
Package ‘mappeR’
January 27, 2026

Type Package

Title Construct Mapper Graphs for Topological and Exploratory Data
Analysis

Description Topological data analysis (TDA) is a method of data analysis that
uses techniques from topology to analyze high-dimensional data. Here we
implement Mapper, an algorithm from this area developed by Singh, Mémoli and
Carlsson (2007) which generalizes the concept of a
Reeb graph <https://en.wikipedia.org/wiki/Reeb_graph>.

License MIT + file LICENSE

URL https://github.com/Uiowa-Applied-Topology/mappeR

BugReports https://github.com/Uiowa-Applied-Topology/mappeR/issues

Version 2.4.0

Encoding UTF-8

Imports fastcluster, stats, utils

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

RoxygenNote 7.3.2

NeedsCompilation no

Author George Clare Kennedy [aut, cre]

Maintainer George Clare Kennedy <george-clarekennedy@uiowa.edu>

Repository CRAN

Date/Publication 2026-01-27 07:30:10 UTC

Contents
create_1D_mapper_object . 2
create_balls . 4
create_ball_mapper_object . 5
create_clusterball_mapper_object . 6
create_mapper_object . 8

1

https://en.wikipedia.org/wiki/Reeb_graph
https://github.com/Uiowa-Applied-Topology/mappeR
https://github.com/Uiowa-Applied-Topology/mappeR/issues

2 create_1D_mapper_object

create_width_balanced_cover . 9
eccentricity_filter . 10
global_hierarchical_clusterer . 11
local_hierarchical_clusterer . 12

Index 14

create_1D_mapper_object

One-Dimensional Mapper

Description

Run Mapper using a one-dimensional filter, a cover of the codomain of intervals, and a clusterer.

Usage

create_1D_mapper_object(
data,
dists,
lens,
cover,
clusterer = global_hierarchical_clusterer("single", dists)

)

Arguments

data A data frame.

dists A distance matrix associated to the data frame. Can be a dist object or matrix.
The names of the rows of the data points in the distance matrix need to match
the names of the data points in data.

lens The result of a function applied to the rows of data (a matrix, data.frame,
list, or vector), or a function which accepts a data point and outputs a result.
If the former, there should be one value per observation in the original data
frame, and, if the values are not named, they should be in the same order as their
inputs in the original data frame.

cover An n × 2 matrix of interval left and right endpoints; rows should be intervals
and columns left and right endpoints (in that order).

clusterer A function which accepts a list of distance matrices as input, and returns the
results of clustering done on each distance matrix; that is, it should return a list
of named vectors, whose name are the names of data points and whose values
are cluster assignments (integers). If this value is omitted, then trivial clustering
will be done.

create_1D_mapper_object 3

Value

A list of two data frames, nodes and edges, which contain information about the Mapper graph
constructed from the given parameters.

The node data frame consists of:

• id: vertex ID

• cluster_size: number of data points in cluster

• medoid: the name of the medoid of the vertex

• mean_dist_to_medoid: mean distance to medoid of cluster

• max_dist_to_medoid: max distance to medoid of cluster

• cluster_width: maximum pairwise distance within cluster

• wcss: sum of squares of distances to cluster medoid

• data: names of data points in cluster

• patch: level set ID

The edge data frame contains consists of:

• source: vertex ID of edge source

• target: vertex ID of edge target

• weight: Jaccard index of edge; this is the size of the intersection between the vertices divided
by the union

• overlap_data: names of data points in overlap

• overlap_size: number of data points overlap

Examples

Create noisy circle data
data = data.frame(x = sapply(1:1000, function(x) cos(x)) + runif(1000, 0, .25),
y = sapply(1:1000, function(x) sin(x)) + runif(1000, 0, .25))

Project to horizontal axis as lens
projx = data$x

Create a one-dimensional cover
num_bins = 5
percent_overlap = 25
cover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

Build Mapper object
create_1D_mapper_object(data, dist(data), projx, cover)

4 create_balls

create_balls Greedy Baller

Description

Make a greedy epsilon net of a data set.

