Package ‘ncdfCF’

February 2, 2026

Type Package
Title Easy Access to NetCDF Files with CF Metadata Conventions
Version 0.8.1

Description Network Common Data Form ('netCDF") files are widely used for
scientific data. Library-level access in R is provided through packages
'RNetCDF' and 'ncdf4'. Package 'ncdfCF' is built on top of 'RNetCDF' and
makes the data and its attributes available as a set of R6 classes that are
informed by the Climate and Forecasting Metadata Conventions. Access to the
data uses standard R subsetting operators and common function forms.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports abind, CFtime, methods, R6, RNetCDF, stringr

Collate 'AOLR' 'AOImethod.R' 'CFAuxiliaryLongLat.R' 'CFAxis.R'
'CFAxisCharacter.R' 'CFAxisDiscrete.R' 'CFAxisLatitude.R'
'CFAxisLongitude.R' 'CFAxisNumeric.R' 'CFAxisTime.R'
'CFAxisVertical.R' 'CFBounds.R' 'CFCellMeasure.R' 'CFData.R’
'CFDataset.R' 'CFGridMapping.R' 'CFGroup.R' 'CFLabel.R’
'NCObject.R' 'CFObject.R' 'CFStandardNames.R' 'CFVariable.R'
'CFVariableL3b.R' 'CF VerticalParametricTerm.R' 'NCDimension.R'
'NCGroup.R' 'NCResource.R' 'NCVariable.R' 'makeCFObjects.R’
'ncdfCF-package.R' 'ops.R' 'plot.R' 'readCE.R' 'utils.R’

'wkt2.R' 'zzz.R'

Suggests data.table, ggplot2, knitr, rmarkdown, stars, terra, testthat
(>=3.0.0), units

VignetteBuilder knitr
Depends R (>=4.0)

URL https://github.com/R-CF/ncdfCF, https://r-cf.github.io/ncdfCF/

BugReports https://github.com/R-CF/ncdfCF/issues
Config/testthat/edition 3
Config/Needs/website rmarkdown

https://github.com/R-CF/ncdfCF
https://r-cf.github.io/ncdfCF/
https://github.com/R-CF/ncdfCF/issues

2 Contents

NeedsCompilation no

Author Patrick Van Laake [aut, cre, cph]

Maintainer Patrick Van Laake <patrick@vanlaake.net>
Repository CRAN

Date/Publication 2026-02-02 20:00:02 UTC

Contents
A0L e 3
as_CF . e 4
CFAuxiliaryLongLat 5
CFAXIS e e e e e 8
CFAXiISCharacter o i i e e e e e e e e e e e e e e 13
CFAxisDiscrete e e e e 16
CFAxisLatitude e e 19
CFAxisLongitude e 21
CEFAXISNUMETIC e e e e e e e e 24
CFAXISTIME e e e 27
CFAxisVertical e e e 31
CFBounds e e 35
CFCellMeasure o v it i et e e e e e e e e e e e e 38
CFEData e e e e e e 40
CEDataset e e e e 41
CFGridMapping o o e e 46
CEGroup o e e 48
CFLabel e 52
CFODbject o o e e e 54
CFStandardNames e e e e 58
CFVariable e 59
CFVariableL3b e 68
CFVerticalParametricTerm 69
create_ncdf L L e 71
dim. AOL . . . e e e e e 71
dim.CFAXIS e 72
geom_ncdf 72
GIOUPS . v v v v e 73
MaKEAXIS e e 74
makeCharacterAXis e e e e e e e e e 75
makeDiSCreteAXIS o e e e e e e e e e e e e e e e e e e e 75
makeLatitudeAXIS e e 76
makeLongitudeAXis 76
makeTimeAXiS e e e e e e e e e e e 77
makeVertical AXiS e 78
names.CFDataset e e 78
NCDImension o i i e e e e e e e e 80

NCGroup o e 81

aoi 3
NCODbject o o e e 85
NCRESOUICE o e e e e e e e e e e e 86
NCVariable e 88
open_ncdfo 91
Ops.CFVariable e e 92
peek_ncdf . . .o e 93
[.CFVariable e 94
[.CFVariableL3b e 95
[[.CEDataset e e e e e 96

Index 98

aoi Area of Interest

Description

This function constructs the area of interest of an analysis. It consists of an extent and a resolution
of longitude and latitude, all in decimal degrees.

The AOl is used to define the subset of data to be extracted from a data variable that has an auxiliary
longitude-latitude grid (see the CFAuxiliaryLongLat class) at a specified resolution. The data vari-
able thus has a primary coordinate system where the horizontal components are not a geographic
system of longitude and latitude coordinates.

Usage

aoi(lonMin, lonMax, latMin, latMax, resX, resY)

Arguments

lonMin, lonMax, latMin, latMax

The minimum and maximum values of the longitude and latitude of the AOI, in
decimal degrees. The longitude values must agree with the range of the longi-
tude in the data variable to which this AOI will be applied, e.g. [-180,180] or
[0,360].

resX, resY The separation between adjacent grid cell, in the longitude and latitude direc-

Details

tions respectively, in decimal degrees. The permitted values lie within the range
[0.01 ... 10]. If resY is missing it will use the value of resX, yielding square
grid cells.

Following the CF Metadata Conventions, axis coordinates represent the center of grid cells. So
when specifying aoi (20, 30, -10, 10, 1, 2), the south-west grid cell coordinate is at (20.5, -9).
If the axes of the longitude-latitude grid have bounds, then the bounds will coincide with the AOI
and the CFVariable$subset () method that uses the AOI will attach those bounds as attributes to
the resulting array.

4 as CF

If no resolution is specified, it will be determined from the separation between adjacent grid cells in
both longitude and latitude directions in the middle of the area of interest. If no extent is specified
(meaning, none of the values; if some but not all values are specified an error will be thrown),
then the whole extent of the variable is used, extended outwards by the bounds if they are set or
half the resolution otherwise. Thus, to get the entire extent of the variable but in a longitude-
latitude grid and with a resolution comparable to the resolution at the original Cartesian coordinate
system of the variable, simply pass aoi() as an argument to CFVariable$subset(). Note that any
missing arguments are calculated internally and stored in the returned object, but only after the call
to CFVariable$subset().

Caching:

In data collections that are composed of multiple data variables in a single netCDF resource, a
single auxiliary longitude-latitude grid may be referenced by multiple data variables, such as in
ROMS data which may have dozens of data variables using a shared grid. When subsetting with
an AOI, the instance of this class is cached to improve performance. The successive calls to
CFVariable$subset () should use the same object returned from a single call to this function for
this caching to work properly.

Value

The return value of the function is an R6 object which uses reference semantics. Making changes to
the returned object will be visible in all copies made of the object.

Examples

(aoi <- ao0i(20, 60, -40, -20, 0.5))

as_CF Create a CFDataset or CFVariable instance from an R object

Description

With this function you can convert an R object into a CFDataset or CFVariable, depending on the
characteristics of the argument obj. The object to convert can be an array, matrix or vector of type
logical, integer, numeric or character, or a terra: :SpatRaster.

Usage

as_CF(name, obj)

Default S3 method:
as_CF(name, obj)

S3 method for class 'SpatRaster'
as_CF(name, obj)

https://www.myroms.org

CFAuxiliaryLongLat 5

Arguments
name The name of the CFDataset or CFVariable to create.
obj The object to convert. This can be an array, matrix or vector of type logical,
integer, numeric or character, or a terra: :SpatRaster.
Details

Dimnames on the R object will be converted to instances of a CFAxis descendant class, depending
on their values. If the dimnames along a dimension of the R object can be converted to numeric,
then it will be an instance of CFAxisNumeric. If the dimnames are character, a first attempt
is made to create a CFAxisTime (i.e. the dimnames have to represent timestamps), failing that a
CFAxisCharacter will be created. If no dimnames are set, an instance of CFAxisDiscrete is gener-
ated.

The axes of the CFVariable instance(s) are oriented as in the object. Note that this is different from
standard practice in the netCDF community and the portability of saved data sets is thus limited.
You can improve this situation by setting the orientation of the axes and by adding attributes.

After creation of the CFDataset or CFVariable, it is recommended to set other properties, such as
attributes or a coordinate reference system.

Value

An instance of class CFDataset or CFVariable.

CFAuxiliarylLonglLat CF auxiliary longitude-latitude variable

Description

This class represents the longitude and latitude variables that compose auxiliary coordinate variable
axes for X-Y grids that are not longitude-latitude.

The class provides access to the data arrays for longitude and latitude from the netCDF resource,
as well as all the details that have been associated with both axes. Additionally, this class can
generate the index to extract values on a long-lat grid of the associated X-Y grid data variable using
a user-selectable extent and resolution.

Auxiliary longitude-latitude grids are only supported for reading from a netCDF resource. Creating
an instance of this class manually therefore has no practical purpose.

Active bindings

friendlyClassName (read-only) A nice description of the class.

name (read-only) The name of the auxiliary lon-lat grid.

grid_names (read-only) Read the names of the longitude and latitude grid as a vector of length 2.
dimids (read-only) Retrieve the dimension ids used by the longitude and latitude grids.

aoi Set or retrieve the AOI for the long-lat grid.

6 CFAucxiliaryLongLat

lon (read-only) Retrieve the longitude grid.

lat (read-only) Retrieve the latitude grid.

lon_bounds (read-only) Retrieve the boundary values of the longitude grid.
lat_bounds (read-only) Retrieve the boundary values of the latitude grid.

extent (read-only) Retrieve the extent of the longitude and latitude grids, including bounds if they
have been set. The extent is reported as a numeric vector of the four elements minimum and
maximum longitude and minimum and maximum latitude.

dim (read-only) The dimensions of the longitude and latitude grids.

Methods

Public methods:

* CFAuxiliarylLonglLat$new()

e CFAuxiliarylLonglat$print()

e CFAuxiliarylLonglLat$brief ()

e CFAuxiliarylLonglLat$sample_index()

e CFAuxiliarylLonglLat$grid_index()

e CFAuxiliarylLonglat$clear_cache()

e CFAuxiliarylLonglLat$attach_to_group()
e CFAuxiliarylLonglLat$detach()

e CFAuxiliarylLonglLat$clone()

Method new(): Creating a new instance. It should normally not be useful to create an instance
of this class other than upon reading a netCDF resource.
Usage:
CFAuxiliarylLonglLat$new(varLong, varLat, boundsLong = NULL, boundsLat = NULL)
Arguments:

varLong, varLat The CFVariable instances with the longitude and latitude grid values, respec-
tively.

boundsLong, boundsLat The CFBounds instances of the grid cells for the longitude and lati-
tude, respectively, if set. Defaults to NULL.

Method print(): Summary of the auxiliary longitude-latitude variable printed to the console.

Usage:
CFAuxiliaryLonglLat$print()

Method brief(): Some details of the auxiliary longitude-latitude grid.

Usage:
CFAuxiliaryLonglLat$brief ()

Returns: A 2-row data. frame with some details of the grid components.
Method sample_index(): Return the indexes into the X (longitude) and Y (latitude) axes of the

original data grid of the points closest to the supplied longitudes and latitudes, up to a maximum
distance.

CFAuxiliaryLongLat 7

Usage:
CFAuxiliarylLonglLat$sample_index(x, y, maxDist = NULL)

Arguments:
X, y Vectors of longitude and latitude values in decimal degrees, respectively.

maxDist Numeric value in decimal degrees of the maximum distance between the sampling
point and the closest grid cell. If omitted (default), the distance is calculated from the
nominal resolution of the grids.

Returns: A matrix with two columns X and Y and as many rows as arguments x and y. The X
and Y columns give the index into the grid of the sampling points, or c(NA, NA) is no grid point
is located within the maxDist distance from the sampling point.

Method grid_index(): Compute the indices for the AOI into the data grid.
Usage:
CFAuxiliarylLonglat$grid_index()

Returns: An integer matrix with the dimensions of the AOI, where each grid cell gives the
linear index value into the longitude and latitude grids.

Method clear_cache(): Clears the cache of pre-computed grid index values if an AOI has been
set.

Usage:

CFAuxiliarylLonglLat$clear_cache()

Method attach_to_group(): Attach the auxiliary long-lat grids and any bounds to a group. If
there is another object with the same name in this group an error is thrown.

Usage:

CFAuxiliarylLonglLat$attach_to_group(grp, locations = list())

Arguments:

grp An instance of CFGroup.

locations Optional. A 1ist whose named elements correspond to the names of objects asso-
ciated with these auxiliary grids. Each list element has a single character string indicating
the group in the hierarchy where the object should be stored. As an example, if the variable
has axes "lon" and "lat" and they should be stored in the parent group of grp, then specify
locations =list(lon="..", lat=".."). Locations can use absolute paths or relative
paths from group grp. The auxiliary grids and bounds that are not in the list will be stored
in group grp. If the argument locations is not provided, all objects will be stored in this
group.

Returns: Self, invisibly.

Method detach(): Detach the latitude and longitude from an underlying netCDF resource.

Usage:
CFAuxiliarylLonglLat$detach()

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

8 CFAXxis

Usage:
CFAuxiliarylLonglLat$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

CFAxis CF axis object

Description
This class is a basic ancestor to all classes that represent CF axes. More useful classes use this class
as ancestor.

This super-class does manage the "coordinates” of the axis, i.e. the values along the axis. This could
be the values of the axis as stored on file, but it can also be the values from an auxiliary coordinate
set, in the form of a CFLabel instance. The coordinate set to use in display, selection and processing
is selectable through methods and fields in this class.

Super classes

ncdfCF::CFObject -> ncdfCF: :CFData -> CFAxis

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimid The netCDF dimension id of this axis. Setting this value to anything other than the correct
value will lead to disaster.

length (read-only) The declared length of this axis.

orientation Set or retrieve the orientation of the axis, a single character with a value of "X", "Y",
"Z", "T". Setting the orientation of the axis should only be done when the current orientation
is unknown. Setting a wrong value may give unexpected errors in processing of data variables.

values (read-only) Retrieve the raw values of the axis. In general you should use the coordinates
field rather than this one.

coordinates (read-only) Retrieve the coordinate values of the active coordinate set from the axis.

bounds Set or retrieve the bounds of this axis as a CFBounds object. When setting the bounds, the
bounds values must agree with the coordinates of this axis.

auxiliary Set or retrieve auxiliary coordinates for the axis. On assignment, the value must be an
instance of CFLabel or a CFAxis descendant, which is added to the end of the list of coordinate
sets. On retrieval, the active CFLabel or CFAxis instance or NULL when the active coordinate
set is the primary axis coordinates.

coordinate_names (read-only) Retrieve the names of the coordinate sets defined for the axis, as
a character vector. The first element in the vector is the name of the axis and it refers to the
values of the coordinates of this axis. Following elements refer to auxiliary coordinates.

coordinate_range (read-only) Retrieve the range of the coordinates of the axis as a vector of two
values. The mode of the result depends on the sub-type of the axis.

CFAxis 9

active_coordinates Set or retrieve the name of the coordinate set to use with the axis for printing
to the console as well as for processing methods such as subset ().

unlimited Logical to indicate if the axis is unlimited. The setting can only be changed if the axis
has not yet been wriiten to file.

time (read-only) Retrieve the CFTime object associated with the axis. Always returns NULL but
CFAxisTime overrides this field.

is_parametric (read-only) Logical flag that indicates if the axis has parametric coordinates. Al-
ways FALSE for all axes except for CFAxisVertical which overrides this method.

Methods

Public methods:

* CFAxis$new()

e CFAxis$print()

e CFAxis$brief ()

* CFAxis$shard()

e CFAxis$peek()

* CFAxis$detach()

* CFAxis$copy_terms()

* CFAxis$configure_terms()
* CFAxis$identical()

* CFAxis$can_append()

* CFAxis$copy()

* CFAxis$copy_with_values()
¢ CFAxis$subset()

* CFAxis$indexOf ()

e CFAxis$attach_to_group()
* CFAxis$write()

Method new(): Create a new CF axis instance from a dimension and a variable in a netCDF
resource. This method is called upon opening a netCDF resource by the initialize() method
of a descendant class suitable for the type of axis.

Creating a new axis is more easily done with the makeAxis() function.

Usage:
CFAxis$new(
var,
group,
values,
start = 1L,
count = NA,
orientation = "",

attributes = data.frame()

)

Arguments:

10 CFAXis

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.

group The CFGroup that this instance will live in.

values Optional. The values of the axis in a vector. Ignored when argument var is aNCVariable
object.

start Optional. Integer index where to start reading axis data from file. The index may be NA
to start reading data from the start.

count Optional. Number of elements to read from file. This may be NA to read to the end of
the data.

orientation Optional. The orientation of the axis: "X","Y", "Z" "T", or "" (default) when not
known or relevant.

attributes Optional. A data.frame with the attributes of the axis. When an empty data. frame
(default) and argument var is an NCVariable instance, attributes of the axis will be taken
from the netCDF resource.

Returns: A basic CFAxis object.

Method print(): Prints a summary of the axis to the console. This method is typically called
by the print() method of descendant classes.

Usage:
CFAxis$print(...)
Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Returns: self, invisibly.

Method brief(): Some details of the axis.

Usage:
CFAxis$brief ()

Returns: A 1-row data.frame with some details of the axis.
Method shard(): Very concise information on the axis. The information returned by this

function is very concise and most useful when combined with similar information from other
axes.

Usage:
CFAxis$shard()

Returns: Character string with very basic axis information.

Method peek(): Retrieve interesting details of the axis.

Usage:
CFAxis$peek()

Returns: A 1-row data.frame with details of the axis.

Method detach(): Detach the axis from its underlying netCDF resource, including any depen-
dent CF objects.

CFAxis 11

Usage:
CFAxis$detach()

Returns: Self, invisibly.

Method copy_terms(): Copy the parametric terms of a vertical axis. This method is only useful
for CFAxisVertical instances having a parametric formulation. This stub is here to make the call
to this method succeed with no result for the other descendant classes.

Usage:

CFAxis$copy_terms(from, original_axes, new_axes)

Arguments:

from A CFAxisVertical instance that will receive references to the parametric terms.

original_axes List of CFAxis instances from the CF object that these parametric terms are

copied from.
new_axes List of CFAxis instances to use with the formula term objects.

Returns: NULL

Method configure_terms(): Configure the function terms of a parametric vertical axis. This
method is only useful for CFAxisVertical instances having a parametric formulation. This stub
is here to make the call to this method succeed with no result for the other descendant classes.

Usage:

CFAxis$configure_terms(axes)

Arguments:

axes List of CFAxis instances.
Returns: NULL
Method identical(): Tests if the axis passed to this method is identical to self. This only

tests for generic properties - class, length, name and attributes - with further assessment done in
sub-classes.

