
Package ‘oblicubes’
January 29, 2026

Type Package

Title 3D Rendering Using Obliquely Projected Cubes and Cuboids

Version 1.0.1

Description Three-dimensional rendering for 'grid' and 'ggplot2' graphics us-
ing cubes and cuboids drawn with an oblique projection. As a special case also supports pri-
mary view orthographic projections. Can be viewed as an extension to the 'isocubes' pack-
age <https://github.com/coolbutuseless/isocubes>.

URL https://trevorldavis.com/R/oblicubes/

BugReports https://github.com/trevorld/oblicubes/issues

License MIT + file LICENSE

Imports grDevices, grid, utils

Suggests datasets, dplyr (>= 1.1.0), ggplot2, knitr, rmarkdown,
testthat (>= 3.0.0), vdiffr

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

RoxygenNote 7.3.3

Config/testthat/edition 3

NeedsCompilation no

Author Trevor L. Davis [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6341-4639>),

Mike FC [aut] (Some code adapted from isocubes)

Maintainer Trevor L. Davis <trevor.l.davis@gmail.com>

Repository CRAN

Date/Publication 2026-01-29 20:40:02 UTC

Contents
cheap_darken . 2
geom_oblicubes . 3

1

https://github.com/coolbutuseless/isocubes
https://trevorldavis.com/R/oblicubes/
https://github.com/trevorld/oblicubes/issues
https://orcid.org/0000-0001-6341-4639

2 cheap_darken

geom_oblicuboids . 6
oblicubesGrob . 10
oblicuboidsGrob . 12
xyz_heightmap . 14

Index 17

cheap_darken ’light’ effect helper functions

Description

Helper functions to generate a “light” effect for oblicubesGrob(), grid.oblicubes(), oblicuboidsGrob(),
and grid.oblicuboids(). darken_face() is the default light argument for oblicubesGrob(),
grid.oblicubes(), oblicuboidsGrob(), and grid.oblicuboids(). cheap_darken() is the de-
fault darkening function used by darken_face().

Usage

cheap_darken(col, amount)

darken_face(
face,
col,
top = 0,
west = 0.2,
east = 0.2,
south = 0.4,
north = 0.4,
darken_fn = cheap_darken

)

Arguments

col Vector of colors to darken

amount Fraction to darken by

face Cube/cuboid face to color. One of "top", "west", "east", "south", or "north".

top Amount to darken the "top" face.

west Amount to darken the "west" face.

east Amount to darken the "east" face.

south Amount to darken the "south" face.

north Amount to darken the "north" face.

darken_fn Function to darken with. Should take two arguments: the first should be the
colour and the second should be numeric amount to darken by. Default will be to
use cheap_darken(). colorspace::darken() is a slower, “better” alternative.

geom_oblicubes 3

Details

The light argument of oblicubesGrob(), grid.oblicubes(), geom_oblicubes(), oblicuboidsGrob(),
grid.oblicuboids(), and geom_oblicuboids() needs a function that that takes two arguments:
the first is face one of its five faces: "top", "west", "east", "south", or "north" and the second is col
the cube/cuboid’s fill color

Value

Vector of darkened colors.

Examples

demo_light <- function(light = darken_face, ...) {
df <- data.frame(x=1, y=1, z=1)
grid::grid.newpage()
grid.oblicubes(df, ..., light=light, angle=45, lwd=4,

vp = grid::viewport(0.25, 0.25, 0.5, 0.5))
grid.oblicubes(df, ..., light=light, angle=135, lwd=4,

vp = grid::viewport(0.75, 0.25, 0.5, 0.5))
grid.oblicubes(df, ..., light=light, angle=-45, lwd=4,

vp = grid::viewport(0.25, 0.75, 0.5, 0.5))
grid.oblicubes(df, ..., light=light, angle=-135, lwd=4,

vp = grid::viewport(0.75, 0.75, 0.5, 0.5))
}
demo_light()
demo_light(fill = "gold")
demo_light(light = function(face, col)

darken_face(face, col, top = 0.3,
west = 0.6, east = 0.6,
south = 0.0, north = 0.0)

)
demo_light(light = function(face, col) {

n <- length(col)
switch(face,

top = rep_len("grey90", n),
west = rep_len("red", n),
east = rep_len("green", n),
south = rep_len("blue", n),
north = rep_len("yellow", n))

})

geom_oblicubes Draw 2D/3D cubes with ggplot2

Description

geom_oblicubes() creates a ggplot2 geom that draws cubes.

