
Package ‘evoper’
January 28, 2026

Type Package

Title Evolutionary Parameter Estimation for 'Repast Simphony' Models

Version 0.6.0

Date 2026-01-27

Author Antonio Prestes Garcia [aut, cre],
Alfonso Rodriguez-Paton [aut, ths]

Maintainer Antonio Prestes Garcia <antonio.pgarcia@alumnos.upm.es>

URL https://github.com/antonio-pgarcia/evoper

BugReports https://github.com/antonio-pgarcia/evoper/issues

Description
The EvoPER, Evolutionary Parameter Estimation for Individual-based Models is an extensible
package providing optimization driven parameter estimation methods using metaheuristics and
evolutionary computation techniques (Particle Swarm Optimization, Simulated Anneal-
ing, Ant Colony Optimization
for continuous domains, Tabu Search, Evolutionary Strategies, ...) which could be more effi-
cient and require,
in some cases, fewer model evaluations than alternatives relying on experimental design. Cur-
rently there
are built in support for models developed with 'Repast Simphony' Agent-
Based framework (<https://repast.github.io/>)
and with NetLogo (<https:
//www.netlogo.org/>) which are the most used frameworks for Agent-based modeling.

License MIT + file LICENSE

Depends rrepast

Imports methods, logging, boot, reshape, ggplot2, deSolve, plot3D,
plyr, data.table, utils, RNetLogo

RoxygenNote 7.3.3

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-28 12:40:02 UTC

1

https://github.com/antonio-pgarcia/evoper
https://github.com/antonio-pgarcia/evoper/issues
https://repast.github.io/
https://www.netlogo.org/
https://www.netlogo.org/

2 Contents

Contents
abm.acor . 5
abm.ees1 . 6
abm.ees2 . 6
abm.ga . 7
abm.pso . 8
abm.saa . 9
abm.tabu . 10
acor.archive . 11
acor.F . 12
acor.lthgaussian . 12
acor.N . 13
acor.probabilities . 13
acor.S . 14
acor.sigma . 14
acor.updateants . 15
acor.W . 15
acor.weigth . 16
assert . 16
bestFitness . 17
bestSolution . 17
cbuf . 18
compare.algorithms1 . 18
contourplothelper . 19
ees1.challenge . 20
ees1.explore . 20
ees1.mating . 21
ees1.mating1 . 21
ees1.mutation . 22
ees1.recombination . 22
ees1.selection . 23
elog.debug . 23
elog.error . 23
elog.info . 24
elog.level . 24
enforceBounds . 25
es.evaluate . 25
Estimates-class . 26
extremize . 26
f0.ackley . 27
f0.ackley4 . 27
f0.adtn.rosenbrock2 . 28
f0.bohachevsky . 28
f0.bohachevsky4 . 29
f0.cigar . 29
f0.cigar4 . 30
f0.griewank . 30

Contents 3

f0.griewank4 . 31
f0.nlnn.rosenbrock2 . 31
f0.periodtuningpp . 32
f0.periodtuningpp12 . 32
f0.periodtuningpp24 . 33
f0.periodtuningpp48 . 34
f0.periodtuningpp72 . 35
f0.rosenbrock2 . 36
f0.rosenbrock4 . 36
f0.rosenbrockn . 37
f0.schaffer . 37
f0.schaffer4 . 38
f0.schwefel . 38
f0.schwefel4 . 39
f0.test . 39
f1.ackley . 40
f1.adtn.rosenbrock2 . 40
f1.bohachevsky . 41
f1.cigar . 41
f1.griewank . 42
f1.nlnn.rosenbrock2 . 42
f1.rosenbrock2 . 43
f1.rosenbrockn . 43
f1.schaffer . 44
f1.schwefel . 44
f1.test . 45
fixdfcolumns . 45
generateSolution . 46
getFitness . 46
GetLogLevel . 47
getSolution . 47
gm.mean . 48
gm.sd . 48
histplothelper . 49
initSolution . 49
lowerBound . 50
Magnitude . 50
naiveperiod . 51
NetLogoFunction-class . 51
NLWrapper.FindJar . 51
NLWrapper.GetParameter . 52
NLWrapper.Model . 52
NLWrapper.Run . 53
NLWrapper.RunExperiment . 54
NLWrapper.SetParameter . 55
NLWrapper.SetRandomSeed . 55
NLWrapper.Shutdown . 56
ObjectiveFunction-class . 56

4 Contents

Options-class . 56
OptionsACOR-class . 57
OptionsEES1-class . 57
OptionsEES2-class . 57
OptionsFactory . 57
OptionsGA-class . 58
OptionsPSO-class . 58
OptionsSAA-class . 58
OptionsTS-class . 58
paramconverter . 59
partSolutionSpace . 59
PlainFunction-class . 60
pop.first . 60
pop.last . 60
predatorprey . 61
predatorprey.plot0 . 61
predatorprey.plot1 . 62
pso.best . 63
pso.chi . 63
pso.lbest . 64
pso.neighborhood.K2 . 64
pso.neighborhood.K4 . 65
pso.neighborhood.KN . 65
pso.printbest . 66
pso.Velocity . 66
push . 67
random.wheel . 67
RepastFunction-class . 67
saa.bolt . 68
saa.neighborhood . 68
saa.neighborhood1 . 69
saa.neighborhoodH . 69
saa.neighborhoodN . 70
saa.tbyk . 70
saa.tcte . 71
saa.texp . 71
scatterplotlothelper . 72
searchrow . 72
SetLogLevel . 73
show.comp1 . 73
slope . 74
slopes . 74
sortSolution . 75
summarize.comp1 . 75
tabu.getNeighbors . 76
tabu.istabu . 76
upperBound . 77
xmeanci1 . 77

abm.acor 5

xmeanci2 . 78
xyplothelper . 78

Index 79

abm.acor Ant colony optimization for continuous domains

Description

An implementation of Ant Colony Optimization algorithm for continuous variables.