Usage:
CFAxis$identical (axis)
Arguments:
axis The CFAxis instance to test.
Returns: TRUE if the two axes are identical, FALSE if not.
Method can_append(): Tests if the axis passed to this method can be appended to self. This

only tests for generic properties - class, mode of the values and name - with further assessment
done in sub-classes.

Usage:

CFAxis$can_append(axis)

Arguments:

axis The CFAxis descendant instance to test.

Returns: TRUE if the passed axis can be appended to self, FALSE if not.

CFAXxis

Method copy(): Create a copy of this axis. This method is "virtual" in the sense that it does not
do anything other than return NULL. This stub is here to make the call to this method succeed with
no result for the CFAxis descendants that do not implement this method.

Usage:
CFAxis$copy(name =

nn

, group)

Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: NULL

Method copy_with_values(): Create a copy of this axis but using the supplied values. This
method is "virtual" in the sense that it does not do anything other than return NULL. This stub is
here to make the call to this method succeed with no result for the CFAxis descendants that do not
implement this method.
Usage:
CFAxis$copy_with_values(name =

nn

, group, values)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

values The values to the used with the copy of this axis.

Returns: NULL

Method subset(): Return an axis spanning a smaller coordinate range. This method is "virtual"
in the sense that it does not do anything other than return self. This stub is here to make the call to
this method succeed with no result for the CFAxis descendants that do not implement this method.

Usage:
CFAxis$subset(name = "", group, rng = NULL)

Arguments:

name The name for the new axis if the rng argument is provided.

group The CFGroup where the copy of this axis will live.

rng The range of indices whose values from this axis to include in the returned axis. If the
value of the argument is NULL, return a copy of the axis.

Returns: NULL

Method indexOf(): Find indices in the axis domain. Given a vector of numerical, timestamp or
categorical coordinates x, find their indices in the coordinates of the axis.
This is a virtual method. For more detail, see the corresponding method in descendant classes.

Usage:
CFAxis$index0f (x, method = "constant”, rightmost.closed = TRUE)

Arguments:

x Vector of numeric, timestamp or categorial coordinates to find axis indices for. The times-
tamps can be either character, POSIXct or Date vectors. The type of the vector has to
correspond to the type of the axis values.

CFAxisCharacter 13

method Single character value of "constant" or "linear".
rightmost.closed Whether or not to include the upper limit. Default is TRUE.

Returns: Numeric vector of the same length as x.

Method attach_to_group(): Attach this axis to a group. If there is another object with the
same name in this group an error is thrown. For associated objects (such as bounds, etc), if another
object with the same name is otherwise identical to the associated object then that object will be
linked from the variable, otherwise an error is thrown.

Usage:
CFAxis$attach_to_group(grp, locations = list())

Arguments:

grp An instance of CFGroup.

locations Optional. A 1ist whose named elements correspond to the names of objects as-
sociated with this axis, possibly including the axis itself. Each list element has a single
character string indicating the group in the hierarchy where the object should be stored. As
an example, if the variable has axes "lon" and "lat" and they should be stored in the par-
ent group of grp, then specify locations =list(lon="..", lat =".."). Locations can
use absolute paths or relative paths from group grp. The axis and associated objects that
are not in the list will be stored in group grp. If the argument locations is not provided,
all associated objects will be stored in this group.

Returns: Self, invisibly.

Method write(): Write the axis to a netCDF file, including its attributes.

Usage:
CFAxis$write()

Returns: Self, invisibly.

CFAxisCharacter CF character axis object

Description

This class represent CF axes that use categorical character labels as coordinate values. Note that
this is different from a CFLabel, which is associated with an axis but not an axis itself.

This is an extension to the CF Metadata Conventions. As per CF, axes are required to have numerical
values, which is relaxed here.

Super classes

ncdfCF: :CFObject -> ncdfCF: :CFData -> ncdfCF: :CFAxis -> CFAxisCharacter

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimnames (read-only) The coordinates of the axis as a character vector.

14 CFAxisCharacter

Methods

Public methods:

e CFAxisCharacter$new()

e CFAxisCharacter$brief ()

e CFAxisCharacter$copy()

* CFAxisCharacter$copy_with_values()
e CFAxisCharacter$slice()

e CFAxisCharacter$subset()

* CFAxisCharacter$identical()

e CFAxisCharacter$append()

e CFAxisCharacter$indexOf ()

Method new(): Create a new instance of this class.
Creating a new character axis is more easily done with the makeCharacterAxis() function.
Usage:
CFAxisCharacter$new(
var,
group,
values,
start = 1L,
count NA,
attributes = data.frame()

)

Arguments:

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.

group The CFGroup that this instance will live in.

values Optional. The values of the axis in a vector. These must be character values. Ignored
when argument var is a NCVariable object.

start Optional. Integer index where to start reading axis data from file. The index may be NA
to start reading data from the start.

count Optional. Number of elements to read from file. This may be NA to read to the end of
the data.

attributes Optional. A data.frame with the attributes of the axis. When an empty data. frame
(default) and argument var is an NCVariable instance, attributes of the axis will be taken
from the netCDF resource.

Method brief(): Some details of the axis.

Usage:
CFAxisCharacter$brief ()

Returns: A 1-row data.frame with some details of the axis.
Method copy(): Create a copy of this axis. The copy is completely separate from this axis,

meaning that the new axis and all of its components are made from new instances. If this axis is
backed by a netCDF resource, the copy will retain the reference to the resource.

CFAxisCharacter 15

Usage:
CFAxisCharacter$copy(name =

nn

, group)

Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: The newly created axis.

Method copy_with_values(): Create a copy of this axis but using the supplied values. The
attributes are copied to the new axis. Boundary values and auxiliary coordinates are not copied.

After this operation the attributes of the newly created axes may not be accurate, except for the
"actual_range" attribute. The calling code should set, modify or delete attributes as appropriate.
Usage:
CFAxisCharacter$copy_with_values(name = "", group, values)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

values The values to the used with the copy of this axis.

Returns: The newly created axis.

Method slice(): Given a range of domain coordinate values, returns the indices into the axis
that fall within the supplied range.

Usage:
CFAxisCharacter$slice(rng)

Arguments:

rng A character vector whose extreme (alphabetic) values indicate the indices of coordinates to
return.

Returns: An integer vector of length 2 with the lower and higher indices into the axis that

fall within the range of coordinates in argument rng. Returns NULL if no values of the axis fall

within the range of coordinates.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:

CFAxisCharacter$subset(name = "", group, rng = NULL)

Arguments:

name The name for the new axis. If an empty string is passed (default), will use the name of
this axis.

group The CFGroup where the copy of this axis will live.
rng The range of indices whose values from this axis to include in the returned axis. If the
value of the argument is NULL, return a copy of the axis.

Returns: A new CFAxisCharacter instance covering the indicated range of indices. If the
value of the argument rng is NULL, return a copy of this axis as the new axis.

16 CFAxisDiscrete

Method identical(): Tests if the axis passed to this method is identical to self.

Usage:
CFAxisCharacter$identical(axis)
Arguments:

axis The CFAxisCharacter instance to test.

Returns: TRUE if the two axes are identical, FALSE if not.

Method append(): Append a vector of values at the end of the current values of the axis.

Usage:

CFAxisCharacter$append(from, group)

Arguments:

from An instance of CFAxisCharacter whose values to append to the values of self.
group The CFGroup where the copy of this axis will live.

Returns: A new CFAxisCharacter instance with values from self and the from axis appended.

Method index0f(): Find indices in the axis domain. Given a vector of character strings X, find
their indices in the coordinates of the axis.

Usage:

CFAxisCharacter$index0f (x, method = "constant”, rightmost.closed = TRUE)

Arguments:

x Vector of character strings to find axis indices for.

method Ignored.

rightmost.closed Ignored.

Returns: Numeric vector of the same length as x. Values of x that are not equal to a coordinate
of the axis are returned as NA.

CFAxisDiscrete CF discrete axis object

Description

This class represent discrete CF axes, i.e. those axes whose coordinate values do not represent a
physical property. The coordinate values are ordinal values equal to the index into the axis.

Super classes

ncdfCF: :CFObject -> ncdfCF: :CFData -> ncdfCF: :CFAxis -> CFAxisDiscrete

Active bindings
friendlyClassName (read-only) A nice description of the class.

dimnames (read-only) The coordinates of the axis as an integer vector, or labels for every axis
element if they have been set.

CFAxisDiscrete 17

Methods

Public methods:

e CFAxisDiscrete$new()

* CFAxisDiscrete$print()

e CFAxisDiscrete$brief ()

* CFAxisDiscrete$copy()

e CFAxisDiscrete$index0f ()
* CFAxisDiscrete$slice()

e CFAxisDiscrete$subset()
* CFAxisDiscrete$append()
e CFAxisDiscrete$write()

Method new(): Create a new instance of this class. The values of this axis are always a sequence,
but the sequence may start with any positive value such that the length of this instance falls within
the length of the axis on file, if there is one.

Creating a new discrete axis is more easily done with the makeDiscreteAxis() function.
Usage:
CFAxisDiscrete$new(var, group, start = 1L, count)

Arguments:

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.

group The CFGroup that this instance will live in.
start Optional. Integer value that indicates the starting value of this axis. Defults to 1L.
count Number of elements in the axis.

Method print(): Summary of the axis printed to the console.

Usage:
CFAxisDiscrete$print(...)
Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Returns: self, invisibly.

Method brief(): Some details of the axis.
Usage:
CFAxisDiscrete$brief ()

Returns: A 1-row data.frame with some details of the axis.

Method copy(): Create a copy of this axis. The copy is completely separate from this axis,
meaning that both this axis and all of its components are made from new instances.

Usage:

nn

CFAxisDiscrete$copy(name = , group)

CFAxisDiscrete

Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: The newly created axis.

Method index0f (): Find indices in the axis domain. Given a vector of numerical values x, find
their indices in the values of the axis. Outside values will be dropped.

Usage:

CFAxisDiscrete$index0f (x, method = "constant”, rightmost.closed = TRUE)

Arguments:

x Vector of numeric values to find axis indices for.
method Ignored.

rightmost.closed Ignored.

Returns: Numeric vector of the same length as x. Values of x outside of the range of the values
in the axis are returned as NA.

Method slice(): Given a range of coordinate values, returns the indices into the axis that fall
within the supplied range. If the axis has auxiliary coordinates selected then these will be used
for the identification of the indices to return.

Usage:
CFAxisDiscrete$slice(rng)

Arguments:
rng A vector whose extreme values indicate the indices of coordinates to return. The mode of
the vector has to be integer or agree with any auxiliary coordinates selected.

Returns: An integer vector of length 2 with the lower and higher indices into the axis that fall
within the range of coordinates in argument rng. Returns NULL if no (boundary) values of the
axis fall within the range of coordinates.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:

CFAxisDiscrete$subset(name = "", group, rng = NULL)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.

group The CFGroup where the copy of this axis will live.

rng The range of indices whose values from this axis to include in the returned axis. If the

value of the argument is NULL, return a copy of the axis.

Returns: A new CFAxisDiscrete instance covering the indicated range of indices. If the value
of the argument is NULL, return a copy of self as the new axis.
Method append(): Append a vector of values at the end of the current values of the axis.

Usage:
CFAxisDiscrete$append(from)

CFAxisLatitude 19

Arguments:
from An instance of CFAxisDiscrete whose length to add to this axis.
group The CFGroup where the copy of this axis will live.

Returns: A new CFAxisDiscrete instance with a length that is the sum of the lengths of this
axis and the from axis.

Method write(): Write the axis to a netCDF file, including its attributes, but only if it has an
associated NC variable in the file.

Usage:

CFAxisDiscrete$write(nc = NULL)

Arguments:

nc The handle of the netCDF file opened for writing or a group in the netCDF file. If NULL,
write to the file or group where the axis was read from (the file must have been opened for
writing). If not NULL, the handle to a netCDF file or a group therein.

Returns: Self, invisibly.

CFAxisLatitude Latitude CF axis object

Description

This class represents a latitude axis. Its values are numeric. This class adds some logic that is
specific to latitudes, such as their range, orientation and meaning.

Super classes

ncdfCF: :CFObject ->ncdfCF: :CFData ->ncdfCF: : CFAxis ->ncdfCF: : CFAxisNumeric -> CFAxisLatitude

Active bindings

friendlyClassName (read-only) A nice description of the class.

Methods

Public methods:
e CFAxisLatitude$new()
e CFAxisLatitude$copy()
e CFAxisLatitude$copy_with_values()
* CFAxisLatitude$subset()
* CFAxisLatitude$append()

Method new(): Create a new instance of this class.
Creating a new latitude axis is more easily done with the makelLatitudeAxis() function.

Usage:

CFAxisLatitude

CFAxisLatitude$new(

var,

group,

values,

start = 1L,

count = NA,

attributes = data.frame()
)
Arguments:

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.

group The CFGroup that this instance will live in.

values Optional. The values of the axis in a vector. The values have to be numeric within the
range (-90, 90) and monotonic. Ignored when argument var is a NCVariable object.

start Optional. Integer index where to start reading axis data from file. The index may be NA
to start reading data from the start.

count Optional. Number of elements to read from file. This may be NA to read to the end of
the data.

attributes Optional. A data.frame with the attributes of the axis. When an empty data. frame
(default) and argument var is an NCVariable instance, attributes of the axis will be taken
from the netCDF resource.

Method copy(): Create a copy of this axis. The copy is completely separate from self, meaning
that both self and all of its components are made from new instances.
Usage:
CFAxisLatitude$copy(name =

nn

» group)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: The newly created axis.

Method copy_with_values(): Create a copy of this axis but using the supplied values. The
attributes are copied to the new axis. Boundary values and auxiliary coordinates are not copied.

After this operation the attributes of the newly created axes may not be accurate, except for the

"actual_range" attribute. The calling code should set, modify or delete attributes as appropriate.
Usage:
CFAxisLatitude$copy_with_values(name =

nn

, group, values)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

values The values to the used with the copy of this axis.

Returns: The newly created axis.

Method subset(): Return a latitude axis spanning a smaller coordinate range. This method
returns an axis which spans the range of indices given by the rng argument.

CFAxisLongitude 21

Usage:
CFAxisLatitude$subset(name = "", group, rng = NULL)

Arguments:

name The name for the new axis. If an empty string is passed (default), will use the name of
this axis.

group The CFGroup where the copy of this axis will live.

rng The range of indices whose values from this axis to include in the returned axis. If the
value of the argument is NULL, return a copy of the axis.

Returns: A new CFAxisLatitude instance covering the indicated range of indices. If the value
of the argument rng is NULL, return a copy of self as the new axis.

Method append(): Append a vector of values at the end of the current values of the axis. Bound-
ary values are appended as well but if either this axis or the from axis does not have boundary
values, neither will the resulting axis.

Usage:

CFAxisLatitude$append(from)

Arguments:
from An instance of CFAxisLatitude whose values to append to the values of this axis.
group The CFGroup where the copy of this axis will live.

Returns: A new CFAxislLatitude instance with values from this axis and the from axis ap-
pended.

CFAxisLongitude Longitude CF axis object

Description

This class represents a longitude axis. Its values are numeric. This class is used for axes that
represent longitudes. This class adds some logic that is specific to longitudes, such as their range,
orientation and their meaning. (In the near future, it will also support selecting data that crosses the
0-360 degree boundary.)

Super classes

ncdfCF: :CFObject -> ncdfCF: :CFData ->ncdfCF: : CFAxis ->ncdfCF: : CFAxisNumeric -> CFAxisLongitude

Active bindings

friendlyClassName (read-only) A nice description of the class.

22 CFAxisLongitude

Methods

Public methods:

e CFAxisLongitude$new()

e CFAxisLongitude$copy()

* CFAxisLongitude$copy_with_values()
e CFAxisLongitude$subset()

e CFAxislLongitude$append()

Method new(): Create a new instance of this class.
Creating a new longitude axis is more easily done with the makeLongitudeAxis() function.

Usage:
CFAxisLongitude$new(
var,

group,
values,

start = 1L,
count = NA,
attributes = data.frame()

)
Arguments:

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.
group The CFGroup that this instance will live in.

values Optional. The values of the axis in a vector. The values have to be numeric with the
maximum value no larger than the minimum value + 360, and monotonic. Ignored when
argument var is a NCVariable object.

start Optional. Integer index where to start reading axis data from file. The index may be NA
to start reading data from the start.

count Optional. Number of elements to read from file. This may be NA to read to the end of
the data.

attributes Optional. A data.frame with the attributes of the axis. When an empty data. frame
(default) and argument var is an NCVariable instance, attributes of the axis will be taken
from the netCDF resource.

Method copy(): Create a copy of this axis. The copy is completely separate from self, meaning
that both self and all of its components are made from new instances.

Usage:

nn

CFAxisLongitude$copy(name = , group)

Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: The newly created axis.

CFAxisLongitude 23

Method copy_with_values(): Create a copy of this axis but using the supplied values. The
attributes are copied to the new axis. Boundary values and auxiliary coordinates are not copied.

After this operation the attributes of the newly created axes may not be accurate, except for the
"actual_range" attribute. The calling code should set, modify or delete attributes as appropriate.

Usage:

CFAxisLongitude$copy_with_values(name =

nn

, group, values)

Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

values The values to the used with the copy of this axis.

Returns: The newly created axis.

Method subset(): Return a longitude axis spanning a smaller coordinate range. This method
returns an axis which spans the range of indices given by the rng argument.

Usage:
CFAxisLongitude$subset(name = "", group, rng = NULL)

Arguments:

name The name for the new axis. If an empty string is passed (default), will use the name of
this axis.

group The CFGroup where the copy of this axis will live.

rng The range of indices whose values from this axis to include in the returned axis. If the
value of the argument is NULL, return a copy of the axis.

Returns: A new CFAxisLongitude instance covering the indicated range of indices. If the
value of the argument rng is NULL, return a copy of self as the new axis.

Method append(): Append a vector of values at the end of the current values of the axis. Bound-
ary values are appended as well but if either this axis or the from axis does not have boundary
values, neither will the resulting axis.

Usage:

CFAxisLongitude$append(from)

Arguments:
from An instance of CFAxisLongitude whose values to append to the values of this axis.
group The CFGroup where the copy of this axis will live.

Returns: A new CFAxisLongitude instance with values from this axis and the from axis
appended.

24 CFAxisNumeric

CFAxisNumeric Numeric CF axis object

Description

This class represents a numeric axis. Its values are numeric. This class is used for axes with numeric
values but without further knowledge of their nature. More specific classes descend from this class.

Super classes

ncdfCF: :CFObject -> ncdfCF: :CFData -> ncdfCF: : CFAxis -> CFAxisNumeric

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimnames (read-only) The coordinates of the axis as a vector. These are by default the values of
the axis, but it could also be a set of auxiliary coordinates, if they have been set.

