Package ‘gmailr’

January 30, 2026
Title Access the 'Gmail' 'RESTful' API
Version 3.0.0

Description An interface to the 'Gmail' 'RESTful' API. Allows access to
your '‘Gmail' messages, threads, drafts and labels.

License MIT + file LICENSE
URL https://gmailr.r-1ib.org, https://github.com/r-1ib/gmailr

BugReports https://github.com/r-1ib/gmailr/issues
Depends R (>=4.1)

Imports baseb4enc, cli, crayon, gargle (>= 1.6.1), glue, httr,
jsonlite, lifecycle, mime, rappdirs, rematch2, rlang (>= 1.1.0)

Suggests curl, knitr, methods, rmarkdown, testthat (>= 3.1.8), withr
VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Config/usethis/last-upkeep 2025-11-03

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Jim Hester [aut],
Jennifer Bryan [aut, cre],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/@3wc8by49>)

Maintainer Jennifer Bryan <jenny@posit.co>
Repository CRAN
Date/Publication 2026-01-30 10:20:02 UTC

https://gmailr.r-lib.org
https://github.com/r-lib/gmailr
https://github.com/r-lib/gmailr/issues
https://ror.org/03wc8by49

2

Contents

Index

Contents

as.charactermime e e e e e e 3
gmailr-configuration L. e 3
gm_attachment 4
gm_attachments L 5
gm_auth e e 6
gm_auth_configure L e 9
gm_body e e 10
gm_create_draft L. 11
gm_create_label L 11
gm_deauth. 12
gm_delete_draft 13
gm_delete_label 13
gm_delete_message e 14
gm_delete_thread 15
gm_draft. 15
gm_drafts 16
gm_has_token 17
gm_history e e e 17
em_id ..o e 18
gM_IMPOrt_MESSAZE o ottt e e e e e e e e e e 19
SM_INSEIt_MESSAZE . . « . v v v v e e e e e e e e e e e e e e e e e e 20
gm_label 21
gm_labels 21
GM_INESSAZE .« « o v v v e e e e e e e e e e e e e e e e e e e 22
SM_INESSAZES « « o v v v e 23
SM_MIME v v vt e et e e e e e e e 24
gm_modify_message 26
gm_modify_thread 27
gm_profile 28
gm_save_attachment e 28
gm_save_attachments e 29
SIM_SCOPLS . « ¢ v v v v e e e e e e e e e e e e e e 30
gm_send_draft 31
gm_send_MeSSAZE e e e e e e e e 32
gm_thread e e 33
gm_threads e e e 33
SM_LO . o o e e e e e e e e e e e e e 34
gm_token oL L e e 35
gm_token_Write e e e e e 36
gm_trash_message e e e e e 37
gm_trash_thread 38
gm_untrash_message e e e e 39
gm_untrash_thread 39
gm_update_label 40
quoted_printable_encodeo 41
42

as.character.mime 3

as.character.mime Convert a mime object to character representation

Description

This function converts a mime object into a character vector

Usage
S3 method for class 'mime'’
as.character(x, newline = "\r\n", ...)
Arguments
X object to convert
newline value to use as newline character

further arguments ignored

gmailr-configuration Configuring gmailr

Description

gmailr can be configured with various environment variables, which are accessed through wrapper
functions that provide some additional smarts.

Usage
gm_default_email()

gm_default_oauth_client()

gm_default_email ()

gm_default_email () returns the environment variable GMAILR_EMAIL, if it exists, and gargle: : gargle_oauth_email(),
otherwise.

gm_default_oauth_client()

gm_default_oauth_client() consults a specific set of locations, looking for the filepath for the
JSON file that represents an OAuth client. This file can be downloaded from the APIs & Services
section of the Google Cloud console https://console.cloud.google.com). The search unfolds
like so:

e GMAILR_OAUTH_CLIENT environment variable: If defined, it is assumed to be the path to the
target JSON file.

https://console.cloud.google.com

4 gm_attachment

* A .json file found in the directory returned by rappdirs::user_data_dir("gmailr"),
whose filename uniquely matches the regular expression "client_secret.+[.]json$".

* GMAILR_APP environment variable: This is supported for backwards compatibility, but it is
preferable to store the JSON below rappdirs: :user_data_dir("”gmailr") or to store the
path in the GMAILR_OAUTH_CLIENT environment variable.

Here’s an inspirational snippet to move the JSON file you downloaded into the right place for auto-
discovery by gm_auth_configure():

path_old <- "~/Downloads/client_secret_123-abc.apps.googleusercontent.com.json"
d <- fs::dir_create(rappdirs::user_data_dir("gmailr"), recurse = TRUE)
fs::file_move(path_old, d)

See Also

Since gmailr uses the gargle package to handle auth, gargle’s configuration is also relevant, which
is mostly accomplished through options and associated accessor functions.

Other auth functions: gm_auth(), gm_auth_configure(), gm_deauth(), gm_scopes()

Examples

gm_default_email()

withr::with_envvar(
c(GMAILR_EMAIL = "jenny@example.com”),
gm_default_email()

)

gm_default_oauth_client()

withr::with_envvar(
Cc(GMAILR_OAUTH_CLIENT = "path/to/my-client.json"),
gm_default_oauth_client()

)

gm_attachment Retrieve an attachment to a message

Description

This is a low level function to retrieve an attachment to a message by id of the attachment and
message. Most users are better off using gm_save_attachments() to automatically save all the
attachments in a given message.

Usage

gm_attachment(id, message_id, user_id = "me")

gm_attachments 5

Arguments

id id of the attachment

message_id id of the parent message

user_id gmail user_id to access, special value of *'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages.attachments/
get

See Also

Other message: gm_delete_message(), gm_import_message(), gm_insert_message(), gm_message(),
gm_messages(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples

Not run:

my_attachment <- gm_attachment("”a32e324b", "12345")
save attachment to a file
gm_save_attachment(my_attachment, "photo.jpg")

End(Not run)

gm_attachments Retrieve information about attachments

Description

Retrieve information about attachments

Usage
gm_attachments(x, ...)
Arguments
X An object from which to retrieve the attachment information.
other parameters passed to methods
Value

A data.frame with the filename, type, size and id of each attachment in the message.

https://developers.google.com/gmail/api/reference/rest/v1/users.messages.attachments/get
https://developers.google.com/gmail/api/reference/rest/v1/users.messages.attachments/get

6 gm_auth

gm_auth Authorize gmailr

Description

Authorize gmailr to view and manage your Gmail projects. This function is a wrapper around
gargle: :token_fetch().