Usage

abm.acor(objective, options = NULL)

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

extremize("acor", f)

End(Not run)

6 abm.ees2

abm.ees1 EvoPER Evolutionary Strategy 1

Description

This function tries to provide a rough approximation to best solution when no information is avail-
able for the correct range of input parameters for the objective function. It can useful for studying
the behavior of individual-based models with high variability in the output variables showing non-
linear behaviors.

Usage

abm.ees1(objective, options = NULL)

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

extremize("ees1", f)

End(Not run)

abm.ees2 EvoPER Evolutionary Strategy 2

Description

This function tries to provide a rough approximation to best solution when no information is avail-
able for the correct range of input parameters for the objective function. It can useful for studying
the behavior of individual-based models with high variability in the output variables showing non-
linear behaviors.

Usage

abm.ees2(objective, options = NULL)

abm.ga 7

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

extremize("ees2", f)

End(Not run)

abm.ga Genetic Algorithm metaheuristic

Description

An implementation of Genetic Algorithm metaheuristic for parameter estimation

Usage

abm.ga(objective, options = NULL)

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

References

[1] John Henry Holland (1992). "Adaptation in Natural and Artificial Systems; An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence". MIT Press, Cam-
bridge, MA, USA. ISBN 0262082136. [2] Zbigniew Michalewiczx (1994). "Genetic Algorithms
+ Data Structures = Evolution Programs (2nd Ed.)". Springer-Verlag, Berlin, Heidelberg. ISBN
3540580905.

8 abm.pso

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

or

f$Parameter0(name="x1",levels=c(0:4))
f$Parameter0(name="x2",levels=c(-2,-1,0,1,2))

extremize("tabu", f)

End(Not run)

abm.pso abm.pso

Description

An implementaion of Particle Swarm Optimization method for parameter estimation of Individual-
based models.

Usage

abm.pso(objective, options = NULL)

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

References

[1] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN 95 -
International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.

[2] Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence,
1(1), 33-57.

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

abm.saa 9

extremize("pso", f)

End(Not run)

abm.saa abm.saa

Description

An implementation of Simulated Annealing Algorithm optimization method for parameter estima-
tion of Individual-based models.

Usage

abm.saa(objective, options = NULL)

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

Value

The best solution.

References

[1] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science, 220(4598).

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

extremize("saa", f)

End(Not run)

Not run:
A Repast defined function
f<- RepastFunction$new("/usr/models/BactoSim(HaldaneEngine-1.0)","ds::Output",300)

or a plain function

10 abm.tabu

f1<- function(x1,x2,x3,x4) {
10 * (x1 - 1)^2 + 20 * (x2 - 2)^2 + 30 * (x3 - 3)^2 + 40 * (x4 - 4)^2

}

f<- PlainFunction$new(f1)

f$addFactor(name="cyclePoint",min=0,max=90)
f$addFactor(name="conjugationCost",min=0,max=100)
f$addFactor(name="pilusExpressionCost",min=0,max=100)
f$addFactor(name="gamma0",min=1,max=10)

abm.saa(f, 100, 1, 100, 0.75)

End(Not run)

abm.tabu Tabu Search metaheuristic

Description

An implementation of Tabu Search algorithm for parameter estimation

Usage

abm.tabu(objective, options = NULL)

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

References

[1] Fred Glover (1989). "Tabu Search - Part 1". ORSA Journal on Computing, 190-206. doi:10.1287/ijoc.1.3.190.
[2] Fred Glover (1990). "Tabu Search - Part 2". ORSA Journal on Computing, 4-32. doi:10.1287/ijoc.2.1.4.

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

or

f$Parameter0(name="x1",levels=c(0:4))

acor.archive 11

f$Parameter0(name="x2",levels=c(-2,-1,0,1,2))

extremize("tabu", f)

End(Not run)

acor.archive acor.archive

Description

This function is used for creating and maintaining the ACOr archive ’T’. The function keeps the
track of ’k’ solotion in the archive.

Usage

acor.archive(s, f, w, k, T = NULL)

Arguments

s The solution ’ants’

f The evaluation of solution

w The weight vector

k The archive size

T The current archive

Value

The solution archive

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

12 acor.lthgaussian

acor.F acor.F

Description

Helper function for extracting the ’F’ function evaluations from archive ACOr ’T’

Usage

acor.F(T)

Arguments

T The solution archive

Value

The F matrix

acor.lthgaussian Select the lth gaussian function

Description

Given a weight vector calculate the probabilities of selecting the lth gaussian function and return
the index of lht gaussian selected with probability p

Usage

acor.lthgaussian(W)

Arguments

W The vector of weights

Value

The index of lht gaussian function

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

acor.N 13

acor.N acor.N

Description

Helper function for getting the size of solution

Usage

acor.N(T)

Arguments

T The solution archive

Value

The size ’n’ of a solution ’s’

acor.probabilities Gaussian kernel choosing probability

Description

Calculate the probability of choosing the lth Gaussian function

Usage

acor.probabilities(W, l = NULL)

Arguments

W The vector of weights

l The lth element of algorithm solution archive T

Value

The vector of probabilities ’p’

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

14 acor.sigma

acor.S acor.S

Description

Helper function for extracting solution ’S’ from archive ’T’

Usage

acor.S(T)

Arguments

T The solution archive

Value

The solution matrix

acor.sigma Sigma calculation for ACOr

Description

Calculate the value of sigma

Usage

acor.sigma(Xi, k, T)

Arguments

Xi The algorithm parameter

k The solution archive size

T The solution archive

Value

The sigma value

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

acor.updateants 15

acor.updateants acor.updateants

Description

Update the solution using the gaussian kernel

Usage

acor.updateants(S, N, W, t.mu, t.sigma)

Arguments

S The current solution ants
N The numnber of required ants in solution
W The weight vector
t.mu The ’mean’ from solution archive
t.sigma The value of sigma from solution archive

Value

The new solution ants

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

acor.W acor.W

Description

Helper function for extracting the ’W’ function evaluations from archive ACOr ’T’

Usage

acor.W(T)

Arguments

T The solution archive

Value

The weight vector

16 assert

acor.weigth Weight calculation for ant colony optimization

Description

Calculates the weight element of ACOr algorithm for the solution archive.