Methods
Public methods:

e CFAxisNumeric$new()

* CFAxisNumeric$print()

e CFAxisNumeric$brief ()

e CFAxisNumeric$range()

e CFAxisNumeric$index0f ()

e CFAxisNumeric$slice()

e CFAxisNumeric$copy()

e CFAxisNumeric$copy_with_values()
* CFAxisNumeric$identical()
¢ CFAxisNumeric$append()

¢ CFAxisNumeric$subset()

Method new(): Create a new instance of this class.
Creating a new axis is more easily done with the makeAxis() function.

Usage:
CFAxisNumeric$new(
var,
group,
values,
start = 1L,
count = NA,
orientation = "",

attributes = data.frame()

CFAxisNumeric 25

Arguments:

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.

group The CFGroup that this instance will live in.

values Optional. The values of the axis in a vector. The values have to be numeric with the
maximum value no larger than the minimum value + 360, and monotonic. Ignored when
argument var is a NCVariable object.

start Optional. Integer index where to start reading axis data from file. The index may be NA
to start reading data from the start.

count Optional. Number of elements to read from file. This may be NA to read to the end of
the data.

orientation Optional. The orientation of the axis: "X", "Y", "Z" "T", or "" (default) when not
known or relevant.

attributes Optional. A data.frame with the attributes of the axis. When an empty data. frame
(default) and argument var is an NCVariable instance, attributes of the axis will be taken
from the netCDF resource.

Method print(): Summary of the axis printed to the console.

Usage:
CFAxisNumeric$print(...)
Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Returns: self, invisibly.

Method brief(): Some details of the axis.
Usage:
CFAxisNumeric$brief ()

Returns: A 1-row data.frame with some details of the axis.

Method range(): Retrieve the range of coordinate values in the axis.
Usage:
CFAxisNumeric$range()

Returns: A numeric vector with two elements with the minimum and maximum values in the
axis, respectively.

Method indexOf(): Retrieve the indices of supplied coordinates on the axis. If the axis has
boundary values then the supplied coordinates must fall within the boundaries of an axis coordi-
nate to be considered valid.

Usage:

CFAxisNumeric$indexOf(x, method = "constant”, rightmost.closed = TRUE)

Arguments:

x A numeric vector of coordinates whose indices into the axis to extract.

method Extract index values without ("constant”, the default) or with ("linear") fractional parts.

26

CFAxisNumeric

rightmost.closed Whether or not to include the upper limit. This parameter is ignored for
this class, it always is TRUE.

Returns: A vector giving the indices in x of valid coordinates provided. Values of x outside of
the range of the coordinates in the axis are returned as NA. If the axis has boundary values, then
values of x that do not fall on or between the boundaries of an axis coordinate are returned as
NA.

Method slice(): Given a range of domain coordinate values, returns the indices into the axis
that fall within the supplied range. If the axis has bounds, any coordinate whose boundary values
fall entirely or partially within the supplied range will be included in the result.

Usage:

CFAxisNumeric$slice(rng)

Arguments:

rng A numeric vector whose extreme values indicate the indices of coordinates to return.

Returns: An integer vector of length 2 with the lower and higher indices into the axis that fall

within the range of coordinates in argument rng. Returns NULL if no (boundary) values of the
axis fall within the range of coordinates.

Method copy(): Create a copy of this axis. The copy is completely separate from self, meaning
that both self and all of its components are made from new instances.
Usage:
CFAxisNumeric$copy(name = "", group)
Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: The newly created axis.

Method copy_with_values(): Create a copy of this axis but using the supplied values. The
attributes are copied to the new axis. Boundary values and auxiliary coordinates are not copied.

After this operation the attributes of the newly created axes may not be accurate, except for the
"actual_range" attribute. The calling code should set, modify or delete attributes as appropriate.

Usage:
CFAxisNumeric$copy_with_values(name = "", group, values)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

values The values to the used with the copy of this axis.

Returns: The newly created axis.

Method identical(): Tests if the axis passed to this method is identical to self.

Usage:
CFAxisNumeric$identical (axis)

Arguments:

CFAxisTime 27

axis The CFAxisNumeric or sub-class instance to test.

Returns: TRUE if the two axes are identical, FALSE if not.

Method append(): Append a vector of values at the end of the current values of the axis. Bound-
ary values are appended as well but if either this axis or the from axis does not have boundary
values, neither will the resulting axis.

Usage:

CFAxisNumeric$append(from, group)

Arguments:

from An instance of CFAxisNumeric whose values to append to the values of this axis.

group The CFGroup where the copy of this axis will live.

Returns: A new CFAxisNumeric instance with values from this axis and the from axis ap-

pended.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:

CFAxisNumeric$subset(name = "", group, rng = NULL)

Arguments:

name The name for the new axis. If an empty string is passed (default), will use the name of
this axis.

group The CFGroup where the copy of this axis will live.
rng The range of indices whose values from this axis to include in the returned axis. If the
value of the argument is NULL, return a copy of the axis.

Returns: A new CFAxisNumeric instance covering the indicated range of indices. If the value
of the argument rng is NULL, return a copy of this axis as the new axis.

CFAxisTime Time axis object

Description

This class represents a time axis. The functionality is provided by the CFTime class in the CFtime
package.

Super classes

ncdfCF: :CFObject -> ncdfCF: :CFData -> ncdfCF: : CFAxis -> CFAxisTime

Active bindings
friendlyClassName (read-only) A nice description of the class.
time (read-only) Retrieve the CFTime instance that manages the values of this axis.

dimnames (read-only) The coordinates of the axis as a character vector.

28

CFAxisTime

Methods

Public methods:

* CFAxisTime$new()

* CFAxisTime$print()

* CFAxisTime$brief ()

* CFAxisTime$identical()
* CFAxisTime$copy()

* CFAxisTime$copy_with_values()
* CFAxisTime$append()

* CFAxisTime$indexOf ()

* CFAxisTime$slice()

* CFAxisTime$subset()

* CFAxisTime$write()

Method new(): Create a new instance of this class, including its boundary values. A CFTime or
CFClimatology instance will also be created to manage the time magic.

Creating a new time axis is more easily done with the makeTimeAxis() function.

Usage:
CFAxisTime$new(
var,
group,
values,
start = 1L,
count NA,
attributes = data.frame()

)

Arguments:

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.

group The CFGroup that this instance will live in.

values Either the numeric values of this axis, in which case argument var must be aNCVariable,
or an instance of CFTime or CFClimatology with bounds set, and then argument var must
be a name for the axis.

start Optional. Integer index where to start reading axis data from file. The index may be NA
to start reading data from the start.

count Optional. Number of elements to read from file. This may be NA to read to the end of
the data.

attributes Optional. A data.frame with the attributes of the axis. When an empty data. frame
(default) and argument var is an NCVariable instance, attributes of the axis will be taken
from the netCDF resource.

Method print(): Summary of the time axis printed to the console.

Usage:
CFAxisTime$print(...)

CFAxisTime 29

Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.

Method brief(): Some details of the axis.
Usage:
CFAxisTime$brief ()

Returns: A 1-row data.frame with some details of the axis.

Method identical(): Tests if the axis passed to this method is identical to self.

Usage:
CFAxisTime$identical (axis)

Arguments:
axis The CFAxisTime instance to test.

Returns: TRUE if the two axes are identical, FALSE if not.

Method copy(): Create a copy of this axis. The copy is completely separate from self, meaning
that both self and all of its components are made from new instances.

Usage:
CFAxisTime$copy(name =

nn

, group)

Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: The newly created axis.

Method copy_with_values(): Create a copy of this axis but using the supplied values. The
attributes are copied to the new axis. Boundary values and auxiliary coordinates are not copied.

After this operation the attributes of the newly created axes may not be accurate, except for the
"actual_range" attribute. The calling code should set, modify or delete attributes as appropriate.

Usage:

CFAxisTime$copy_with_values(name = "", group, values)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.

group The CFGroup where the copy of this axis will live.

values The values to the used with the copy of this axis. This can be a CFTime instance, a vector
of numeric values, a vector of character timestamps in ISO8601 or UDUNITS format, or a

vector of POSIXct or Date values. If not a CFTime instance, the values will be converted
into a CFTime instance using the definition and calendar of this axis.

Returns: The newly created axis.

Method append(): Append a vector of time values at the end of the current values of the axis.

Usage:
CFAxisTime$append(from, group)

30

CFAxisTime

Arguments:
from An instance of CFAxisTime whose values to append to the values of this axis.
group The CFGroup where the copy of this axis will live.

Returns: A new CFAxisTime instance with values from this axis and the from axis appended.

Method index0f(): Retrieve the indices of supplied values on the time axis.

Usage:

CFAxisTime$indexOf (x, method = "constant”, rightmost.closed = FALSE)
Arguments:

x A vector of timestamps whose indices into the time axis to extract.

method Extract index values without ("constant”, the default) or with ("linear") fractional parts.
rightmost.closed Whether or not to include the upper limit. Default is FALSE.

Returns: A vector giving the indices in the time axis of valid values in x, or NA if the value is
not valid.

Method slice(): Retrieve the indices of the time axis falling between two extreme values.
Usage:
CFAxisTime$slice(x, rightmost.closed = FALSE)
Arguments:
x A vector of two timestamps in between of which all indices into the time axis to extract.
rightmost.closed Whether or not to include the upper limit. Default is FALSE.
Returns: An integer vector giving the indices in the time axis between values in x, or NULL if

none of the values are valid.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:

CFAxisTime$subset(name = "", group, rng = NULL)

Arguments:

name The name for the new axis. If an empty string is passed (default), will use the name of
this axis.

group The CFGroup where the copy of this axis will live.
rng The range of indices whose values from this axis to include in the returned axis. If the
value of the argument is NULL, return a copy of the axis.

Returns: A new CFAxisNumeric instance covering the indicated range of indices. If the value
of the argument rng is NULL, return a copy of self as the new axis.

Method write(): Write the axis to a netCDF file, including its attributes. If the calendar name
is "gregorian", it will be set to the functionally identical calendar "standard" as the former is
deprecated.

Usage:

CFAxisTime$write()

Returns: Self, invisibly.

CFAXxis Vertical 31

CFAxisVertical Vertical CF axis object

Description

This class represents a vertical axis, which may be parametric. A regular vertical axis behaves like
any other numeric axis. A parametric vertical axis, on the other hand, is defined through an index
value that is contained in the axis coordinates, with additional data variables that hold ancillary
"formula terms" with which to calculate physical axis coordinates. It is used in atmosphere and
ocean data sets.

Parametric vertical axes can only be read from file, not created from scratch.

Super classes

ncdfCF: :CFObject ->ncdfCF: :CFData -> ncdfCF: : CFAxis -> ncdfCF: : CFAxisNumeric -> CFAxisVertical

Active bindings

friendlyClassName (read-only) A nice description of the class.

formula_terms (read-only) A data.frame with the "formula_terms" to calculate the parametric
axis values.

is_parametric (read-only) Logical flag that indicates if the coordinates of the axis are parametric.

parametric_coordinates (read-only) Retrieve the parametric coordinates of this vertical axis as
a CFVariable.

computed_name (read-only) The name of the computed parameterised coordinates. If the parame-
terised coordinates have not been computed yet the computed name is an empty string.

computed_units (read-only) Return the units of the computed parameterised coordinates, if com-
puted, otherwise return NULL. This will access the standard names table.

Methods

Public methods:
e CFAxisVertical$new()
e CFAxisVertical$attach_to_group()
* CFAxisVertical$detach()
e CFAxisVertical$copy()
e CFAxisVertical$copy_with_values()
* CFAxisVertical$set_parametric_terms()
e CFAxisVertical$append()
e CFAxisVertical$subset()
e CFAxisVertical$subset_parametric_terms()

Method new(): Create a new instance of this class.

Usage:

32

CFAXis Vertical

CFAxisVertical$new(

var,

group,

values,

start = 1L,

count = NA,

attributes = data.frame()
)
Arguments:

var The name of the axis when creating a new axis. When reading an axis from file, the
NCVariable object that describes this instance.

group The CFGroup that this instance will live in.

values Optional. The values of the axis in a vector. The values have to be numeric and mono-
tonic.

start Optional. Integer index where to start reading axis data from file. The index may be NA
to start reading data from the start.

count Optional. Number of elements to read from file. This may be NA to read to the end of
the data.

attributes Optional. A data.frame with the attributes of the axis. When an empty data. frame
(default) and argument var is an NCVariable instance, attributes of the axis will be taken
from the netCDF resource.

Method attach_to_group(): Attach this verical axis to a group, including any parameteric
terms. If there is another object with the same name in this group an error is thrown. For associated
objects (such as bounds, etc), if another object with the same name is otherwise identical to the
associated object then that object will be linked from the variable, otherwise an error is thrown.

Usage:
CFAxisVertical$attach_to_group(grp, locations = list())

Arguments:
grp An instance of CFGroup.

locations Optional. A list whose named elements correspond to the names of objects as-
sociated with this axis, possibly including the axis itself. Each list element has a single
character string indicating the group in the hierarchy where the object should be stored. As
an example, if the variable has axes "lon" and "lat" and they should be stored in the par-
ent group of grp, then specify locations = list(lon="..", lat =".."). Locations can
use absolute paths or relative paths from group grp. The axis and associated objects that
are not in the list will be stored in group grp. If the argument locations is not provided,
all associated objects will be stored in this group.

Returns: Self, invisibly.

Method detach(): Detach the parametric terms from an underlying netCDF resource.

Usage:
CFAxisVertical$detach()

Returns: Self, invisibly.

CFAXxis Vertical 33

Method copy(): Create a copy of this axis. The copy is completely separate from this instance,

meaning that the copies of both this instance and all of its components are made as new instances.
Usage:
CFAxisVertical$copy(name =

nn

, group)

Arguments:
name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

Returns: The newly created axis.

Method copy_with_values(): Create a copy of this axis but using the supplied values. The
attributes are copied to the new axis. Boundary values, parametric coordinates and auxiliary
coordinates are not copied.
After this operation the attributes of the newly created axes may not be accurate, except for the
"actual_range" attribute. The calling code should set, modify or delete attributes as appropriate.
Usage:
CFAxisVertical$copy_with_values(name = "", group, values)

Arguments:

name The name for the new axis. If an empty string is passed, will use the name of this axis.
group The CFGroup where the copy of this axis will live.

values The values to the used with the copy of this axis.

Returns: The newly created axis.

Method set_parametric_terms(): Set the parametric terms for this axis. The name and the
terms have to fully describe a CF parametric vertical axis.

The terms must also agree with the other axes used by any data variable that refers to this axis.
That is not checked here so the calling code must make that assertion.

Usage:
CFAxisVertical$set_parametric_terms(sn, terms)

Arguments:

sn The "standard_name" of the parametric formulation. See the CF documentation for details.

terms A data.frame with columns term, variable and param containing the terms of the
formula to calculate the axis values. Column param has the references to the variables that
hold the data for each term.

Method append(): Append a vector of values at the end of the current values of the axis. Bound-
ary values are appended as well but if either this axis or the from axis does not have boundary
values, neither will the resulting axis.

This method is not recommended for parametric vertical axes. Any parametric terms will be
deleted. If appending of parametric axes is required, the calling code should first read out the
parametric terms and merge them with the parametric terms of the from axis before setting them
back for this axis.

Usage:
CFAxisVertical$append(from)

34

CFAXis Vertical

Arguments:
from An instance of CFAxisVertical whose values to append to the values of this axis.
group The CFGroup where the copy of this axis will live.

Returns: A new CFAxisVertical instance with values from this axis and the from axis ap-
pended.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns
an axis which spans the range of indices given by the rng argument. If this axis has parametric
terms, these are not subset here - they should be separately treated once all associated axes in
the terms have been subset. That happens automatically in CFVariable methods which call the
subset_parametric_terms() method.

Usage:

nn

CFAxisVertical$subset(name = , group, rng = NULL)

Arguments:

name The name for the new axis. If an empty string is passed (default), will use the name of
this axis.

group The CFGroup where the copy of this axis will live.

rng The range of indices whose values from this axis to include in the returned axis. If the
value of the argument is NULL, return a copy of the axis.

Returns: A new CFAxisVertical instance covering the indicated range of indices. If the value
of the argument rng is NULL, return a copy of this axis as the new axis.

Method subset_parametric_terms(): Subset the parametric terms of this axis.

Usage:
CFAxisVertical$subset_parametric_terms(
original_axis_names,
new_axes,
start,
count,
aux = NULL,
ZT_dim = NULL
)
Arguments:
original_axis_names Character vector of names of the axes prior to a modifying operation
in the owning data variable
new_axes List of CFAxis instances to use for the subsetting.

start The indices to start reading data from the file, as an integer vector at least as long as the
number of axis for the term.

count The number of values to read from the file, as an integer vector at least as long as the
number of axis for the term.

aux Optional. List with the parameters for an auxiliary grid transformation. Default is NULL.
ZT_dim Optional. Dimensions of the non-grid axes when an auxiliary grid transformation is
specified.

Returns: Self, invisibly. The parametric terms will have been subset in this axis.

CFBounds 35

References

https://cfconventions.org/Data/cf-conventions/cf-conventions.html#parametric-vertical-coordinate https://www.myroms.org/
coordinate

CFBounds CF boundary variable

Description

This class represents the boundaries of an axis or an auxiliary longitude-latitude grid.

The class manages the boundary information for an axis (2 vertices per element) or an auxiliary
longitude-latitude grid (4 vertices per element).

Super classes

ncdfCF: :CFObject -> ncdfCF: : CFData -> CFBounds

Active bindings

friendlyClassName (read-only) A nice description of the class.

length (read-only) The length of the second dimension of the data, i.e. the number of boundary
values.

vertices (read-only) The length of the first dimension of the data, i.e. the number of vertices that
make up a boundary.

values Set or retrieve the boundary values of this object. Upon retrieval, values are read from the
netCDF resource, if there is one, upon first access and cached thereafter. Upon setting values,
if there is a linked netCDF resource, this object will be detached from it.

Methods

Public methods:

e CFBounds$new()

e CFBounds$print()
* CFBounds$range()
* CFBounds$copy ()

e CFBounds$subset ()
e CFBounds$append()
e CFBounds$write()

Method new(): Create an instance of this class.

Usage:

36 CFBounds

CFBounds$new(
var,
group,
values,
start = NA,
count = NA,
attributes = data.frame(),
owner_dims = 1L
)
Arguments:

var The name of the boundary variable when creating a new boundary variable. When reading
a boundary variable from file, the NCVariable object that describes this instance.

group The CFGroup that this instance will live in.

values Optional. The values of the boundary variable. This must be a numeric matrix whose
first dimension has a length equal to the number of vertices for each boundary, and the
second dimension is as long as the CFObject instances that use these boundary values.
Ignored when argument var is a NCVariable object.

start Optional. Vector of indices where to start reading boundary data along the dimensions
of the data. The vector must be NA to read all data, otherwise it must have a length equal to
the dimensionality of the owning object + 1.

count Optional. Vector of number of elements to read along each dimension of the boundary
data. The vector must be NA to read to the end of each dimension, otherwise it must have a
length equal to the dimensionality of the owning object + 1.

attributes Optional. A data.frame with the attributes of the boundary object. When an
empty data. frame (default) and argument var is an NCVariable instance, attributes of the
bounds object will be taken from the netCDF resource.

owner_dims Optional, the number of dimensions of the object that these boundary values per-
tain to. Default is 1.

