Package ‘flexFitR’

January 27, 2026
Type Package
Title Flexible Non-Linear Least Square Model Fitting
Version 1.2.2
Maintainer Johan Aparicio <aparicioarce@wisc.edu>

Description Provides tools for flexible non-linear least squares model fitting using general-
purpose optimization techniques. The package supports a variety of optimization algorithms, in-
cluding those provided by the 'optimx' package, making it suitable for handling complex non-
linear models. Features include parallel processing support via the 'future' and 'foreach' pack-
ages, comprehensive model diagnostics, and visualization capabilities. Implements methods de-
scribed in Nash and Varadhan (2011, <doi:10.18637/jss.v043.109>).

License MIT + file LICENSE
Encoding UTF-8

LazyData true

Depends R (>=4.1)
RoxygenNote 7.3.3

Author Johan Aparicio [cre, aut],
Jeffrey Endelman [aut],
University of Wisconsin Madison [cph]

Imports agriutilities, doFuture, dplyr, foreach, future, ggplot2,
numDeriv, optimx, progressr, rlang, subplex, tibble, tidyr

URL https://apariciojohan.github.io/flexFitR/,
https://github.com/AparicioJohan/flexFitR

BugReports https://github.com/AparicioJohan/flexFitR/issues

Suggests BB, dfoptim, ggpubr, kableExtra, knitr, Ibfgsb3c, marqLevAlg,
purrr, rmarkdown, ucminf

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-27 20:00:02 UTC

https://doi.org/10.18637/jss.v043.i09
https://apariciojohan.github.io/flexFitR/
https://github.com/AparicioJohan/flexFitR
https://github.com/AparicioJohan/flexFitR/issues

2 Contents

Contents
anova.modeler L e e e 3
AUZMENE o vttt e e e e e e e e e e e 4
cmodeler e e e 5
coef.modeler e e e 6
COMPULE_tANZENEttt e e e e e e e e e e e e e e e e 7
confint.modeler e e 8
dt_potatoo e e e e 9
EXPIOTET e e e e 10
fittedmodeler e 11
fN_eXp2_eXp . . . o v o e e e e 12
fn_exp2_lin 13
fN_eXP_eXP - - ¢ o o e e e e 14
fn_exp_lin e e 15
o din . . . 16
fn_lin_logis L e e 17
fn_lin_plat. 18
fn_lin_pl_lin e 19
o Il . e e e e 20
fn_logistic 21
fn_dpl . . e 22
fnogpl . . . e 23
fn_quad e e 24
fn_quad_plat 24
fn_quad_pl_sm e 25
goodness_of fit 26
inverse_predictmodeler 27
List_funs L e 28
list_methods e e e e e e 29
loglik.modeler e 29
MELTICS v v o e e e e e e e e e e e e e e 30
modeler e e e e 31
performance e 34
Plot.explorer e e e e e e e e 35
plotmodeler e 37
plot.performance e e e e 39
plot_fn. 40
predictmodeler L e 42
print.modeler 44
residuals.modeler 45
SEHIES_ MULALE v v e e e e e e e e e e e e e 46
subset.modeler 47
update.modeler L e e e e 48
veov.amodeler L L L L e 49

Index 51

anova.modeler 3

anova.modeler Extra Sum-of-Squares F-Test for modeler objects

Description

Perform an extra sum-of-squares F-test to compare two nested models of class modeler. This test
assesses whether the additional parameters in the full model significantly improve the fit compared
to the reduced model.

Usage
S3 method for class 'modeler'
anova(object, full_model = NULL, ...)
Arguments
object An object of class modeler representing the reduced model with fewer parame-
ters.
full_model An optional object of class modeler representing the full model with more pa-
rameters.

Additional parameters for future functionality.

Value

A tibble containing columns with the F-statistic and corresponding p-values, indicating whether
the full model provides a significantly better fit than the reduced model.
Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
dt <- data.frame(X = 1:6, Y = c(12, 16, 44, 50, 95, 100))

mo_1 <- modeler(dt, X, Y, fn = "fn_lin", param = c(m = 10, b = -5))
plot(mo_1)

mo_2 <- modeler(dt, X, Y, fn = "fn_quad”, param = c(a =1, b =10, ¢c = 5))
plot(mo_2)

anova(mo_1, mo_2)

4 augment

augment Augment a modeler object with influence diagnostics

Description

This function computes various influence diagnostics, including standardized residuals, studentized
residuals, and Cook’s distance, for an object of class modeler.

Usage
augment(x, id = NULL, metadata = TRUE, ...)
Arguments
X An object of class modeler.
id Optional unique identifier to filter by a specific group. Default is NULL.
metadata Logical. If TRUE, metadata is included with the predictions. Default is FALSE
Additional parameters for future functionality.
Value

A tibble containing the following columns:

uid Unique identifier for the group.
fn_name Function name associated with the model.
X Predictor variable values.
y Observed response values.
.fitted Fitted values from the model.
.resid Raw residuals (observed - fitted).
.hat Leverage values for each observation.
.cooksd Cook’s distance for each observation.
.std.resid Standardized residuals.
.stud.resid Studentized residuals.

Author(s)

Johan Aparicio [aut]

c.modeler

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_logistic”,
parameters = c(a = 0.199, t0 = 47.7, k = 100),
subset = 2
)
print(mod_1)
augment (mod_1)

c.modeler Combine objects of class modeler

Description

Combine objects of class modeler. Use with caution, some functions might not work as expected.

Usage
S3 method for class 'modeler'
c(...)
Arguments
Objects of class modeler, typically the result of calling modeler ().
Value

A modeler object.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(

x = DAP,

y = Canopy,

grp = Plot,

fn = "fn_logistic”,

6 coef.modeler

parameters =
subset = 1:2
)
mod_2 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 100),
subset = 1:2
)
mod <- c(mod_1, mod_2)
print(mod)
plot(mod, id = 1:2)

c(a = 0.199, t0 = 47.7, k = 100),

coef.modeler Coefficients for an object of class modeler

Description

Extract the estimated coefficients from an object of class modeler.

Usage
S3 method for class 'modeler'
coef(object, id = NULL, metadata = FALSE, df = FALSE, ...)
Arguments
object An object of class modeler, typically the result of calling the modeler () func-
tion.
id An optional unique identifier to filter by a specific group. Default is NULL.
metadata Logical. If TRUE, metadata is included along with the coefficients. Default is
FALSE.
df Logical. If TRUE, the degrees of freedom for the fitted model are returned along-

side the coefficients. Default is FALSE.