Usage

acor.weigth(q, k, l)

Arguments

q The Algorithm parameter. When small best-ranked solution is preferred

k The Archive size

l The lth element of algorithm solution archive T

Value

A scalar or a vector with calculated weigth.

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

assert assert

Description

The assert function stop the execution if the logical expression given by the parameter expresion
is false.

Usage

assert(expresion, string)

Arguments

expresion Some logical expression

string The text message to show if expression does not hold

bestFitness 17

bestFitness bestFitness

Description

Given a set S of N solutions created with sortSolution, this function returns the fitness component
fot the best solution.

Usage

bestFitness(S)

Arguments

S The solution set

Value

The best fitness value

bestSolution bestSolution

Description

Given a set S of N solutions created with sortSolution, this function returns the best solution found.

Usage

bestSolution(S)

Arguments

S The solution set

Value

The best solution

18 compare.algorithms1

cbuf cbuf

Description

Simple implementation of a circular buffer.

Usage

cbuf(b, v, e)

Arguments

b The variable holding the current buffer content

v The new valued to be added to b

e The length of circular buffer

Value

The buffer b plus the element v minus the least recently added element

compare.algorithms1 compare.algorithms1

Description

Compare the number of function evalutions and convergence for the following optimization algo-
rithms, ("saa","pso","acor","ees1").

Usage

compare.algorithms1(
F,
seeds = c(27, 2718282, 36190727, 3141593, -91190721, -140743, 1321)

)

Arguments

F The function to be tested

seeds The random seeds which will be used for testing algorithms

contourplothelper 19

Examples

Not run:
rm(list=ls())
d.cigar4<- compare.algorithms1(f0.cigar4)
d.schaffer4<- compare.algorithms1(f0.schaffer4)
d.griewank4<- compare.algorithms1(f0.griewank4)
d.bohachevsky4<- compare.algorithms1(f0.bohachevsky4)
d.rosenbrock4<- compare.algorithms1(f0.rosenbrock4)

End(Not run)

contourplothelper contourplothelper

Description

Simple helper function for countour plots

Usage

contourplothelper(
d,
x,
y,
z,
nbins = 32,
binwidth = c(10, 10),
points = c(300, 300),
title = NULL

)

Arguments

d A data frame.

x A string with the dataframe column name for x axis.

y A string with the dataframe column name for y axis.

z A string with the dataframe column name for z axis.

nbins The number bins. The default is 32.

binwidth The binwidths for ’kde2d’. Can be an scalar or a vector.

points The number of grid points. Can be an scalar or a vector.

title The optional plot title. May be omited.

20 ees1.explore

ees1.challenge ees1.challenge

Description

Repeat the evalution of best solution to tacke with variability.

Usage

ees1.challenge(solution, objective)

Arguments

solution The Problem solution

objective The objective function

ees1.explore ees1.explore

Description

Explore the solution space on the neighborhood of solution ’s’ in order to find a new best.

Usage

ees1.explore(s, weight, p = 0.01)

Arguments

s The Problem solution

weight The exploration intensity

p The mutation probability

ees1.mating 21

ees1.mating ees1.mating

Description

This function ’mix’ the elements present in the solution. The parameter ’mu’ controls the intensity
of mixing. Low values give preference to best solution components and high values make the values
being select randomly.

Usage

ees1.mating(solution, mu)

Arguments

solution The Problem solution

mu The mixing intensity ratio, from 0 to 1. The mix intensity controls de the prob-
ability of chosing a worst solutions

ees1.mating1 ees1.mating1

Description

This function ’mix’ the elements present in the solution. The parameter ’mu’ controls the intensity
of mixing. Low values give preference to best solution components and high values make the values
being select randomly.

Usage

ees1.mating1(solution, mu)

Arguments

solution The Problem solution

mu The mixing intensity ratio, from 0 to 1. The mix intensity controls de the prob-
ability of chosing a worst solutions

22 ees1.recombination

ees1.mutation ees1.mutation

Description

Performs the mutation on generated solution

Usage

ees1.mutation(solution, mates, p = 0.01)

Arguments

solution The Problem solution

mates The mixed parents

p The mutation probability

ees1.recombination ees1.recombination

Description

Performs the recombination on solution

Usage

ees1.recombination(solution, mates)

Arguments

solution The Problem solution

mates The mixed parents

ees1.selection 23

ees1.selection ees.selection

Description

Select the elements with best fitness but accept uphill moves with probability ’kkappa’.

Usage

ees1.selection(s0, s1, kkappa)

Arguments

s0 The current best solution set
s1 The new solution
kkappa The selection pressure

elog.debug elog.debug

Description

Wrapper for logging debug messages.

Usage

elog.debug(...)

Arguments

... Variable number of arguments including a format string.

elog.error elog.error

Description

Wrapper for logging error messages.

Usage

elog.error(...)

Arguments

... Variable number of arguments including a format string.

24 elog.level

elog.info elog.info

Description

Wrapper for logging info messages.

Usage

elog.info(...)

Arguments

... Variable number of arguments including a format string.

elog.level elog.level

Description

Configure the current log level

Usage

elog.level(level = NULL)

Arguments

level The log level (ERROR|WARN|INFO|DEBUG)

Value

The log level

enforceBounds 25

enforceBounds enforceBounds

Description

Checks if parameters fall within upper an lower bounds

Usage

enforceBounds(particles, factors)

Arguments

particles The particle set

factors the defined range for objective function parameters

Value

The particle inside the valid limits

es.evaluate es.evaluate

Description

For each element in solution ’s’ evaluate the respective fitness.

Usage

es.evaluate(f, s, enforce = TRUE)

Arguments

f A reference to an instance of objective function

s The set of solutions

enforce If true the values are enforced to fall within provided range

Value

The solution ordered by its fitness.