Returns: A new instance of this class.

Method print(): Print a summary of the object to the console.

Usage:
CFBounds$print(attributes = TRUE, ...)
Arguments:
attributes Default TRUE, flag to indicate if the attributes of the boundary values should be
printed.
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Method range(): Retrieve the lowest and highest value in the bounds.

Usage:
CFBounds$range ()

Method copy(): Create a copy of this bounds object The copy is completely separate from
self, meaning that both self and all of its components are made from new instances.

CFBounds 37

Usage:
CFBounds$copy(name = "" group)

Arguments:

name The name for the new bounds object. If an empty string is passed, will use the name of
this bounds object.

group The CFGroup where the copy of this axis will live.

Returns: The newly created bounds object.

Method subset(): Return a boundary variable spanning a smaller coordinate range. This
currently only applies to 1-D axes.
This method returns boundary values which span the range of indices given by the rng argument.

Usage:
CFBounds$subset(group, rng)

Arguments:
group The CFGroup where the copy of these bounds will live.
rng The range of values from this bounds object to include in the returned object.

Returns: A CFBounds instance covering the indicated range of indices.

Method append(): Append boundary values at the end of the current values of the boundary
variable.

Usage:
CFBounds$append(from, group)

Arguments:
from An instance of CFBounds whose values to append to the values of this boundary variable.

group The CFGroup where the copy of these bounds will live.

Returns: A new CFBounds instance with values from this boundary variable and the from
boundary variable appended. If argument from is NULL, return NULL.

Method write(): Write the boundary variable to a netCDF file. This method should not be
called directly; instead, CFVariable$save () will call this method automatically.

Usage:
CFBounds$write(object_name)

Arguments:

object_name The name of the object that uses these boundary values, usually an axis but could
also be an auxiliary CV or a parametric Z axis.

38 CFCellMeasure

CFCellMeasure CF cell measure variable

Description
This class represents a CF cell measure variable, the object that indicates the area or volume of
every grid cell in referencing data variables.

If a cell measure variable is external to the current file, an instance will still be created for it, but the
user must link the external file to this instance before it can be used in analysis.

Active bindings
measure (read-only) Retrieve the measure of this instance. Either "area" or "volume".

name The name of this instance, which must refer to a NC variable or an external variable.

Methods

Public methods:

¢ CFCellMeasure$new()

e CFCellMeasure$print()

¢ CFCellMeasure$data()

e CFCellMeasure$register()
e CFCellMeasure$link()

* CFCellMeasure$detach()

e CFCellMeasure$clone()

Method new(): Create an instance of this class.

Usage:

CFCellMeasure$new(measure, name, nc_var = NULL, axes = NULL)
Arguments:

measure The measure of this object. Must be either of "area" or "volume".

name The name of the cell measure variable. Ignored if argument nc_var is specified.

nc_var The netCDF variable that defines this CF cell measure object. NULL for an external
variable.

axes List of CFAXis instances that describe the dimensions of the cell measure object. NULL for
an external variable.

Returns: An instance of this class.

Method print(): Print a summary of the cell measure variable to the console.

Usage:
CFCellMeasure$print(...)

Arguments:

CFCellMeasure 39

. Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.
Method data(): Retrieve the values of the cell measure variable.

Usage:
CFCellMeasure$data()

Returns: The values of the cell measure as a CFVariable instance.

Method register(): Register a CFVariable which is using this cell measure variable. A check
is performed on the compatibility between the data variable and this cell measure variable.

Usage:
CFCellMeasure$register(var)

Arguments:

var A CFVariable instance to link to this instance.

Returns: Self, invisibly.

Method 1ink(): Link the cell measure variable to an external netCDF resource. The resource
will be opened and the appropriate data variable will be linked to this instance. If the axes or other
properties of the external resource are not compatible with this instance, an error will be raised.

Usage:
CFCellMeasure$link(resource)

Arguments:
resource The name of the netCDF resource to open, either a local file name or a remote URI.

Returns: Self, invisibly.

Method detach(): Detach the internal data variable from an underlying netCDF resource.

Usage:
CFCellMeasure$detach()

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCellMeasure$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

40 CFData

CFData CF data object

Description

This class is a basic ancestor to all classes that contain data from a netCDF resource, specifically
data variables and axes. More useful classes use this class as ancestor.

Super class

ncdfCF::CFObject -> CFData

Active bindings

data_type Set or retrieve the data type of the data in the object. Setting the data type to a wrong
value can have unpredictable and mostly catastrophic consequences.

ndims (read-only) Retrieve the dimensionality of the data in the array.

NC_map Returns a list with columns "start" and "count" giving the indices for reading the data of
this object from a netCDF resource. The list is empty if this object is not backed by a netCDF
resource.

Methods

Public methods:

e CFDatas$new()
* CFData$detach()
e CFData$dim()

Method new(): Create a new CFData instance. This method is called upon creating CF objects,
such as when opening a netCDF resource or creating a new CF object. It is rarely, if ever, use-
ful to call this constructor directly. Instead, use the methods from higher-level classes such as
CFVariable.
Usage:
CFData$new(
obj,
group,
values,
start = 1L,
count = NA,
attributes = data.frame()

)

Arguments:

obj The NCVariable instance upon which this CF object is based when read from a netCDF
resource, or the name for the new CF object to be created.

group The CFGroup that this instance will live in.

CFDataset 41

values Optional. The values of the object in an array. Ignored when argument obj is an
NCVariable instance.

start Optional. Vector of indices where to start reading data along the dimensions of the
array on file. The vector must be NA to read all data, otherwise it must have agree with the
dimensions of the array on file. Default value is 1, i.e. start from the beginning of the 1-D
NC variable. Ignored when argument obj is not an NCVariable instance.

count Optional. Vector of number of elements to read along each dimension of the array on
file. The vector must be NA to read to the end of each dimension, otherwise its value must
agree with the corresponding start value and the dimension of the array on file. Default is
NA. Ignored when argument obj is not an NCVariable instance.

attributes Optional. A data.frame with the attributes of the object.

Returns: A CFData instance.
Method detach(): Detach the current object from its underlying netCDF resource. If necessary,
data is read from the resource before detaching.

Usage:
CFData$detach()

Method dim(): Retrieve the dimensions of the data of this object.
Usage:
CFData$dim(dimension)
Arguments:

dimension Optional. The index of the dimension to retrieve the length for. If omitted, retrieve
the lengths of all dimensions.

Returns: Integer vector with the length of each requested dimension.

CFDataset CF data set

Description

This class represents a CF data set, the object that encapsulates a netCDF resource. You should
never instantiate this class directly; instead, call open_ncdf () which will return an instance that
has all properties read from the netCDF resource, or create_ncdf () for a new, empty instance.
Class methods can then be called, or the base R functions called with this instance.

The CF data set instance provides access to all the objects in the netCDF resource, organized in
groups.

Public fields

name The name of the netCDF resource. This is extracted from the URI (file name or URL).

root Root of the group hierarchy through which all elements of the netCDF resource are accessed.
It is strongly discouraged to manipulate the objects in the group hierarchy directly. Use the
provided access methods instead.

42 CFDataset

file_type The type of data in the netCDF resource, if identifiable. In terms of the CF Metadata
Conventions, this includes discrete sampling geometries (DSG). Other file types that can be
identified include L3b files used by NASA and NOAA for satellite imagery (these data sets
need special processing), and CMIP5, CMIP6 and CORDEX climate projection data.

Active bindings

friendlyClassName (read-only) A nice description of the class.

resource (read-only) The connection details of the netCDF resource. This is for internal use only.
uri (read-only) The connection string to the netCDF resource.

conventions (read-only) Returns the conventions that this netCDF resource conforms to.
var_names (read-only) Vector of names of variables in this data set.

axis_names (read-only) Vector of names of axes in this data set.

Methods

Public methods:

e CFDataset$new()

e CFDataset$print()

* CFDataset$hierarchy()

* CFDataset$objects_by_standard_name()
e CFDataset$has_subgroups()

* CFDataset$find_by_name()

* CFDataset$variables()

e CFDataset$axes()

* CFDataset$attributes()

* CFDataset$attribute()

e CFDataset$set_attribute()

* CFDataset$append_attribute()
e CFDataset$delete_attribute()
* CFDataset$add_variable()

* CFDataset$save()

e CFDataset$clone()

Method new(): Create an instance of this class. Do not instantiate this class directly; instead, call
open_ncdf () which will return an instance that has all properties read from the netCDF resource,
or create_ncdf () for a new, empty instance.

Usage:

CFDataset$new(resource, format)

Arguments:

resource An instance of NCResource that links to the netCDF resource, or a character string
with the name of a new data set.

format Character string with the format of the netCDF resource as reported by the call opening
the resource. Ignored when argument resource is a character string.

CFDataset 43

Method print(): Summary of the data set printed to the console.

Usage:
CFDataset$print(...)
Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Method hierarchy(): Print the group hierarchy to the console.
Usage:
CFDataset$hierarchy()

Method objects_by_standard_name(): Get objects by standard_name. Several conventions
define standard vocabularies for physical properties. The standard names from those vocabularies
are usually stored as the "standard_name" attribute with variables or axes. This method retrieves
all variables or axes that list the specified "standard_name" in its attributes.

Usage:

CFDataset$objects_by_standard_name(standard_name)

Arguments:

standard_name Optional, a character string to search for a specific "standard_name" value in

variables and axes.

Returns: If argument standard_name is provided, a character vector of variable or axis
names. If argument standard_name is missing or an empty string, a named list with all "stan-
dard_name" attribute values in the the netCDF resource; each list item is named for the variable
or axis.

Method has_subgroups(): Does the netCDF resource have subgroups? Newer versions of
the netcdf library, specifically netcdf4, can organize dimensions and variables in groups. This
method will report if the data set is indeed organized with subgroups.

Usage:
CFDataset$has_subgroups()

Returns: Logical to indicate that the netCDF resource uses subgroups.

Method find_by_name(): Find an object by its name. Given the name of a CF data variable or
axis, possibly preceded by an absolute group path, return the object to the caller.

Usage:
CFDataset$find_by_name(name)
Arguments:

name The name of a CF data variable or axis, with an optional absolute group path.

Returns: The object with the provided name. If the object is not found, returns NULL.

Method variables(): This method lists the CF data variables located in this netCDF resource,
including those in subgroups.

Usage:
CFDataset$variables()

44

CFDataset

Returns: A list of CFVariable instances.

Method axes(): This method lists the axes located in this netCDF resource, including axes in
subgroups.

Usage:

CFDataset$axes()

Returns: A list of CFAxis descendants.

Method attributes(): List all the attributes of a group. This method returns a data.frame
containing all the attributes of the indicated group.

Usage:
CFDataset$attributes(group)

Arguments:

group The name of the group whose attributes to return. If the argument is missing, the global
attributes will be returned.

Returns: A data.frame of attributes.

Method attribute(): Retrieve global attributes of the data set.

Usage:
CFDataset$attribute(att, field = "value")

Arguments:
att Vector of character strings of attributes to return.
field The field of the attribute to return values from. This must be "value" (default) or "type".

Returns: 1If the field argument is "type", a character string. If field is "value", a single value
of the type of the attribute, or a vector when the attribute has multiple values. If no attribute is
named with a value of argument att NA is returned.

Method set_attribute(): Add an attribute to the global attributes. If an attribute name already
exists, it will be overwritten.

Usage:
CFDataset$set_attribute(name, type, value)

Arguments:

name The name of the attribute. The name must begin with a letter and be composed of letters,
digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

type The type of the attribute, as a string value of a netCDF data type.

value The value of the attribute. This can be of any supported type, including a vector or list
of values. Matrices, arrays and like compound data structures should be stored as a data
variable, not as an attribute and they are thus not allowed. In general, an attribute should be
a character value, a numeric value, a logical value, or a short vector or list of any of these.
Values passed in a list will be coerced to their common mode.

Returns: Self, invisibly.

CFDataset 45

Method append_attribute(): Append the text value of a global attribute. If an attribute name
already exists, the value will be appended to the existing value of the attribute. If the attribute
name does not exist it will be created. The attribute must be of "NC_CHAR" or "NC_STRING"
type; in the latter case having only a single string value.

Usage:
CFDataset$append_attribute(name, value, sep = "; ", prepend = FALSE)

Arguments:

name The name of the attribute. The name must begin with a letter and be composed of letters,
digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

value The character value of the attribute to append. This must be a character string.

sep The separator to use. Default is ”;

prepend Logical to flag if the supplied value should be placed before the existing value. De-
fault is FALSE.

Returns: Self, invisibly.

Method delete_attribute(): Delete attributes. If an attribute name is not present this method
simply returns.

Usage:

CFDataset$delete_attribute(name)

Arguments:

name Vector of names of the attributes to delete.

Returns: Self, invisibly.

Method add_variable(): Add a CFVariable object to the data set. If there is another object
with the same name in the group where the data variable should be placed an error is thrown. For
objects associated with the data variable (such as axes, CRS, boundary variables, etc), if another
object with the same name is otherwise identical to the associated object then that object will be
linked from the variable, otherwise an error is thrown.

Usage:
CFDataset$add_variable(var, group, locations = list())

Arguments:
var An instance of CFVariable or any of its descendants.

group Optional. An instance of CFGroup where the data variable should be located. If omitted,
the data variable will be stored in the root group.

locations Optional. A 1list whose named elements correspond to the names of objects asso-
ciated with the data variable in argument var. Each list element has a single character string
indicating the group in the hierarchy where the object should be stored. As an example, if
the data variable has axes "lon" and "lat" and they should be stored in the parent group of
group, then specify locations = list(lon="..", lat =".."). Locations can use abso-
lute paths or relative paths from the group. Associated objects that are not in the list will be
stored in group. If the argument locations is not provided, all associated objects will be
stored in group.

Returns: Argument var, invisibly.

46 CFGridMapping

Method save(): Save the data set to file, including its subordinate objects such as attributes,
data variables, axes, CRS, etc.

Usage:
CFDataset$save(fn = NULL, pack = FALSE)

Arguments:

fn Optional. Fully-qualified file name indicating where to save the data set to. This argument
must be provided if the data set is virtual. If the argument is provided on a data set that was
read from a netCDF file and it does not point to that netCDF file, a new netCDF file will
be written to the indicated location. If the argument is the same file name as before, the
existing netCDF file will be updated.

pack Optional. Logical to indicate if the data should be packed; default is FALSE. Packing is
only useful for numeric data; packing is not performed on integer values. Packing is always
to the "NC_SHORT" data type, i.e. 16-bits per value.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFDataset$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFGridMapping CF grid mapping object

Description

This class contains the details for a coordinate reference system, or grid mapping in CF terms, of a
data variable.

When reporting the coordinate reference system to the caller, a character string in WKT?2 format is
returned, following the OGC standard.

Super class

ncdfCF: :CFObject -> CFGridMapping

Active bindings

friendlyClassName (read-only) A nice description of the class.

CFGridMapping 47

Methods

Public methods:
e CFGridMapping$new()
e CFGridMapping$print()
* CFGridMapping$brief ()
e CFGridMapping$wkt2()
e CFGridMapping$write()

Method new(): Create a new instance of this class.
Note that when a new grid mapping object is created (as opposed to reading from a netCDF
resource), only the grid_mapping_name attribute will be set. The caller must set all other param-
eters through their respective attributes, following the CF Metadata Conventions.
Usage:
CFGridMapping$new(var, group, grid_mapping_name)
Arguments:
var When creating a new grid mapping object, the name of the object. When reading from a
netCDF resource, the netCDF variable that describes this instance.
group The CFGroup that this instance will live in.
grid_mapping_name Optional. When creating a new grid mapping object, the formal name of
the grid mapping, as specified in the CF Metadata Conventions. This value is stored in the
new object as attribute "grid_mapping_name". Ignored when argument var is a NC object.

Method print(): Prints a summary of the grid mapping to the console.
Usage:
CFGridMapping$print()
Method brief(): Retrieve a 1-row data. frame with some information on this grid mapping.
Usage:
CFGridMapping$brief ()
Method wkt2(): Retrieve the CRS string for a specific variable.
Usage:
CFGridMapping$wkt2(axis_info)
Arguments:

axis_info A list with information that describes the axes of the CFVariable instance to de-
scribe.

Returns: A character string with the CRS in WKT2 format.

Method write(): Write the CRS object to a netCDF file.
Usage:
CFGridMapping$write()
Returns: Self, invisibly.

References

https://docs.ogc.org/is/18-010r11/18-010r11.pdf https://cfconventions.org/cf-conventions/cf-conventions.html#appendix-
grid-mappings

48 CFGroup

CFGroup Group for CF objects

Description

This class represents a CF group, the object that holds elements like dimensions and variables of a
CFDataset.

Direct access to groups is usually not necessary. The principal objects held by the group, CF data
variables and axes, are accessible via other means. Only for access to the group attributes is a
reference to a group required. Changing the properties of a group other than its name may very well
invalidate the CF objects or even the netCDF file.

Super class

ncdfCF: :CFObject -> CFGroup

Active bindings

parent (read-only) The parent group of the current group, or its owning data set for the root node.

name Set or retrieve the name of the group. Note that the name is always relative to the location in
the hierarchy that the group is in and it should thus not be qualified by backslashes. The name
has to be a valid CF name. The name of the root group cannot be changed.

fullname (read-only) The fully qualified absolute path of the group.
root (read-only) Retrieve the root group.

data_set (read-only) Retrieve the CFDataset that the group belongs to. If the group is not attached
to a CFDataset, returns NULL.

has_subgroups (read-only) Does the current group have subgroups?
subgroups (read-only) Retrieve the list of the subgroups of the current group.

CFobjects (read-only) Retrieve the list of CF objects of the current group.

Methods

Public methods:

* CFGroup$new()

* CFGroup$print()

* CFGroup$hierarchy()

* CFGroup$subgroup_names()
e CFGroup$create_subgroup()
e CFGroup$add_subgroups()

* CFGroup$add_CF_object()

* CFGroup$objects()

* CFGroup$find_by_name()

* CFGroup$add_variable()

CFGroup 49

* CFGroup$write()
* CFGroup$write_variables()

Method new(): Create a new CF group instance.

Usage:
CFGroup$new(grp, parent)

Arguments:
grp Either a NCGroup instance when opening a netCDF resource, or a character string with a

name for the group when creating a new CF group in memory. When a character string, it
should be the local name, without any slash "/" characters. For the root group, specify an

"nn

empty string "".
parent The parent group for this group, or a CFDataset for the root group.

