
expint: Exponential integral and incomplete
gamma function

Vincent Goulet
Université Laval

1 Introduction
The exponential integral

𝐸1(𝑥) = ∫
∞

𝑥

𝑒−𝑡
𝑡 𝑑𝑡, 𝑥 ∈ ℝ

and the incomplete gamma function

Γ(𝑎, 𝑥) = ∫
∞

𝑥
𝑡𝑎−1𝑒−𝑡 𝑑𝑡, 𝑥 > 0, 𝑎 ∈ ℝ

are two closely related functions that arise in various fields of mathematics.
expint is a small package provides facilities to compute the exponential in-

tegral and the incomplete gamma function. Furthermore, and perhaps most
conveniently for R package developers, the package also gives easy access to
the underlying C workhorses through an API. The C routines are derived from
the GNU Scientific Library (GSL; Galassi et al., 2009).

The package expint started its life in version 2.0-0 of actuar (Dutang et al.,
2008), where I extended the range of admissible values in the computation of
limited expected value functions. This required an incomplete gamma function
that accepts negative values of argument 𝑎, as explained at the beginning of
Appendix A of Klugman et al. (2012).

2 Exponential integral
Abramowitz and Stegun (1972, Section 5.1) first define the exponential integral
as

𝐸1(𝑥) = ∫
∞

𝑥

𝑒−𝑡
𝑡 𝑑𝑡. (1)

1

An alternative definition (to be understood in terms of the Cauchy principal
value due to the singularity of the integrand at zero) is

Ei(𝑥) = −∫
∞

−𝑥

𝑒−𝑡
𝑡 𝑑𝑡 = ∫

𝑥

−∞

𝑒𝑡
𝑡 𝑑𝑡, 𝑥 > 0.

The above two definitions are related as follows:

𝐸1(−𝑥) = −Ei(𝑥), 𝑥 > 0. (2)

The exponential integral can also generalized to

𝐸𝑛(𝑥) = ∫
∞

1

𝑒−𝑥𝑡
𝑡𝑛 𝑑𝑡, 𝑛 = 0, 1, 2,… , 𝑥 > 0,

where 𝑛 is then the order of the integral. The latter expression is closely related
to the incomplete gamma function (section 3) as follows:

𝐸𝑛(𝑥) = 𝑥𝑛−1Γ(1 − 𝑛, 𝑥). (3)

One should note that the first argument of function Γ is negative for 𝑛 > 1.
The following recurrence relation holds between exponential integrals of

successive orders:
𝐸𝑛+1(𝑥) =

1
𝑛[𝑒

−𝑥 − 𝑥𝐸𝑛(𝑥)]. (4)

Finally, 𝐸𝑛(𝑥) has the following asymptotic expansion:

𝐸𝑛(𝑥) ≍
𝑒−𝑥
𝑥 (1 − 𝑛

𝑥 +
𝑛(𝑛 + 1)

𝑥2 − 𝑛(𝑛 + 1)(𝑛 + 2)
𝑥3 +…) . (5)

3 Incomplete gamma function
From a probability theory perspective, the incomplete gamma function is usu-
ally defined as

𝑃(𝑎, 𝑥) = 1
Γ(𝑎) ∫

𝑥

0
𝑡𝑎−1𝑒−𝑡 𝑑𝑡, 𝑥 > 0, 𝑎 > 0.

Function pgamma already implements this function in R (just note the differing
order of the arguments).

Now, the definition of the incomplete gamma function of interest for this
package is rather the following (Abramowitz and Stegun, 1972, Section 6.5):

Γ(𝑎, 𝑥) = ∫
∞

𝑥
𝑡𝑎−1𝑒−𝑡 𝑑𝑡, 𝑥 > 0, 𝑎 ∈ ℝ. (6)

2

Note that 𝑎 can be negative with this definition. Of course, for 𝑎 > 0 one has

Γ(𝑎, 𝑥) = Γ(𝑎)[1 − 𝑃(𝑎, 𝑥)]. (7)

Integration by parts of the integral in (6) yields the recursive relation

Γ(𝑎, 𝑥) = −𝑥
𝑎𝑒−𝑥
𝑎 + 1

𝑎Γ(𝑎 + 1, 𝑥). (8)

When 𝑎 < 0, this relation can be used repeatedly 𝑘 times until 𝑎 + 𝑘 is a
positive number. The right hand side can then be evaluated with (7). If 𝑎 =
0,−1, −2,… , this calculation requires the value of

𝐺(0, 𝑥) = ∫
∞

𝑥

𝑒−𝑡
𝑡 𝑑𝑡 = 𝐸1(𝑥),

the exponential integral defined in (1).