Additional parameters for future functionality.

Value

A data. frame containing the model’s estimated coefficients, standard errors, and optional metadata
or degrees of freedom if specified.

Author(s)

Johan Aparicio [aut]

compute_tangent 7

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)
)
print(mod_1)
coef(mod_1, id = 2)

compute_tangent Compute tangent line(s) from a modeler object

Description
Computes the slope and intercept of the tangent line(s) to a fitted curve at one or more specified
x-values.

Usage

compute_tangent(object, x = NULL, id = NULL)

Arguments
object A fitted object of class modeler, created by modeler().
X A numeric vector of x-values at which to compute tangent lines. A data.frame
is also accepted with columns <uid, x>.
id Optional vector of uids indicating which groups to compute tangent lines for. If
NULL, all groups are used.
Value

A tibble with one row per tangent line and the following columns:

* uid: unique identifier of the group.

* fn_name: Name of the fitted function.

* x: x-value where the tangent line is evaluated.
* y: Fitted y-value at x.

* slope: First derivative (slope of tangent) at x.

* intercept: y-intercept of the tangent line.

8 confint.modeler

Examples

library(flexFitR)
library(ggplot2)
data(dt_potato)
mod <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_logistic”,
parameters = c(a = 4, to
subset = 2
)
plot(mod)
tl <- compute_tangent(mod, x = c(48.35, 65))
print(tl)
plot(mod) +
geom_abline(
data = tl,
mapping = aes(slope = slope, intercept = intercept),
linetype = 2,
color = "blue”
) +
geom_point(
data = tl,
mapping = aes(x = x, y = vy),
shape = 8,
color = "blue”,
size = 2

40, k = 100),

confint.modeler Confidence intervals for a modeler object

Description

Extract confidence intervals for the estimated parameters of an object of class modeler.

Usage
S3 method for class 'modeler'
confint(object, parm = NULL, level = ©0.95, id = NULL, ...)
Arguments
object An object of class modeler, typically the result of calling the modeler () func-

tion.

dt_potato 9

parm A character vector specifying which parameters should have confidence inter-
vals calculated. If NULL, confidence intervals for all parameters are returned.
Default is NULL.

level A numeric value indicating the confidence level for the intervals. Default is 0.95,
corresponding to a 95% confidence interval.

id An optional unique identifier to filter by a specific group. Default is NULL.

Additional parameters for future functionality.

Value

A tibble containing the lower and upper confidence limits for each specified parameter.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 35, 45)
)
print(mod_1)
confint(mod_1)

dt_potato Drone-derived data from a potato breeding trial

Description

Canopy and Green Leaf Index for a potato trial arranged in a p-rep design.

Usage

dt_potato

10 explorer

Format

A tibble with 1372 rows and 8 variables:

Trial chr trial name

Plot dbl denoting the unique plot id
Row dbl denoting the row coordinate
Range dbl denoting range coordinate
gid chr denoting the genotype id

DAP dbl denoting Days after planting
Canopy dbl Canopy UAV-Derived

GLI dbl Green Leaf Index UAV-Derived

Source

UW - Potato Breeding Program

explorer Explore data

Description

Explores data from a data frame in wide format.

Usage

explorer(data, x, y, id, metadata)

Arguments
data A data. frame containing the input data for analysis.
X The name of the column in data that contains x points.
y The names of the columns in data that contain the variables to be analyzed.
id The names of the columns in data that contains a grouping variable.
metadata The names of the columns in data to keep across the analysis.

Details

This function helps to explore the dataset before being analyzed with modeler ().

fitted.modeler 11

Value

An object of class explorer, which is a list containing the following elements:

summ_vars A data.frame containing summary statistics for each trait at each x point, including
minimum, mean, median, maximum, standard deviation, coefficient of variation, number of
non-missing values, percentage of missing values, and percentage of negative values.

summ_metadata A data.frame summarizing the metadata.

locals_min_max A data.frame containing the local minima and maxima of the mean y values over
X.

dt_long A data.frame in long format, with columns for uid, metadata, var, x, and y

metadata A character vector with the names of the variables to keep across.

Examples

library(flexFitR)
data(dt_potato)
results <- dt_potato |>
explorer(
x = DAP,
y = c(Canopy, GLI),
id = Plot,
metadata = c(gid, Row, Range)
)
names(results)
head(results$summ_vars)
plot(results, label_size = 4, signif = TRUE, n_row = 2)
New data format
head(results$dt_long)

fitted.modeler Extract fitted values from a modeler object

Description

Extract fitted values from a modeler object

Usage
S3 method for class 'modeler'
fitted(object, ...)

Arguments
object An object of class ‘modeler*

Additional parameters for future functionality.

12 fn_exp2_exp

Value

A numeric vector of fitted values.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)
)
fitted(mod_1)

fn_exp2_exp Super-exponential exponential function

Description

A piecewise function that models an initial exponential phase with quadratic time dependence,
followed by a second exponential phase with a different growth rate.

Usage

fn_exp2_exp(t, t1, t2, alpha, beta)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The transition time between the two exponential phases. Must be greater than
t1.
alpha The curvature-controlled exponential rate during the first phase (t1 to t2).
beta The exponential growth rate after t2.

Details

fn_exp2_lin 13

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_exp2_exp",
params = c(t1 = 35, t2 = 55, alpha = 1 / 600, beta = -1 / 30),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3,
y_auc_label = 0.15

fn_exp2_lin Super-exponential linear function

Description
A piecewise function that models an initial exponential growth phase based on a squared time
difference, followed by a linear phase.

Usage

fn_exp2_lin(t, t1, t2, alpha, beta)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The transition time between exponential and linear phases. Must be greater than
t1.
alpha The exponential growth rate controlling the curvature of the exponential phase.
beta The slope of the linear phase after t2.
Details

The exponential section rises gradually from O at t1 and accelerates as time increases. The linear
section starts at t2 with a value matching the end of the exponential phase, ensuring continuity but
not necessarily matching the derivative.

Value

A numeric vector of the same length as t, representing the function values.

14 fn_exp_exp

Examples

library(flexFitR)
plot_fn(
fn = "fn_exp2_lin",
params = c(t1 = 35, t2 = 55, alpha = 1 / 600, beta = -1 / 80),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

fn_exp_exp Double-exponential function

Description

A piecewise function with two exponential phases. The first exponential phase occurs between
t1 and t2, and the second phase continues after t2 with a potentially different growth rate. The
function ensures continuity at the transition point but not necessarily smoothness (in derivative).