Returns: An instance of this class.
Method print(): Summary of the group printed to the console.

Usage:
CFGroup$print(stand_alone = TRUE, ...)

Arguments:
stand_alone Logical to indicate if the group should be printed as an object separate from other

objects (TRUE, default), or print as part of an enclosing object (FALSE).
. Passed on to other methods.

Method hierarchy(): Prints the hierarchy of the group and its subgroups to the console, with
a summary of contained objects. Usually called from the root group to display the full group

hierarchy.
Usage:
CFGroup$hierarchy(idx = 1L, total = 1L)

Arguments:
idx, total Arguments to control indentation. Should both be 1 (the default) when called in-

teractively. The values will be updated during recursion when there are groups below the
current group.
Method subgroup_names(): Retrieve the names of the subgroups of the current group.

Usage:

CFGroup$subgroup_names(recursive = TRUE)

Arguments:
recursive Logical, default is TRUE. If TRUE, include names of recursively through the group

hierarchy.
Returns: A character vector with the names of the subgroups of the current group. If recursive

= TRUE, the names will be fully qualified with their path.

Method create_subgroup(): Create a new group as a subgroup of the current group.

Usage:
CFGroup$create_subgroup(name)

50

CFGroup

Arguments:
name The name of the new subgroup. This must be a valid CF name, so not contain any slash
’/’ characters among other restrictions, and it cannot be already present in the group.

Returns: The newly created group, or an error.

Method add_subgroups(): Add subgroups to the current group. These subgroups must be fully
formed, including having set their parent to this group. Use the create_subgroup() method to
add a group from scratch.

Usage:

CFGroup$add_subgroups(grps)

Arguments:
grps A CFGroup, or 1ist thereof.

Returns: Self, invisibly.

Method add_CF_object(): Add one or more CF objects to the current group. This is an internal
method that should not be invoked by the user. The objects to be added are considered atomic and
not assessed for any contained objects. Use a method like add_variable() to add a CF variable
to this group as well as its composing sub-objects such as axes.

Usage:

CFGroup$add_CF_object(obj, silent = TRUE)

Arguments:

obj An instance of a CFObject descendant class, or a 1list thereof. If it is a 1ist, the list
elements must be named after the CF object they contain.

silent Logical. If TRUE (default), CF objects in argument obj whose name is already present
in the list of CF objects and whose class is identical to the already present object are silently
dropped; otherwise or when the argument is FALSE an error is thrown.

Returns: Self, invisibly, or an error.

Method objects(): This method lists the CF objects of a certain class located in this group,
optionally including objects in subgroups.

Usage:

CFGroup$objects(cls, recursive = TRUE)

Arguments:

cls Character vector of classes whose objects to retrieve. Note that subclasses are automatically
retrieved as well, so specifying cls = "CFAxis"” will retrieve all axes defined in this group.

recursive Should subgroups be scanned for CF objects too (default is TRUE)?

Returns: A list of CFObject instances.

Method find_by_name(): Find an object by its name. Given the name of an object, possibly
preceded by an absolute or relative group path, return the object to the caller. Typically, this
method is called programmatically; similar interactive use is provided through the [[.CFDataset
operator.

Usage:
CFGroup$find_by_name(name)

CFGroup 51

Arguments:

name The name of an object, with an optional absolute or relative group path from the calling
group. The object must be an CF construct: group, data variable, axis, auxiliary axis, label,
grid mapping, etc.

Returns: The object with the provided name. If the object is not found, returns NULL.

Method add_variable(): Add a CFVariable object to the group. If there is another object with
the same name in this group an error is thrown. For associated objects (such as axes, CRS, bound-
ary variables, etc), if another object with the same name is otherwise identical to the associated
object then that object will be linked from the variable, otherwise an error is thrown.

Usage:

CFGroup$add_variable(var, locations = list())

Arguments:
var An instance of CFVariable or any of its descendants.

locations Optional. A 1list whose named elements correspond to the names of objects as-
sociated with the variable in argument var. Each list element has a single character string
indicating the group in the hierarchy where the object should be stored. As an example, if
the variable has axes "lon" and "lat" and they should be stored in the parent group of this
group, then specify locations = list(lon="..", lat=".."). Locations can use abso-
lute paths or relative paths from the current group. Associated objects that are not in the
list will be stored in this group. If the argument locations is not provided, all associated
objects will be stored in this group.

Returns: Argument var, invisibly.

Method write(): Write the group to file, including its attributes, if it doesn’t already exist.
Usage:
CFGroup$write(recursive = TRUE)
Arguments:

recursive If TRUE (default), write sub-groups as well.

Returns: Self, invisibly.

Method write_variables(): Write data variables in the group to file, including its associated
objects, if it doesn’t already exist.

Usage:

CFGroup$write_variables(pack = FALSE, recursive = TRUE)

Arguments:

pack Logical to indicate if the data should be packed. Packing is only useful for numeric data;
packing is not performed on integer values. Packing is always to the "NC_SHORT" data
type, i.e. 16-bits per value.

recursive If TRUE (default), write data variables in sub-groups as well.

Returns: Self, invisibly.

52 CFLabel

CFlLabel CF label object

Description

This class represent CF labels, i.e. a variable of character type that provides a textual label for a
discrete or general numeric axis. See also CFAxisCharacter, which is an axis with character labels.

Super classes

ncdfCF: :CFObject -> ncdfCF: :CFData -> CFLabel

Active bindings

friendlyClassName (read-only) A nice description of the class.

values Set or retrieve the labels of this object. In general you should use the coordinates field
rather than this one. Upon setting values, if there is a linked netCDF resource, this object will
be detached from it.

coordinates (read-only) Retrieve the labels of this object. Upon retrieval, label values are read
from the netCDF resource, if there is one, upon first access and cached thereafter.
length (read-only) The number of labels in the set.

dimid The netCDF dimension id of this label set. Setting this value to anything other than the
correct value will lead to disaster.

Methods

Public methods:

* CFLabel$new()

e CFLabel$print()

e CFLabel$identical ()
* CFLabel$copy()

e CFLabel$slice()

e CFLabel$subset()

e CFLabel$write()

Method new(): Create a new instance of this class.

Usage:
CFLabel$new(var, group, values = NA, start = NA, count = NA)

Arguments:

var The NCVariable instance upon which this CF object is based when read from a netCDF
resource, or the name for the object new CF object to be created.
group The CFGroup that this instance will live in.

values Optional. The labels of the CF object. Ignored when argument var is a NCVariable
object.

CFLabel 53

start Optional. Integer index value indicating where to start reading data from the file. The
value may be NA (default) to read all data, otherwise it must not be larger than the number
of labels. Ignored when argument var is not an NCVariable instance.

count Optional. Integer value indicating the number of labels to read from file. The value may
be NA to read to the end of the labels, otherwise its value must agree with the correspond-
ing start value and the number of labels on file. Ignored when argument var is not an
NCVariable instance.

Returns: A CFLabel instance.

Method print(): Prints a summary of the labels to the console.

Usage:
CFLabel$print(...)
Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Method identical(): Tests if the object passed to this method is identical to self.
Usage:
CFLabel$identical (1bl)
Arguments:
1bl The CFLabel instance to test.

Returns: TRUE if the two label sets are identical, FALSE if not.

Method copy(): Create a copy of this label set. The copy is completely separate from self,
meaning that both self and all of its components are made from new instances.
Usage:
CFLabel$copy(name =

nn

, group)
Arguments:

name The name for the new label set. If an empty string is passed, will use the name of this
label set.

group The CFGroup where the copy of this axis will live.

Returns: The newly created label set.

Method slice(): Given a range of domain coordinate values, returns the indices into the axis
that fall within the supplied range.

Usage:

CFLabel$slice(rng)

Arguments:

rng A character vector whose extreme (alphabetic) values indicate the indices of coordinates to

return.

Returns: An integer vector of length 2 with the lower and higher indices into the axis that
fall within the range of coordinates in argument rng. Returns NULL if no values of the axis fall
within the range of coordinates.

54 CFObject

Method subset(): Retrieve a subset of the labels.

Usage:
CFLabel$subset(name, group, rng)

Arguments:

name The name for the new label set, optional.

group The CFGroup where the copy of this label set will live.

rng The range of indices whose values from this axis to include in the returned axis.

Returns: A CFLabel instance, or NULL if the rng values are invalid.

Method write(): Write the labels to a netCDF file, including its attributes.

Usage:
CFLabel$write()

Returns: Self, invisibly.

CFObject CF base object

Description

This class is a basic ancestor to all classes that represent CF objects. More useful classes use this
class as ancestor.

Active bindings

friendlyClassName (read-only) A nice description of the class.
id (read-only) Retrieve the identifier of the CF object.

name Set or retrieve the name of the CF object. The name must be a valid netCDF name: start with
a character, use only characters, numbers and the underscore, and be at most 255 characters
long.

fullname (read-only) The fully-qualified name of the CF object.

group Set or retrieve the CFGroup that this object is located in, possibly NULL.

attributes (read-only) Retrieve a data. frame with the attributes of the CF object.
has_resource (read-only) Flag that indicates if this object has an underlying netCDF resource.
NC (read-only) The NC object that links to an underlying netCDF resource, or NULL if not linked.

is_dirty Flag to indicate if the object has any unsaved changes.

CFObject 55

Methods

Public methods:

e CFObject$new()

e CFObject$attach_to_group()
* CFObject$detach()

e CFObject$attribute()

e CFObject$print_attributes()
* CFObject$set_attribute()

e CFObject$attributes_identical()
e CFObject$append_attribute()
* CFObject$delete_attribute()
e CFObject$write_attributes()
e CFObject$clone()

Method new(): Create a new CFobject instance in memory or from an object in a netCDF
resource when this method is called upon opening a netCDF resource. It is rarely, if ever, use-
ful to call this constructor directly. Instead, use the methods from higher-level classes such as
CFVariable.

Usage:
CFObject$new(obj, attributes = data.frame(), group = NULL)

Arguments:

obj The NCObject instance upon which this CF object is based when read from a netCDF
resource, or the name for the new CF object to be created.

attributes Optional. A data.frame with the attributes of the object. When argument obj is
an NCGroup instance and this argument is an empty data. frame (default), arguments will
be read from the resource.

group The CFGroup instance that this object will live in. The default is NULL but this is only
useful for CFGroup instance.

Returns: A CFObject instance.

Method attach_to_group(): Attach this CF object to a group. If there is another object with
the same name in this group an error is thrown. This is the basic method that may be overridden
by descendant classes.

Usage:
CFObject$attach_to_group(grp, locations = list())

Arguments:

grp An instance of CFGroup.

locations Optional. A 1ist whose named elements correspond to the names of objects, pos-
sibly including this object. Each list element has a single character string indicating the
group in the hierarchy where the object should be stored. As an example, if a data variable
has axes "lon" and "lat" and they should be stored in the parent group of grp, then specify
locations =list(lon="..", lat=".."). Locations can use absolute paths or relative
paths from group grp. If the argument locations is not provided or the name of the object
is not in the list, the object will be stored in group grp.

56 CFObject

Returns: Self, invisibly.

Method detach(): Detach the current object from its underlying netCDF resource.

Usage:
CFObject$detach()

Method attribute(): Retrieve an attribute of a CF object.

Usage:
CFObject$attribute(att, field = "value")

Arguments:

att Single character string of attribute to return.

field The field of the attribute to return values from. This must be "value" (default) or "type".
Returns: 1If the field argument is "type", a character string. If field is "value", a single value

of the type of the attribute, or a vector when the attribute has multiple values. If no attribute is
named with a value of argument att NA is returned.

Method print_attributes(): Print the attributes of the CF object to the console.

Usage:
CFObject$print_attributes(width = 30L)

Arguments:
width The maximum width of each column in the data. frame when printed to the console.

Method set_attribute(): Add an attribute. If an attribute name already exists, it will be
overwritten.

Usage:
CFObject$set_attribute(name, type, value)

Arguments:

name The name of the attribute. The name must begin with a letter and be composed of letters,
digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

type The type of the attribute, as a string value of a netCDF data type.

value The value of the attribute. This can be of any supported type, including a vector or list
of values. Matrices, arrays and like compound data structures should be stored as a data
variable, not as an attribute and they are thus not allowed. In general, an attribute should be
a character value, a numeric value, a logical value, or a short vector or list of any of these.
Values passed in a list will be coerced to their common mode.

Returns: Self, invisibly.
Method attributes_identical(): Test if the supplied attributes are identical to the attributes

of this instance. The order of the attributes may differ but the names, types and values must
coincide.

Usage:
CFObject$attributes_identical (cmp)

Arguments:

CFObject 57

cmp data.frame with attributes to compare to the attributes of this instance.

Returns: TRUE if attributes in argument cmp are identical to the attributes of this instance, FALSE
otherwise.

Method append_attribute(): Append the text value of an attribute. If an attribute name
already exists, the value will be appended to the existing value of the attribute. If the attribute
name does not exist it will be created. The attribute must be of "NC_CHAR" or "NC_STRING"
type; in the latter case having only a single string value.

Usage:

CFObject$append_attribute(name, value, sep = "; ", prepend = FALSE)

Arguments:

name The name of the attribute. The name must begin with a letter and be composed of letters,
digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

value The character value of the attribute to append. This must be a character string.

n

sep The separator to use. Default is ”;

prepend Logical to flag if the supplied value should be placed before the existing value. De-
fault is FALSE.

Returns: Self, invisibly.
Method delete_attribute(): Delete attributes. If an attribute name is not present this method
simply returns.

Usage:
CFObject$delete_attribute(name)

Arguments:

name Vector of names of the attributes to delete.

Returns: Self, invisibly.

Method write_attributes(): Write the attributes of this object to a netCDF file.

Usage:
CFObject$write_attributes()

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFObject$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

58 CFStandardNames

CFStandardNames CF Standard names table

Description

The CF Metadata Conventions define a large number of standard names for physical parameters,
including axes and data variables. This class accesses the standard names table. For each of the en-
tries in the table two properties are provided: the canonical unit and a description. These properties
are retrieved when searching for a given name.

Access to this class is through the CF environment. Use the CF$standard_names$find(”"name_of_interest”)
method to access a particular standard name. It is strongly recommended not to instantiate this class
manually as that may introduce problems with accessing the underlying XML file.

The XML table is retrieved from the CF Metadata Conventions web site here and stored locally in
the cache of the ncdfCF package. A check is performed periodically for an updated version, which
will then be downloaded automatically. The frequency of the update check can be controlled with
the CF.options$cache_stale_days option.

Active bindings

is_loaded (read-only) Flag to determine if the standard names table is available.

Methods

Public methods:
e CFStandardNames$new()
e CFStandardNames$print()
e CFStandardNames$find()
e CFStandardNames$load()
e CFStandardNames$clone()

Method new(): Initialize an instance of this class. This is done automatically when the package
is loaded.

Usage:
CFStandardNames$new()

Method print(): Print the version number of the standard names table in use, if it is loaded.
The table is loaded automatically when it is first used.

Usage:
CFStandardNames$print ()

Method find(): Retrieve the information on the specified names.

Usage:
CFStandardNames$find(names)

Arguments:

https://cfconventions.org/vocabularies.html

CFVariable 59

names A character vector with the names to search the standard names table for.

Returns: If an entry with a value in names is found, returns a data.frame with with with
the canonical units and a description of the name. If no names are found in the table NULL is
returned.

Method load(): Load the standard names table so that it’s contents may be used in display and
analysis. Note that the table may be downloaded (4.3MB at version 91) if not available or stale.

Usage:
CFStandardNames$load()

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFStandardNames$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://cfconventions.org/cf-conventions/cf-conventions.html#standard-name

CFVariable CF data variable

Description

This class represents a CF data variable, the object that provides access to an array of data.

The CF data variable instance provides access to all the details that have been associated with the
data variable, such as axis information, grid mapping parameters, etc.

Super classes

ncdfCF::CFObject -> ncdfCF: :CFData -> CFVariable

Active bindings

friendlyClassName (read-only) A nice description of the class.

axes (read-only) List of instances of classes descending from CFAXis that are the axes of the data
object.

ancillary_variables A list of ancillary data variables associated with this data variable.

crs The coordinate reference system of this variable, as an instance of CFGridMapping. If this
field is NULL, the horizontal component of the axes are in decimal degrees of longitude and
latitude.

cell_measures (read-only) List of the CFCellMeasure objects of this variable, if defined.

60 CFVariable

dimids (read-only) Retrieve the dimension ids used by the NC variable used by this variable.
dimnames (read-only) Retrieve dimnames of the data variable.

auxiliary_names (read-only) Retrieve the names of the auxiliary longitude and latitude grids as a
vector of two character strings, in that order. If no auxiliary grids are defined, returns NULL.

values (read-only) Retrieve the raw values of the data variable. In general you should use the
raw() function rather than this method because the raw() function will attach dimnames to
the array that is returned.

gridLonglLat Retrieve or set the grid of longitude and latitude values of every grid cell when the
main variable grid has a different coordinate system.

crs_wkt2 (read-only) Retrieve the coordinate reference system description of the variable as a
WKT?2 string.

Methods

Public methods:

e CFVariable$new()

e CFVariable$print()

e CFVariable$brief ()

e CFVariable$shard()

e CFVariable$peek()

* CFVariable$detach()

e CFVariable$time()

e CFVariable$raw()

* CFVariable$array()

e CFVariable$subset()

e CFVariable$summarise()

e CFVariable$profile()

e CFVariable$append()

e CFVariable$is_coincident()

e CFVariable$add_cell_measure()
e CFVariable$add_auxiliary_coordinate()
* CFVariable$add_ancillary_variable()
e CFVariable$attach_to_group()
e CFVariable$terra()

e CFVariable$data.table()

e CFVariable$write()

e CFVariable$save()

Method new(): Create an instance of this class.

Usage:
CFVariable$new(
var,
group,

CFVariable 61

axes,
values = values,
start = NA,
count = NA,
attributes = data.frame()
)
Arguments:

var The NCVariable instance upon which this CF variable is based when read from a netCDF
resource, or the name for the new CF variable to be created.

group The CFGroup that this instance will live in.
axes List of instances of CFAXis to use with this variable.
values Optional. The values of the variable in an array.

start Optional. Vector of indices where to start reading data along the dimensions of the NC
variable on file. The vector must be NA to read all data, otherwise it must have agree with the
dimensions of the NC variable. Ignored when argument var is not an NCVariable instance.

count Optional. Vector of number of elements to read along each dimension of the NC variable
on file. The vector must be NA to read to the end of each dimension, otherwise its value must
agree with the corresponding start value and the dimension of the NC variable. Ignored
when argument var is not an NCVariable instance.

attributes Optional. A data.frame with the attributes of the object. When argument var is
an NCVariable instance and this argument is an empty data. frame (default), arguments
will be read from the netCDF resource.