26 extremize

Estimates-class Estimates

Description

A simple class for encapsulating the return of metaheuristic methods

extremize extremize

Description

Entry point for optimization functions

Usage

extremize(type, objective, options = NULL)

Arguments

type The optimization method (aco,pso,saa,sda)

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options An apropiate instance from a sublclass of Options class

Examples

Not run:
f<- PlainFunction$new(f0.rosenbrock2)

f$Parameter(name="x1",min=-100,max=100)
f$Parameter(name="x2",min=-100,max=100)

extremize("pso", f)

End(Not run)

f0.ackley 27

f0.ackley f0.ackley

Description

The ackley function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0. Domain xi E [-32.768, 32.768], for all i = 1,
..., d

Usage

f0.ackley(...)

Arguments

... The variadic list of function variables.

Value

The function value

References

https://www.sfu.ca/~ssurjano/ackley.html

f0.ackley4 f0.ackley4

Description

The ackley function of four variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.ackley4(x1, x2, x3, x4)

Arguments

x1 The first function variable
x2 The second function variable
x3 The third function variable
x4 The fourth function variable

Value

The function value

28 f0.bohachevsky

f0.adtn.rosenbrock2 f0.adtn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f0.adtn.rosenbrock2(x1, x2)

Arguments

x1 Parameter 1

x2 Parameter 2

f0.bohachevsky f0.bohachevsky

Description

The Bohachevsky function of N variables for testing optimization methods. The global optima for
the function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.bohachevsky(...)

Arguments

... The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f0.bohachevsky4 29

f0.bohachevsky4 f0.bohachevsky4

Description

The Bohachevsky function of four variables for testing optimization methods. The global optima
for the function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.bohachevsky4(x1, x2, x3, x4)

Arguments

x1 The first function variable
x2 The second function variable
x3 The third function variable
x4 The fourth function variable

Value

The function value

f0.cigar f0.cigar

Description

The Cigar function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.cigar(...)

Arguments

... The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

30 f0.griewank

f0.cigar4 f0.cigar4

Description

The Cigar function of four variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.cigar4(x1, x2, x3, x4)

Arguments

x1 The first function variable
x2 The second function variable
x3 The third function variable
x4 The fourth function variable

Value

The function value

f0.griewank f0.griewank

Description

The griewank function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.griewank(...)

Arguments

... The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f0.griewank4 31

f0.griewank4 f0.griewank4

Description

The griewank function of four variables for testing optimization methods. The global optima for
the function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.griewank4(x1, x2, x3, x4)

Arguments

x1 The first function variable

x2 The second function variable

x3 The third function variable

x4 The fourth function variable

Value

The function value

f0.nlnn.rosenbrock2 f0.nlnn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f0.nlnn.rosenbrock2(x1, x2)

Arguments

x1 Parameter 1

x2 Parameter 2

32 f0.periodtuningpp12

f0.periodtuningpp Period tuning for Predator-Prey base

Description

This function is an example on how EvoPER can be used for estimating the parameter values in
order to produce oscilations with the desired period. It is not intended to be used directelly, the
provided wrappers should be instead.

Usage

f0.periodtuningpp(x1, x2, x3, x4, period)

Arguments

x1 The growth rate of prey

x2 The decay rate of predator

x3 The predating effect on prey

x4 The predating effecto on predator

period The desired oscilation period

Value

The solution fitness cost

f0.periodtuningpp12 Period tuning of 12 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in
order to produce oscilations with the desired period.

Usage

f0.periodtuningpp12(x1, x2, x3, x4)

Arguments

x1 The growth rate of prey

x2 The decay rate of predator

x3 The predating effect on prey

x4 The predating effecto on predator

f0.periodtuningpp24 33

Value

The solution fitness cost

Examples

Not run:
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp12)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

End(Not run)

f0.periodtuningpp24 Period tuning of 24 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in
order to produce oscilations with the desired period.

Usage

f0.periodtuningpp24(x1, x2, x3, x4)

Arguments

x1 The growth rate of prey

x2 The decay rate of predator

x3 The predating effect on prey

x4 The predating effecto on predator

Value

The solution fitness cost

34 f0.periodtuningpp48

Examples

Not run:
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp24)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

End(Not run)

f0.periodtuningpp48 Period tuning of 48 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in
order to produce oscilations with the desired period.

Usage

f0.periodtuningpp48(x1, x2, x3, x4)

Arguments

x1 The growth rate of prey

x2 The decay rate of predator

x3 The predating effect on prey

x4 The predating effecto on predator

Value

The solution fitness cost

Examples

Not run:
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp24)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

f0.periodtuningpp72 35

End(Not run)

f0.periodtuningpp72 Period tuning of 72 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in
order to produce oscilations with the desired period.

Usage

f0.periodtuningpp72(x1, x2, x3, x4)

Arguments

x1 The growth rate of prey

x2 The decay rate of predator

x3 The predating effect on prey

x4 The predating effecto on predator

Value

The solution fitness cost

Examples

Not run:
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp24)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

End(Not run)

36 f0.rosenbrock4

f0.rosenbrock2 f0.rosenbrock2

Description

Two variable Rosenbrock function, where f(1,1) = 0

Usage

f0.rosenbrock2(x1, x2)

Arguments

x1 Parameter 1

x2 Parameter 2

f0.rosenbrock4 f0.rosenbrock4

Description

The rosenbrock function of 4 variables for testing optimization methods. The global optima for the
function is given by xi = 1, forall i E {1...N}, f(x) = 0.

Usage

f0.rosenbrock4(x1, x2, x3, x4)

Arguments

x1 The first function variable

x2 The second function variable

x3 The third function variable

x4 The fourth function variable

Value

The function value

f0.rosenbrockn 37

f0.rosenbrockn f0.rosenbrockn

Description

The rosenbrock function of N variables for testing optimization methods. The global optima for the
function is given by xi = 1, forall i E {1...N}, f(x) = 0.

Usage

f0.rosenbrockn(...)

Arguments

... The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f0.schaffer f0.schaffer

Description

The schaffer function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.schaffer(...)