4 R interfaces
expint provides one main and four auxiliary R functions to compute the expo-
nential integral, and one function to compute the incomplete gamma function.
Their signatures are the following:

expint(x, order = 1L, scale = FALSE)
expint_E1(x, scale = FALSE)
expint_E2(x, scale = FALSE)
expint_En(x, order, scale = FALSE)
expint_Ei(x, scale = FALSE)
gammainc(a, x)

Let us first go over function gammainc since there is less to discuss. The
function takes in argument two vectors or real numbers (non-negative for ar-
gument x) and returns the value of Γ(𝑎, 𝑥). The function is vectorized in argu-
ments a and x, so it works similar to, say, pgamma.

We now turn to the expint family of functions. The function expint is a
unified interface to compute exponential integrals 𝐸𝑛(𝑥) of any (non-negative)
order, with default the most common case 𝐸1(𝑥). The function is vectorized
in arguments x and order. In other words, one can compute the exponential
integral of a different order for each value of 𝑥.

3

> expint(c(1.275, 10, 12.3), order = 1:3)
[1] 1.408099e-01 3.830240e-06 3.009983e-07
The argument order should be a vector of integers. Non-integer values are

silently coerced to integers using truncation towards zero.
When the argument scale is TRUE, the result is scaled by 𝑒𝑥.
The functions expint_E1, expint_E2 and expint_En are simpler, slightly

fasterways to directly compute exponential integrals𝐸1(𝑥),𝐸2(𝑥) and𝐸𝑛(𝑥), the
latter for a single order 𝑛 (the first value of order if order is a vector).
> expint_E1(1.275)
[1] 0.1408099
> expint_E2(10)
[1] 3.83024e-06
> expint_En(12.3, order = 3L)
[1] 3.009983e-07
Finally, the function expint_Ei is provided as a convenience to compute

Ei(𝑥) using (2).
> expint_Ei(5)
[1] 40.18528
> -expint_E1(-5) # same
[1] 40.18528

5 Accessing the C routines
The actual workhorses behind the R functions of section 4 are C routines with
the following prototypes:

double expint_E1(double x, int scale);
double expint_E2(double x, int scale);
double expint_En(double x, int order, int scale);
double gamma_inc(double a, double x);

expint makes these routines available to other packages through declara-
tions in the header file ‘include/expintAPI.h’ in the package installation direc-
tory. If you want to use a routine — say expint_E1 — in your package pkg,
proceed as follows:

4

1. Add the package expint to the Imports and LinkingTo directives of the
‘DESCRIPTION’ file of pkg;

2. Add an entry ‘import(expint)’ in the ‘NAMESPACE’ file of pkg;

3. Define the routine with a call to R_GetCCallable in the initialization rou-
tine R_init_pkg of pkg (R Core Team, 2025, Section 5.4). For the current
example, the file ‘src/init.c’ of pkg would contain the following code:
void R_init_pkg(DllInfo *dll)
{

R_registerRoutines(/* native routine registration */);

pkg_expint_E1 = (double(*)(double,int,int))
R_GetCCallable(”expint”, ”expint_E1”);

}

4. Define a native routine interface, say pkg_expint_E1 to avoid any name
clash, in ‘src/init.c’ that will call expint_E1:

double(*pkg_expint_E1)(double,int);

5. Declare the routine in a header file of pkg with the keyword extern to ex-
pose the interface to all routines of the package. In our example, ‘src/pkg.h’
would contain:

extern double(*pkg_expint_E1)(double,int);

6. Include the package header file ‘pkg.h’ in anyC filemaking use of the routine
pkg_expint_E1.

To help developers get started, expint ships with a complete test package
implementing the above; see the ‘example_API’ sub-directory in the installation
directory. This test package uses the .External R to C interface and, as a
bonus, shows how to vectorize an R function on the C side (the code for this
being mostly derived from base R).

There are various ways to define a package API. The approach described
above was derived from the package zoo (Zeileis and Grothendieck, 2005). The
package xts (Ryan and Ulrich, 2024) — and probably a few others on CRAN—
draws fromMatrix (Bates andMaechler, 2025) to propose a somewhat simpler
approach where the API exposes routines that can be used directly in a pack-
age. However, the provided header file can be included only once in a package,

5

otherwise one gets ‘duplicate symbols’ errors at link time. This constraint
does not show in the example provided with xts or in packages RcppXts (Ed-
delbuettel, 2022) and TTR (Ulrich, 2023) that link to it (the only two at the time
of writing). A way around the issue is to define a native routine calling the rou-
tines exposed in theAPI. In this scenario, tests I conducted proved the approach
I retained to be up to 10% faster most of the time.