Returns: A CFVariable instance.

Method print(): Print a summary of the data variable to the console.

Usage:
CFVariable$print(...)
Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Method brief(): Some details of the data variable.

Usage:
CFVariable$brief ()

Returns: A 1-row data.frame with some details of the data variable.
Method shard(): The information returned by this method is very concise and most useful
when combined with similar information from other variables.

Usage:
CFVariable$shard()

Returns: Character string with very basic variable information.

Method peek(): Retrieve interesting details of the data variable.
Usage:

CFVariable

CFVariable$peek()

Returns: A 1-row data.frame with details of the data variable.

Method detach(): Detach the various properties of this variable from an underlying netCDF
resource.

Usage:

CFVariable$detach()

Returns: Self, invisibly.

Method time(): Return the time object from the axis representing time.

Usage:
CFVariable$time(want = "time")

Arguments:
want Character string with value "axis" or "time", indicating what is to be returned.

Returns: If want = "axis"” the CFAxisTime axis; if want = "time” the CFTime instance of the
axis, or NULL if the variable does not have a "time" axis.

Method raw(): Retrieve the data in the object exactly as it was read from a netCDF resource or
produced by an operation.

Usage:
CFVariable$raw()

Returns: An array, matrix or vector with (dim)names set.

Method array(): Retrieve the data in the object in the form of an R array, with axis ordering
Y-X-others and Y values going from the top down.

Usage:
CFVariable$array()

Returns: An array or matrix of data in R ordering, or a vector if the data has only a single
dimension.

Method subset(): This method extracts a subset of values from the array of the variable, with
the range along each axis to extract expressed in coordinate values of the domain of each axis.

Usage:
CFVariable$subset(..., rightmost.closed = FALSE, .resolution = NULL)

Arguments:

. One or more arguments of the form axis = range. The "axis" part should be the name of
an axis or its orientation X, Y, Z or T. The "range" part is a vector of values representing
coordinates along the axis where to extract data. Axis designators and names are case-
sensitive and can be specified in any order. If values for the range per axis fall outside of
the extent of the axis, the range is clipped to the extent of the axis.

rightmost.closed Single logical value to indicate if the upper boundary of range in each
axis should be included. You must use the argument name when specifying this, like
rightmost.closed = TRUE, to avoid the argument being treated as an axis name.

CFVariable 63

.resolution For interpolation with auxiliary coordinates, the resolution in longitude and lat-
itude directions as numeric values in decimal degrees, optional. If a single value is given,
it will apply in both directions. If not supplied, the resolution in the center of the requested
area will be calculated and applied over the entire area.

Details: The range of values along each axis to be subset is expressed in coordinates of the
domain of the axis. Any axes for which no selection is made in the . .. argument are extracted
in whole. Coordinates can be specified in a variety of ways that are specific to the nature of the
axis. For numeric axes it should (resolve to) be a vector of real values. A range (e.g. 100:200),
avector (c(23, 46, 3, 45, 17),asequence (seq(from = 78, to = 100, by = 2), all work.
Note, however, that only a single range is generated from the vector so these examples resolve
to (100, 200), (3, 46), and (78, 100), respectively. For time axes a vector of character
timestamps, POSIXct or Date values must be specified. As with numeric values, only the two
extreme values in the vector will be used.

If the range of coordinate values for an axis in argument . . . extends the valid range of the axis,
the extracted data will start at the beginning for smaller values and extend to the end for larger
values. If the values envelope the valid range the entire axis will be extracted in the result. If the
range of coordinate values for any axis are all either smaller or larger than the valid range of the
axis then nothing is extracted and NULL is returned.

The extracted data has the same dimensional structure as the data in the variable, with degenerate
dimensions preserved. The order of the axes in argument . .. does not reorder the axes in the
result; use the array () method for this.

As an example, to extract values of a variable for Australia for the year 2020, where the first
axis in x is the longitude, the second axis is the latitude, both in degrees, and the third (and
final) axis is time, the values are extracted by x$subset (X =c(112, 154), Y=c(-9, -44), T=
c("2020-01-01", "2021-01-01")). Note that this works equally well for projected coordinate
reference systems - the key is that the specification in argument ... uses the same domain of
values as the respective axes in x use.

Auxiliary coordinate variables:

A special case exists for variables where the horizontal dimensions (X and Y) are not in lon-
gitude and latitude coordinates but in some other coordinate system. In this case the netCDF
resource may have so-called auxiliary coordinate variables for longitude and latitude that are
two grids with the same dimension as the horizontal axes of the data variable where each pixel
gives the corresponding value for the longitude and latitude. If the variable has such auxiliary
coordinate variables then you can specify their names (instead of specifying the names of the
primary planar axes). The resolution of the grid that is produced by this method is automat-
ically calculated. If you want to subset those axes then specify values in decimal degrees; if
you want to extract the full extent, specify NA for both axes.

Returns: A CFVariable instance, having the axes and attributes of the variable, or NULL if one
or more of the selectors in the . .. argument fall entirely outside of the range of the axis.

If self is linked to a netCDF resource then the result will be linked to the same netCDF resource
as well, except when auxiliary coordinate variables have been selected for the planar axes. In
all cases the result will be attached to a private group.

Method summarise(): Summarise the temporal domain of the data, if present, to a lower reso-
lution, using a user-supplied aggregation function.

Usage:
CFVariable$summarise(name, fun, period, era = NULL, ...)

64 CFVariable

Arguments:

name Character vector with a name for each of the results that fun returns. So if fun has 2
return values, this should be a vector of length 2. Any missing values are assigned a default
name of "result_#" (with *# being replaced with an ordinal number).

fun A function or a symbol or character string naming a function that will be applied to each
grouping of data. The function must return an atomic value (such as sum() or mean()), or a
vector of atomic values (such as range()). Lists and other objects are not allowed and will
throw an error that may be cryptic as there is no way that this method can assert that fun
behaves properly so an error will pop up somewhere, most probably in unexpected ways.
The function may also be user-defined so you could write a wrapper around a function like
1m() to return values like the intercept or any coefficients from the object returned by calling
that function.

period The period to summarise to. Must be one of either "day", "dekad", "month", "quarter",
"season", "year". A "quarter" is the standard calendar quarter such as January-March, April-
June, etc. A "season" is a meteorological season, such as December-February, March-May,
etc. (any December data is from the year preceding the January data). The period must be
of lower resolution than the resolution of the time axis.

era Optional, integer vector of years to summarise over by the specified period. The extreme
values of the years will be used. This can also be a list of multiple such vectors. The
elements in the list, if used, should have names as these will be used to label the results.

. Additional parameters passed on to fun.

Details: Attributes are copied from the input data variable or data array. Note that after a sum-
marisation the attributes may no longer be accurate. This method tries to sanitise attributes but
the onus is on the calling code (or yourself as interactive coder). Attributes like standard_name
and cell_methods likely require an update in the output of this method, but the appropriate
new values are not known to this method. Use CFVariable$set_attribute() on the result of
this method to set or update attributes as appropriate.

Returns: A CFVariable object, or a list thereof with as many CFVariable objects as fun
returns values.

Method profile(): This method extracts profiles of values from the array of the variable, with
the location along each axis to extract expressed in coordinate values of each axis.

Usage:
CFVariable$profile(..., .names = NULL, .as_table = FALSE)

Arguments:

. One or more arguments of the form axis = location. The "axis" part should be the name
of an axis or its orientation X, Y, Z or T. The "location" part is a vector of values representing
coordinates along the axis where to profile. A profile will be generated for each of the
elements of the "location" vectors in all arguments.

.names A character vector with names for the results. The names will be used for the resulting
CFVariable instances, or as values for the "location" column of the data. table if argu-
ment .as_table is TRUE. If the vector is shorter than the longest vector of locations in the
... argument, a name "location_#" will be used, with the # replaced by the ordinal number
of the vector element.

.as_table Logical to flag if the results should be CFVariable instances (FALSE, default) or
a single data.table (TRUE). If TRUE, all ... arguments must have the same number of
elements, use the same axes and the data. table package must be installed.

CFVariable 65

Details: The coordinates along each axis to be sampled are expressed in values of the domain
of the axis. Any axes which are not passed as arguments are extracted in whole to the result.
If bounds are set on the axis, the coordinate whose bounds envelop the requested coordinate is
selected. Otherwise, the coordinate along the axis closest to the supplied value will be used. If
the value for a specified axis falls outside the valid range of that axis, NULL is returned.
A typical case is to extract the temporal profile as a 1D array for a given location. In this case,
use arguments for the latitude and longitude on an X-Y-T data variable: profile(lat = -24,
lon = 3). Other profiling options are also possible, such as a 2D zonal atmospheric profile at a
given longitude for an X-Y-Z data variable: profile(lon = 34).
Multiple profiles can be extracted in one call by supplying vectors for the indicated axes:
profile(lat = c(-24, -23, -2), lon=c(5, 5, 6)). The vectors need not have the same
length, unless .as_table = TRUE. With unequal length vectors the result will be a list of
CFVariable instances with different dimensionality and/or different axes.
Auxiliary coordinate variables:
A special case exists for variables where the horizontal dimensions (X and Y) are not in lon-
gitude and latitude coordinates but in some other coordinate system. In this case the netCDF
resource may have so-called auxiliary coordinate variables. If the variable has such auxiliary
coordinate variables then you can specify their names (instead of specifying the names of the
primary planar axes).

Returns: If .as_table == FALSE, a CFVariable instance, or a list thereof with each having
one profile for each of the elements in the "location" vectors of argument . .. and named with
the respective . names value. If .as_table == TRUE, a data. table with a row for each element
along all profiles, with a ".variable" column using the values from the .names argument.

Method append(): Append the data from another CFVariable instance to the current instance,
along one of the axes. The operation will only succeed if the axes other than the one to ap-
pend along have the same coordinates and the coordinates of the axis to append along have to be
monotonically increasing or decreasing after appending.

Usage:

CFVariable$append(from, along)

Arguments:

from The CFVariable instance to append to this data variable.

along The name of the axis to append along. This must be a single character string and the
named axis has to be present both in this data variable and in the CFVariable instance in
argument from.

Returns: Self, invisibly, with the arrays from this data variable and from appended, in a new
private group.
Method is_coincident(): Tests if the other object is coincident with this data variable:
identical axes.

Usage:
CFVariable$is_coincident(other)

Arguments:

other A CFVariable instance to compare to this data variable.

Returns: TRUE if the data variables are coincident, FALSE otherwise.

CFVariable

Method add_cell_measure(): Add a cell measure variable to this variable.
Usage:
CFVariable$add_cell_measure(cm)
Arguments:
cm An instance of CFCellMeasure.

Returns: Self, invisibly.

Method add_auxiliary_coordinate(): Add an auxiliary coordinate to the appropriate axis of
this variable. The length of the axis must be the same as the length of the auxiliary labels.

Usage:
CFVariable$add_auxiliary_coordinate(aux, axis)

Arguments:
aux An instance of CFLabel or CFAXis.
axis An instance of CFAxis that these auxiliary coordinates are for.

Returns: Self, invisibly.

Method add_ancillary_variable(): Add an ancillary variable to this variable.

Usage:
CFVariable$add_ancillary_variable(var)

Arguments:
var An instance of CFVariable.

Returns: Self, invisibly.

Method attach_to_group(): Attach this variable to a group. If there is another object with the
same name in this group an error is thrown. For associated objects (such as axes, CRS, boundary
variables, etc), if another object with the same name is otherwise identical to the associated object
then that object will be linked from the variable, otherwise an error is thrown.

Usage:
CFVariable$attach_to_group(grp, locations = list())

Arguments:

grp An instance of CFGroup.

locations Optional. A 1ist whose named elements correspond to the names of objects asso-
ciated with this variable (but not the variable itself). Each list element has a single character
string indicating the group in the hierarchy where the object should be stored. As an exam-
ple, if the variable has axes "lon" and "lat" and they should be stored in the parent group
of grp, then specify locations =1list(lon="..", lat=".."). Locations can use ab-
solute paths or relative paths from the group. Associated objects that are not in the list will
be stored in group grp. If the argument locations is not provided, all associated objects
will be stored in this group.

Returns: Self, invisibly.

Method terra(): Convertthe datatoa terra::SpatRaster (3D)ora terra::SpatRasterDataset
(4D) object. The data will be oriented to North-up. The 3rd dimension in the data will become
layers in the resulting SpatRaster, any 4th dimension the data sets. The terra package needs to

be installed for this method to work.

CFVariable 67

Usage:
CFVariable$terra()

Returns: A terra::SpatRaster or terra: :SpatRasterDataset instance.

Method data.table(): Retrieve the data variable in the object in the form of a data. table.
The data. table package needs to be installed for this method to work.

The attributes associated with this data variable will be mostly lost. If present, attributes "long_name
and ’units’ are attached to the data. table as attributes, but all others are lost.

s

Usage:
CFVariable$data.table(var_as_column = FALSE)

Arguments:

var_as_column Logical to flag if the name of the variable should become a column (TRUE) or
be used as the name of the column with the data values (FALSE, default). Including the name
of the variable as a column is useful when multiple data. tables are merged by rows into
one.

Returns: A data.table with all data points in individual rows. All axes will become columns.

Two attributes are added: name indicates the long name of this data variable, units indicates

the physical unit of the data values.

Method write(): Write the data variable to a netCDF file, including all of its dependent objects,
such as axes and attributes.
Axes with length == 1L are written as a "scalar axis", unless they are unlimited.

Usage:
CFVariable$write(pack)

Arguments:

pack Optional. Logical to indicate if the data should be packed for a CFVariable first written
to file. Packing is only useful for numeric data; packing is not performed on integer values.
Packing is always to the "NC_SHORT" data type, i.e. 16-bits per value. If the variable has
been written before, the packing state of the variable on file will be used.

Returns: Self, invisibly.

Method save(): Save the data variable to a netCDF file, including its subordinate objects such
as axes, CRS, etc. Note that saving a data variable will create a "bare-bones" netCDF file and its
associated CFDataset.

Usage:
CFVariable$save(fn, pack = FALSE)

Arguments:
fn The name of the netCDF file to create.

pack Logical to indicate if the data should be packed. Packing is only useful for numeric data;
packing is not performed on integer values. Packing is always to the "NC_SHORT" data
type, i.e. 16-bits per value.

Returns: The newly create CFDataset, invisibly.

68

CFVariablel.3b

CFVariablel3b CF data variable for the NASA L3b format

Description

This class represents a CF data variable that provides access to data sets in NASA level-3 binned
format, used extensively for satellite imagery.

Super classes

ncdfCF: :CFObject -> ncdfCF: :CFData -> ncdfCF: :CFVariable -> CFVariablelL3b

Methods

Public methods:

e CFVariablelL3b$new()
e CFVariablelL3b$subset()

Method new(): Create an instance of this class.

Usage:
CFVariablelL3b$new(grp, units)

Arguments:
grp The group that this CF variable lives in. Must be called "/level-3_binned_data".

units Vector of two character strings with the variable name and the physical units of the data
variable in the netCDF resource.

Returns: An instance of this class.

Method subset(): This method extracts a subset of values from the data of the variable, with
the range along both axes expressed in decimal degrees.

Usage:
CFVariablel3b$subset(..., rightmost.closed = FALSE)

Arguments:

. One or more arguments of the form axis = range. The "axis" part should be the name of
axis longitude or latitude or its orientation X or Y. The "range" part is a vector of values
representing coordinates along the axis where to extract data. Axis designators and names
are case-sensitive and can be specified in any order. If values for the range of an axis fall
outside of the extent of the axis, the range is clipped to the extent of the axis.

rightmost.closed Single logical value to indicate if the upper boundary of range in each axis
should be included.

Details: The range of values along both axes of latitude and longitude is expressed in deci-
mal degrees. Any axes for which no information is provided in the subset argument are ex-
tracted in whole. Values can be specified in a variety of ways that should (resolve to) be a
vector of real values. A range (e.g. 100:200), a vector (c(23, 46, 3, 45, 17), a sequence
(seq(from = 78, to = 100, by = 2), all work. Note, however, that only a single range is

CFVerticalParametric Term 69

generated from the vector so these examples resolve to (100, 200), (3, 46), and (78, 100),
respectively.

If the range of values for an axis in argument subset extend the valid range of the axis in X,
the extracted slab will start at the beginning for smaller values and extend to the end for larger
values. If the values envelope the valid range the entire axis will be extracted in the result. If the
range of subset values for any axis are all either smaller or larger than the valid range of the
axis in x then nothing is extracted and NULL is returned.

The extracted data has the same dimensional structure as the data in the variable, with degenerate
dimensions dropped. The order of the axes in argument subset does not reorder the axes in the
result; use the CFVariable$array() method for this.

Returns: A CFVariable instance, having an array with axes and attributes of the variable, or
NULL if one or more of the elements in the ... argument falls entirely outside of the range of
the axis. Note that degenerate dimensions (having length(.) == 1) are dropped from the array
but the corresponding axis is maintained in the result as a scalar axis.

References

https://oceancolor.gsfc.nasa.gov/resources/docs/technical/ocean_level-3_binned_data_products.pdf

CFVerticalParametricTerm
Parametric formula term for a vertical CF axis object

Description

This class represents a formula term for a parametric vertical axis.

Super classes

ncdfCF: :CFObject ->ncdfCF: :CFData ->ncdfCF: :CFVariable -> CFVerticalParametricTerm

Active bindings
has_data Logical flag that indicates of the instance has an associated data variable. If not, the
instance will report @ as its data.

values (read-only) The values of the parametric term. Depending on the definition of the term,
this could be a large array or a simple scalar. Specifically, if the term is defined but no data is
included in the netCDF resource, this method will return @, as per the CF Metadata Conven-
tions.

Methods
Public methods:

e CFVerticalParametricTerm$new()
e CFVerticalParametricTerm$print()
e CFVerticalParametricTerm$subset()

70 CF VerticalParametricTerm

Method new(): Create an instance of this class.

Usage:
CFVerticalParametricTerm$new(
var,
axes,
values = values,
start = NA,
count = NA,
attributes = data.frame()
)
Arguments:

var The NCVariable instance upon which this CF variable is based when read from a netCDF
resource, or the name for the new CF variable to be created.

axes A list of CFAxis descendant instances that describe the axes of the data object.

values Optional. The values of the variable in an array.

start Optional. Vector of indices where to start reading data along the dimensions of the
array on file. The vector must be NA to read all data, otherwise it must have agree with the
dimensions of the array on file. Ignored when argument var is not an NCVariable instance.

count Optional. Vector of number of elements to read along each dimension of the array on
file. The vector must be NA to read to the end of each dimension, otherwise its value must
agree with the corresponding start value and the dimension of the array on file. Ignored
when argument var is not an NCVariable instance.

attributes Optional. A data.frame with the attributes of the object. When argument var is
an NCVariable instance and this argument is an empty data.frame (default), arguments
will be read from the resource.