Arguments

... The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

38 f0.schwefel

f0.schaffer4 f0.schaffer4

Description

The Schaffer function of four variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f0.schaffer4(x1, x2, x3, x4)

Arguments

x1 The first function variable
x2 The second function variable
x3 The third function variable
x4 The fourth function variable

Value

The function value

f0.schwefel f0.schwefel

Description

The schwefel function of N variables for testing optimization methods. The global optima for the
function is given by xi = 420.96874636, forall i E {1...N}, f(x) = 0. The range of xi is [-500,500]

Usage

f0.schwefel(...)

Arguments

... The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f0.schwefel4 39

f0.schwefel4 f0.schwefel4

Description

The schwefel function of N variables for testing optimization methods. The global optima for the
function is given by xi = 420.96874636, forall i E {1...N}, f(x) = 0. The range of xi is [-500,500]

Usage

f0.schwefel4(x1, x2, x3, x4)

Arguments

x1 The first function variable

x2 The second function variable

x3 The third function variable

x4 The fourth function variable

Value

The function value

f0.test f0.test

Description

Simple test function f(1,2,3,4) = 0

Usage

f0.test(x1, x2, x3, x4)

Arguments

x1 Parameter 1

x2 Parameter 2

x3 Parameter 3

x4 Parameter 4

40 f1.adtn.rosenbrock2

f1.ackley f1.ackley

Description

The ackley function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0. Domain xi E [-32.768, 32.768], for all i = 1,
..., d

Usage

f1.ackley(x)

Arguments

x The vector of function parameters

Value

The function value

References

https://www.sfu.ca/~ssurjano/ackley.html

f1.adtn.rosenbrock2 f1.adtn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f1.adtn.rosenbrock2(x)

Arguments

x Parameter vector

f1.bohachevsky 41

f1.bohachevsky f1.bohachevsky

Description

The Bohachevsky function of N variables for testing optimization methods. The global optima for
the function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f1.bohachevsky(x)

Arguments

x The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f1.cigar f1.cigar

Description

The Cigar function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f1.cigar(x)

Arguments

x The vector of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

42 f1.nlnn.rosenbrock2

f1.griewank f1.griewank

Description

The griewank function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f1.griewank(x)

Arguments

x The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f1.nlnn.rosenbrock2 f1.nlnn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f1.nlnn.rosenbrock2(x)

Arguments

x Parameter vector

f1.rosenbrock2 43

f1.rosenbrock2 f1.rosenbrock2

Description

Two variable Rosenbrock function, where f(c(1,1)) = 0

Usage

f1.rosenbrock2(x)

Arguments

x Parameter vector

f1.rosenbrockn f1.rosenbrockn

Description

The rosenbrock function of N variables for testing optimization methods. The global optima for the
function is given by xi = 1, forall i E {1...N}, f(x) = 0.

Usage

f1.rosenbrockn(x)

Arguments

x The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

44 f1.schwefel

f1.schaffer f1.schaffer

Description

The schaffer function of N variables for testing optimization methods. The global optima for the
function is given by xi = 0, forall i E {1...N}, f(x) = 0.

Usage

f1.schaffer(x)

Arguments

x The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f1.schwefel f1.schwefel

Description

The schwefel function of N variables for testing optimization methods. The global optima for the
function is given by xi = 420.96874636, forall i E {1...N}, f(x) = 0. The range of xi is [-500,500]

Usage

f1.schwefel(x)

Arguments

x The vector of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html

f1.test 45

f1.test f1.test

Description

Simple test function f(c(1,2,3,4)) = 0

Usage

f1.test(x)

Arguments

x Parameter vector

fixdfcolumns fixdfcolumns

Description

Coerce dataframe columns to a specic type.

Usage

fixdfcolumns(df, cols = c(), skip = TRUE, type = as.numeric)

Arguments

df The data frame.

cols The dataframe columns to be skiped or included.

skip If TRUE the column names in ’cols’ are skiped. When FALSE logic is inverted.

type The type for which data frame columns must be converted.

Value

The data frame with converted column types.

46 getFitness

generateSolution generateSolution

Description

Generates a problema solution using discrete leves

Usage

generateSolution(parameters, size)

Arguments

parameters The Objective Function parameter list

size The solution size

Value

The solution set

getFitness getFitness

Description

Given a set S of N solutions created with sortSolution, this function returns the solution component
fot the best solution.

Usage

getFitness(S, i = NULL)

Arguments

S The solution set

i The fitness index, if null return the whole column.

Value

The selected fitness entry

GetLogLevel 47

GetLogLevel GetLogLevel

Description

Get the current log level

Usage

GetLogLevel()

Value

The log level

getSolution getSolution

Description

Given a set S of N solutions created with sortSolution, this function returns the solution component.
A solutions is a set of solutions and their associated fitness

Usage

getSolution(S)

Arguments

S The solution set

Value

The solution set

48 gm.sd

gm.mean gm.mean

Description

Simple implementation for geometric mean

Usage

gm.mean(x)

Arguments

x data

Value

geometric mean for data

gm.sd gm.sd

Description

Simple implementation for geometric standard deviation

Usage

gm.sd(x, mu = NULL)

Arguments

x data

mu The geometric mean. If not provided it is calculated.

Value

geometric standard deviation for data

histplothelper 49

histplothelper histplothelper

Description

Simple helper for ploting histograms

Usage

histplothelper(d, x, title = NULL)

Arguments

d A data frame.

x A string with the dataframe column name for histogram

title The plot title

Value

A ggplot2 plot object

initSolution initSolution

Description

Creates the initial Solution population taking into account the lower an upper bounds of provided
experiment factors.