4 geom_oblicubes

Usage

geom_oblicubes(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
angle = 45,
scale = 0.5,
xoffset = 0,
yoffset = 0,
zoffset = 0,
light = darken_face,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

geom_oblicubes 5

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Aesthetics, used to set an aesthetic to a fixed value.

angle Oblique projection angle.

scale Oblique projection foreshortening factor. 0.5 corresponds to the “cabinet pro-
jection”. 1.0 corresponds to the “cavalier projection”. 0.0 corresponds to a
“primary view orthographic projection”.

xoffset, yoffset, zoffset
By default the x,y,z values are assumed to be the center of the cube. Use
xoffset, yoffset, and/or zoffset to shift the x,y,z values a fixed amount.

light If FALSE don’t perform a "light" effect. Otherwise a function that takes two
arguments: the first face of the cube/cuboid face (one of "top", "west", "east",
"south", "north"). the second col of the fill color. By default we use darken_face().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

Details

geom_oblicubes() requires a fixed scale coordinate system with an aspect ratio of 1 as provided
by ggplot2::coord_fixed().

Value

A ggplot2 geom.

Aesthetics

geom_oblicubes() understands the following aesthetics (required aesthetics are in bold). See
oblicubesGrob() for more details.

• x

• y

• z

• fill

• colour

• linetype

• linewidth

6 geom_oblicuboids

See Also

geom_oblicubes() is a wrapper around oblicubesGrob().

Examples

if (require("ggplot2")) {
data("volcano", package = "datasets")
df <- xyz_heightmap(volcano, scale = 0.3, min = 1)
g <- ggplot(df, aes(x, y, z = z, fill = raw)) +

geom_oblicubes(light = FALSE) +
coord_fixed() +
scale_fill_gradientn(name = "Height (m)",

colours=terrain.colors(256)) +
labs(x = "East (10m)", y = "North (10m)",

title = "Maungawhau (`datasets::volcano`)")
plot(g)

}

if (require("ggplot2")) {
Using `scale_fill_identity()` if using `xyz_heightmap()`'s `fill` column
df <- xyz_heightmap(volcano, scale = 0.3, min = 1,

col = grDevices::heat.colors)
g <- ggplot(df, aes(x, y, z = z, fill = fill)) +

geom_oblicubes() +
coord_fixed() +
scale_fill_identity()

plot(g)
}

if (require("ggplot2") && require("dplyr")) {
Note you probably should not do 3D bar charts...
df <- as.data.frame(datasets::Titanic) %>%

filter(Age == "Child", Freq > 0) %>%
group_by(Sex, Survived, Class) %>%
reframe(Freq = seq.int(sum(Freq)))

g <- ggplot(df, aes(x = Survived, y = Freq, fill = Survived)) +
facet_grid(cols = vars(Class, Sex)) +
coord_fixed() +
geom_oblicubes(yoffset = -0.5, zoffset = -0.5, angle = -45, scale = 0.7) +
scale_fill_manual(values = c("Yes" = "lightblue", "No" = "red")) +
scale_y_continuous(expand = expansion(), name = "") +
scale_x_discrete(name = "", breaks = NULL) +
labs(title = "Children on the Titanic (by ticket class)")

plot(g)
}

geom_oblicuboids Draw 2D/3D cuboids with ggplot2

geom_oblicuboids 7

Description

geom_oblicuboids() creates a ggplot2 geom that draws cuboids

Usage

geom_oblicuboids(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
angle = 45,
scale = 0.5,
xoffset = 0,
yoffset = 0,
zoffset = 0,
light = darken_face,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used to over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

8 geom_oblicuboids

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Aesthetics, used to set an aesthetic to a fixed value.

angle Oblique projection angle.