By default, you are directed to a web browser, asked to sign in to your Google account, and to grant
gmailr permission to operate on your behalf with Google Gmail. By default, with your permission,
these user credentials are cached in a folder below your home directory, from where they can be
automatically refreshed, as necessary. Storage at the user level means the same token can be used
across multiple projects and tokens are less likely to be synced to the cloud by accident.

Usage
gm_auth(
email = gm_default_email(),
path = NULL,
subject = NULL,
scopes = "full”,

cache = gargle::gargle_oauth_cache(),
use_oob = gargle::gargle_oob_default(),
token = NULL

Arguments

email Optional. If specified, email can take several different forms:

e "jane@gmail.com”, i.e. an actual email address. This allows the user to
target a specific Google identity. If specified, this is used for token lookup,
i.e. to determine if a suitable token is already available in the cache. If
no such token is found, email is used to pre-select the targeted Google
identity in the OAuth chooser. (Note, however, that the email associated
with a token when it’s cached is always determined from the token itself,
never from this argument).

* "*@example.com”, i.e. a domain-only glob pattern. This can be help-
ful if you need code that "just works" for both alice@example.com and
bob@example. com.

* TRUE means that you are approving email auto-discovery. If exactly one
matching token is found in the cache, it will be used.

* FALSE or NA mean that you want to ignore the token cache and force a new
OAuth dance in the browser.

Defaults to the option named "gargle_oauth_email”, retrieved by gargle_oauth_email ()
(unless a wrapper package implements different default behavior).

path JSON identifying the service account, in one of the forms supported for the txt
argument of jsonlite::fromJSON() (typically, a file path or JSON string).

gm_auth 7

subject An optional subject claim. Specify this if you wish to use the service account
represented by path to impersonate the subject, who is a normal user. Be-
fore this can work, an administrator must grant the service account domain-
wide authority. Identify the user to impersonate via their email, e.g. subject
= "user@example.com”. Note that gargle automatically adds the non-sensitive
"https://www.googleapis.com/auth/userinfo.email” scope, so this scope
must be enabled for the service account, along with any other scopes being re-
quested.

scopes One or more API scopes. Each scope can be specified in full or, for Gmail
API-specific scopes, in an abbreviated form that is recognized by gm_scopes():
» "full" = "https://mail.google.com/" (the default)
* "gmail.compose" = "https://www.googleapis.com/auth/gmail.compose"
* "gmail.readonly" = "https://www.googleapis.com/auth/gmail.readonly"”
* "gmail.labels" = "https://www.googleapis.com/auth/gmail.labels"
e "gmail.send" = "https://www.googleapis.com/auth/gmail.send"
* "gmail.insert" = "https://www.googleapis.com/auth/gmail.insert"
* "gmail.modify" = "https://www.googleapis.com/auth/gmail.modify"
* "gmail.metadata" = "https://www.googleapis.com/auth/gmail.metadata"
 "gmail.settings_basic" = "https://www.googleapis.com/auth/gmail.settings.basic"
* "gmail.settings_sharing" = "https://www.googleapis.com/auth/gmail.settings.sharing"

See https://developers.google.com/gmail/api/auth/scopes for details
on the permissions for each scope.

cache Specifies the OAuth token cache. Defaults to the option named "gargle_oauth_cache”,
retrieved via gargle_oauth_cache().

use_oob Whether to use out-of-band authentication (or, perhaps, a variant implemented
by gargle and known as "pseudo-OOB") when first acquiring the token. Defaults
to the value returned by gargle_oob_default (). Note that (pseudo-)OOB auth
only affects the initial OAuth dance. If we retrieve (and possibly refresh) a
cached token, use_oob has no effect.

If the OAuth client is provided implicitly by a wrapper package, its type proba-
bly defaults to the value returned by gargle_oauth_client_type(). You can
take control of the client type by setting options(gargle_oauth_client_type
= "web") or options(gargle_oauth_client_type = "installed").

token A token with class Token2.0 or an object of httr’s class request, i.e. a token that
has been prepared with httr: :config() and has a Token2.0 in the auth_token
component.
Details

Most users, most of the time, do not need to call gm_auth() explicitly — it is triggered by the first
action that requires authorization. Even when called, the default arguments often suffice.

However, when necessary, gm_auth() allows the user to explicitly:

* Declare which Google identity to use, via an email specification.

» Use a service account token or workload identity federation via path.

https://developers.google.com/gmail/api/auth/scopes

8 gm_auth

* Bring your own token.
¢ Customize scopes.
* Use a non-default cache folder or turn caching off.

 Explicitly request out-of-band (OOB) auth via use_oob.

If you are interacting with R within a browser (applies to RStudio Server, Posit Workbench, Posit
Cloud, and Google Colaboratory), you need OOB auth or the pseudo-OOB variant. If this does not
happen automatically, you can request it explicitly with use_oob = TRUE or, more persistently, by
setting an option via options(gargle_oob_default = TRUE).

The choice between conventional OOB or pseudo-OOB auth is determined by the type of OAuth
client. If the client is of the "installed" type, use_oob = TRUE results in conventional OOB auth. If
the client is of the "web" type, use_oob = TRUE results in pseudo-OOB auth. Packages that provide
a built-in OAuth client can usually detect which type of client to use. But if you need to set this
explicitly, use the "gargle_oauth_client_type" option:

options(gargle_oauth_client_type = "web") # pseudo-00B
or, alternatively

options(gargle_oauth_client_type = "installed"”) # conventional OOB

For details on the many ways to find a token, see gargle: :token_fetch(). For deeper control
over auth, use gm_auth_configure() to bring your own OAuth client or API key. To learn more
about gargle options, see gargle::gargle_options.