Usage

initSolution(parameters, N = 20, sampling = "mcs")

Arguments

parameters The Objective Function parameter list

N The size of Solution population

sampling The population sampling scheme, namelly <mcs|lhs|ffs> standing respectively
for montecarlo sampling, latin hypercube sampling and full factorial sampling

Value

A random set of solutions

50 Magnitude

lowerBound lowerBound

Description

Checks if parameters is greater than the lower bounds

Usage

lowerBound(particles, factors)

Arguments

particles The particle set

factors the defined range for objective function parameters

Value

The particle greater than or equal to lower limit

Magnitude Magnitude

Description

Calculates the magnitude order for a given value

Usage

Magnitude(v)

Arguments

v The numerical value

Value

The magnitude order

naiveperiod 51

naiveperiod naiveperiod

Description

A naive approach for finding the period in a series of data points

Usage

naiveperiod(d)

Arguments

d The data to search period

Value

A list with the average period and amplitude

NetLogoFunction-class NetLogoFunction

Description

NetLogoFunction class

NLWrapper.FindJar NLWrapper.FindJar

Description

Search for the netlogo jar file on the provided path

Usage

NLWrapper.FindJar(path)

Arguments

path The base path for searching

Value

The path for NetLogo jar file

52 NLWrapper.Model

NLWrapper.GetParameter

NLWrapper.GetParameter

Description

Gets the value of a model parameter

Usage

NLWrapper.GetParameter(obj, name)

Arguments

obj The object retuned by NLWrapper.Model

name The parameter name string or the collection of parameter names

Value

The parameter values

Examples

Not run:
rm(list=ls())
p<- "C:/Program Files/NetLogo 6.1.1/app"

m<- file.path(nlpath, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
o<- NLWrapper.Model(p, m)
v<- NLWrapper.GetParameter(o, c("initial-number-sheep"))

or

v<- NLWrapper.GetParameter(o, c("initial-number-sheep","initial-number-wolves")))

End(Not run)

NLWrapper.Model NLWrapper.Model

Description

This wrapper prepares the environment and instantiates the model

Usage

NLWrapper.Model(netlogodir, modelfile, dataset, maxtime)

NLWrapper.Run 53

Arguments

netlogodir The base path of NetLogo installation

modelfile The absolute path for NetLogo model file

dataset The names of model variables

maxtime The total number of iterations

Examples

Not run:
rm(list=ls())
p<- "C:/Program Files/NetLogo 6.1.1/app"
output<- c("count sheep", "count wolves")
m<- file.path(p, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
o<- NLWrapper.Model(p, m, output, 150)

End(Not run)

NLWrapper.Run NLWrapper.Run

Description

Executes a NetLogo Model using rNetLogo

Usage

NLWrapper.Run(obj, r = 1, seed = c())

Arguments

obj The object retuned by NLWrapper.Model

r The number of replications

seed The collection of random seeds

Examples

Not run:
p<- "C:/Program Files/NetLogo 6.1.1/app"
m<- file.path(p, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
output<- c("count sheep", "count wolves")
o<- NLWrapper.Model(p, m, output, 150)
v<- NLWrapper.Run(o)
NLWrapper.Shutdown(o)
End(Not run)

54 NLWrapper.RunExperiment

NLWrapper.RunExperiment

NLWrapper.RunExperiment

Description

Executes a NetLogo Model using rNetLogo

Usage

NLWrapper.RunExperiment(obj, r = 1, design, FUN)

Arguments

obj The object retuned by NLWrapper.Model

r The number of replications

design The desing matrix holding parameter sampling

FUN THe calibration function.

Value

A list containing the the parameters, the calibration functio output and the whole resultset

Examples

Not run:
rm(list=ls())
objectivefn<- function(params, results) { 0 }

f<- AddFactor(name="initial-number-sheep",min=100,max=250)
f<- AddFactor(factors=f, name="initial-number-wolves",min=50,max=150)
f<- AddFactor(factors=f, name="grass-regrowth-time",min=30,max=100)
f<- AddFactor(factors=f, name="sheep-gain-from-food",min=1,max=50)
f<- AddFactor(factors=f, name="wolf-gain-from-food",min=1,max=100)
f<- AddFactor(factors=f, name="sheep-reproduce",min=1,max=20)
f<- AddFactor(factors=f, name="wolf-reproduce",min=1,max=20)

design<- AoE.LatinHypercube(factors=f)

p<- "C:/Program Files/NetLogo 6.1.1/app"
m<- file.path(p, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
output<- c("count sheep", "count wolves")
o<- NLWrapper.Model(p, m, output, 150)
v<- RunExperiment(o, r=1, design, objectivefn)
NLWrapper.Shutdown(o)

End(Not run)

NLWrapper.SetParameter 55

NLWrapper.SetParameter

NLWrapper.SetParameter

Description

Set parameter values

Usage

NLWrapper.SetParameter(obj, parameters)

Arguments

obj The object retuned by NLWrapper.Model

parameters The data frame containing the paramters

Examples

Not run:
rm(list=ls())
p<- "C:/Program Files/NetLogo 6.1.1/app"

m<- file.path(nlpath, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
o<- NLWrapper.Model(p, m)

End(Not run)

NLWrapper.SetRandomSeed

NLWrapper.SetRandomSeed

Description

Configures the random seed

Usage

NLWrapper.SetRandomSeed(obj, seed)

Arguments

obj The object retuned by NLWrapper.Model

seed The new random seed

56 Options-class

NLWrapper.Shutdown NLWrapper.Shutdown

Description

This wrapper terminates RNetLogo execution environment

Usage

NLWrapper.Shutdown(obj)

Arguments

obj The object retuned by NLWrapper.Model

ObjectiveFunction-class

ObjectiveFunction class

Description

The base class for optimization functions.

Fields

object The raw output of objective function
objective The objective function
parameters The parameter list for objective function
value The results from objective function

Options-class Options

Description

The base class for the options for the optimization metaheuristics

Fields

type The configuration type
neighborhood The neighborhood function for population methods
discrete Flag indicating that and specific algorithm is discrete or continuous
nlevelz Default value for generating parameter levels when range is provided, default value is 5
container The object holding the configuration otions

OptionsACOR-class 57

OptionsACOR-class OptionsACOR

Description

Options for ACOR method

OptionsEES1-class OptionsEES1

Description

Options for EvoPER Evolutionary Stratety 1

OptionsEES2-class OptionsEES2

Description

Options for Serial Dilutions method

Fields

dilutions The desired dilutions

OptionsFactory OptionsFactory

Description

Instantiate the Options class required for the specific metaheuristic method.