Usage

fn_exp_exp(t, t1, t2, alpha, beta)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The transition time between the two exponential phases. Must be greater than
t1.
alpha The exponential growth rate during the first phase (t1 to t2).
beta The exponential growth rate after t2.
Details

The function rises from 0 starting at t1 with exponential growth rate alpha, and transitions to
a second exponential phase with rate beta at t2. The value at the transition point is preserved,
ensuring continuity.

Value

A numeric vector of the same length as t, representing the function values.

fn_exp_lin 15

Examples

library(flexFitR)
plot_fn(
fn = "fn_exp_exp”,
params = c(t1 = 35, t2 = 55, alpha = 1 / 20, beta = -1 / 30),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3,
y_auc_label = 0.2

fn_exp_lin Exponential-linear function

Description

A piecewise function that models a response with an initial exponential growth phase followed by
a linear phase. Commonly used to describe processes with rapid early increases that slow into a
linear trend, while maintaining continuity.

Usage

fn_exp_lin(t, t1, t2, alpha, beta)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The transition time between exponential and linear phases. Must be greater than
t1.
alpha The exponential growth rate during the exponential phase.
beta The slope of the linear phase after t2.
Details

The exponential segment starts from 0 at t1, and the linear segment continues smoothly from the
end of the exponential part. This ensures value continuity at t2, but not necessarily smoothness in
slope.

Value

A numeric vector of the same length as t, representing the function values.

16 fn_lin

Examples

library(flexFitR)
plot_fn(
fn = "fn_exp_lin",
params = c(t1 = 35, t2 = 55, alpha = 1 / 20, beta = -1 / 40),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

fn_lin Linear function

Description

A basic linear function of the form f(t) =m * t + b, where m is the slope and b is the intercept.

Usage
fn_lin(t, m, b)

Arguments
t A numeric vector of input values (e.g., time).
m The slope of the line.
b The intercept (function value when t =).
Details
Value

A numeric vector of the same length as t, giving the linear function values.

Examples

library(flexFitR)

plot_fn(
fn = "fn_lin",
params = c(m = 2, b = 10),
interval = c(0, 108),
n_points = 2000

fn_lin_logis 17

fn_lin_logis Linear-logistic function

Description

A piecewise function that models an initial linear increase followed by a logistic saturation.

Usage

fn_lin_logis(t, t1, t2, k)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The transition time between the linear and logistic phases. Must be greater than
t1.
k The plateau height. The function transitions toward this value in the logistic
phase.
Details

The linear segment rises from O starting at t1, and the logistic segment begins at t2, smoothly
approaching the plateau value k.

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_lin_logis",
params = c(t1 = 35, t2 = 50, k = 100),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

18 fn_lin_plat

fn_lin_plat Linear plateau function

Description

A simple piecewise function that models a linear increase from zero to a plateau. The function rises
linearly between two time points and then levels off at a constant value.

Usage

fn_lin_plat(t, t1 = 45, t2 = 80, k = 0.9)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The time at which the plateau begins. Must be greater than t1.
k The height of the plateau. The function linearly increases from 0 to k between
t1 and t2, then remains constant.
Details

This function is continuous but not differentiable at t1 and t2 due to the piecewise transitions. It
is often used in agronomy and ecology to describe growth until a resource limit or developmental
plateau is reached.

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_lin_plat”,
params = c(t1 = 34.9, t2 = 61.8, k = 100),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

fn_lin_pl_lin 19

fn_lin_pl_lin Linear plateau linear function

Description

A piecewise function that models an initial linear increase up to a plateau, maintains that plateau
for a duration, and then decreases linearly.

Usage

fn_lin_pl_lin(t, t1, t2, t3, k, beta)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The time when the linear growth phase ends and the plateau begins. Must be
greater than t1.
t3 The time when the plateau ends and the linear decline begins. Must be greater
than t2.
k The height of the plateau. The first linear phase increases to this value, which
remains constant until t3.
beta The slope of the final linear phase (typically negative), controlling the rate of
decline after t3.
Details

The function transitions continuously between all three phases but is not differentiable at the tran-
sition points t1, t2, and t3.

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_lin_pl_lin",
params = c(t1l = 38.7, t2 = 62, t3 = 90, k = 0.32, beta = -0.01),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

20 fn_lII

fn_111 Linear—logistic—linear function

Description

A piecewise function that models (i) an initial linear increase from zero, (ii) a smooth logistic rise
toward an upper asymptote, and (iii) a final linear phase.

Usage
fn_111(t, t1, t2, dt, k, beta = NULL)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than or equal
to t1.
t2 The time when the initial linear phase ends and the logistic phase begins. Must
be greater than t1.
dt Duration of the logistic phase. Defines t3 = t2 + dt and must be positive.
k Upper asymptote (maximum level) of the logistic component.
beta Slope of the final linear phase after t3 (often negative).
Details

where t3 = ty + dt.

The function is continuous at t1, t2, and t3. It is differentiable at t2 by construction (the linear
slope matches the logistic derivative at t2). It is not differentiable at t1, and it is generally not
differentiable at t3 unless beta matches the logistic derivative at t3.

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_111",
params = c(t1 = 25, t2 = 35, dt = 45, k = 100, beta = -1),
interval = c(0, 100),
n_points = 2000,
auc_label_size = 3

fn_logistic 21

fn_logistic Logistic function

Description
A standard logistic function commonly used to model sigmoidal growth. The curve rises from near
zero to a maximum value k, with inflection point at t@ and growth rate a.

Usage

fn_logistic(t, a, to, k)

Arguments
t A numeric vector of input values (e.g., time).
a The growth rate (steepness of the curve). Higher values lead to a steeper rise.
to The time of the inflection point (midpoint of the transition).
k The upper asymptote or plateau (maximum value as t -=> Inf).
Details

This is a classic sigmoid (S-shaped) curve that is symmetric around the inflection point t@.

Value

A numeric vector of the same length as t, representing the logistic function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_logistic”,
params = c(a = 0.199, t0 = 47.7, k = 100),
interval = c(0, 108),
n_points = 2000

22 fn_Ipl

fn_1pl Linear plateau linear with constrains

Description

A piecewise function that models an initial linear increase to a plateau, followed by a specified dura-
tion of stability, and then a linear decline. This version parameterizes the plateau using its duration
rather than an explicit end time, making it convenient for box type of constraints optimizations.