Returns: An instance of this class.

Method print(): Prints a summary of the parametric formula term to the console.

Usage:
CFVerticalParametricTerm$print(...)
Arguments:
. Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Returns: self, invisibly.

Method subset(): Subset the indices to read a smaller portion of the data from the netCDF file.
The passed indices should be named after the axes that they refer to. There may be more indices
than axes and they may be in a different order than the axes of the term.
Usage:
CFVerticalParametricTerm$subset(
original_axis_names,
new_axes,
start,
count,
aux = NULL,
ZT_dim = NULL

create_ncdf 71

Arguments:

original_axis_names Character vector of names of the axes prior to a modifying operation
in the owning data variable.
new_axes List of CFAxis instances to use for the subsetting.

start The indices to start reading data from the file, as an integer vector at least as long as the
number of axis for the term.

count The number of values to read from the file, as an integer vector at least as long as the
number of axis for the term.

aux Optional. List with the parameters for an auxiliary grid transformation. Default is NULL.
ZT_dim Optional. Dimensions of the non-grid axes when an auxiliary grid transformation is
specified.

Returns: The new parametric term object.

create_ncdf Create a new data set

Description

This function creates a new, empty data set in memory. You can add groups, data variables and
attributes to this data set as appropriate. The data set can be saved with CFDataset$save(), if so
desired.

Usage

create_ncdf ()

dim.AOI The dimensions of the grid of an AOI

Description

This method returns the dimensions of the grid that would be created for the AOIL

Usage
S3 method for class 'AOI'
dim(x)

Arguments

X An instance of the AOI class.

Value

A vector of two values giving the longitude and latitude dimensions of the grid that would be created
for the AOL

72 geom_ncdf

Examples

a <- aoi(30, 40, 10, 30, 0.1)
dim(a)

dim.CFAxis Axis length

Description

This method returns the lengths of the axes of a variable or axis.

Usage
S3 method for class 'CFAxis'
dim(x)

Arguments

X A CFVariable instance or a descendant of CFAxis.

Value

For a CFVariable instance in argument x, a named vector of axis lengths, excluding any scalar
axes. For a CFAxis descendant instance in argument x, the length of the axis.

Examples

fn <- system.file("extdata”, "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
ds <- open_ncdf(fn)

t2m <- ds[["t2m"]]

dim(t2m)

dim(t2m$axes[["time"]])

geom_ncdf Create a plot object for a CFVariable

Description

This is a basic function to support plotting of ncdfCF data with the ggplot2 package. Specifically,
this function creates a geo_ncdf object which can be used like a geom_raster. The geom_ncdf
takes a CFVariable instance as its data. The CFVariable should be properly pre-processed to
make it suitable for plotting. The $subset () method is well suited for this task. Note that currently
only map plotting works, e.g. the CFVariable should have X and Y axes.

Usage

geom_ncdf (mapping = NULL, data, ...)

groups

Arguments

mapping

data

Value

73

As in geom_raster. If the argument is not provided, a mapping is constructed
from the properties of the data argument, which is usually the right way.

A CFVariable instance. This will override any data setting of the ggplot()
function.

Arguments passed on to geom_raster().

A geom_* object that can be used in ggplot2 plot composition.

Examples

library(ggplot2)

fn <- system.file("extdata”, "tasmax_NAM-44_day_20410701-vncdfCF.nc", package = "ncdfCF")
ds <- open_ncdf(fn)

tasmax <- ds[["tasmax"]]

ggplot() + geom_ncdf(data = tasmax) + coord_equal() + scale_fill_viridis_c()

groups

List the groups in the CF object, recursively.

Description

List the groups in the CF object, recursively.

Usage

groups(x)

S3 method for class 'CFDataset'

groups(x)

Arguments

X

Value

A CFDataset instance.

A character vector with group names in the object.

Examples

fn <- system.file("extdata”, "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
ds <- open_ncdf(fn)

groups(ds)

74 makeAxis

makeAxis Create an axis

Description

With this method you can create an axis to use with new CFVariable instances. Depending on the
orientation argument and the type of the values argument an instance of a class descending from
CFAxis will be returned.

Usage

makeAxis(
name,
orientation,
values,
bounds = NULL,
attributes = data.frame(),

group = NULL
)
Arguments
name Name of the axis.
orientation The orientation of the axis. Must be one of "X", "Y", "Z", or "T" for longitude,
latitude, height or depth, and time axes, respectively. For any other axis, indicate
an empty string ""
values The coordinate values. In the case of an axis with orientation = "T" this must
be a CFTime or CFClimatology instance.
bounds The boundary values of the coordinates, or NULL if not available.
attributes data. frame with the attributes of the axis to create. Depending on which axis
is created one or more attributes may be added or amended.
group CFGroup instance where the axis will be located. If NULL (default), a private
group will be created for the axis.
Details

There are several restrictions on the combination of orientation and values arguments. Lon-
gitude, latitude and depth axes (orientation of "X", "Y" or "Z") must have numeric values.
For a time axis (orientation of "T") the values argument must be an instance of CFTime or
CFClimatology.

Value

An instance of a class descending from CFAXis.

makeCharacterAxis 75

See Also

makelLongitudeAxis(), makeLatitudeAxis(), makeTimeAxis(), makeDiscreteAxis()

makeCharacterAxis Create a character axis

Description

With this method you can create a character axis to use with new CFVariable instances.

Usage

makeCharacterAxis(name, values, attributes = data.frame(), group = NULL)

Arguments
name Name of the axis.
values The character coordinate values of the axis.
attributes data. frame with the attributes of the axis to create.
group CFGroup instance where the axis will be located. If NULL (default), a private
group will be created for the axis.
Value

A CFAxisCharacter instance.

makeDiscreteAxis Create a discrete axis

Description

With this method you can create a discrete axis to use with new CFVariable instances.

Usage

makeDiscreteAxis(name, length, group = NULL)

Arguments
name Name of the axis.
length The length of the axis.
group CFGroup instance where the axis will be located. If NULL (default), a private
group will be created for the axis.
Value

A CFAxisDiscrete instance. The values will be a sequence of size length.

76 makeLongitudeAxis

makelLatitudeAxis Create a latitude axis

Description

With this method you can create a latitude axis to use with new CFVariable instances.

Usage

makeLatitudeAxis(
name,
values,
bounds = NULL,
attributes = data.frame(),

group = NULL
)
Arguments
name Name of the axis.
values The coordinate values.
bounds The bounds of the coordinate values, or NULL if not available.
attributes data. frame with the attributes of the axis to create. Attributes "standard_name",
"units", "actual_range" and "axis" will be set or updated.
group CFGroup instance where the axis will be located. If NULL (default), a private
group will be created for the axis.
Value

A CFAxisLatitude instance.

makeLongitudeAxis Create a longitude axis

Description

With this method you can create a longitude axis to use with new CFVariable instances.

Usage

makeLongitudeAxis(
name,
values,
bounds = NULL,
attributes = data.frame(),
group = NULL

makeTimeAxis

Arguments

name
values
bounds

attributes

group

Value

77

Name of the axis.
The coordinate values.
The bounds of the coordinate values, or NULL if not available.

data. frame with the attributes of the axis to create. Attributes "standard_name",

non

"units", "actual_range" and "axis" will be set or updated.

CFGroup instance where the axis will be located. If NULL (default), a private
group will be created for the axis.

A CFAxisLongitude instance.

makeTimeAxis

Create a time axis

Description

With this method you can create a time axis to use with new CFVariable instances.

Usage

makeTimeAxis(name, values, attributes = data.frame(), group = NULL)

Arguments

name

values

attributes

group

Value

Name of the axis.

A CFTime or CFClimatology instance with time values and optionally bounds
set.

data. frame with the attributes of the axis to create. Attributes "standard_name",

non non

"units", "calendar”, "actual_range" and "axis" will be set or updated.

CFGroup instance where the axis will be located. If NULL (default), a private
group will be created for the axis.

A CFAxisTime instance.

78 names.CFDataset

makeVerticalAxis Create a vertical axis

Description

With this method you can create a vertical axis to use with new CFVariable instances. Note that you
should set the "positive" attribute after creating the axis to indicate if values are increasing going
upwards (positive = "up") or downwards (positive = "down").

Usage

makeVerticalAxis(
name,
values,
bounds = NULL,
attributes = data.frame(),

group = NULL
)
Arguments
name Name of the axis.
values The coordinate values.
bounds The bounds of the coordinate values, or NULL if not available.
attributes data.frame with the attributes of the axis to create. Attributes "actual_range"
and "axis" will be set or updated.
group CFGroup instance where the axis will be located. If NULL (default), a private
group will be created for the axis.
Value

A CFAxis Vertical instance.

names.CFDataset Names or axis values of an CF object

Description

Retrieve the variable or axis names of an ncdfCF object. The names() function gives the names
of the variables in the data set, preceded by the path to the group if the resource uses groups. The
return value of the dimnames () function differs depending on the type of object:

e CFDataset, CFVariable: The dimnames are returned as a vector of the names of the axes of
the data set or variable, preceded with the path to the group if the resource uses groups. Note
that this differs markedly from the base: :dimnames() functionality.

names.CFDataset 79

e CFAxisNumeric, CFAxisLongitude, CFAxisLatitude, CFAxisVertical: The coordinate
values along the axis as a numeric vector.

* CFAxisTime: The coordinate values along the axis as a character vector containing timestamps
in ISO8601 format. This could be dates or date-times if time information is available in the
axis.

* CFAxisCharacter: The coordinate values along the axis as a character vector.

* CFAxisDiscrete: The index values of the axis, either along the entire axis, or a portion
thereof.

Usage
S3 method for class 'CFDataset'
names(x)
Arguments
X An CFObject whose axis names to retrieve. This could be CFDataset, CFVariable,
or a class descending from CFAxis.
Value

A vector as described in the Description section.

Examples

fn <- system.file("extdata”,
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

ds <- open_ncdf(fn)

Names of data variables
names (ds)

CFDataset
dimnames(ds)

CFVariable
pr <- ds[["pr"]1]
dimnames(pr)

CFAxisNumeric
lon <- ds[["lon"]]
dimnames(lon)

CFAxisTime
t <- ds[["time"]]
dimnames(t)

80 NCDimension

NCDimension NetCDF dimension object

Description

This class represents an netCDF dimension. It contains the information on a dimension that is stored
in an netCDF file. Consequently, the properties of this class are all read-only. The length of the
dimension may change if data is written to an unlimited dimension, but that is managed internally.

This class is not very useful for interactive use. Use the CFAxis descendent classes instead.

Super class

ncdfCF: :NCObject -> NCDimension

Active bindings
length (read-only) The length of the dimension. If field unlim = TRUE, this field indicates the
length of the data in this dimension written to file.

unlim (read-only) Logical flag to indicate if the dimension is unlimited, i.e. that additional data
may be written to file incrementing this dimension.

Methods

Public methods:
¢ NCDimension$new()
* NCDimension$print()
e NCDimension$write()
e NCDimension$clone()

Method new(): Create a new netCDF dimension. This class should not be instantiated directly,
create CF objects instead. This class is instantiated when opening a netCDF resource.

Usage:

NCDimension$new(id, name, length = 1L, unlim = FALSE, group)

Arguments:

id Numeric identifier of the netCDF dimension.

name Character string with the name of the netCDF dimension.

length Length of the dimension. Default is 1.

unlim Is the dimension unlimited? Default is FALSE.

group The NC group where the dimension is located.

Returns: A NCDimension instance.

Method print(): Summary of the NC dimension printed to the console.

Usage:
NCDimension$print(...)

NCGroup 81

Arguments:

. Passed on to other methods.

Method write(): Write the dimension to a netCDF file.

Usage:
NCDimension$write(h)

Arguments:
h The handle to the netCDF file to write.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NCDimension$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

NCGroup NetCDF group

Description

This class represents a netCDF group, the object that holds elements like dimensions and variables
of a netCDF file.

Direct access to groups is usually not necessary. The principal objects of interest, CF data variables
and axes, are accessible via CFGroup. Changing the properties of a netCDF group other than its
name may very well invalidate the CF objects or even the netCDF file.

Super class

ncdfCF: :NCObject -> NCGroup

Public fields
parent Parent group of this group, the owning CFDataset for the root group.
subgroups List of child NCGroup instances of this group.
NCvars List of netCDF variables that are located in this group.
NCdims List of netCDF dimensions that are located in this group.

NCudts List of netCDF user-defined types that are located in this group.

82 NCGroup

Active bindings

friendlyClassName (read-only) A nice description of the class.

resource (read-only) The RNetCDF object to the underlying netCDF resource.

handle (read-only) Get the handle to the netCDF resource for the group

can_write (read-only) Is the resource writable?

name Set or retrieve the name of the group. Note that the name is always relative to the location in

the hierarchy that the group is in and it should thus not be qualified by backslashes. The name
has to be a valid CF name. The name of the root group cannot be changed.

fullname (read-only) The fully qualified absolute path of the group.
root (read-only) Retrieve the root group.

CF Set or retrieve the CFGroup that is associated with this NC group.

Methods

Public methods:

* NCGroup$new()

* NCGroup$print()

* NCGroup$find_by_name()
* NCGroup$find_dim_by_id()
* NCGroup$has_name()

* NCGroup$set_name()

* NCGroup$unused()

* NCGroup$create_group()
* NCGroup$append()

* NCGroup$fullnames()

* NCGroup$dimensions()

* NCGroup$clone()

Method new(): Create a new instance of this class.
Usage:
NCGroup$new(id, name, attributes = data.frame(), parent, resource)
Arguments:

id The identifier of the group. If NA, the new group will be created in the netCDF resource,
unless argument parent == NULL, i.e. the root group which already exists.

name The name of the group.
attributes Optional, a data. frame with group attributes.

parent The parent group of this group. If NULL then argument resource must be a valid
instance of NCResource.

resource Optional. Reference to the NCResource instance that provides access to the netCDF
resource.

Returns: An instance of this class.

Method print(): Summary of the group printed to the console.

NCGroup 83

Usage:
NCGroup$print(stand_alone = TRUE, ...)
Arguments:

stand_alone Logical to indicate if the group should be printed as an object separate from other
objects (TRUE, default), or print as part of an enclosing object (FALSE).

. Passed on to other methods.

Method find_by_name(): Find an object by its name. Given the name of an object, possibly
preceded by an absolute or relative group path, return the object to the caller. Usually this method

is called programmatically.
Usage:
NCGroup$find_by_name(name)

Arguments:
name The name of an object, with an optional absolute or relative group path from the calling
group. The object must be an NC group, dimension or variable.

Returns: The object with the provided name. If the object is not found, returns NULL.

Method find_dim_by_id(): Find an NC dimension object by its id. Given the id of a dimen-
sion, return the NCDimension object to the caller. The dimension has to be found in the current

group or any of its parents.

Usage:
NCGroup$find_dim_by_id(id)

Arguments:

id The id of the dimension.

Returns: The NCDimension object with an identifier equal to the id argument. If the object is
not found, returns NULL.

Method has_name(): Has a given name been defined in this group already?

Usage:
NCGroup$has_name (name)

Arguments:
name Character string. The name will be searched for, regardless of case.

Returns: TRUE if name is present in the group, FALSE otherwise.
Method set_name(): Change the name of the NC group. The new name must be valid and
should not duplicate a sibling group.

Usage:
NCGroup$set_name(new_name)

Arguments:

new_name The new name for the NC group.

Returns: Self, invisibly.

84

NCGroup

Method unused(): Find NC variables that are not referenced by CF objects. For debugging
purposes only.

Usage:

NCGroup$unused ()

Returns: List of NCVariable.

Method create_group(): Create a new group as a sub-group of the current group. This writes
the new group to the netCDF resource, but only if it is open for writing.

Usage:
NCGroup$create_group(CFgroup)

Arguments:
CFgroup The CFGroup associated with this NC group.

Returns: The newly created group as a NCGroup instance, invisibly.

Method append(): Append an object to this group.
Usage:
NCGroup$append(obj)
Arguments:

obj The object to append. This must be an NCVariable or NCDimension instance. Any other
type of object will generate a warning.

Returns: Self, invisible.

Method fullnames(): This method lists the fully qualified name of this group, optionally
including names in subgroups.

Usage:
NCGroup$fullnames(recursive = TRUE)

Arguments:
recursive Should subgroups be scanned for names too (default is TRUE)?

Returns: A character vector with group names.

Method dimensions(): List all the dimensions that are visible from this group, possibly includ-
ing those that are defined in parent groups (by names not defined by any of their child groups in
direct lineage to the current group).

Usage:

NCGroup$dimensions(scope = "all")

Arguments:

scope Character string that indicates if only dimensions in the current group should be reported

(local) or visible dimensions in parent groups as well (all, default).

Returns: A vector of NCDimension objects.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NCGroup$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

NCObject 85

NCObject NetCDF base object

Description

This class is a basic ancestor to all classes that represent netCDF objects, specifically groups, di-
mensions, variables and the user-defined types in a netCDF file. More useful classes use this class
as ancestor.

The fields in this class are common among all netCDF objects. In addition, this class manages the
attributes for its descendent classes.

Active bindings

id (read-only) Retrieve the identifier of the netCDF object.

name Set or retrieve the name of the NC object. The netCDF file must be open for writing to change
the name.

attributes (read-only) Read the attributes of the object. When there are no attributes, an empty
data. frame will be returned.

CF Register CF object that uses this netCDF object, or retrieve the list of registered CF objects.

Methods

Public methods:
¢ NCObject$new()
* NCObject$print_attributes()
e NCObject$attribute()
* NCObject$write_attributes()
* NCObject$clone()

Method new(): Create a new netCDF object. This class should not be instantiated directly,
create descendant objects instead.

Usage:

NCObject$new(id, name, attributes = data.frame())
Arguments:

id Numeric identifier of the netCDF object.

name Character string with the name of the netCDF object.
attributes Optional, data. frame with attributes of the object.

Method print_attributes(): This function prints the attributes of the netCDF object to the
console.

Usage:
NCObject$print_attributes(width = 50L)

Arguments:

86 NCResource

width The maximum width of each column in the data. frame when printed to the console.

Method attribute(): Retrieve an attribute of a NC object.

Usage:

NCObject$attribute(att, field = "value"”)

Arguments:

att Single character string of attribute to return.

field The field of the attribute to return values from. This must be "value" (default) or "type".
Returns: 1If the field argument is "type", a character string. If field is "value", a single value

of the type of the attribute, or a vector when the attribute has multiple values. If no attribute is
named with a value of argument att NA is returned.

Method write_attributes(): Write the attributes of this object to a netCDF file. This will
retain existing attributes, update modified attributes, and delete and add missing attributes from
the passed in argument.