Usage

OptionsFactory(type, v = NULL)

Arguments

type The metaheuristic method
v The options object

Value

Options object

58 OptionsTS-class

OptionsGA-class OptionsGA

Description

Options for Genetic Algorithm optimization metaheuristic

OptionsPSO-class OptionsPSO

Description

Options for PSO optimization metaheuristic

OptionsSAA-class OptionsSAA

Description

Options for SAA method

Fields

temperature The temperature dacay function

OptionsTS-class OptionsTS

Description

Options for Tabu search optimization metaheuristic

paramconverter 59

paramconverter paramconverter

Description

Convert parameter from continuous to discrete and vice-versa if needed

Usage

paramconverter(parameters, discrete, levelz = 5)

Arguments

parameters The current parameter set

discrete The desired parameter type

levelz When discrete is true the number of levels to be generated

Value

The parameter collection casted to desired mode

partSolutionSpace partSolutionSpace

Description

Creates the initial Solution population taking into account the lower an upper bounds of provided
experiment factors. This method works by dividing the solution space into partitions of size ’d’ and
then creating a full factorial combination of partitions.

Usage

partSolutionSpace(parameters, d = 4)

Arguments

parameters The Objective Function parameter list

d The partition size. Default value 4.

Value

A set of solutions

60 pop.last

PlainFunction-class PlainFunction

Description

PlainFunction Class

pop.first pop.first

Description

pop an element

Usage

pop.first(x)

Arguments

x The element collection

Value

The first element added to list FIFO

pop.last pop.last

Description

pop an element

Usage

pop.last(x)

Arguments

x The element collection

Value

The last element added to list LIFO

predatorprey 61

predatorprey predatorprey

Description

The solver for Lotka-Volterra differential equation.

Usage

predatorprey(x1, x2, x3, x4)

Arguments

x1 The growth rate of prey

x2 The decay rate of predator

x3 The predating effect on prey

x4 The predating effecto on predator

Value

The ODE solution

predatorprey.plot0 predatorprey.plot0

Description

Generate a plot for the predator-prey ODE output.

Usage

predatorprey.plot0(x1, x2, x3, x4, title = NULL)

Arguments

x1 The growth rate of prey

x2 The decay rate of predator

x3 The predating effect on prey

x4 The predating effect on predator

title The optional plot title. May be omited.

Value

An ggplot2 object

62 predatorprey.plot1

Examples

Not run:
predatorprey.plot0(1.351888, 1.439185, 1.337083, 0.9079049)

End(Not run)

predatorprey.plot1 predatorprey.plot1

Description

Simple wrapper for ’predatorprey.plot0’ accepting the parameters as a list.

Usage

predatorprey.plot1(x, title = NULL)

Arguments

x A list containing the values of predator/prey parameters c1, c2, c3 and c4 denot-
ing respectivelly the growth rate of prey, the decay rate of predator, the predating
effect on prey and the predating effect on predator

title The optional plot title. May be omited.

Value

An ggplot2 object

Examples

Not run:
rm(list=ls())
predatorprey.plot1(v$getBest()[1:4])

End(Not run)

pso.best 63

pso.best pso.best

Description

Search for the best particle solution which minimize the objective function.

Usage

pso.best(objective, particles)

Arguments

objective The results of evaluating the objective function

particles The particles tested

Value

The best particle

pso.chi pso.chi

Description

Implementation of constriction coefficient

Usage

pso.chi(phi1, phi2)

Arguments

phi1 Acceleration coefficient toward the previous best

phi2 Acceleration coefficient toward the global best

Value

The calculated constriction coefficient

64 pso.neighborhood.K2

pso.lbest pso.lbest

Description

Finds the lbest for the particle ’i’ using the topology function given by the topology parameter.

Usage

pso.lbest(i, pbest, topology)

Arguments

i The particle position

pbest The pbest particle collection

topology The desired topology function

Value

The lbes for i th particle

pso.neighborhood.K2 pso.neighborhood.K2

Description

The neighborhood function for a simple linear topology where every particle has k = 2 neighbors

Usage

pso.neighborhood.K2(i, n)

Arguments

i The particle position

n the size of particle population

pso.neighborhood.K4 65

pso.neighborhood.K4 pso.neighborhood.K4

Description

The von neumann neighborhood function for a lattice-based topology where every particle has k =
4 neighbors

Usage

pso.neighborhood.K4(i, n)

Arguments

i The particle position

n the size of particle population

pso.neighborhood.KN pso.neighborhood.KN

Description

Simple helper method for ’gbest’ neighborhood

Usage

pso.neighborhood.KN(i, n)

Arguments

i The particle position

n the size of particle population

66 pso.Velocity

pso.printbest pso.printbest

Description

Shows the best particle of each of simulated generations

Usage

pso.printbest(objective, particles, generation, title)

Arguments

objective An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

particles The current particle population

generation The current generation

title Some informational text to be shown

pso.Velocity pso.velocity

Description

Calculates the PSO Velocity

Usage

pso.Velocity(W = 1, Vi, phi1, phi2, Pi, Pg, Xi)

Arguments

W Weight (Inertia weight or constriction coefficient)

Vi Current Velocity vector

phi1 Acceleration coefficient toward the previous best

phi2 Acceleration coefficient toward the global best

Pi Personal best

Pg Neighborhood best

Xi Particle vector

Value

Updated velocity

push 67

push push

Description

push an element

Usage

push(x, v)

Arguments

x The collection of elements

v The value to be pushed

Value

The collection of elements

random.wheel random.whell

Description

A simple randon seed generator

Usage

random.wheel()

Value

A random number for seeding

RepastFunction-class RepastFunction

Description

RepastFunction class

68 saa.neighborhood

saa.bolt saa.bolt

Description

Temperature function boltzmann

Usage

saa.bolt(t0, k)

Arguments

t0 The current temperature

k The annealing value

Value

The new temperature

saa.neighborhood saa.neighborhood

Description

Generates neighbor solutions for simulated annealing

Usage

saa.neighborhood(f, S, d, n)

Arguments

f An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S The current solution to find a neighbor

d The distance from current solution S distance = (max - min) * d

n The number of parameters to be perturbed

Value

The neighbor of solution S

saa.neighborhood1 69

saa.neighborhood1 saa.neighborhood1

Description

Generates neighbor solutions perturbing one parameter from current solution S picked randonly.