Usage

fn_lpl(t, t1, t2, dt, k, beta)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The time when the linear growth phase ends and the plateau begins. Must be
greater than t1.
dt The duration of the plateau phase. The plateau ends at t2 + dt.
k The height of the plateau. The linear phase increases to this value, which re-
mains constant for dt units of time.
beta The slope of the decline phase that begins after the plateau. Typically negative.
Details
Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_lpl”,
params = c(t1 = 38.7, t2 = 62, dt = 28, k = 0.32, beta = -0.01),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

fn_gpl 23

fn_gpl Quadratic—plateau—linear function

Description
A piecewise function that models an initial quadratic increase from zero up to a plateau, maintains
that plateau for a duration, and then changes linearly after the plateau ends.

Usage
fn_gpl(t, t1, t2, dt, b, k, beta)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The time when the quadratic growth phase ends and the plateau begins. Must be
greater than t1.
dt Duration of the plateau. Defines t3 = t2 + dt and must be non-negative.
b Linear coefficient of the quadratic growth phase.
k The plateau value (level maintained between t2 and t3).
beta Slope of the final linear phase after t3 (often negative).
Details

The quadratic phase is parameterized so that the curve reaches exactly k at t2. Let A = to — ;.
The quadratic coefficient c is computed internally as:

where t3 = t5 + dt.

The function is continuous at t1, t2, and t3. It is not differentiable at t3 unless beta = 0.

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_gpl”,
params = c(t1l = 30, t2 = 60, dt = 20, b = 0.01, k = 0.9, beta = -0.01),
interval = c(0, 100),
n_points = 2000,
auc_label_size = 3

24 fn_quad_plat

fn_quad Quadpratic function

Description
A standard quadratic function of the form f(t) =a* t*2 + b * t + ¢, where a controls curvature, b
is the linear coefficient, and c is the intercept.

Usage
fn_quad(t, a, b, ¢)

Arguments
t A numeric vector of input values (e.g., time).
a The quadratic coefficient (curvature).
b The linear coefficient (slope at the origin).
c The intercept (function value when t = 0).
Details

This function represents a second-degree polynomial. The sign of a determines whether the parabola
opens upward (a > @) or downward (a < 0).

Value

A numeric vector of the same length as t, representing the quadratic function values.

Examples
library(flexFitR)
plot_fn(fn = "fn_quad”, params = c(a =1, b =10, c = 5))
fn_quad_plat Quadratic-plateau function

Description

Computes a value based on a quadratic-plateau growth curve.

Usage
fn_quad_plat(t, t1 = 45, t2 =80, b =1, k = 100)

fn_quad_pl_sm 25

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The time at which the plateau begins. Must be greater than t1.
The initial slope of the curve at t1.
k The plateau height. The function transitions to this constant value at t2.
Details

This function allows the user to specify the initial slope b. The curvature term is automatically
calculated so that the function reaches the plateau value k exactly at t2. The transition to the
plateau is continuous in value but not necessarily smooth in derivative.

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_quad_plat”,
params = c(t1 = 35, t2 =80, b = 4, k = 100),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

fn_quad_pl_sm Smooth Quadratic-plateau function

Description

A piecewise function that models a quadratic increase from zero to a plateau value. The function is
continuous and differentiable, modeling growth processes with a smooth transition to a maximum
response.

Usage

fn_quad_pl_sm(t, t1, t2, k)

Arguments
t A numeric vector of input values (e.g., time).
t1 The onset time of the response. The function is O for all values less than t1.
t2 The time at which the plateau begins. Must be greater than t1.

k The plateau height. The function transitions to this constant value at t2.

26 goodness_of_fit

Details

The coefficients of the quadratic section are chosen such that the curve passes through (t1, @) and
(t2, k) with a continuous first derivative (i.e., smooth transition).

Value

A numeric vector of the same length as t, representing the function values.

Examples

library(flexFitR)
plot_fn(
fn = "fn_quad_pl_sm",
params = c(t1 = 35, t2 = 80, k = 100),
interval = c(0, 108),
n_points = 2000,
auc_label_size = 3

goodness_of_fit Akaike’s An Information Criterion for an object of class modeler

Description

Generic function calculating Akaike’s ‘An Information Criterion’ for fitted model object of class
modeler.

Usage

S3 method for class 'modeler'
AIC(object, ..., k = 2)

S3 method for class 'modeler'

BIC(object, ...)
Arguments
object An object inheriting from class modeler resulting of executing the function
modeler ()

Further parameters. For future improvements.

k Numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

Value

A tibble with columns giving the corresponding AIC and BIC.

inverse_predict.modeler 27

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)

dt <- data.frame(X = 1:6, Y = c(12, 16, 44, 50, 95, 100))
mo_1 <- modeler(dt, X, Y, fn = "fn_lin", param = c(m = 10, b
mo_2 <- modeler(dt, X, Y, fn = "fn_quad”, param = c(a =1, b
AIC(mo_1)

AIC(mo_2)

BIC(mo_1)

BIC(mo_2)

-5))
10, ¢ = 5))

inverse_predict.modeler
Inverse prediction from a modeler object

Description

Computes the x-value at which a fitted model reaches a user-specified response value (y-value).

Usage

S3 method for class 'modeler'
inverse_predict(

object,

Y,

id = NULL,

interval = NULL,

tol = 1e-06,

resolution = 1000,

)
Arguments

object A fitted object of class modeler.

y A numeric scalar giving the target y-value for which to compute the correspond-
ing x.

id Optional vector of uids for which to perform inverse prediction. If NULL, all
groups are used.

interval Optional numeric vector of length 2 specifying the interval in which to search
for the root. If NULL, the interval is inferred from the range of the observed
x-values.

tol Numerical tolerance passed to uniroot for root-finding accuracy.

resolution Integer. Number of grid points used to scan the interval.

Additional parameters for future functionality.

28

Details

list_funs

The function uses numeric root-finding to solve f(t, ...params) =y. If no root is found in the

interval, NA is returned.

Value

A tibble with one row per group, containing:

* uid — unique identifier of the group,

¢ fn_name — the name of the fitted function,

¢ lower and upper — the search interval used,

 y —the predicted y-value (from the function at the root),

¢ x — the x-value at which the function reaches y.