See Also

Other auth functions: gm_auth_configure(), gm_deauth(), gm_scopes(), gmailr-configuration

Examples

load/refresh existing credentials, if available
otherwise, go to browser for authentication and authorization
gm_auth()

indicate the specific identity you want to auth as
gm_auth(email = "jenny@example.com")

force a new browser dance, i.e. don't even try to use existing user
credentials
gm_auth(email = NA)

specify the identity, use a 'read only' scope, so it's impossible to
send or delete email, and specify a cache folder

gm_auth(
"target.user@example.com”,
scopes = "gmail.readonly”,
cache = "some/nice/directory/"

gm_auth_configure 9

gm_auth_configure Edit auth configuration

Description

See the article Set up an OAuth client for instructions on how to get an OAuth client. Then you
can use gm_auth_configure() to register your client for use with gmailr. gm_oauth_client()
retrieves the currently configured OAuth client.

Usage

gm_auth_configure(
client = NULL,
path = gm_default_oauth_client(),
key = deprecated(),
secret = deprecated(),
appname = deprecated(),
app = deprecated()
)

gm_oauth_client()

Arguments
client A Google OAuth client, presumably constructed via gargle: :gargle_oauth_client_from_json().
Note, however, that it is preferred to specify the client with JSON, using the path
argument.
path JSON downloaded from Google Cloud Console, containing a client id and se-

cret, in one of the forms supported for the txt argument of jsonlite: : fromJSON()
(typically, a file path or JSON string).
key, secret, appname, app

[Deprecated] Use the path (strongly recommended) or client argument in-
stead.

Value
* gm_auth_configure(): An object of R6 class gargle:: AuthState, invisibly.
* gm_oauth_client(): the current user-configured OAuth client.

See Also

gm_default_oauth_client() to learn how you can make your OAuth client easy for gmailr to
discover.

Other auth functions: gm_auth(), gm_deauth(), gm_scopes(), gmailr-configuration

https://gmailr.r-lib.org/dev/articles/oauth-client.html
https://console.cloud.google.com

10

Examples

if your OAuth client can be auto-discovered (see ?gm_default_oauth_client),
you don't need to provide anything!
gm_auth_configure()

see and store the current user-configured OAuth client
(original_client <- gm_oauth_client())

the preferred way to configure your own client is via a JSON file

downloaded from Google Developers Console

this example JSON is indicative, but fake

path_to_json <- system.file(
"extdata”, "client_secret_installed.googleusercontent.com.json",
package = "gargle"”

)

gm_auth_configure(path = path_to_json)

confirm that a (fake) OAuth client is now configured
gm_oauth_client()

restore original auth config
gm_auth_configure(client = original_client)

gm_body

gm_body Get the body text of a message or draft

Description

Get the body text of a message or draft

Usage
gm_body(x, ...)

Arguments

X the object from which to retrieve the body

other parameters passed to methods

Examples

Not run:
gm_body (my_message)
gm_body(my_draft)

End(Not run)

gm_create_draft 11

gm_create_draft Create a draft from a mime message

Description

Create a draft from a mime message

Usage

gm_create_draft(mail, user_id = "me")
Arguments

mail mime mail message created by mime

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/vi/users.drafts/create

Examples
Not run:
gm_create_draft(gm_mime (
From = "you@me.com”, To = "any@one.com",
Subject = "hello”, "how are you doing?”
))

End(Not run)

gm_create_label Create a new label

Description

Function to create a label.

Usage
gm_create_label(
name,
label_list_visibility = c(”"show”, "hide"”, "show_unread"),
message_list_visibility = c(”show”, "hide"),
user_id = "me"

https://developers.google.com/gmail/api/reference/rest/v1/users.drafts/create

12 gm_deauth

Arguments

name name to give to the new label
label_list_visibility

The visibility of the label in the label list in the Gmail web interface.
message_list_visibility

The visibility of messages with this label in the message list in the Gmail web
interface.

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.

References

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/create

See Also

Other label: gm_delete_label(), gm_label(), gm_labels(), gm_update_label()

gm_deauth Clear current token

Description

Clears any currently stored token. The next time gmailr needs a token, the token acquisition process
starts over, with a fresh call to gm_auth () and, therefore, internally, a call to gargle: : token_fetch().
Unlike some other packages that use gargle, gmailr is not usable in a de-authorized state. There-
fore, calling gm_deauth() only clears the token, i.e. it does NOT imply that subsequent requests
are made with an API key in lieu of a token.

Usage

gm_deauth()

See Also

Other auth functions: gm_auth (), gm_auth_configure(), gm_scopes(), gmailr-configuration

Examples

gm_deauth()

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/create

gm_delete_draft 13

gm_delete_draft Permanently delete a single draft

Description

Function to delete a given draft by id. This cannot be undone!

Usage

gm_delete_draft(id, user_id = "me"

Arguments

id message id to access

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.drafts/delete

See Also
Other draft: gm_draft(), gm_drafts(), gm_send_draft()

Examples

Not run:
delete_draft(”12345")

End(Not run)

gm_delete_label Permanently delete a label

Description

Function to delete a label by id. This cannot be undone!

Usage

gm_delete_label(id, user_id = "me")

Arguments

id label id to retrieve

user_id gmail user_id to access, special value of *'me’ indicates the authenticated user.

https://developers.google.com/gmail/api/reference/rest/v1/users.drafts/delete

14 gm_delete_message

References

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/delete

See Also

Other label: gm_create_label(), gm_label(), gm_labels(), gm_update_label()

gm_delete_message Permanently delete a single message

Description

Function to delete a given message by id. This cannot be undone!

Usage

gm_delete_message(id, user_id = "me")
Arguments

id message id to access

user_id gmail user_id to access, special value of *me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/delete

See Also

Other message: gm_attachment (), gm_import_message(), gm_insert_message(), gm_message(),
gm_messages(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples

Not run:
gm_delete_message("”12345")

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/delete
https://developers.google.com/gmail/api/reference/rest/v1/users.messages/delete

gm_delete_thread 15

gm_delete_thread Permanently delete a single thread.