Usage:
NCObject$write_attributes(nm, new_atts)

Arguments:
nm The NC variable name or "NC_GLOBAL" to write the attributes to.
new_atts The attributes to write.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NCObject$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

NCResource NetCDF resource object

Description

This class contains the connection details to a netCDF resource.

There is a single instance of this class for every netCDF resource, owned by the CFDataset instance.
The instance is shared by other objects, specifically NCGroup instances, for access to the underlying
resource for reading of data.

This class should never have to be accessed directly. All access is handled by higher-level methods.

Public fields

error Error message, or empty string.

NCResource 87

Active bindings
friendlyClassName (read-only) A nice description of the class.

handle (read-only) The handle to the netCDF resource.

uri (read-only) The URI of the netCDF resource, either a local filename or the location of an online
resource.

can_write (read-only) Is the resource writable?

Methods

Public methods:

¢ NCResource$new()

* NCResource$print()

¢ NCResource$create()

* NCResource$close()

* NCResource$sync()

* NCResource$group_handle()
¢ NCResource$clone()

Method new(): Create a connection to a netCDF resource. This is called by open_ncdf () when
opening a netCDF resource or when saving a dataset to file. You should never have to call this
directly.

Usage:
NCResource$new(uri, write)

Arguments:
uri The URI to the netCDF resource.
write Logical flag to indicate if the resource should be read-write.

Returns: An instance of this class.

Method print(): Print a summary of the netCDF resource to the console.

Usage:
NCResource$print()

Returns: Self, invisibly.

Method create(): Create a new file on disk for the netCDF resource.

Usage:
NCResource$create()

Returns: Self, invisibly.
Method close(): Closing an open netCDF resource. It should rarely be necessary to call this
method directly.

Usage:
NCResource$close()

88

NCVariable

Method sync(): Write any buffered data to the netCDF resource.
Usage:
NCResource$sync()
Method group_handle(): Every group in a netCDF file has its own handle, with the "root"

group having the handle for the entire netCDF resource. The handle returned by this method is
valid only for the named group.

Usage:
NCResource$group_handle(group_name)

Arguments:
group_name The absolute path to the group.

Returns: The handle to the group.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NCResource$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

NCVariable NetCDF variable

Description

This class represents a netCDF variable, the object that holds the properties and data of elements
like dimensions and variables of a netCDF file.

Direct access to netCDF variables is usually not necessary. NetCDF variables are linked from CF
data variables and axes and all relevant properties are thus made accessible.

Super class

ncdfCF: :NCObject -> NCVariable

Active bindings

group (read-only) NetCDF group where this variable is located.
handle (read-only) Get the handle to the netCDF resource for the variable.

vtype (read-only) The netCDF data type of this variable. This could be the packed type. Don’t
check this field but use the appropriate method in the class of the object whose data type you
are looking for.

ndims (read-only) Number of dimensions that this variable uses.

dimids (read-only) Vector of dimension identifiers that this NCVariable uses.

netcdf4 (read-only) Additional properties for a netcdf4 resource.

CF Register CF objects that use this netCDF variable, or retrieve the list of registered CF objects.
fullname (read-only) Name of this netCDF variable including the group path from the root group.
is_packed (read-only) Flag that indicates if the data on file is packed.

NCVariable 89

Methods

Public methods:

e NCVariable$new()

e NCVariable$print()

¢ NCVariable$shard()

* NCVariable$detach()

* NCVariable$get_data()

* NCVariable$write_data()
* NCVariable$set_name()

* NCVariable$dimension()
* NCVariable$dim()

* NCVariable$clone()

Method new(): Create a new netCDF variable. This class should not be instantiated directly,
they are created automatically when opening a netCDF resource.
Usage:
NCVariable$new(
id,
name,
group,
vtype,
dimids,
attributes = data.frame(),
netcdf4 = list()
)
Arguments:
id Numeric identifier of the netCDF object.
name Character string with the name of the netCDF object.
group The NCGroup this variable is located in.
vtype The netCDF data type of the variable.
dimids The identifiers of the dimensions this variable uses.
attributes Optional, data. frame with the attributes of the object.
netcdf4 Optional, netcdf4-specific arguments in the format of RNetCDF.

Returns: An instance of this class.

Method print(): Summary of the NC variable printed to the console.
Usage:
NCVariable$print(...)
Arguments:

. Passed on to other methods.

Method shard(): Very concise information on the variable. The information returned by this
function is very concise and most useful when combined with similar information from other
variables.

NCVariable

Usage:
NCVariable$shard()

Returns: Character string with very basic variable information.

Method detach(): Detach the passed object from this NC variable.

Usage:
NCVariable$detach(obj)

Arguments:
obj The CFObject instance to detach from this NC variable.

Returns: obj, invisibly.

Method get_data(): Read (a chunk of) data from the netCDF file. Degenerate dimensions are
maintained and data is always returned in its smallest type.

Usage:
NCVariable$get_data(start = NA, count = NA)

Arguments:
start A vector of indices specifying the element where reading starts along each dimension of
the data. When NA, all data are read from the start of the array.

count An integer vector specifying the number of values to read along each dimension of the
data. Any NA value in vector count indicates that the corresponding dimension should be
read from the start index to the end of the dimension.

Returns: An array, matrix or vector with the requested data, or an error object.

Method write_data(): Write (a chunk of) data to the netCDF file.

Usage:
NCVariable$write_data(d, start = NA, count = NA, ...)

Arguments:

d The data to write. This must have appropriate dimensions.

start A vector of indices specifying the element where writing starts along each dimension of
the data. When NA, all data are written from the start of the array.

count An integer vector specifying the number of values to write along each dimension of the
data. Any NA value in vector count indicates that the corresponding dimension should be
written from the start index to the end of the dimension.

. Other parameters passed on to RNetCDF: :var.put.nc().
Returns: Self, invisibly.

Method set_name(): Change the name of the NC variable. The new name must be valid in the
indicated group, it can not already exist in the group. The netCDF file must be open for writing to

change the name.
Usage:
NCVariable$set_name(new_name)

Arguments:
new_name The new name for the NC variable

open_ncdf 91

Returns: Self, invisibly.

Method dimension(): Get the NCDimension object(s) that this variable uses.
Usage:
NCVariable$dimension(id)
Arguments:
id The index of the dimension. If missing, all dimensions of this variable are returned.

Returns: A NCDimension object or a list thereof. If no NCDimensions were found, return NULL.

Method dim(): The lengths of the data dimensions of this object.
Usage:
NCVariable$dim(dimension)
Arguments:
dimension Optional. The index of the dimension to retrieve the length for. If omitted, retrieve
the lengths of all dimensions.
Method clone(): The objects of this class are cloneable with this method.
Usage:
NCVariable$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

open_ncdf Open a netCDF resource

Description

This function will read the metadata of a netCDF resource and interpret the netCDF dimensions,
variables and attributes to generate the corresponding CF objects. The data for the CF variables is
not read, please see CFVariable for methods to read the variable data.

Usage

open_ncdf(resource, write = FALSE)

Arguments
resource The name of the netCDF resource to open, either a local file name or a remote
URL
write TRUE if the file is to be opened for writing, FALSE (default) for read-only access.
Ignored for online resources, which are always opened for read-only access.
Value

An CFDataset instance, or an error if the resource was not found or errored upon reading.

92 Ops.CFVariable

Examples

fn <- system.file("extdata”,
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

(ds <- open_ncdf(fn))

Ops.CFVariable Operations on CFVariable objects

Description

Basic arithmetic, mathematical and logical operations can be applied on the data of CFVariable
objects having a suitable data type, specifically the base R functions from the Ops and Math groups
of the S3 groupGeneric functions.

Usage

S3 method for class 'CFVariable'
Ops(el, e2)

S3 method for class 'CFVariable'

Math(x, ...)
Arguments
el, e2 CFVariable objects, or a single numeric value.
X A CFVariable object.
Additional arguments passed on to the math functions.
Details

The functions always return a new CFVariable object. Functions can thus be concatenated to create
more complex expressions. The data type of the new object is determined by the base R function;
its name is concatenated from the names in the argument object(s). The result will be assigned to a
private group and is thus completely disjoint from other CF objects.

For the Ops functions with two arguments, if both arguments are a CFVariable object they have to
be compatible: same shape, axis coordinate values and coordinate reference system. The resulting
CFVariable object will use the same axes as the CFVariable object(s) used as argument.

The attributes of the resulting CFVariable object should be updated to reflect its contents, in par-

ticular the "name", "long_name", "standard_name" and "units" attributes. Attributes are not copied
over from the CFVariable objects in the arguments.

peek_ncdf 93

Value

A new CFVariable object. The object will have the same coordinate space as the CFVariable
object used as argument. Arguments are not copied and the new object will only have the "ac-
tual_range" attribute set.

Results that are logical (see the examples) are stored using the NC_SHORT data type because netCDF
does not have a native logical data type.

Examples

fn <- system.file("extdata”, "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
ds <- open_ncdf(fn)

Temperature data in K
t2m <- ds[["t2m"]]

Convert to degrees_Celsius

t2mC <- t2m - 273.15

t2mC$name <- "t2m_Celsius”

t2mC$set_attribute("units”, "NC_CHAR", "degrees_Celsius")
t2mC

hot <- t2mC > 20

hot$name <- "t2m_Celsius_over_20"

hot$set_attribute(”long_name”, "NC_CHAR", "Flag to indicate where temperature is 20C or hotter")
hot$set_attribute("units”, "NC_CHAR", "1")

hot

peek_ncdf Examine a netCDF resource

Description
This function will read a netCDF resource and return a list of identifying information, including
data variables, axes and global attributes. Upon returning the netCDF resource is closed.

Usage

peek_ncdf (resource)

Arguments
resource The name of the netCDF resource to open, either a local file name or a remote
URL
Details

If you find that you need other information to be included in the result, open an issue.

https://github.com/R-CF/ncdfCF/issues

94

[.CFVariable

Value

non

A list with elements "variables", "axes" and global "attributes”, each a data. frame.

Examples

fn <- system.file("extdata”,
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

peek_ncdf (fn)

[.CFvariable Extract data for a variable

Description

Extract data from a CFVariable instance, optionally sub-setting the axes to load only data of inter-
est.

Usage
S3 method for class 'CFVariable'
x[i, j, ..., drop = FALSE]
Arguments
X An CFVariable instance to extract the data of.
i, g, ... Expressions, one for each axis of x, that select a number of elements along each

axis. If any expressions are missing, the entire axis is extracted. The values
for the arguments may be an integer vector or a function that returns an integer
vector. The range of the values in the vector will be used. See examples, below.

drop Logical, ignored. Axes are never dropped. Any degenerate dimensions of the
array are returned as such, with dimnames and appropriate attributes set.

Details

If all the data of the variable in x is to be extracted, simply use [] (unlike with regular arrays, this
is required, otherwise the details of the variable are printed on the console).

The indices into the axes to be subset can be specified in a variety of ways; in practice it should (re-
solve to) be a vector of integers. A range (e.g. 100:200), an explicit vector (c(23, 46, 3, 45, 17),
a sequence (seq(from = 78, to = 100, by = 2), all work. Note, however, that only a single range
is generated from the vector so these examples resolve to 100: 200, 3:46, and 78: 100, respectively.
It is also possible to use a custom function as an argument.

This method works with "bare" indices into the axes of the array. If you want to use domain
values of the axes (e.g. longitude values or timestamps) to extract part of the variable array, use the
CFVariable$subset () method.

Scalar axes should not be included in the indexing as they do not represent a dimension into the
data array.

[.CFVariableL3b 95

Value

An array with dimnames and other attributes set.

Examples

fn <- system.file("extdata”,
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

ds <- open_ncdf(fn)

pr <- ds[["pr"]]

How are the dimensions organized?
dimnames(pr)

Precipitation data for March for a single location
x <= pr[5, 12, 61:91]
str(x)

Summer precipitation over the full spatial extent
summer <- pr[, , 173:263]
str(summer)

[.CFVariablelL3b Extract data for a variable

Description

Extract data from a CFVariablel 3b instance, optionally sub-setting the axes to load only data of

interest.
Usage
S3 method for class 'CFVariablelL3b'
x[i, j, ..., drop = FALSE]
Arguments
X An CFVariablel 3b instance to extract the data of.
i, g, ... Expressions, one for each of the two axes of x, that select a number of elements
along each axis. i is for the longitude axis, j for the latitude axis, . . . (additional

named arguments) is invalid as there are only two axes to subset from. If either
expression is missing, the entire axis is extracted. The values for the arguments
may be an integer vector or a function that returns an integer vector. The range
of the values in the vector will be used. See examples, below.

drop Logical, ignored. Axes are never dropped. Any degenerate dimensions of the
array are returned as such, with dimnames and appropriate attributes set.

96 [[.CEDataset

Details

If all the data of the variable in x is to be extracted, simply use [] (unlike with regular arrays, this
is required, otherwise the details of the variable are printed on the console).

The indices into the axes to be subset can be specified in a variety of ways; in practice it should (re-
solve to) be a vector of integers. A range (e.g. 100:200), an explicit vector (c(23, 46, 3, 45, 17),
a sequence (seq(from = 78, to = 100, by = 2), all work. Note, however, that only a single range
is generated from the vector so these examples resolve to 100: 200, 3:46, and 78: 100, respectively.
It is also possible to use a custom function as an argument.

This method works with "bare" indices into the axes of the array. If you want to use domain
values of the axes (e.g. longitude values or timestamps) to extract part of the variable array, use the
CFVariablel3b$subset () method.

Scalar axes should not be included in the indexing as they do not represent a dimension into the
data array.

Value

An array with dimnames and other attributes set.

Examples

fn <- system.file("extdata”,
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

ds <- open_ncdf(fn)

pr <- ds[["pr"1]

How are the dimensions organized?
dimnames(pr)

Precipitation data for March for a single location
x <- pr[5, 12, 61:91]
str(x)

Summer precipitation over the full spatial extent
summer <- pr[, , 173:263]
str(summer)

[[.CFDataset Get a CF object from a data set

Description

This method can be used to retrieve a variable or axis from the data set by name.

Usage

S3 method for class 'CFDataset'
x[[i]1]

[[.CFDataset 97

Arguments
X An CFDataset to extract a variable or axis from.
i The name of a variable or axis in x. If data set x has groups, i should be an
absolute path to the object to retrieve.
Details

If the data set has groups, the name i of the variable or axis should be fully qualified with the path to
the group where the object is located. This fully qualified name can be retrieved with the names ()
and dimnames () functions, respectively.

Value

An instance of CFVariable or an CFAxis descendant class, or NULL if the name is not found.

Examples

fn <- system.file("”extdata”, "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
ds <- open_ncdf(fn)

vl <- ds$var_names[1]

var <- ds[[v1]1]

var

Index

[.CFVariable, 94

[.CFVariablel3b, 95
[[,CFDataset-method ([[.CFDataset), 96
[[.CFDataset, 96

aoi, 3
as_CF, 4

bracket_select ([.CFVariable), 94
bracket_select_13b ([.CFVariablelL3b), 95

CFAuxiliarylLonglat, 3,5

CFAxis, 5, 8, 8, 38, 59, 61, 66, 70, 74, 80

CFAxisCharacter, 5, 13, 52,75

CFAxisDiscrete, 5, 16, 75

CFAxisLatitude, 19, 76

CFAxisLongitude, 21, 77

CFAxisNumeric, 5, 24

CFAxisTime, 5, 27,62, 77

CFAxisVertical, 9, 31, 78

CFBounds, 6, 8, 35

CFCellMeasure, 38, 59, 66

CFData, 40

CFDataset, 4, 5,41, 48, 67, 86

CFGridMapping, 46, 59

CFGroup, 7, 10, 12-23, 25-30, 32-34, 36, 37
40, 45,47, 48, 52-55, 61, 66, 74-78,
81, 82, 84

CFLabel, 8, 13, 52, 66

CFObject, 50, 54

CFStandardNames, 58

CFvariable, 4-6, 31, 39, 40, 45, 51, 55, 59,
66, 69, 73-78, 91, 92

CFVariable$subset(), 4

CFVariablelL3b, 68

CFVerticalParametricTerm, 69

create_ncdf, 71

create_ncdf (), 41, 42

dim.AOI, 71

98

dim.CFAxis, 72
dimnames (names.CFDataset), 78
dimnames(), 97

geom_ncdf, 72
geom_raster, 73
groupGeneric, 92
groups, 73

makeAxis, 74
makeAxis(), 9, 24
makeCharacterAxis, 75
makeCharacterAxis(), 14
makeDiscreteAxis, 75
makeDiscreteAxis(), 17,75
makelLatitudeAxis, 76
makelLatitudeAxis(), 19, 75
makelLongitudeAxis, 76
makelLongitudeAxis(), 22, 75
makeTimeAxis, 77
makeTimeAxis(), 28, 75
makeVerticalAxis, 78
Math.CFVariable (Ops.CFVariable), 92

names(), 97

names.CFDataset, 78

ncdfCF: :CFAxis, 13, 16, 19, 21, 24, 27, 31

ncdfCF: :CFAxisNumeric, 19, 21, 31

ncdfCF: :CFData, 8, 13, 16, 19, 21,24, 27, 31,

35,52, 59, 68, 69

:CFObject, 8, 13, 16, 19, 21, 24, 27,

31, 35, 40, 46, 48, 52, 59, 68, 69

ncdfCF: :CFVariable, 68, 69

ncdfCF: :NCObject, 80, 81, 88

NCDimension, 80, 83, 84, 91

NCGroup, 49, 81, 86, 89

NCObject, 55, 85

NCResource, 82, 86

NCVariable, 10, 14, 17, 20, 22, 25, 28, 32, 36,
40, 52, 61, 70, 84, 88

ncdfCF:

INDEX

open_ncdf, 91
open_ncdf (), 41, 42, 87
Ops.CFVariable, 92

peek_ncdf, 93

99

	aoi
	as_CF
	CFAuxiliaryLongLat
	CFAxis
	CFAxisCharacter
	CFAxisDiscrete
	CFAxisLatitude
	CFAxisLongitude
	CFAxisNumeric
	CFAxisTime
	CFAxisVertical
	CFBounds
	CFCellMeasure
	CFData
	CFDataset
	CFGridMapping
	CFGroup
	CFLabel
	CFObject
	CFStandardNames
	CFVariable
	CFVariableL3b
	CFVerticalParametricTerm
	create_ncdf
	dim.AOI
	dim.CFAxis
	geom_ncdf
	groups
	makeAxis
	makeCharacterAxis
	makeDiscreteAxis
	makeLatitudeAxis
	makeLongitudeAxis
	makeTimeAxis
	makeVerticalAxis
	names.CFDataset
	NCDimension
	NCGroup
	NCObject
	NCResource
	NCVariable
	open_ncdf
	Ops.CFVariable
	peek_ncdf
	[.CFVariable
	[.CFVariableL3b
	[[.CFDataset
	Index