See Also

predict.modeler, uniroot

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)
)
print(mod_1)
inverse_predict(mod_1, y = 50)
inverse_predict(mod_1, y = 75, interval = c(20, 80))

list_funs Print available functions in flexFitR

Description

Print available functions in flexFitR

Usage

list_funs()

list_methods 29

Value

A vector with available functions

Examples

library(flexFitR)
list_funs()

list_methods Print available methods in flexFitR

Description

Print available methods in flexFitR

Usage

list_methods(bounds = FALSE, check_package = FALSE)

Arguments

bounds If TRUE, returns methods for box (or bounds) constraints. FALSE by default.
check_package If TRUE, ensures solvers are installed. FALSE by default.

Value

A vector with available methods

Examples

library(flexFitR)
list_methods()

loglik.modeler Extract Log-Likelihood for an object of class modeler

Description

logLik for an object of class modeler

Usage

S3 method for class 'modeler'
logLik(object, ...)

30 metrics

Arguments
object An object inheriting from class modeler resulting of executing the function
modeler ()
Further parameters. For future improvements.
Value

A tibble with the Log-Likelihood for the fitted models.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)

dt <- data.frame(X = 1:6, Y = c(12, 16, 44, 50, 95, 100))

mo_1 <- modeler(dt, X, Y, fn = "fn_lin", param = c(m = 10, b = -5))
plot(mo_1)

loglLik(mo_1)

metrics Metrics for an object of class modeler

Description

Computes various performance metrics for a modeler object. The function calculates Sum of
Squared Errors (SSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and the Coefficient of Determination (R-squared).

Usage

metrics(x, by_grp = TRUE)

Arguments
X An object of class ‘modeler* containing the necessary data to compute the met-
rics.
by_grp Return the metrics by id? TRUE by default.
Details
Value

A data frame containing the calculated metrics grouped by uid, metadata, and variables.

modeler 31

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(1:2)
)
plot(mod_1, id = c(1:2))
print(mod_1)
metrics(mod_1)

modeler Modeler: Non-linear regression for curve fitting

Description

A versatile function for performing non-linear least squares optimization on grouped data. It sup-
ports customizable optimization methods, flexible initial/fixed parameters, and parallel processing.

Usage

modeler(

data,

X,

Y,

grp,

keep,

fn = "fn_lin_plat”,
parameters = NULL,

lower = -Inf,

upper = Inf,

fixed_params = NULL,

method = c("subplex”, "pracmanm”, "anms"),

subset = NULL,
options = modeler.options(),
control = list()

Arguments

data A data. frame containing the input data for analysis.

X The name of the column in data representing the independent variable (x points).

modeler

y The name of the column in data containing the dependent variable to analyze
(response variable).

grp Column(s) in data used as grouping variable(s). Defaults to NULL. (Optional)

keep Names of columns to retain in the output. Defaults to NULL. (Optional)

fn A string. The name of the function used for curve fitting. Example: "fn_lin".

Defaults to "fn_lin_plat”.

parameters A numeric vector, named list, or data. frame providing initial values for param-
eters:

Numeric vector Named vector specifying initial values (e.g., c(k=0.5, t1 =
30)).

Data frame Requires a uid column with group IDs and parameter values for
each group.

List Named list where parameter values can be numeric or expressions (e.g.,
list(k ="max(y)", t1=40)).
Defaults to NULL.

lower A numeric vector specifying lower bounds for parameters. Defaults to -Inf for
all parameters.

upper A numeric vector specifying upper bounds for parameters. Defaults to Inf for
all parameters.

fixed_params A list or data. frame for fixing specific parameters:
List Named list where parameter values can be numeric or expressions (e.g.,
list(k = "max(y)", t1=40)).
Data frame Requires a uid column for group IDs and fixed parameter values.

Defaults to NULL.

method A character vector specifying optimization methods. Check available methods
using 1ist_methods () and their dependencies using optimx: :checkallsolvers().
Defaults to c("subplex”, "pracmanm”, "anms").

subset A vector (optional) containing levels of grp to filter the data for analysis. De-
faults to NULL (all groups are included).

options A list of additional options. See modeler.options()
progress Logical. If TRUE a progress bar is displayed. Default is FALSE. Try
this before running the function: progressr: :handlers("progress”, "beepr”).

parallel Logical. If TRUE the model fit is performed in parallel. Default is
FALSE.

workers The number of parallel processes to use. parallel: :detectCores()

trace If TRUE , convergence monitoring of the current fit is reported in the
console. FALSE by default.

return_method Logical. If TRUE, includes the optimization method used in the
result. Default is FALSE.

control A list of control parameters to be passed to the optimization function. For ex-
ample: list(maxit = 500).

modeler 33

Value

An object of class modeler, which is a list containing the following elements:

param Data frame containing optimized parameters and related information.
dt Data frame with input data, fitted values, and residuals.

metrics Metrics and summary of the models.

execution Total execution time for the analysis.

response Name of the response variable analyzed.

keep Metadata retained based on the keep argument.

fun Name of the curve-fitting function used.

parallel List containing parallel execution details (if applicable).

fit List of fitted models for each group.

Examples

library(flexFitR)
data(dt_potato)
explorer <- explorer(dt_potato, x = DAP, y = c(Canopy, GLI), id = Plot)
Example 1
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = GLI,
grp = Plot,
fn = "fn_lin_pl_lin",
parameters = c(t1 = 38.7, t2 = 62, t3 = 90, k = 0.32, beta = -0.01),
subset = 195
)
plot(mod_1, id = 195)
print(mod_1)
Example 2
mod_2 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = 195
)
plot(mod_2, id = 195)
print(mod_2)

34 performance

performance Compare performance of different models

Description

Computes indices of model performance for different models at once and hence allows comparison
of indices across models.

Usage
performance(..., metrics = "all", metadata = FALSE, digits = 2)
Arguments
Multiple model objects (only of class ‘modeler®).
metrics Can be "all" or a character vector of metrics to be computed (one or more of
lllOgLikH’ IIAIC", HAICCII’ ||BIC||’ llSigmall, HSSEH’ HMAEH’ IIMSE"’ IIRMSEII’
"R2"). "all" by default.
metadata Logical. If TRUE, metadata is included with the performance metrics. Default is
FALSE.
digits An integer. The number of decimal places to round the output. Default is 2.
Value

A data.frame with performance metrics for models in (...).