Description

Function to delete a given thread by id. This cannot be undone!

Usage

gm_delete_thread(id, user_id = "me")
Arguments

id thread id to access

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/delete

See Also

Other thread: gm_modify_thread(), gm_thread(), gm_threads(), gm_trash_thread(), gm_untrash_thread()

Examples

Not run:
gm_delete_thread(12345)

End(Not run)

gm_draft Get a single draft

Description

Function to retrieve a given draft by <-

Usage
gm_draft(id, user_id = "me"”, format = c("full”, "minimal”, "raw"))
Arguments
id draft id to access
user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.

format format of the draft returned

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/delete

16 gm_drafts

References

https://developers.google.com/gmail/api/reference/rest/vi/users.drafts/get

See Also
Other draft: gm_delete_draft(), gm_drafts(), gm_send_draft()

Examples

Not run:
my_draft <- gm_draft("12345")

End(Not run)

gm_drafts Get a list of drafts

Description

Get a list of drafts possibly matching a given query string.

Usage

gm_drafts(num_results = NULL, page_token = NULL, user_id = "me")

Arguments

num_results the number of results to return.

page_token retrieve a specific page of results

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/vi1/users.drafts/list

See Also
Other draft: gm_delete_draft(), gm_draft(), gm_send_draft()

Examples

Not run:
my_drafts <- gm_drafts()

first_l10_drafts <- gm_drafts(10)

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.drafts/get
https://developers.google.com/gmail/api/reference/rest/v1/users.drafts/list

gm_has_token

17

gm_has_token Is there a token on hand?

Description

Reports whether gmailr has stored a token, ready for use in downstream requests.

Usage

gm_has_token()

Value

Logical.

See Also

Other low-level API functions: gm_token()

Examples

gm_has_token()

gm_history Retrieve change history for the inbox

Description

Retrieves the history results in chronological order

Usage

gm_history(
start_history_id = NULL,
num_results = NULL,
label_id = NULL,
page_token = NULL,
user_id = "me"

18 gm_id

Arguments

start_history_id
the point to start the history. The historyld can be obtained from a message,
thread or previous list response.

num_results the number of results to return, max per page is 100

label_id filter history only for this label

page_token retrieve a specific page of results

user_id gmail user_id to access, special value of *me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.history/list

Examples

Not run:
my_history <- gm_history("10")

End(Not run)

gm_id Get the id of a gmailr object

Description

Get the id of a gmailr object

Usage
gm_id(x, ...)

S3 method for class 'gmail_messages'

gm_id(x, what = c("message_id", "thread_id"), ...)
Arguments
X the object from which to retrieve the id

other parameters passed to methods
what the type of id to return

Examples

Not run:
gm_id(my_message)
gm_id(my_draft)

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.history/list

gm_import_message 19

gm_import_message Import a message into the gmail mailbox from a mime message

Description

Import a message into the gmail mailbox from a mime message

Usage
gm_import_message(
mail,
label_ids,
type = c("multipart”, "media”, "resumable”),
internal_date_source = c("dateHeader"”, "recievedTime"),
user_id = "me”
)
Arguments
mail mime mail message created by mime
label_ids optional label ids to apply to the message
type the type of upload to perform

internal_date_source

whether to date the object based on the date of the message or when it was
received by gmail.

user_id gmail user_id to access, special value of *me’ indicates the authenticated user.

References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/import
See Also
Other message: gm_attachment(), gm_delete_message(), gm_insert_message(), gm_message(),

gm_messages(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples
Not run:
gm_import_message (gm_mime (
From = "you@me.com”, To = "any@one.com",
Subject = "hello”, "how are you doing?”
))

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/import

20 gm_insert_message

gm_insert_message Insert a message into the gmail mailbox from a mime message

Description

Insert a message into the gmail mailbox from a mime message

Usage
gm_insert_message(
mail,
label_ids,
type = c("multipart”, "media”, "resumable”),
internal_date_source = c("dateHeader"”, "recievedTime"),
user_id = "me”
)
Arguments
mail mime mail message created by mime
label_ids optional label ids to apply to the message
type the type of upload to perform

internal_date_source

whether to date the object based on the date of the message or when it was
received by gmail.

user_id gmail user_id to access, special value of *me’ indicates the authenticated user.

References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/insert
See Also
Other message: gm_attachment(), gm_delete_message(), gm_import_message(), gm_message(),

gm_messages(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples
Not run:
gm_insert_message(gm_mime(
From = "you@me.com”, To = "any@one.com",
Subject = "hello”, "how are you doing?”
))

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/insert

gm_label 21

gm_label Get a specific label

Description

Get a specific label by id and user_id.

Usage

gm_label (id, user_id = "me")

Arguments

id label id to retrieve

user_id gmail user_id to access, special value of *'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/get

See Also
Other label: gm_create_label(), gm_delete_label(), gm_labels(), gm_update_label()

gm_labels Get a list of all labels

Description

Get a list of all labels for a user.

Usage

gm_labels(user_id = "me")
Arguments

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/list

See Also
Other label: gm_create_label (), gm_delete_label (), gm_label(), gm_update_label()

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/get
https://developers.google.com/gmail/api/reference/rest/v1/users.labels/list

22 gm_message

Examples

Not run:
my_labels <- gm_labels()

End(Not run)

gm_message Get a single message

Description

Function to retrieve a given message by id

Usage
gm_message(
id,
user_id = "me",
format = c("full”, "metadata”, "minimal”, "raw")
)
Arguments
id message id to access
user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
format format of the message returned
References

https://developers.google.com/gmail/api/reference/rest/vi/users.messages

See Also

Other message: gm_attachment (), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_messages(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples

Not run:
my_message <- gm_message(12345)

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.messages

gm_messages 23

gm_messages Get a list of messages

Description

Get a list of messages possibly matching a given query string.