Usage

create_balls(data, dists, eps)

Arguments

data A data frame.

dists A distance matrix for the data frame.

eps A positive real number.

Value

A list of vectors of data point names, one list element per ball. The output is such that every data
point is contained in a ball of radius ε, and no ball center is contained in more than one ball. The
centers themselves are data points.

Examples

Create a data set from 5000 points sampled from a parametric curve, plus some noise
num_points = 5000
P.data = data.frame(

x = sapply(1:num_points, function(x)
sin(x) * 10) + rnorm(num_points, 0, 0.1),

y = sapply(1:num_points, function(x)
cos(x) ^ 2 * sin(x) * 10) + rnorm(num_points, 0, 0.1),

z = sapply(1:num_points, function(x)
10 * sin(x) ^ 2 * cos(x)) + rnorm(num_points, 0, 0.1)

)
P.dist = dist(P.data)

Ball it up
balls = create_balls(data = P.data, dists = P.dist, eps = .25)

create_ball_mapper_object 5

create_ball_mapper_object

Ball Mapper

Description

Run Mapper using the identity function as a lens and an ε-net cover, greedily generated using a
distance matrix.

Usage

create_ball_mapper_object(data, dists, eps)

Arguments

data A data frame.

dists A distance matrix for the data frame. Can be a dist object or a matrix.

eps A positive real number for the desired ball radius.

Value

A list of two data frames, nodes and edges, which contain information about the Mapper graph
constructed from the given parameters.

The node data frame consists of:

• id: vertex ID

• cluster_size: number of data points in cluster

• medoid: the name of the medoid of the vertex

• mean_dist_to_medoid: mean distance to medoid of cluster

• max_dist_to_medoid: max distance to medoid of cluster

• cluster_width: maximum pairwise distance within cluster

• wcss: sum of squares of distances to cluster medoid

• data: names of data points in cluster

The edge data frame contains consists of:

• source: vertex ID of edge source

• target: vertex ID of edge target

• weight: Jaccard index of edge; this is the size of the intersection between the vertices divided
by the union

• overlap_data: names of data points in overlap

• overlap_size: number of data points overlap

6 create_clusterball_mapper_object

Examples

Create noisy cirle data set
data = data.frame(x = sapply(1:1000, function(x) cos(x)) + runif(1000, 0, .25),
y = sapply(1:1000, function(x) sin(x)) + runif(1000, 0, .25))

Set ball radius
eps = .25

Create Mapper object
create_ball_mapper_object(data, dist(data), eps)

create_clusterball_mapper_object

ClusterBall Mapper

Description

Run Ball Mapper, but non-trivially cluster within the balls. You can use two different distance
matrices to for the balling and clustering.

Usage

create_clusterball_mapper_object(
data,
dist1,
dist2,
eps,
clusterer = local_hierarchical_clusterer("single")

)

Arguments

data A data frame.

dist1 A distance matrix for the data frame; this will be used to ball the data. It can be
a dist object or a matrix.

dist2 Another distance matrix for the data frame; this will be used to cluster the data
after balling. It can be a dist object or a matrix.

eps A positive real number for the desired ball radius.

clusterer A function which accepts a list of distance matrices as input, and returns the
results of clustering done on each distance matrix; that is, it should return a list
of named vectors, whose name are the names of data points and whose values
are cluster assignments (integers). If this value is omitted, then single-linkage
clustering will be done (and cutting heights will be decided for you).

create_clusterball_mapper_object 7

Value

A list of two data frames, nodes and edges, which contain information about the Mapper graph
constructed from the given parameters.