Examples

library(flexFitR)
data(dt_potato)
Model 1
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 90),

subset = 40
)
print(mod_1)
Model 2
mod_2 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,

fn = "fn_logistic”,

plot.explorer 35

parameters = c(a = 0.199, t0 = 47.7, k = 100),
subset = 40
)
print(mod_2)
Model 3
mod_3 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin",
parameters = c(m = 20, b = 2),
subset = 40
)
print(mod_3)
performance(mod_1, mod_2, mod_3, metrics = c("AIC", "AICc", "BIC", "Sigma"))

plot.explorer Plot an object of class explorer

Description

Creates various plots for an object of class explorer. Depending on the specified type, the function
can generate plots that show correlations between variables over x, correlations between x values
for each variable, or the evolution of variables over x.

Usage

S3 method for class 'explorer'
plot(
X,
type = "var_by_x",
label_size = 4,
signif = FALSE,
method = "pearson”,
filter_var = NULL,
id = NULL,
n_row = NULL,
n_col = NULL,
base_size = 13,
return_gg = FALSE,
add_avg = FALSE,

Arguments

X An object inheriting from class explorer, resulting from executing the function
explorer().

36 plot.explorer

type Character string or number specifying the type of plot to generate. Available
options are:
"var_by_x" or 1 Plots correlations between variables over x (default).
"x_by_var" or 2 Plots correlations between x points for each variable (y).
"evolution” or 3 Plot the evolution of the variables (y) over x.
"xy" or 4 Scatterplot (x, y)

label_size Numeric. Size of the labels in the plot. Default is 4. Only works with type 1 and
2.

signif Logical. If TRUE, adds p-values to the correlation plot labels. Default is FALSE.
Only works with type 1 and 2.

method Character string specifying the method for correlation calculation. Available
options are "pearson” (default), "spearman”, and "kendall”. Only works
with type 1 and 2.

filter_var Character vector specifying the variables to exclude from the plot.

id Optional unique identifier to filter the evolution type of plot. Default is NULL.
Only works with type 3.

n_row Integer specifying the number of rows to use in facet_wrap(). Default is NULL.
Only works with type 1 and 2.

n_col Integer specifying the number of columns to use in facet_wrap(). Default is
NULL. Only works with type 1 and 2.

base_size Numeric. Base font size for the plot. Default is 13.

return_gg Logical. If TRUE, returns the ggplot object instead of printing it. Default is
FALSE.

add_avg Logical. If TRUE, returns evolution plot with the average trend across groups.
Default is FALSE.
Further graphical parameters for future improvements.

Value

A ggplot object and an invisible data.frame containing the correlation table when type is "var_by_x"
or "x_by_var".

Examples

library(flexFitR)

data(dt_potato)

results <- explorer(dt_potato, x = DAP, y = c(Canopy, GLI), id = Plot)
table <- plot(results, label_size = 4, signif = TRUE, n_row = 2)

table

plot(results, type = "x_by_var", label_size = 4, signif = TRUE)

plot.modeler 37

plot.modeler Plot an object of class modeler

Description

Creates several plots for an object of class modeler.

Usage
S3 method for class 'modeler'
plot(
X}
id = NULL,
type = 1,

label_size = 4,
base_size = 14,
linewidth = 0.5,

color = "red",
color_points = "black”,
parm = NULL,

n_points = 1000,

title = NULL,
add_points = FALSE,
add_ci = TRUE,

color_ci = "blue”,
color_pi = "red",
add_ribbon_ci = FALSE,
add_ribbon_pi = FALSE,
color_ribbon_ci = "blue”,

color_ribbon_pi = "red",
)
Arguments
X An object of class modeler, typically the result of calling modeler ().
id An optional group ID to filter the data for plotting, useful for avoiding over-
crowded plots.
type Numeric value (1-6) to specify the type of plot to generate. Default is 1.

type =1 Plot of raw data with fitted curves.

type = 2 Plot of coefficients with confidence intervals.

type = 3 Plot of fitted curves, colored by group.

type = 4 Plot of fitted curves with confidence intervals.
type = 5 Plot of first derivative with confidence intervals.
type = 6 Plot of second derivative with confidence intervals.

38

label_size
base_size
linewidth

color

color_points

parm

n_points

title
add_points

add_ci

color_ci

color_pi

add_ribbon_ci

add_ribbon_pi

color_ribbon_ci

color_ribbon_pi

Value

plot.modeler

Numeric value for the size of labels. Default is 4.

Numeric value for the base font size in pts. Default is 14.

Numeric value specifying size of line geoms. Default is 0.5.

Character string specifying the color for the fitted line when type = 1. Default
is "red".

Character string specifying the color for the raw data points when type = 1.
Default is "black".

Character vector specifying the parameters to plot for type = 2. If NULL, all
parameters are included.

Numeric value specifying the number of points for interpolation along the x-
axis. Default is 2000.

Optional character string to add a title to the plot.

Logical value indicating whether to add raw observations to the plot for type =
3 and 4. Default is FALSE.

Logical value indicating whether to add confidence intervals for type = 4, 5, 6.
Default is TRUE.

Character string specifying the color of the confidence interval when type = 4,
5, 6. Default is "blue".

Character string specifying the color of the prediction interval when type = 4.
Default is "red".

Logical value indicating whether to add a ribbon for confidence intervals in type
=4, 5, 6. Default is FALSE.

Logical value indicating whether to add a ribbon for prediction intervals in type
= 4. Default is FALSE.

Character string specifying the color of the ribbon (ci). Default is "blue".

Character string specifying the color of the ribbon (pi). Default is "red".

Additional graphical parameters for future extensions.

A ggplot object representing the specified plot.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)

data(dt_potato)
Example 1

mod_1 <- dt_potato |>

modeler(

plot.performance

x = DAP,
y = Canopy,
grp = Plot,

fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(1:3)

39

)
print(mod_1)
plot(mod_1, id
plot(mod_1, id

1:2)
1:3, type = 2, label_size = 10)

plot.performance

Plot an object of class performance

Description

Creates plots for an object of class performance

Usage

S3 method for class 'performance'’

plot(
X,
id = NULL,
type = 1,

rescale = FALSE,
1,
12,

linewidth =
base_size =

return_table

Arguments

X
id

type

rescale

linewidth
base_size
return_table

= FALSE,

An object of class performance, typically the result of calling performance().

An optional group ID to filter the data for plotting, useful for avoiding over-
crowded plots. This argument is not used when type = 2.

Numeric value (1-3) to specify the type of plot to generate. Default is 1.
type =1 Radar plot by uid

type = 2 Radar plot averaging

type = 3 Line plot by model-metric

type = 4 Ranking plot by model

Logical. If TRUE, metrics in type 3 plot are (0, 1) rescaled to improve interpreta-
tion. Higher values are better models. FALSE by default.