scale Oblique projection foreshortening factor. 0.5 corresponds to the “cabinet pro-
jection”. 1.0 corresponds to the “cavalier projection”. 0.0 corresponds to a
“primary view orthographic projection”.

xoffset, yoffset, zoffset
By default the x,y values are assumed to be the center of the cuboid and the z
value is assumed to be the top of the cuboid. Use xoffset, yoffset, and/or
zoffset to shift the x,y,z values a fixed amount.

light If FALSE don’t perform a "light" effect. Otherwise a function that takes two
arguments: the first face of the cube/cuboid face (one of "top", "west", "east",
"south", "north"). the second col of the fill color. By default we use darken_face().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

Details

geom_oblicuboids() requires a fixed scale coordinate system with an aspect ratio of 1 as provided
by ggplot2::coord_fixed().

Value

A ggplot2 geom.

Aesthetics

geom_oblicuboids() understands the following aesthetics (required aesthetics are in bold). See
oblicuboidsGrob() for more details.

• x

• y

geom_oblicuboids 9

• z

• fill

• colour

• linetype

• linewidth

See Also

geom_oblicuboids() is a wrapper around oblicuboidsGrob().

Examples

if (require("ggplot2")) {
data("volcano", package = "datasets")
df <- xyz_heightmap(volcano, scale = 0.3, min = 1)
g <- ggplot(df, aes(x, y, z = z, fill = raw)) +

geom_oblicuboids(light = FALSE) +
coord_fixed() +
scale_fill_gradientn(name = "Height (m)",

colours=terrain.colors(256)) +
labs(x = "East (10m)", y = "North (10m)",

title = "Maungawhau (`datasets::volcano`)")
plot(g)

}
if (require("ggplot2")) {

Using `scale_fill_identity()` if using `xyz_heightmap()`'s `fill` column
df <- xyz_heightmap(volcano, scale = 0.3, min = 1,

col = grDevices::heat.colors)
g <- ggplot(df, aes(x, y, z = z, fill = fill)) +

geom_oblicuboids() +
coord_fixed() +
scale_fill_identity()

plot(g)
}
if (require("ggplot2") && require("dplyr")) {

Note you probably should not do 3D bar charts...
df <- as.data.frame(datasets::Titanic) %>%

filter(Age == "Child", Freq > 0) %>%
group_by(Sex, Survived, Class) %>%
reframe(Freq = seq.int(sum(Freq)))

g <- ggplot(df, aes(x = Survived, y = Freq, fill = Survived)) +
facet_grid(cols = vars(Class, Sex)) +
coord_fixed() +
geom_oblicuboids(yoffset = -0.5, scale = 0.7, angle = -45) +
scale_fill_manual(values = c("Yes" = "lightblue", "No" = "red")) +
scale_y_continuous(expand = expansion(), name = "") +
scale_x_discrete(name = "", breaks = NULL) +
labs(title = "Children on the Titanic (by ticket class)")

plot(g)
}

10 oblicubesGrob

oblicubesGrob Render 2D/3D cubes via an oblique projection

Description

oblicubesGrob() / grid.oblicubes() renders cubes using a 3D oblique projection. oblicubesGrob()
returns a grid grob object while grid.oblicubes() also draws the grob to the graphic device. As
a special case may also render a 2D primary view orthographic projection.

Usage

oblicubesGrob(
x,
y = NULL,
z = NULL,
...,
fill = NULL,
light = darken_face,
scale = 0.5,
angle = 45,
xo = NULL,
yo = NULL,
width = NULL,
default.units = "snpc",
name = NULL,
gp = gpar(),
vp = NULL

)

grid.oblicubes(
x,
y = NULL,
z = NULL,
...,
fill = NULL,
light = darken_face,
scale = 0.5,
angle = 45,
xo = NULL,
yo = NULL,
width = NULL,
default.units = "snpc",
name = NULL,
gp = gpar(),
vp = NULL

)

oblicubesGrob 11

Arguments

x Integer vector of x coordinates (if necessary will be rounded to integers). May
be a data.frame of x,y,z coordinates (and maybe fill color).

y Integer vector of y coordinates (if necessary will be rounded to integers). If NULL
and x is a data frame with a y column then we use that instead.

z Integer vector of z coordinates (if necessary will be rounded to integers). If NULL
and x is a data frame with a z column then we use that instead.