6 Implementation details
As already stated, the C routines mentioned in section 5 are derived from code
in the GNU Scientific Library (Galassi et al., 2009).

For exponential integrals, the main routine expint_E1 computes 𝐸1(𝑥) us-
ing Chebyshev expansions (Gil et al., 2007, chapter 3). Routine expint_E2
computes 𝐸2(𝑥) using expint_E1 with relation (4) for 𝑥 < 100, and using
the asymptotic expression (5) otherwise. Routine expint_En simply relies on
gamma_inc to compute 𝐸𝑛(𝑥) for 𝑛 > 2 through relation (3).

For the sake of providing routines that better fit within the R ecosystem and
coding style, I made the following changes to the original GSL code:

1. routines compute a single value and return their result by value;

2. accordingly, calculation of the approximation error is dropped in all rou-
tines;

3. gamma_inc computes Γ(𝑎, 𝑥) for 𝑎 > 0 with (7) using the routines gammafn
and pgamma of the RAPI, rather than using the GSL routines, as the example
below illustrates;

> options(digits = 20)
> gammainc(1.2, 3)

[1] 0.06542142809100923162

> gamma(1.2) * pgamma(3, 1.2, 1, lower = FALSE)

[1] 0.06542142809100923162

4. gamma_inc computes Γ(𝑎, 𝑥) for −0.5 < 𝑎 < 0 using the recursion (8) in-
stead of a series expansion as in the GSL routines, thereby relying on the
accuracy of pgamma near 𝑎 = 0.5 (fixes issue #2; see Appendix A for addi-
tional details).

6

https://gitlab.com/vigou3/expint/-/issues/2

7 Alternative packages
The Comprehensive R Archive Network1 (CRAN) contains a number of pack-
ages with features overlapping expint. I review the similarities and differences
here.

The closest package in functionality is gsl (Hankin, 2006). This package is
an R wrapper for the special functions and quasi random number generators
of the GNU Scientific Library. As such, it provides access to basically the same
C code as used in expint. Apart from the changes to the GSL code mentioned
in section 6, the main difference between the two packages is that installation
from source of gsl requires that the GSL be installed on one’s system, whereas
expint is a regular, free standing R package.

VGAM (Yee, 2015) is a large, high quality package that provides functions
to compute the exponential integral Ei(𝑥) for real values, as well as 𝑒−𝑥 Ei(𝑥)
and 𝐸1(𝑥) and their derivatives (up to the third derivative). Functions expint,
expexpint and expint.E1 arewrappers to theNetlib2 FORTRAN subroutines
in file ei.f. VGAM does not provide an API to its C routines.

The package pracma (Borchers, 2016) provides a large number of func-
tions from numerical analysis, linear algebra, numerical optimization, differ-
ential equations and special functions. Its versions of expint, expint_E1,
expint_Ei and gammainc are entirely written in R with perhaps less focus on
numerical accuracy than the GSL and Netlib implementations. The functions
are not vectorized, and the incomplete gamma function is supported for 𝑎 ≥ −1
only.

The package frmqa had a function gamma_inc_err that computed the in-
complete gamma function using the incomplete Laplace integral, but it was
only valid for 𝑎 = 𝑗 + 0.5, 𝑗 = 0, 1, 2,… . (The package was removed from
CRAN in 2022.)

Package zipfR (Evert and Baroni, 2007) introduces a set of functions to
compute various quantities related to the gamma and incomplete gamma func-
tions, but these are essentiallywrappers around the base R functions gamma and
pgamma with no new functionalities.

8 Examples
Let us tabulate the values of 𝐸𝑛(𝑥) for 𝑥 = 1.275, 10, 12.3 and 𝑛 = 1, 2,… , 10 as
found in examples 4–6 of Abramowitz and Stegun (1972, section 5.3).