The node data frame consists of:

• id: vertex ID

• cluster_size: number of data points in cluster

• medoid: the name of the medoid of the vertex

• mean_dist_to_medoid: mean distance to medoid of cluster

• max_dist_to_medoid: max distance to medoid of cluster

• cluster_width: maximum pairwise distance within cluster

• wcss: sum of squares of distances to cluster medoid

• data: names of data points in cluster

• patch: level set ID

The edge data frame contains consists of:

• source: vertex ID of edge source

• target: vertex ID of edge target

• weight: Jaccard index of edge; this is the size of the intersection between the vertices divided
by the union

• overlap_data: names of data points in overlap

• overlap_size: number of data points overlap

Examples

Create noisy circle data set
data = data.frame(x = sapply(1:1000, function(x) cos(x)) + runif(1000, 0, .25),
y = sapply(1:1000, function(x) sin(x)) + runif(1000, 0, .25))
data.dists = dist(data)

Set ball radius
eps = 1

Do single-linkage clustering in the balls to produce Mapper graph
create_clusterball_mapper_object(data, data.dists, data.dists, eps)

8 create_mapper_object

create_mapper_object Mapper

Description

Run the Mapper algorithm on a data frame.

Usage

create_mapper_object(data, dists, lens, cover_element_tests, clusterer = NULL)

Arguments

data A data frame.

dists A distance matrix for the data frame. Can be a dist object or matrix.

lens The result of a function applied to the data frame. There should be one value
per observation in the original data frame, and, if the values are not named, they
should be in the same order as their inputs in the original data frame.

cover_element_tests

A list of membership test functions for a set of cover elements. In other words,
each element of cover_element_tests is a function that returns TRUE or FALSE
when given a filter value.

clusterer A function which accepts a list of distance matrices as input, and returns the
results of clustering done on each distance matrix; that is, it should return a list
of named vectors, whose names are the names of data points and whose values
are cluster assignments (integers). If this value is omitted, then trivial clustering
will be done.

Value

A list of two data frames, one with node data and one with edge data. The node data includes:

• id: vertex ID

• cluster_size: number of data points in cluster

• medoid: the name of the medoid of the vertex

• mean_dist_to_medoid: mean distance to medoid of cluster

• max_dist_to_medoid: max distance to medoid of cluster

• cluster_width: maximum pairwise distance within cluster

• wcss: sum of squares of distances to cluster medoid

• data: names of data points in cluster

• patch: level set ID

The edge data includes:

• source: vertex ID of edge source

create_width_balanced_cover 9

• target: vertex ID of edge target

• jaccard: Jaccard index of edge; intersection divided by union

• overlap_data: names of data points in overlap

• overlap_size: number of data points overlap

Examples

Create noisy data around a circle
data = data.frame(x = sapply(1:1000, function(x) cos(x)) + runif(1000, 0, .25),
y = sapply(1:1000, function(x) sin(x)) + runif(1000, 0, .25))

Apply lens function to data
projx = data$x

Build a width-balanced cover with 10 intervals and 25 percent overlap
num_bins = 10
percent_overlap = 25
xcover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

Write a function which can check if a data point lives in an interval of our lens function
check_in_interval <- function(endpoints) {
return(function(x) (endpoints[1] - x <= 0) & (endpoints[2] - x >= 0))

}

Each of the "cover" elements will really be a function that checks if a data point lives in it
xcovercheck = apply(xcover, 1, check_in_interval)

Build the mapper object
xmapper = create_mapper_object(

data = data,
dists = dist(data),
lens = projx,
cover_element_tests = xcovercheck

)

create_width_balanced_cover

Width-Balanced Cover Maker

Description

Generate a cover of an interval [a, b] with uniformly sized and spaced subintervals.

Usage

create_width_balanced_cover(min_val, max_val, num_bins, percent_overlap)

10 eccentricity_filter

Arguments

min_val The left endpoint a. A real number.

max_val The right endpoint b. A real number.

num_bins The number of cover intervals with which to cover the interval. A positive inte-
ger.

percent_overlap

How much overlap desired between the cover intervals (the percent of the inter-
section of each interval with its immediate neighbor relative to its length, e.g.,
[0, 2] and [1, 3] would have 50% overlap). A real number between 0 and 100,
inclusive.

Value

A 2D numeric array.

• left_ends - The left endpoints of the cover intervals.

• right_ends - The right endpoints of the cover intervals.