... Passed to grid::gpar(). Will override any values set in gp.

fill Fill color(s) for the cubes. If NULL and x is a data frame with a fill or col
column then we use that column; if no such column but gp has a fill value we
use that; otherwise we fall back to "grey90".

light If FALSE don’t perform a "light" effect. Otherwise a function that takes two
arguments: the first face of the cube/cuboid face (one of "top", "west", "east",
"south", "north"). the second col of the fill color. By default we use darken_face().

scale Oblique projection foreshortening factor. 0.5 corresponds to the “cabinet pro-
jection”. 1.0 corresponds to the “cavalier projection”. 0.0 corresponds to a
“primary view orthographic projection”.

angle Oblique projection angle.

xo, yo The origin of the oblique projection coordinate system in grid units. The default
is to try to guess a “good” value.

width Width of the cube’s (non-foreshortened) sides. The default will be to try to guess
a “good” value.

default.units Default units for the xo, yo, and width arguments.

name A character identifier (for grid).

gp A ‘grid’ gpar object. See grid::gpar(). Will be merged with the values in ...
and the value of fill.

vp A ‘grid’ viewport object. See grid::viewport().

Value

A grid grob. As a side effect grid.oblicubes() also draws to the active graphics device.

Examples

if (require("grid")) {
we support arbitrary oblique projection angles
mat <- matrix(c(1, 2, 1, 2, 3, 2, 1, 2, 1), nrow = 3, ncol = 3, byrow = TRUE)
coords <- xyz_heightmap(mat, col = c("red", "yellow", "green"))

angles <- c(135, 90, 45, 180, 45, 0, -135, -90, -45)
scales <- c(0.5, 0.5, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5, 0.5)
vp_x <- rep(1:3/3 - 1/6, 3)
vp_y <- rep(3:1/3 - 1/6, each = 3)
grid.newpage()
for (i in 1:9) {

12 oblicuboidsGrob

pushViewport(viewport(x=vp_x[i], y=vp_y[i], width=1/3, height=1/3))
grid.rect(gp = gpar(lty = "dashed"))
grid.oblicubes(coords, width = 0.15, xo = 0.25, yo = 0.15,

angle = angles[i], scale = scales[i],
gp = gpar(lwd=4))

if(i != 5)
grid.text(paste("angle =", angles[i]), y=0.92, gp = gpar(cex = 1.2))

else
grid.text(paste("scale = 0"), y=0.92, gp = gpar(cex = 1.2))

popViewport()
}

}
volcano example
mat <- datasets::volcano
mat <- 0.3 * (mat - min(mat)) + 1.0
coords <- xyz_heightmap(mat, col = grDevices::terrain.colors)
grid::grid.newpage()
grid.oblicubes(coords)

oblicuboidsGrob Render 2D/3D cuboids via an oblique projection

Description

oblicuboidsGrob() / grid.oblicuboids() renders cuboids using a 3D oblique projection. oblicuboidsGrob()
returns a grid grob object while grid.oblicuboids() also draws the grob to the graphic device.
As a special case may also render a 2D primary view orthographic projection.

Usage

oblicuboidsGrob(
x,
y = NULL,
z = NULL,
...,
fill = NULL,
light = darken_face,
scale = 0.5,
angle = 45,
xo = NULL,
yo = NULL,
width = NULL,
default.units = "snpc",
name = NULL,
gp = gpar(),
vp = NULL

)

oblicuboidsGrob 13

grid.oblicuboids(
x,
y = NULL,
z = NULL,
...,
fill = NULL,
scale = 0.5,
angle = 45,
xo = NULL,
yo = NULL,
width = NULL,
default.units = "snpc",
name = NULL,
gp = gpar(),
vp = NULL

)

Arguments

x Integer vector of x coordinates (if necessary will be rounded to integers). May
be a data.frame of x,y,z coordinates (and maybe fill color). This will be the
x-value at the center of the cuboid.

y Integer vector of y coordinates (if necessary will be rounded to integers). If NULL
and x is a data frame with a y column then we use that instead. This will be the
x-value at the center of the cuboid.

z Integer vector of z coordinates (if necessary will be rounded to integers). If NULL
and x is a data frame with a z column then we use that instead. This will be the
z-value at the top of the cuboid.