Usage

gm_messages (
search = NULL,
num_results = NULL,
label_ids = NULL,
include_spam_trash = NULL,
page_token = NULL,

user_id = "me”
)
Arguments
search query to use, same format as gmail search box.
num_results the number of results to return.
label_ids restrict search to given labels

include_spam_trash
boolean whether to include the spam and trash folders in the search

page_token retrieve a specific page of results
user_id gmail user_id to access, special value of *'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/vi/users.messages/list

See Also

Other message: gm_attachment (), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_message(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples

Not run:
Search for R, return 10 results using label 1 including spam and trash folders
my_messages <- gm_messages("R", 10, "label_1", TRUE)

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/list

24 gm_mime

gm_mime Create a mime formatted message object

Description

These functions create a MIME message. They can be created atomically using gm_mime() or
iteratively using the various accessors.

Usage

gm_mime(..., attr = NULL, body = NULL, parts = list())

S3 method for class 'mime'’
gm_to(x, val, ...)

S3 method for class 'mime'’
gm_from(x, val, ...)

S3 method for class 'mime'’
gm_cc(x, val, ...)

S3 method for class 'mime'’
gm_bcc(x, val, ...)

S3 method for class 'mime'’
gm_subject(x, val, ...)

gm_text_body(
mime,
body,
content_type = "text/plain”,
charset = "utf-8",

encoding = "quoted-printable”,
format = "flowed”,
)
gm_html_body(
mime,
body,

content_type = "text/html”,
charset = "utf-8",
encoding = "base64”,

)

gm_attach_part(mime, part, id = NULL, ...)

gm_mime 25

gm_attach_file(mime, filename, type = NULL, id = NULL, ...)

Arguments

additional parameters to put in the attr field

attr attributes to pass to the message

body Message body.

parts mime parts to pass to the message

X the object whose fields you are setting

val the value to set, can be a vector, in which case the values will be joined by ", ".
mime message.

content_type The content type to use for the body.

charset The character set to use for the body.
encoding The transfer encoding to use for the body.
format The mime format to use for the body.
part Message part to attach
id The content ID of the attachment
filename name of file to attach
type mime type of the attached file

Examples

using the field functions

msg <- gm_mime() |>
gm_to("asdf@asdf.com”) |>
gm_text_body("Test Message")

alternatively you can set the fields using gm_mime(), however you have
to use properly formatted MIME names
msg <- gm_mime(

From = "james.f.hester@gmail.com"”,
To = "asdf@asdf.com”
) 1>

gm_html_body ("Test<\b> Message")

send to multiple recipients

msg <- gm_mime() |[>
gm_to(c("alice@example.com”, "bob@example.com”)) |>
gm_text_body("hello to multiple people at once!"”)

26 gm_modify_message

gm_modify_message Modify the labels on a message

Description

Function to modify the labels on a given message by id. Note you need to use the label ID as
arguments to this function, not the label name.

Usage

gm_modify_message(id, add_labels = NULL, remove_labels = NULL, user_id = "me"

Arguments
id message id to access
add_labels label IDs to add to the specified message

remove_labels label IDs to remove from the specified message

user_id gmail user_id to access, special value of *me’ indicates the authenticated user.

References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/modify

See Also

Other message: gm_attachment(), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_message(), gm_messages(), gm_save_attachment (), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples

Not run:

gm_modify_message (12345, add_labels = "label_1")

gm_modify_message(12345, remove_labels = "label_1")

add and remove at the same time

gm_modify_message (12345, add_labels = "label_2", remove_labels = "label_1")

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/modify

gm_modity_thread 27

gm_modify_thread Modify the labels on a thread

Description

Function to modify the labels on a given thread by id.

Usage

gm_modify_thread(
id,
add_labels = character(0),
remove_labels = character(0),

user_id = "me”

)
Arguments

id thread id to access

add_labels labels to add to the specified thread

remove_labels labels to remove from the specified thread

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/vi1/users.threads/modify

See Also

Other thread: gm_delete_thread(), gm_thread(), gm_threads(), gm_trash_thread(), gm_untrash_thread()

Examples

Not run:

gm_modify_thread(12345, add_labels = "label_1")

gm_modify_thread(12345, remove_labels = "label_1")

add and remove at the same time

gm_modify_thread(12345, add_labels = "label_2", remove_labels = "label_1")

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/modify

28 gm_save_attachment

gm_profile Get info on current gmail profile

Description

Reveals information about the profile associated with the current token.

Usage
gm_profile(user_id = "me", verbose = TRUE)
Arguments
user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
verbose Logical, indicating whether to print informative messages (default TRUE).
Value

A list of class gmail_profile.

See Also

Wraps the getProfile endpoint:

* https://developers.google.com/gmail/api/reference/rest/v1/users/getProfile

Examples

Not run:
gm_profile()

more info is returned than is printed
prof <- gm_profile()
prof[["historyId"]]

End(Not run)

gm_save_attachment Save the attachment to a file

Description

This is a low level function that only works on attachments retrieved with gm_attachment(). To
save an attachment directly from a message see gm_save_attachments(), which is a higher level
interface more suitable for most uses.

https://developers.google.com/gmail/api/reference/rest/v1/users/getProfile

gm_save_attachments 29

Usage

gm_save_attachment(x, filename)

Arguments
X attachment to save
filename location to save to
See Also

Other message: gm_attachment(), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_message (), gm_messages (), gm_modify_message(), gm_save_attachments(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples

Not run:

my_attachment <- gm_attachment("a32e324b"”, "12345")
save attachment to a file
gm_save_attachment(my_attachment, "photo.jpg")

End(Not run)

gm_save_attachments Save attachments to a message

Description

Function to retrieve and save all of the attachments to a message by id of the message.

Usage

gm_save_attachments(x, attachment_id = NULL, path = ".", user_id = "me")
Arguments

X message with attachment

attachment_id 1id of the attachment to save, if none specified saves all attachments

path where to save the attachments
user_id gmail user_id to access, special value of *me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages.attachments/
get

https://developers.google.com/gmail/api/reference/rest/v1/users.messages.attachments/get
https://developers.google.com/gmail/api/reference/rest/v1/users.messages.attachments/get

30 gm_scopes

See Also

Other message: gm_attachment(), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_message(), gm_messages(), gm_modify_message(), gm_save_attachment(), gm_send_message(),
gm_trash_message(), gm_untrash_message()

Examples

Not run:

save all attachments
gm_save_attachments(my_message)

save a specific attachment
gm_save_attachments(my_message, "a32e324b")

End(Not run)

gm_scopes Produce scopes specific to the Gmail API

Description

When called with no arguments, gm_scopes() returns a named character vector of scopes as-
sociated with the Gmail APIL. If gm_scopes(scopes =) is given, an abbreviated entry such as
"gmail.readonly" is expanded to a full scope ("https://www.googleapis.com/auth/gmail.readonly”
in this case). Unrecognized scopes are passed through unchanged.