Examples

Cover `[0, 100]` in 10 patches with 15% overlap
create_width_balanced_cover(min_val=0, max_val=100, num_bins=10, percent_overlap=15)

Cover `[-11.5, 10.33]` in 100 patches with 2% overlap
create_width_balanced_cover(-11.5, 10.33, 100, 2)

eccentricity_filter Eccentric Lens

Description

Compute eccentricity of data points.

Usage

eccentricity_filter(dists)

Arguments

dists A distance matrix associated to a data frame. Can be a dist object or matrix.

Value

A vector of centrality measures, calculated per data point as the sum of its distances to every other
data point, divided by the number of points.

global_hierarchical_clusterer 11

Examples

Generate some noisy data along a 2D curve
num_points = 100
P.data = data.frame(

x = sapply(1:num_points, function(x)
sin(x) * 10) + rnorm(num_points, 0, 0.1),

y = sapply(1:num_points, function(x)
cos(x) ^ 2 * sin(x) * 10) + rnorm(num_points, 0, 0.1)

)
P.dist = dist(P.data)

Apply eccentricity filter
eccentricity = eccentricity_filter(P.dist)

global_hierarchical_clusterer

Global Longevity Clusterer

Description

Create a dude to perform hierarchical clustering in a global context using the hclust package.

Usage

global_hierarchical_clusterer(method, dists, cut_height = -1)

Arguments

method A string to pass to hclust to tell it what kind of clustering to do.

dists The global distance matrix on which to run clustering to determine a global
cutting height.

cut_height The cutting height at which you want all dendrograms to be cut. If this is not
specified then the clusterer will use a cut height 5% above the merge point pre-
ceding the tallest branch in the global dendrogram.

Details

This clusterer cuts all dendrograms it is given at a uniform cutting height, defaulting to a heuristic
if necessary.

Value

A function that inputs a list of distance matrices and returns a list containing one vector per matrix,
whose element names are data point names and whose values are cluster labels (relative to each
matrix).

12 local_hierarchical_clusterer

Examples

data = data.frame(x = sapply(1:1000, function(x) cos(x)) + runif(1000, 0, .25),
y = sapply(1:1000, function(x) sin(x)) + runif(1000, 0, .25))
projx = data$x
names(projx) = row.names(data)

dists = dist(data)

num_bins = 10
percent_overlap = 25

cover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

create_1D_mapper_object(data, dists, projx, cover, global_hierarchical_clusterer("mcquitty", dists))

local_hierarchical_clusterer

Local Longevity Clusterer

Description

Create a dude to perform hierarchical clustering in a local context using the hclust package.

Usage

local_hierarchical_clusterer(method)

Arguments

method A string to pass to hclust to tell it what kind of clustering to do.

Details

This clusterer determines cutting heights for dendrograms by cutting them individually, 5% above
the merge point with the longest unbroken gap until the next merge point.

Value

A function that inputs a list of distance matrices and returns a list containing one vector per matrix,
whose element names are data point names and whose values are cluster labels (within each patch).

Examples

data = data.frame(x = sapply(1:1000, function(x) cos(x)) + runif(1000, 0, .25),
y = sapply(1:1000, function(x) sin(x)) + runif(1000, 0, .25))
projx = data$x
names(projx) = row.names(data)

dists = dist(data)

local_hierarchical_clusterer 13

num_bins = 10
percent_overlap = 25

cover = create_width_balanced_cover(min(projx), max(projx), num_bins, percent_overlap)

create_1D_mapper_object(data, dists, projx, cover, local_hierarchical_clusterer("mcquitty"))

Index

create_1D_mapper_object, 2
create_ball_mapper_object, 5
create_balls, 4
create_clusterball_mapper_object, 6
create_mapper_object, 8
create_width_balanced_cover, 9

eccentricity_filter, 10

global_hierarchical_clusterer, 11

hclust, 11, 12

local_hierarchical_clusterer, 12

14

	create_1D_mapper_object
	create_balls
	create_ball_mapper_object
	create_clusterball_mapper_object
	create_mapper_object
	create_width_balanced_cover
	eccentricity_filter
	global_hierarchical_clusterer
	local_hierarchical_clusterer
	Index