... Passed to grid::gpar(). Will override any values set in gp.

fill Fill color(s) for the cuboids. If NULL and x is a data frame with a fill or col
column then we use that column; if no such column but gp has a fill value we
use that; otherwise we fall back to "grey90".

light If FALSE don’t perform a "light" effect. Otherwise a function that takes two
arguments: the first face of the cube/cuboid face (one of "top", "west", "east",
"south", "north"). the second col of the fill color. By default we use darken_face().

scale Oblique projection foreshortening factor. 0.5 corresponds to the “cabinet pro-
jection”. 1.0 corresponds to the “cavalier projection”. 0.0 corresponds to a
“primary view orthographic projection”.

angle Oblique projection angle.

xo, yo The origin of the oblique projection coordinate system in grid units. The default
is to try to guess a “good” value.

width Width of the cuboids’s (non-foreshortened) side. The default will be to try to
guess a “good” value.

default.units Default units for the xo, yo, and width arguments.

name A character identifier (for grid).

14 xyz_heightmap

gp A ‘grid’ gpar object. See grid::gpar(). Will be merged with the values in ...
and the value of fill.

vp A ‘grid’ viewport object. See grid::viewport().

Value

A grid grob. As a side effect grid.oblicubes() also draws to the active graphics device.

Examples

if (require("grid")) {
we support arbitrary oblique projection angles
mat <- matrix(c(1, 2, 1, 2, 3, 2, 1, 2, 1), nrow = 3, ncol = 3, byrow = TRUE)
coords <- xyz_heightmap(mat, col = c("red", "yellow", "green"),

solid = FALSE)
angles <- c(135, 90, 45, 180, 45, 0, -135, -90, -45)
scales <- c(0.5, 0.5, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5, 0.5)
vp_x <- rep(1:3/3 - 1/6, 3)
vp_y <- rep(3:1/3 - 1/6, each = 3)
grid.newpage()
for (i in 1:9) {

pushViewport(viewport(x=vp_x[i], y=vp_y[i], width=1/3, height=1/3))
grid.rect(gp = gpar(lty = "dashed"))
grid.oblicuboids(coords, width = 0.15, xo = 0.25, yo = 0.15,

angle = angles[i], scale = scales[i],
gp = gpar(lwd=4))

if(i != 5)
grid.text(paste("angle =", angles[i]), y=0.92, gp = gpar(cex = 1.2))

else
grid.text(paste("scale = 0"), y=0.92, gp = gpar(cex = 1.2))

popViewport()
}

}
volcano example
mat <- datasets::volcano
mat <- 0.3 * (mat - min(mat)) + 1.0
coords <- xyz_heightmap(mat, col = grDevices::terrain.colors,

solid = FALSE)
grid::grid.newpage()
grid.oblicuboids(coords)

xyz_heightmap Calculate x,y,z coordinates from a height matrix

Description

Calculate x,y,z coordinates from a height matrix

xyz_heightmap 15

Usage

xyz_heightmap(
mat,
col = NULL,
scale = 1,
min = NULL,
flipx = FALSE,
flipy = TRUE,
ground = "xy",
solid = TRUE,
verbose = FALSE

)

Arguments

mat integer matrix. The matrix will be interpreted as cubes (or cuboids) flat on the
page, with the value in the matrix interpreted as the height above the page.

col matrix, vector, or (palette) function of colours. If a matrix it must be the same
dimensions as the mat argument; each cube/cuboid corresponding to that x,y
value will have that color. If a vector then if the max of z values is less than
equal to the number of colors we will use the z integers as indices else we will
use base::cut() to assign z values to colors. If a function we will call it with
the argument max(z) to create a a vector of colors and then use the z values as
indices. If col is not NULL then a fill column will be included in the final
returned coordinates.