Usage

gm_scopes(scopes = NULL)

Arguments

scopes One or more API scopes. Each scope can be specified in full or, for Gmail
API-specific scopes, in an abbreviated form that is recognized by gm_scopes():
e "full" = "https://mail.google.com/" (the default)
* "gmail.compose" = "https://www.googleapis.com/auth/gmail.compose”
* "gmail.readonly" = "https://www.googleapis.com/auth/gmail.readonly"
 "gmail.labels" = "https://www.googleapis.com/auth/gmail.labels"
* "gmail.send" = "https://www.googleapis.com/auth/gmail.send"
* "gmail.insert" = "https://www.googleapis.com/auth/gmail.insert"
* "gmail.modify" = "https://www.googleapis.com/auth/gmail.modify"
* "gmail.metadata" = "https://www.googleapis.com/auth/gmail.metadata"
 "gmail.settings_basic" = "https://www.googleapis.com/auth/gmail.settings.basic"
» "gmail.settings_sharing" = "https://www.googleapis.com/auth/gmail.settings.sharing"

See https://developers.google.com/gmail/api/auth/scopes for details
on the permissions for each scope.

https://developers.google.com/gmail/api/auth/scopes

gm_send_draft 31

Value

A character vector of scopes.

See Also

https://developers.google.com/gmail/api/auth/scopes for details on the permissions for
each scope.

Other auth functions: gm_auth (), gm_auth_configure(), gm_deauth(), gmailr-configuration

Examples

gm_scopes("full")
gm_scopes(”gmail.readonly")
gm_scopes()

gm_send_draft Send a draft

Description

Send a draft to the recipients in the To, CC, and Bcc headers.

Usage

gm_send_draft(draft, user_id = "me")

Arguments

draft the draft to send

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/vi/users.drafts/send

See Also
Other draft: gm_delete_draft(), gm_draft(), gm_drafts()

Examples

Not run:

draft <- gm_create_draft(gm_mime(
From = "you@me.com”, To = "any@one.com",
Subject = "hello”, "how are you doing?”

))
gm_send_draft(draft)

End(Not run)

https://developers.google.com/gmail/api/auth/scopes
https://developers.google.com/gmail/api/reference/rest/v1/users.drafts/send

32 gm_send_message

gm_send_message Send a message from a mime message

Description

Send a message from a mime message

Usage
gm_send_message (
mail,
type = c("multipart”, "media”, "resumable"”),
thread_id = NULL,
user_id = "me"
)
Arguments
mail mime mail message created by mime
type the type of upload to perform
thread_id the id of the thread to send from.
user_id gmail user_id to access, special value of *me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/vi/users.messages/send

See Also

Other message: gm_attachment (), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_message (), gm_messages(), gm_modify_message(), gm_save_attachment (), gm_save_attachments(),
gm_trash_message(), gm_untrash_message()

Examples
Not run:
gm_send_message (gm_mime (
from = "you@me.com”, to = "any@one.com",
subject = "hello”, "how are you doing?"
)

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/send

gm_thread 33

gm_thread Get a single thread

Description

Function to retrieve a given thread by id

Usage

gm_thread(id, user_id = "me")
Arguments

id thread id to access

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.threads

See Also

Other thread: gm_delete_thread(), gm_modify_thread(), gm_threads(), gm_trash_thread(),
gm_untrash_thread()

Examples

Not run:
my_thread <- gm_thread(12345)

End(Not run)

gm_threads Get a list of threads

Description

Get a list of threads possibly matching a given query string.

https://developers.google.com/gmail/api/reference/rest/v1/users.threads

34 gm_to

Usage

gm_threads(
search = NULL,
num_results = NULL,
page_token = NULL,
label_ids = NULL,
include_spam_trash = NULL,

user_id = "me"
)
Arguments
search query to use, same format as gmail search box.
num_results the number of results to return.
page_token retrieve a specific page of results
label_ids restrict search to given labels

include_spam_trash
boolean whether to include the spam and trash folders in the search

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.

References

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/list

See Also

Other thread: gm_delete_thread(), gm_modify_thread(), gm_thread(), gm_trash_thread(),
gm_untrash_thread()

Examples

Not run:
my_threads <- gm_threads()

first_10_threads <- gm_threads(10)

End(Not run)

gm_to Methods to get values from message or drafts

Description

Methods to get values from message or drafts

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/list

gm_token 35
Usage

gm_to(x, ...)

gm_from(x, ...)

gm_cc(x, ...)

gm_bcc(x, ...)

gm_date(x, ...)

gm_subject(x, ...)

Arguments

X the object from which to get or set the field

other parameters passed to methods

gm_token Produce configured token

Description

For internal use or for those programming around the Gmail API. Returns a token pre-processed
with httr::config(). Most users do not need to handle tokens "by hand" or, even if they need
some control, gm_auth() is what they need. If there is no current token, gm_auth() is called to
either load from cache or initiate OAuth2.0 flow. If auth has been deactivated via gm_deauth(),
gm_token () returns NULL.

Usage

gm_token()

Value

A request object (an S3 class provided by httr).

See Also

Other low-level API functions: gm_has_token()

Examples

gm_token()

36 gm_token_write

gm_token_write Write/read a gmailr user token

Description

[Experimental]

This pair of functions writes an OAuth2 user token to file and reads it back in. This is rarely
necessary when working in your primary, interactive computing environment. In that setting, it is
recommended to lean into the automatic token caching built-in to gmailr / gargle. However, when
preparing a user token for use elsewhere, such as in CI or in a deployed data product, it can be
useful to take the full control granted by gm_token_write() and gm_token_read().