Numeric value specifying size of line geoms.

Numeric value for the base font size in pts. Default is 12

Logical. If TRUE, table to generate the plot is returned. FALSE by default.
Additional graphical parameters for future extensions.

40 plot_tn

Value

A ggplot object representing the specified plot.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
data(dt_potato)
Model 1
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 90),
subset = 40
)
Model 2
mod_2 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_logistic”,
parameters = c(a = 0.199, t0 = 47.7, k = 100),
subset = 40
)
Model 3
mod_3 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin",
parameters = c(m = 20, b = 2),
subset = 40
)
plot(performance(mod_1, mod_2, mod_3), type = 1)
plot(performance(mod_1, mod_2, mod_3, metrics = c("AICc", "BIC")), type = 3)

plot_fn Plot user-defined function

plot_fn 41

Description

This function plots a function over a specified interval and annotates the plot with the calculated
Area Under the Curve (AUC) and parameter values. The aim of ‘plot_fn° is to allow users to play
with different starting values in their functions before fitting any models.

Usage

plot_fn(

fn = "fn_lin_plat”,

params = c(t1 = 34.9, t2 = 61.8, k = 100),
interval = c(0, 100),

n_points = 1000,

auc = FALSE,
x_auc_label = NULL,
y_auc_label = NULL,

auc_label_size = 4,
param_label_size = 4,
base_size = 12,

color = "red”,
label_color = "grey30"

)
Arguments

fn A character string representing the name of the function to be plotted. Default
is "fn_lin_plat".

params A named numeric vector of parameters to be passed to the function. Default is
c(t1=34.9,t2=61.8, k=100).

interval A numeric vector of length 2 specifying the interval over which the function is
to be plotted. Default is c (0, 100).

n_points An integer specifying the number of points to be used for plotting. Default is
1000.

auc Print AUC in the plot? Default is FALSE.

x_auc_label A numeric value specifying the x-coordinate for the AUC label. Default is NULL.

y_auc_label A numeric value specifying the y-coordinate for the AUC label. Default is NULL.

auc_label_size A numeric value specifying the size of the AUC label text. Default is 3.
param_label_size

A numeric value specifying the size of the parameter label text. Default is 3.

base_size A numeric value specifying the base size for the plot’s theme. Default is 12.
color A character string specifying the color for the plot lines and area fill. Default is
llred" .

label_color A character string specifying the color for the labels. Default is "grey30".

Value

A ggplot object representing the plot.

42 predict.modeler

Examples

Example usage
plot_fn(
fn = "fn_lin_plat”,
params = c(t1 = 34.9, t2 = 61.8, k
interval = c(0, 100),
n_points = 1000
)
plot_fn(
fn = "fn_lin_pl_lin",
params <- c(t1 = 38.7, t2 = 62, t3
interval = c(0, 100),
n_points = 1000,
base_size = 12

100),

90, k = 0.32, beta = -0.01),

predict.modeler Predict an object of class modeler

Description

Generate model predictions from an object of class modeler. This function allows for flexible
prediction types, including point predictions, area under the curve (AUC), first or second order
derivatives, and functions of the parameters.

Usage

S3 method for class 'modeler'

predict(
object,
x = NULL,
id = NULL,
type = c("point”, "auc”, "fd", "sd"),
se_interval = c("confidence"”, "prediction”),

n_points = 1000,
formula = NULL,
metadata = FALSE,
parallel = FALSE,
workers = NULL,

Arguments

object An object of class modeler, typically the result of calling the modeler () func-
tion.

predict.modeler

id

type

se_interval

n_points

formula

metadata

parallel

workers

Value

43

A numeric value or vector specifying the points at which predictions are made.
For type = "auc”, x must be a vector of length 2 that specifies the interval over
which to calculate the AUC.

Optional unique identifier to filter predictions by a specific group. Default is
NULL.

A character string specifying the type of prediction. Default is "point".

"point"” Predicts the value of y for the given x.

"auc” Calculates the area under the curve (AUC) for the fitted model over the
interval specified by x.

"fd" Returns the first derivative (rate of change) of the model at the given x
value(s).
"sd"” Returns the second derivative of the model at the given x value(s).

A character string specifying the type of interval for standard error calcula-
tion. Options are "confidence” (default) or "prediction”. Only works with
"point" estimation.

An integer specifying the number of points used to approximate the area under
the curve (AUC) when type = "auc”. Default is 1000.

A formula specifying a function of the parameters to be estimated (e.g., ~ b *
500). Default is NULL.

Logical. If TRUE, metadata is included with the predictions. Default is FALSE.

Logical. If TRUE the prediction is performed in parallel. Default is FALSE. Use
only when a large number of groups are being analyzed and x is a grid of values.

The number of parallel processes to use. parallel::detectCores()

Additional parameters for future functionality.

A data. frame containing the predicted values, their associated standard errors, and optionally the

metadata.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
data(dt_potato)

mod_1 <- dt_potato |>

modeler(
X = DAP,
y = Canopy,
grp = Plot,

fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)

44 print.modeler

)
print(mod_1)
Point Prediction
predict(mod_1, x = 45, type = "point”, id = 2)
AUC Prediction
predict(mod_1, x = c(@, 108), type = "auc”, id = 2)
First Derivative
predict(mod_1, x = 45, type = "fd", id
Second Derivative
predict(mod_1, x = 45, type = "sd", id = 2)
Function of the parameters

2)

predict(mod_1, formula = ~ t2 - t1, id = 2)
print.modeler Print an object of class modeler
Description

Prints information about modeler function.

Usage
S3 method for class 'modeler'
print(x, ...)
Arguments
X An object fitted with the function modeler ().
Options used by the tibble package to format the output. See ‘tibble::print()‘ for
more details.
Value

an object inheriting from class modeler.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(

x = DAP,

y = Canopy,

grp = Plot,

fn = "fn_lin_plat”,

residuals.modeler

parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(1:5)
)
plot(mod_1, id = c(1:4))
print(mod_1)

45

residuals.modeler Extract residuals from a modeler object

Description

Extract residuals from a modeler object

Usage
S3 method for class 'modeler'
residuals(object, ...)

Arguments
object An object of class ‘modeler*

Additional parameters for future functionality.

Value

A numeric vector of residuals

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)
)

residuals(mod_1)

46

series_mutate

series_mutate

Transform variables in a data frame

Description

This function performs transformations on specified columns of a data frame, including truncating
maximum values, handling negative values, and adding a zero to the series. It allows for grouping
and supports retaining metadata in the output.