1https://cran.r-project.org
2https://www.netlib.org

7

https://cran.r-project.org
https://www.netlib.org

> x <- c(1.275, 10, 12.3)
> n <- 1:10
> structure(t(outer(x, n, expint)),
+ dimnames = list(paste(”n =”, n),
+ paste(”x =”, x)))

x = 1.275 x = 10 x = 12.3
n = 1 0.14080993 4.156969e-06 3.439534e-07
n = 2 0.09989831 3.830240e-06 3.211177e-07
n = 3 0.07603031 3.548763e-06 3.009983e-07
n = 4 0.06083077 3.304101e-06 2.831550e-07
n = 5 0.05046793 3.089729e-06 2.672346e-07
n = 6 0.04301687 2.900528e-06 2.529517e-07
n = 7 0.03743074 2.732441e-06 2.400730e-07
n = 8 0.03310097 2.582217e-06 2.284066e-07
n = 9 0.02965340 2.447221e-06 2.177930e-07
n = 10 0.02684699 2.325303e-06 2.080990e-07
We may also tabulate the values of Γ(𝑎, 𝑥) for 𝑎 = −1.5, −1, −0.5, 1 and

𝑥 = 1, 2,… , 10.
> a <- c(-1.5, -1, -0.5, 1)
> x <- 1:10
> structure(t(outer(a, x, gammainc)),
+ dimnames = list(paste(”x =”, x),
+ paste(”a =”, a)))

a = -1.5 a = -1 a = -0.5 a = 1
x = 1 1.264878e-01 1.484955e-01 1.781477e-01 3.678794e-01
x = 2 1.183299e-02 1.876713e-02 3.009876e-02 1.353353e-01
x = 3 1.870260e-03 3.547308e-03 6.776136e-03 4.978707e-02
x = 4 3.706365e-04 7.995573e-04 1.733500e-03 1.831564e-02
x = 5 8.350921e-05 1.992938e-04 4.773965e-04 6.737947e-03
x = 6 2.045031e-05 5.304291e-05 1.379823e-04 2.478752e-03
x = 7 5.310564e-06 1.478712e-05 4.127115e-05 9.118820e-04
x = 8 1.440569e-06 4.267206e-06 1.266464e-05 3.354626e-04
x = 9 4.042025e-07 1.264846e-06 3.964430e-06 1.234098e-04
x = 10 1.165117e-07 3.830240e-07 1.260904e-06 4.539993e-05

8

9 Acknowledgments
I built on the source code of R and many of the packages cited in this manual
to create expint, so the R Core Team and the package developers deserve credit.
I also extend my thanks to Dirk Eddelbuettel who was of great help in putting
together the package API, through both his posts in online forums and private
communication. Joshua Ulrich provided a fix to the API infrastructure to avoid
duplicated symbols that was implemented in version 0.1-6 of the package.

A Additional details on the computation of the incom-
plete gamma function

Issue #2 raised by Geoffrey Poole highlights that the function gammainc in ver-
sions of expint prior to 0.2-0 returned inconsistent results for small negative
values of 𝑎 and a small value of 𝑥. Figure 1 illustrates the problem by compar-
ing the behaviour of Γ(𝑎, 10−5) around 𝑎 = −0.5 between gammainc of expint
(again, prior to 0.2-0) and incgam of pracma.

The function gamma_inc for the package gsl shows the same defect3, indi-
cating that the problem must lie in the GSL code. Indeed, the GSL routine for
the incomplete gamma function treats specially the case −0.5 < 𝑎 < 0, and
reverts to the recursion (8) only for 𝑎 ≤ −0.5.

For−0.5 < 𝑎 < 0, the GSL computes the incomplete gamma function using
the relation

Γ(𝑎, 𝑥) = Γ(𝑎)𝑄(𝑎, 𝑥),
with 𝑄(𝑎, 𝑥) defined as follows:

𝑄(𝑎, 𝑥) = 1 − 𝑃(𝑎, 𝑥)

= 1 − 𝛾(𝑎, 𝑥)
Γ(𝑎) ,

with
𝛾(𝑎, 𝑥) = 𝑃(𝑎, 𝑥)Γ(𝑎) = ∫

𝑥

0
𝑡𝑎−1𝑒−𝑡 𝑑𝑡.

The GSL routine gamma_inc_Q_series carries the computation of 𝑄(𝑎, 𝑥) us-
ing a series expansion. The code is not obvious and requires a fair share of
reverse engineering. Hence, I document my findings here.

3The solid line in Figure 1 is actually traced using gamma_inc.