Below is an outline of the intended workflow, but you will need to fill in particulars, such as filepaths
and environment variables:

* Do auth in your primary, interactive environment as the target user, with the desired OAuth
client and scopes.

gm_auth_configure()
gm_auth(”jane@example.com”, cache = FALSE)

* Confirm you are logged in as the intended user:
gm_profile()
* Write the current token to file:
gm_token_write(
path = "path/to/gmailr-token.rds",
key = "GMAILR_KEY"
)
* In the deployed, non-interactive setting, read the token from file and tell gmailr to use it:
gm_auth(token = gm_token_read(
path = "path/to/gmailr-token.rds",

key = "GMAILR_KEY”
)

Usage

gm_token_write(token = gm_token(), path = "gmailr-token.rds”, key = NULL)

gm_token_read(path = "gmailr-token.rds", key = NULL)

gm_trash_message 37

Arguments
token A token with class Token2.0 or an object of httr’s class request, i.e. a token that
has been prepared with httr: :config() and has a Token2.0 in the auth_token
component.
path The path to write to (gm_token_write()) or to read from (gm_token_read()).
key Encryption key, as implemented by httr2’s secret functions. If absent, a built-in
key is used. If supplied, the key should usually be the name of an environment
variable whose value was generated with gargle: : secret_make_key () (which
isacopyof httr2::secret_make_key()). The key argument of gm_token_read()
must match the key used in gm_token_write().
Security

gm_token_write() and gm_token_read() have a more security-oriented implementation than the
default token caching strategy. OAuth2 user tokens are somewhat opaque by definition, because
they aren’t written to file in a particularly transparent format. However, gm_token_write() always
applies some additional obfuscation to make such credentials even more resilient against scraping
by an automated tool. However, a knowledgeable R programmer could decode the credential with
some effort. The default behaviour of gm_token_write() (called without key) is suitable for tokens
stored in a relatively secure place, such as on Posit Connect within your organization.

To prepare a stored credential for exposure in a more public setting, such as on GitHub or CRAN,
you must actually encrypt it, using a key known only to you. You must make the encryption key
available via a secure environment variable in any setting where you wish to decrypt and use the
token, such as on GitHub Actions.

gm_trash_message Send a single message to the trash

Description

Function to trash a given message by id. This can be undone by gm_untrash_message().

Usage

gm_trash_message(id, user_id = "me")
Arguments

id message id to access

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/trash

https://httr2.r-lib.org/reference/secrets.html
https://developers.google.com/gmail/api/reference/rest/v1/users.messages/trash

38 gm_trash_thread

See Also

Other message: gm_attachment (), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_message (), gm_messages(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(),
gm_send_message(), gm_untrash_message()

Examples

Not run:
gm_trash_message("12345")

End(Not run)

gm_trash_thread Send a single thread to the trash

Description

Function to trash a given thread by id. This can be undone by gm_untrash_thread().

Usage

gm_trash_thread(id, user_id = "me")
Arguments

id thread id to access

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/trash

See Also

Other thread: gm_delete_thread(), gm_modify_thread(), gm_thread(), gm_threads(), gm_untrash_thread()

Examples

Not run:
gm_trash_thread(12345)

End(Not run)

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/trash

gm_untrash_message 39

gm_untrash_message Remove a single message from the trash

Description

Function to trash a given message by id. This can be undone by gm_untrash_message().

Usage

gm_untrash_message(id, user_id = "me"”
Arguments

id message id to access

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/trash

See Also

Other message: gm_attachment (), gm_delete_message(), gm_import_message(), gm_insert_message(),
gm_message (), gm_messages(), gm_modify_message(), gm_save_attachment(), gm_save_attachments(),
gm_send_message(), gm_trash_message()

Examples

Not run:
gm_untrash_message("”12345")

End(Not run)

gm_untrash_thread Remove a single thread from the trash.

Description

Function to untrash a given thread by id. This can reverse the results of a previous gm_trash_thread().

Usage

gm_untrash_thread(id, user_id = "me")

https://developers.google.com/gmail/api/reference/rest/v1/users.messages/trash

40 gm_update_label

Arguments

id thread id to access

user_id gmail user_id to access, special value of *'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/untrash

See Also
Other thread: gm_delete_thread(), gm_modify_thread(), gm_thread(), gm_threads(), gm_trash_thread()

Examples

Not run:
gm_untrash_thread(12345)

End(Not run)

gm_update_label Update a existing label.

Description

Get a specific label by id and user_id. gm_update_label_patch() isidentical to gm_update_label ()
but the latter uses HTTP PATCH to allow partial update.

Usage

gm_update_label(id, label, user_id = "me")

gm_update_label_patch(id, label, user_id = "me")

Arguments

id label id to update

label the label fields to update

user_id gmail user_id to access, special value of 'me’ indicates the authenticated user.
References

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/update

https://developers.google.com/gmail/api/reference/rest/v1/users.labels/patch

See Also

Other label: gm_create_label(), gm_delete_label(), gm_label(), gm_labels()
Other label: gm_create_label(), gm_delete_label (), gm_label(), gm_labels()

https://developers.google.com/gmail/api/reference/rest/v1/users.threads/untrash
https://datatracker.ietf.org/doc/html/rfc5789
https://developers.google.com/gmail/api/reference/rest/v1/users.labels/update
https://developers.google.com/gmail/api/reference/rest/v1/users.labels/patch

quoted_printable_encode 41

quoted_printable_encode
Encode text using quoted printable

Description
Does no do any line wrapping of the output to 76 characters Implementation derived from the perl
MIME::QuotedPrint

Usage

quoted_printable_encode(data)

Arguments

data data to encode

References

https://metacpan.org/pod/release/GAAS/MIME-Base64-3.14/QuotedPrint.pm

https://metacpan.org/pod/release/GAAS/MIME-Base64-3.14/QuotedPrint.pm

Index

* auth functions gm_threads, 33
gm_auth, 6 gm_trash_thread, 38
gm_auth_configure, 9 gm_untrash_thread, 39
gm_deauth, 12
gm_scopes, 30 as.character.mime, 3
gmailr-configuration, 3