Usage

series_mutate(
data,
X,
Y,
grp,
metadata,
max_as_last =

FALSE,

check_negative = FALSE,
add_zero = FALSE,
interval = NULL

Arguments

data

X

y

grp
metadata

max_as_last

check_negative
add_zero

interval

Value

A data. frame containing the input data for analysis.

The name of the column in data representing the independent variable (x points).
The name of the column(s) in data containing variables to transform.
Column(s) in data used as grouping variable(s). Defaults to NULL (optional).
Names of columns to retain in the output. Defaults to NULL (optional).

Logical. If TRUE, appends the maximum value after reaching the maximum.
Default is FALSE.

Logical. If TRUE, converts negative values in the data to zero. Default is FALSE.
Logical. If TRUE, adds a zero value to the series at the start. Default is FALSE.

A numeric vector of length 2 (start and end) specifying the range to filter the
data. Defaults to NULL.

A transformed data. frame with the specified modifications applied.

subset.modeler 47

Examples

data(dt_potato)
new_data <- series_mutate(
data = dt_potato,

X = DAP,
y = GLI,
grp = gid,

max_as_last = TRUE,
check_negative = TRUE

subset.modeler Subset an object of class modeler

Description

Subset an object of class modeler

Usage
S3 method for class 'modeler’
subset(x, id = NULL, ...)
Arguments
X An object of class modeler, typically the result of calling modeler().
id Unique identifier to filter a modeler object by a specific group. Default is NULL.

Additional parameters for future functionality.

Value

A modeler object.

Author(s)

Johan Aparicio [aut]

Examples

library(flexFitR)

data(dt_potato)

mod <- dt_potato |>

modeler(

X = DAP,
y = Canopy,
grp = Plot,
fn = "fn_logistic”,
parameters = c(a = 0.199, t0 = 47.7, k = 100),

48 update.modeler

subset = 1:2
)
print(mod)
mod_new <- subset(mod, id = 2)
print(mod_new)

update.modeler Update a modeler object

Description

It creates a new fitted object using the parameter values from the current model as initial values. It
can also be used to perform a few additional iterations of a model that has not converged.

Usage
S3 method for class 'modeler’
update(object, method = NULL, track = TRUE, eps = 1e-06, ...)
Arguments
object An object of class modeler.
method A character vector specifying optimization methods. Check available methods

using list_methods(). Defaults to the ones in object.

track Logical. If TRUE, the function compares the SSE before and after the update and
reports how many groups improved. Useful for evaluating whether the refit led
to better convergence.

eps Numeric. The minimum change in SSE required to consider a fit improved.
Defaults to Te-6. Smaller values may include numerical noise as improvements.

Additional parameters for future functionality.

Value
An object of class modeler, which is a list containing the following elements:

param Data frame containing optimized parameters and related information.
dt Data frame with input data, fitted values, and residuals.

metrics Metrics and summary of the models.

execution Total execution time for the analysis.

response Name of the response variable analyzed.

keep Metadata retained based on the keep argument.

fun Name of the curve-fitting function used.

parallel List containing parallel execution details (if applicable).

fit List of fitted models for each group.

vcov.modeler 49

Examples

library(flexFitR)
data(dt_potato)
mo_1 <- dt_potato |>
modeler(
x = DAP,
y = GLI,
grp = Plot,
fn = "fn_lin_pl_lin",
parameters = c(t1 = 10, t2 = 62, t3 = 90, k = 0.32, beta = -0.01),
subset = 195
)
plot(mo_1)
mo_2 <- update(mo_1)
plot(mo_2)

vcov.modeler Variance-Covariance matrix for an object of class modeler

Description

Extract the variance-covariance matrix for the parameter estimates from an object of class modeler.

Usage
S3 method for class 'modeler’
vcov(object, id = NULL, ...)
Arguments
object An object of class modeler, typically the result of calling the modeler () func-
tion.
id An optional unique identifier to filter by a specific group. Default is NULL.

Additional parameters for future functionality.

Value

A list of matrices, where each matrix represents the variance-covariance matrix of the estimated
parameters for each group or fit.

Author(s)

Johan Aparicio [aut]

50 vcov.modeler

Examples

library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat”,
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(15, 2, 45)
)
print(mod_1)
vcov(mod_1)

Index

x datasets
dt_potato, 9

AIC.modeler (goodness_of_fit), 26
anova.modeler, 3
augment, 4

BIC.modeler (goodness_of_fit), 26

c.modeler, 5
coef.modeler, 6
compute_tangent, 7
confint.modeler, 8

dt_potato, 9
explorer, 10

fitted.modeler, 11
fn_exp2_exp, 12
fn_exp2_lin, 13
fn_exp_exp, 14
fn_exp_lin, 15
fn_lin, 16
fn_lin_logis, 17
fn_lin_pl_lin, 19
fn_lin_plat, 18
fn_111, 20
fn_logistic, 21
fn_l1pl, 22
fn_gpl, 23
fn_quad, 24
fn_quad_pl_sm, 25
fn_quad_plat, 24

goodness_of_fit, 26
inverse_predict.modeler, 27

list_funs, 28
list_methods, 29

51

loglLik.modeler, 29

metrics, 30
modeler, 7, 31

performance, 34
plot.explorer, 35
plot.modeler, 37
plot.performance, 39
plot_fn, 40
predict.modeler, 28, 42
print.modeler, 44

residuals.modeler, 45

series_mutate, 46
subset.modeler, 47

uniroot, 27, 28
update.modeler, 48

vcov.modeler, 49

	anova.modeler
	augment
	c.modeler
	coef.modeler
	compute_tangent
	confint.modeler
	dt_potato
	explorer
	fitted.modeler
	fn_exp2_exp
	fn_exp2_lin
	fn_exp_exp
	fn_exp_lin
	fn_lin
	fn_lin_logis
	fn_lin_plat
	fn_lin_pl_lin
	fn_lll
	fn_logistic
	fn_lpl
	fn_qpl
	fn_quad
	fn_quad_plat
	fn_quad_pl_sm
	goodness_of_fit
	inverse_predict.modeler
	list_funs
	list_methods
	logLik.modeler
	metrics
	modeler
	performance
	plot.explorer
	plot.modeler
	plot.performance
	plot_fn
	predict.modeler
	print.modeler
	residuals.modeler
	series_mutate
	subset.modeler
	update.modeler
	vcov.modeler
	Index