9

https://gitlab.com/vigou3/expint/-/issues/2

−0.5010 −0.5005 −0.5000 −0.4995 −0.4990

62
6

62
8

63
0

63
2

63
4

Versions of package expint prior to 0.2−0

a

Γ(
a,

 x
)

expint::gammainc(a, 1e−05)
pracma::incgam(1e−05, a)

Figure 1: Incomplete gamma function for small negative values of 𝑎 and a small
value of 𝑥

First, a series expansion for 𝛾(𝑎, 𝑥) is (Abramowitz and Stegun, 1972, section
6.5.33):

𝛾(𝑎, 𝑥) =
∞
∑
𝑛=0

(−1)𝑛
𝑎 + 𝑛

𝑥𝑎+𝑛
𝑛! . (9)

We can rewrite this expansion as

𝛾(𝑎, 𝑥) = 𝑥𝑎
𝑎 −

∞
∑
𝑛=1

(−1)𝑛−1
𝑎 + 𝑛

𝑥𝑎+𝑛
𝑛!

= 𝑥𝑎
𝑎 − 𝑥𝑎+1

𝑎 + 1
∞
∑
𝑛=1

(−1)𝑛−1 (𝑎 + 1
𝑎 + 𝑛)

𝑥𝑛−1
𝑛! . (10)

Second, using the fact that Γ(𝑎 + 1) = 𝑎Γ(𝑎), we can rewrite 𝑄(𝑎, 𝑥) as

10

follows:

𝑄(𝑎, 𝑥) = 1 − 𝑥𝑎
Γ(𝑎 + 1) +

𝑥𝑎
Γ(𝑎 + 1) −

𝛾(𝑎, 𝑥)
Γ(𝑎)

= 1 − 𝑥𝑎
Γ(𝑎 + 1) +

1
Γ(𝑎) (

𝑥𝑎
𝑎 − 𝛾(𝑎, 𝑥))

= 1 − 𝑥𝑎
Γ(𝑎 + 1) +

𝑥𝑎
Γ(𝑎 + 1)

Γ(𝑎 + 1)
Γ(𝑎)

𝑥
𝑥𝑎+1 (

𝑥𝑎
𝑎 − 𝛾(𝑎, 𝑥))

= 1 − 𝑥𝑎
Γ(𝑎 + 1) +

𝑥𝑎
Γ(𝑎 + 1) (

𝑎
𝑎 + 1) 𝑥 (

𝑎 + 1
𝑥𝑎+1) (

𝑥𝑎
𝑎 − 𝛾(𝑎, 𝑥)) .

If we define 𝜙(𝑎) = 1 − 𝑥𝑎/Γ(𝑎 + 1) and we simplify the last term above using
(10), we finally obtain:

𝑄(𝑎, 𝑥) = 𝜙(𝑎) + (1 − 𝜙(𝑎)) (𝑎
𝑎 + 1) 𝑥

∞
∑
𝑛=1

(−1)𝑛−1 (𝑎 + 1
𝑎 + 𝑛)

𝑥𝑛−1
𝑛! . (11)

This is the expression used to compute 𝑄(𝑎, 𝑥).
The only remaining element is the computation of 𝜙(𝑎). For this, the rou-

tine gamma_inc_Q_series uses the product of the Taylor series expansion of
𝑥𝑎 around 𝑎 = 0,

𝑥𝑎 =
∞
∑
𝑛=0

(𝑎 ln𝑥)𝑛
𝑛! ,

and the following Taylor series expansion of the reciprocal gamma function
(Weisstein, 2026):

1
Γ(𝑎 + 1) = 1 + 𝛾𝑎 + (𝛾

2

2 − 𝜋2
12) 𝑎

2 + (𝛾
3

6 − 𝛾𝜋2
12 + 𝜁(3)

3) 𝑎3 +⋯ ,

where 𝛾 is the Euler constant, and 𝜁 is the Riemann zeta function (Abramowitz
and Stegun, 1972, chapters 6 and 23). Putting all these pieces together, we ob-
tain:

𝜙(𝑎) = 1 − 𝑥𝑎
Γ(𝑎 + 1)

= −(ln𝑥 + 𝛾)𝑎 + { 𝜋12 − (ln𝑥 + 𝛾)2} 𝑎2

+ {(ln𝑥 + 𝛾) (𝜋12 −
(ln𝑥 + 𝛾)2

6) − 𝜁(3)
3 } 𝑎3 +⋯ .

One will recognize above the coefficients c1, c2 and c3 of term1 in the routine
gamma_inc_Q_series. It is not clear where the numerical values in the other
seven coefficients come from. Here endeth reverse engineering.