scale scale factor for values in matrix. Default = 1

min Minimum target z value. If NULL ignore else we "translate" the z-values so the
minimum z-value is equal to this value.

flipx, flipy Should the matrix be flipped in the horizontal/vertical directions (respectively)?
Note: flipy defaults to TRUE as matrices are indexed from the top-down, but the
coordinate space is increasing from the bottom up. Flipping the matrix vertically
is usually what you want.

ground Orientation of the ground plane. Default: "xy". Possible values "xy", "xz", "zy"

solid Should the heightmap be made ’solid’ i.e. without holes? This can be an expen-
sive operation in terms of both memory and CPU, but should be OK for simple
examples. Set to FALSE if things take too long or you will be rendering cuboids.
This operation works by extruding cubes down from the top of the height map
to the floor to ensure gaps do not appear when the slope is too great.

verbose Be verbose? default: FALSE

Value

A data frame of x, y, z, raw, and possibly fill columns. The "raw" column is the (original)
"z" column before any scale, min, and ground transformations have been performed (it may be
repeated "down" if solid = TRUE). The "raw" column can be useful as the fill value in ggplot2
plots especially when adding a legend.

16 xyz_heightmap

Examples

if (require("grDevices") && require("grid")) {
mat <- datasets::volcano
mat <- 0.3 * (mat - min(mat)) + 1.0

grid.newpage()
grid.rect(gp=gpar(col=NA, fill="grey5"))
width <- convertWidth(unit(0.007, "snpc"), "cm")

Top view
pushViewport(viewport(width = 0.7, height = 0.7, x = 0.65, y = 0.65))
coords <- xyz_heightmap(mat, col = terrain.colors, solid = FALSE)
grid.oblicubes(coords, scale = 0, width = width, gp = gpar(col=NA))
popViewport()

South view
pushViewport(viewport(width = 0.7, height = 0.3, x = 0.65, y = 0.15))
coords <- xyz_heightmap(mat, col = terrain.colors, ground = "xz")
grid.oblicubes(coords, scale = 0, width = width, gp = gpar(col=NA))
popViewport()

West view
pushViewport(viewport(width = 0.3, height = 0.7, x = 0.15, y = 0.65))
coords <- xyz_heightmap(mat, col = terrain.colors, ground = "zy")
grid.oblicubes(coords, scale = 0, width = width, gp = gpar(col=NA))
popViewport()

}
if (require("grDevices") && require("ggplot2")) {

data("volcano", package = "datasets")
df <- xyz_heightmap(volcano, scale = 0.3, min = 1, solid = FALSE)
g <- ggplot(df, aes(x, y, z = z, fill = raw)) +

geom_oblicuboids(light = FALSE) +
coord_fixed() +
scale_fill_gradientn(name = "Height (m)", colours=terrain.colors(256)) +

labs(x = "East (10m)", y = "North (10m)", title = "Maungawhau (`datasets::volcano`)")
plot(g)

}

Index

aes(), 4, 7
annotation_borders(), 5, 8

base::cut(), 15

cheap_darken, 2
cheap_darken(), 2

darken_face (cheap_darken), 2
darken_face(), 5, 8, 11, 13

fortify(), 4, 7

geom_oblicubes, 3
geom_oblicubes(), 3
geom_oblicuboids, 6
geom_oblicuboids(), 3
ggplot(), 4, 7
grid.oblicubes (oblicubesGrob), 10
grid.oblicubes(), 2, 3
grid.oblicuboids (oblicuboidsGrob), 12
grid.oblicuboids(), 2, 3
grid::gpar(), 11, 13, 14
grid::viewport(), 11, 14

layer position, 5, 8
layer stat, 4, 7

oblicubesGrob, 10
oblicubesGrob(), 2, 3, 5, 6
oblicuboidsGrob, 12
oblicuboidsGrob(), 2, 3, 8, 9

xyz_heightmap, 14

17

	cheap_darken
	geom_oblicubes
	geom_oblicuboids
	oblicubesGrob
	oblicuboidsGrob
	xyz_heightmap
	Index