« draft gargle: :AuthState, 9
gm_delete_draft, 13 gargle: :gargle_oauth_client_from_json(),

_ _ , 0

gm_draft, 15
gm_drafts, 16
gm_send_draft, 31

x label
gm_create_label, 11
gm_delete_label, 13
gm_label, 21
gm_labels, 21
gm_update_label, 40

« low-level API functions
gm_has_token, 17

gargle::gargle_oauth_email(), 3
gargle::gargle_options, 8
gargle::token_fetch(), 6,8, 12
gargle_oauth_cache(), 7
gargle_oauth_client_type(), 7
gargle_oauth_email (), 6
gargle_oob_default(), 7
gm_attach_file (gm_mime), 24
gm_attach_part (gm_mime), 24
gm_attachment, 4, 14, 19, 20, 22, 23, 26, 29,
30, 32, 38, 39

gm_token, 35 gm_attachment(), 28

* message gm_attachments, 5
gm_attachment, 4 gm_auth, 4,6, 9, 12, 31
gm_delete_message, 14 gm_auth(), 12, 35
gm_import_message, 19 gm_auth_configure, 4, 8,9, 12, 31

gm_insert_message, 20
gm_message, 22

gm_auth_configure(), 8
gm_bcc (gm_to), 34

gm_messages, 23 gm_bcc.mime (gm_mime), 24
gm_modify_message, 26 gm_body, 10
gm_save_attachment, 28 gm_cc (gm_to), 34
gm_save_attachments, 29 gm_cc.mime (gm_mime), 24
gm_send_message, 32 gm_create_draft, 11
gm_trash_message, 37 gm_create_label, 11, 14, 21, 40
gm_untrash_message, 39 gm_date (gm_to), 34

* mime gm_deauth, 4, 8, 9, 12, 31
gm_mime, 24 gm_deauth(), 35

* thread gm_default_email
gm_delete_thread, 15 (gmailr-configuration), 3
gm_modify_thread, 27 gm_default_oauth_client
gm_thread, 33 (gmailr-configuration), 3

42

INDEX

gm_default_oauth_client(), 9
gm_delete_draft, 13, 16, 31
gm_delete_label, 12,13, 21, 40
gm_delete_message, 5, 14, 19, 20, 22, 23, 26,
29, 30, 32, 38, 39
gm_delete_thread, 15, 27, 33, 34, 38, 40
gm_draft, 13,15, 16, 31
gm_drafts, 13, 16, 16, 31
gm_from (gm_to), 34
gm_from.mime (gm_mime), 24
gm_has_token, 17, 35
gm_history, 17
gm_html_body (gm_mime), 24
gm_id, 18
gm_import_message, 5, 14, 19, 20, 22, 23, 26,
29, 30, 32, 38, 39
gm_insert_message, 5, 14, 19, 20, 22, 23, 26,
29, 30, 32, 38, 39
gm_label, 12, 14, 21, 21, 40
gm_labels, 12, 14, 21, 21, 40
gm_message, 5, 14, 19, 20, 22, 23, 26, 29, 30,
32, 38, 39
gm_messages, 5, 14, 19, 20, 22, 23, 26, 29, 30,
32,38, 39
gm_mime, 24
gm_modify_message, 5, 14, 19, 20, 22, 23, 26,
29, 30, 32, 38, 39
gm_modify_thread, 15, 27, 33, 34, 38, 40
gm_oauth_client (gm_auth_configure), 9
gm_profile, 28
gm_save_attachment, 5, 14, 19, 20, 22, 23,
26, 28, 30, 32, 38, 39
gm_save_attachments, 5, 14, 19, 20, 22, 23,
26, 29, 29, 32, 38, 39
gm_save_attachments(), 4, 28
gm_scopes, 4,8, 9, 12, 30
gm_scopes(), 7, 30
gm_send_draft, 13, 16, 31
gm_send_message, 5, 14, 19, 20, 22, 23, 26,
29, 30, 32, 38, 39
gm_subject (gm_to), 34
gm_subject.mime (gm_mime), 24
gm_text_body (gm_mime), 24
gm_thread, 15, 27, 33, 34, 38, 40
gm_threads, 15, 27, 33, 33, 38, 40
gm_to, 34
gm_to.mime (gm_mime), 24
gm_token, 17, 35

43

gm_token_read (gm_token_write), 36
gm_token_write, 36
gm_trash_message, 5, 14, 19, 20, 22, 23, 26,
29, 30, 32,37, 39
gm_trash_thread, 15, 27, 33, 34, 38, 40
gm_trash_thread(), 39
gm_untrash_message, 5, 14, 19, 20, 22, 23,
26, 29, 30, 32, 38, 39
gm_untrash_message(), 37, 39
gm_untrash_thread, 15, 27, 33, 34, 38, 39
gm_untrash_thread(), 38
gm_update_label, 12, 14, 21, 40
gm_update_label_patch
(gm_update_label), 40
gmailr-configuration, 3

httr, 35
httr::config(), 7, 35, 37

jsonlite::fromJSONQ), 6, 9

options and associated accessor
functions, 4

quoted_printable_encode, 41

Token2.0, 7, 37

	as.character.mime
	gmailr-configuration
	gm_attachment
	gm_attachments
	gm_auth
	gm_auth_configure
	gm_body
	gm_create_draft
	gm_create_label
	gm_deauth
	gm_delete_draft
	gm_delete_label
	gm_delete_message
	gm_delete_thread
	gm_draft
	gm_drafts
	gm_has_token
	gm_history
	gm_id
	gm_import_message
	gm_insert_message
	gm_label
	gm_labels
	gm_message
	gm_messages
	gm_mime
	gm_modify_message
	gm_modify_thread
	gm_profile
	gm_save_attachment
	gm_save_attachments
	gm_scopes
	gm_send_draft
	gm_send_message
	gm_thread
	gm_threads
	gm_to
	gm_token
	gm_token_write
	gm_trash_message
	gm_trash_thread
	gm_untrash_message
	gm_untrash_thread
	gm_update_label
	quoted_printable_encode
	Index