11

−0.5010 −0.5005 −0.5000 −0.4995 −0.4990

62
4

62
6

62
8

63
0

63
2

63
4

Versions of package expint from 0.2−0

a

Γ(
a,

 x
)

expint::gammainc(a, 1e−05)
pracma::incgam(1e−05, a)

Figure 2: Fixed incomplete gamma function

The fix introduced in expint 0.2-0 follows the same strategy as pracma: just
use the recursion (8) also for−0.5 < 𝑎 < 0, and rely on the accuracy of pgamma
for small values of 𝑎 to yield the correct result. Figure 2 shows that the results
from expint and pracma now match.

One last implementation detail: the original GSL code uses a loop to com-
pute (8) as many times as necessary for 𝑎 < −0.5. Simply extending usage of
the loop to 𝑎 < 0 does not work due to rounding errors in computations involv-
ing values of 𝑎 in (−0.5, 0). Therefore, expint keeps as a special case the single
application of the recursive relation for 𝑎 in the latter range.

References
M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,
1972. URL https://personal.math.ubc.ca/~cbm/aands/.

12

https://personal.math.ubc.ca/~cbm/aands/

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Meth-
ods, 2025. URL https://cran.r-project.org/package=Matrix. R
package version 1.7-4.

H. W. Borchers. pracma: Practical Numerical Math Functions, 2016. URL
https://cran.r-project.org/package=pracma. R package version
2.4.6.

C. Dutang, V. Goulet, and M. Pigeon. actuar: An R package for actuarial
science. Journal of Statistical Software, 25(7), 2008. URL https://www.
jstatsoft.org/v25/i07.

D. Eddelbuettel. RcppXts: Interface the xts API via Rcpp, 2022. URL https:
//cran.r-project.org/package=RcppXts. R package version 0.0.6.

S. Evert andM.Baroni. zipfR:Word frequency distributions inR. InProceedings
of the 45th Annual Meeting of the Association for Computational Linguistics,
Posters and Demonstrations Sessions, pages 29–32, Prague, Czech Republic,
2007. URL https://cran.r-project.org/package=zipfR. R package
version 0.6-70.

M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, Alken P., M. Booth,
F. Rossi, and R. Ulerich. GNU Scientific Library Reference Manual, third edi-
tion, 2009. URL https://www.gnu.org/software/gsl/.

A. Gil, J. Segura, and N. M. Temme. Numerical Methods for Special Functions.
Society for Industrial and AppliedMathematics, 2007. ISBN 978-0-89871634-
4. URL https://dx.doi.org/10.1137/1.9780898717822.

R. K. S. Hankin. Special functions in R: introducing the gsl package. R News,
6, October 2006.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to Deci-
sions. Wiley, New York, 4 edition, 2012. ISBN 978-1-11831532-3.

R Core Team. Writing R Extensions, 2025. URL https://cran.r-project.
org/doc/manuals/R-exts.html. Manual for R version 4.5.2.

J. A. Ryan and J. M. Ulrich. xts: eXtensible Time Series, 2024. URL https:
//cran.r-project.org/package=xts. R package version 0.14.1.

J. Ulrich. TTR: Technical Trading Rules, 2023. URL https://cran.
r-project.org/package=TTR. R package version 0.24.4.

13

https://cran.r-project.org/package=Matrix
https://cran.r-project.org/package=pracma
https://www.jstatsoft.org/v25/i07
https://www.jstatsoft.org/v25/i07
https://cran.r-project.org/package=RcppXts
https://cran.r-project.org/package=RcppXts
https://cran.r-project.org/package=zipfR
https://www.gnu.org/software/gsl/
https://dx.doi.org/10.1137/1.9780898717822
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/package=xts
https://cran.r-project.org/package=xts
https://cran.r-project.org/package=TTR
https://cran.r-project.org/package=TTR

Eric W. Weisstein. Gamma function. FromMathWorld – AWolfram Resource,
2026. URL https://mathworld.wolfram.com/GammaFunction.html.

T. W. Yee. Vector Generalized Linear and Additive Models: With an Imple-
mentation in R. Springer, 2015. ISBN 978-1-49392818-7. URL https:
//cran.r-project.org/package=VGAM.

A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular
time series. Journal of Statistical Software, 14(6):1–27, 2005. doi: 10.18637/
jss.v014.i06.

14

https://mathworld.wolfram.com/GammaFunction.html
https://cran.r-project.org/package=VGAM
https://cran.r-project.org/package=VGAM

	1 Introduction
	2 Exponential integral
	3 Incomplete gamma function
	4 R interfaces
	5 Accessing the C routines
	6 Implementation details
	7 Alternative packages
	8 Examples
	9 Acknowledgments
	A Additional details on the computation of the incomplete gamma function

