details.

se_mult If lambda = "se", the multiple of standard errors to tolerate.

... ignored.

See Also

prediction_performance() for information about the estimated prediction performance.

coef.pense_cvfit() for extracting only the estimated coefficients.

Other functions for plotting and printing: plot.pense_cvfit(), plot.pense_fit(), prediction_performance()



tau_size 53

tau_size Compute the Tau-Scale of Centered Values

Description

Compute the τ -scale without centering the values.

Usage

tau_size(x)

Arguments

x numeric values. Missing values are verbosely ignored.

Value

the τ estimate of scale of centered values.

See Also

Other functions to compute robust estimates of location and scale: mloc(), mlocscale(), mscale()



Index

∗ LS-EN algorithm options
en_admm_options, 17
en_algorithm_options, 17
en_cd_options, 18
en_dal_options, 19
en_lars_options, 20

∗ Robust EN algorithms
cd_algorithm_options, 3
mm_algorithm_options, 22

∗ Robustness control options
consistency_const, 8
mscale_algorithm_options, 23
rho_function, 50

∗ functions for computing non-robust
estimates

elnet, 9
elnet_cv, 11

∗ functions for extracting components
coef.pense_cvfit, 4
coef.pense_fit, 6
predict.pense_cvfit, 35
predict.pense_fit, 36
residuals.pense_cvfit, 47
residuals.pense_fit, 48

∗ functions for initial estimates
enpy_initial_estimates, 14
enpy_options, 15
prinsens, 39
starting_point, 50

∗ functions for plotting and printing
plot.pense_cvfit, 32
plot.pense_fit, 34
prediction_performance, 38
summary.pense_cvfit, 52

∗ functions to compute robust estimates of
location and scale

mloc, 20
mlocscale, 21
mscale, 22

tau_size, 53
∗ functions to compute robust estimates

with CV
change_cv_measure, 4
pense_cv, 28
regmest_cv, 43

∗ functions to compute robust estimates
pense, 24
regmest, 40

adaelnet (elnet), 9
adaen (elnet), 9
adamest_cv (regmest_cv), 43
adamest_cv(), 46
adapense (pense), 24
adapense_cv (pense_cv), 28
as_starting_point (starting_point), 50
as_starting_point(), 15

cd_algorithm_options, 3, 22
change_cv_measure, 4, 31, 46
coef.pense_cvfit, 4, 7, 36, 37, 48, 49
coef.pense_cvfit(), 7, 13, 31, 46, 52
coef.pense_fit, 6, 6, 36, 37, 48, 49
coef.pense_fit(), 10, 27, 42
consistency_const, 8, 23, 50

dgCMatrix, 51
dsparseVector, 5, 7, 51

efficiency_const (consistency_const), 8
elnet, 9, 12, 13
elnet(), 6, 11, 13, 36, 48
elnet_cv, 10, 11
en_admm_options, 17, 18–20
en_admm_options(), 18
en_algorithm_options, 10, 13, 16, 17, 17,

18–20, 22, 39
en_cd_options, 17, 18, 18, 19, 20
en_cd_options(), 18

54



INDEX 55

en_dal_options, 17, 18, 19, 20
en_dal_options(), 18
en_lars_options, 17–19, 20
en_lars_options(), 18
enpy_initial_estimates, 14, 17, 40, 52
enpy_initial_estimates(), 25, 26, 29, 30,

51
enpy_options, 15, 15, 40, 52
enpy_options(), 15, 26, 30

mad(), 20
mloc, 20, 21, 23, 53
mlocscale, 20, 21, 23, 53
mm_algorithm_options, 3, 22
mm_algorithm_options(), 26, 30, 42, 45
mscale, 20, 21, 22, 53
mscale_algorithm_options, 8, 23, 50
mscale_algorithm_options(), 15, 21, 23,

26, 30

parallel, 12, 29, 44
pense, 24, 29, 42
pense(), 6, 10, 15, 28, 31, 36, 48, 50, 51
pense_cv, 4, 28, 46
pense_cv(), 13, 27, 31
plot.pense_cvfit, 32, 34, 38, 52
plot.pense_cvfit(), 13, 31, 46
plot.pense_fit, 33, 34, 38, 52
plot.pense_fit(), 10, 27, 42
predict.pense_cvfit, 6, 7, 35, 37, 48, 49
predict.pense_fit, 6, 7, 36, 36, 48, 49
prediction_performance, 33, 34, 38, 52
prediction_performance(), 52
prinsens, 15, 17, 39, 52
print.pense_cvfit

(summary.pense_cvfit), 52
print.pense_pred_perf

(prediction_performance), 38

regmest, 27, 40, 44
regmest(), 36, 43, 46, 48
regmest_cv, 4, 31, 43
regmest_cv(), 42
residuals.pense_cvfit, 6, 7, 36, 37, 47, 49
residuals.pense_fit, 6, 7, 36, 37, 48, 48
rho_function, 8, 23, 50
rho_function(), 8, 20, 21, 23, 41, 45

starting_point, 15, 17, 40, 50

starting_point(), 25, 29, 41, 44
summary.pense_cvfit, 33, 34, 38, 52
summary.pense_cvfit(), 38

tau_size, 20, 21, 23, 53
tau_size(), 13, 31, 45


	cd_algorithm_options
	change_cv_measure
	coef.pense_cvfit
	coef.pense_fit
	consistency_const
	elnet
	elnet_cv
	enpy_initial_estimates
	enpy_options
	en_admm_options
	en_algorithm_options
	en_cd_options
	en_dal_options
	en_lars_options
	mloc
	mlocscale
	mm_algorithm_options
	mscale
	mscale_algorithm_options
	pense
	pense_cv
	plot.pense_cvfit
	plot.pense_fit
	predict.pense_cvfit
	predict.pense_fit
	prediction_performance
	prinsens
	regmest
	regmest_cv
	residuals.pense_cvfit
	residuals.pense_fit
	rho_function
	starting_point
	summary.pense_cvfit
	tau_size
	Index