Usage

saa.neighborhood1(f, S, d)

Arguments

f An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S The current solution to find a neighbor

d The distance from current solution S distance = (max - min) * d

Value

The neighbor of solution of S

saa.neighborhoodH saa.neighborhoodH

Description

Generates neighbor solutions perturbing half parameters from current solution S.

Usage

saa.neighborhoodH(f, S, d)

Arguments

f An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S The current solution to find a neighbor

d The distance from current solution S distance = (max - min) * d

Value

The neighbor of solution of S

70 saa.tbyk

saa.neighborhoodN saa.neighborhoodN

Description

Generates neighbor solutions perturbing all parameters from current solution S.

Usage

saa.neighborhoodN(f, S, d)

Arguments

f An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S The current solution to find a neighbor

d The distance from current solution S distance = (max - min) * d

Value

The neighbor of solution of S

saa.tbyk saa.tbyk

Description

Temperature function t/k

Usage

saa.tbyk(t0, k)

Arguments

t0 The current temperature

k The annealing value

Value

The new temperature

saa.tcte 71

saa.tcte saa.tcte

Description

Temperature function cte * t0

Usage

saa.tcte(t0, k)

Arguments

t0 The current temperature

k The annealing value

Value

The new temperature

saa.texp saa.texp

Description

Temperature function exponential

Usage

saa.texp(t0, k)

Arguments

t0 The current temperature

k The annealing value

Value

The new temperature

72 searchrow

scatterplotlothelper scatterplotlothelper

Description

Simple helper for ploting 3d scaterplots

Usage

scatterplotlothelper(d, x, y, z, title = NULL)

Arguments

d A data frame.

x A string with the dataframe column name for x axis

y A string with the dataframe column name for y axis

z A string with the dataframe column name for z axis

title The optional plot title. May be omited.

Value

A scatter3D plot

searchrow searchrow

Description

Search for a value value on a matrix

Usage

searchrow(ddata, value)

Arguments

ddata The matrix containing the dataset

value The value to search for

Value

Boolean TRUE for those indexes matching value

SetLogLevel 73

SetLogLevel SetLogLevel

Description

Configure the current log level for the package

Usage

SetLogLevel(level)

Arguments

level The log level (ERROR|WARN|INFO|DEBUG)

show.comp1 show.comp1

Description

Generates a barplot comparing the number of evalutions for algorithms ("saa","pso","acor","ees1").

Usage

show.comp1(mydata, what, title = NULL)

Arguments

mydata The data generated with ’summarize.comp1’

what The name of variable to plot on ’y’ axis

title the plot title

Examples

Not run:
p.a<- show.comp1(d.cigar4,"evals","(a) Cigar function")
p.b<- show.comp1(d.schaffer4,"evals","(b) Schafer function")
p.c<- show.comp1(d.griewank4,"evals","(c) Griewank function")
p.d<- show.comp1(d.bohachevsky4,"evals","(d) Bohachevsky function")

End(Not run)

74 slopes

slope slope

Description

Simple function for calculate the slope on the ith element position

Usage

slope(x, y, i)

Arguments

x The x vector

y The y vector

i The position

Value

The slope

slopes slopes

Description

Calcule all slopes for the discrete x,y series

Usage

slopes(x, y)

Arguments

x The x vector

y The y vector

Value

A vector with all slopes

sortSolution 75

sortSolution sortSolution

Description

Sort solution by its respective fitness

Usage

sortSolution(s, f)

Arguments

s Problem solution

f The function evaluation for s

summarize.comp1 summarize.comp1

Description

Provides as summary with averged values of experimental setup

Usage

summarize.comp1(mydata)

Arguments

mydata The data frame generated with ’compare.algorithms1’

Value

The summarized data

76 tabu.istabu

tabu.getNeighbors tabu.getNeighbors

Description

create neighbor solutions

Usage

tabu.getNeighbors(tabu, parameters, solution, size)

Arguments

tabu The tabu list

parameters The parameter set

solution The current solution

size The neigborhood size

Value

The neighbor for solution

tabu.istabu tabu.istabu

Description

Check whether a solution is present on tabulist

Usage

tabu.istabu(tabulist, solution)

Arguments

tabulist The matrix of tabu solutions

solution The solution value to be checked

Value

Boolean TRUE tabulist contains the solution

upperBound 77

upperBound upperBound

Description

Checks if parameters is below the upper bounds

Usage

upperBound(particles, factors)

Arguments

particles The particle set

factors the defined range for objective function parameters

Value

The particle inside the valid upper bound

xmeanci1 xmeanci1

Description

Calculates confidence interval of mean for provided data with desired confidence level. This func-
tions uses bootstrap resampling scheme for estimanting the CI.

Usage

xmeanci1(x, alpha = 0.95)

Arguments

x The data set for which CI will be calculated

alpha The confidence level. The default value is 0.95 (95%)

Value

The confidence interval for the mean calculated using ’boot.ci’

78 xyplothelper

xmeanci2 xmeanci2

Description

Calculates confidence interval of mean for provided data with desired confidence level.

Usage

xmeanci2(x, alpha = 0.95)

Arguments

x The data set for which CI will be calculated

alpha The confidence level. The default value is 0.95 (95%)

Value

The confidence interval for the mean

xyplothelper xyplothelper

Description

Simple helper for ploting xy dispersion points.

Usage

xyplothelper(d, x, y, title = NULL)

Arguments

d A data frame.

x A string with the dataframe column name for x axis

y A string with the dataframe column name for y axis

title The optional plot title. May be omited.

Value

A ggplot2 plot object

Index

abm.acor, 5
abm.ees1, 6
abm.ees2, 6
abm.ga, 7
abm.pso, 8
abm.saa, 9
abm.tabu, 10
acor.archive, 11
acor.F, 12
acor.lthgaussian, 12
acor.N, 13
acor.probabilities, 13
acor.S, 14
acor.sigma, 14
acor.updateants, 15
acor.W, 15
acor.weigth, 16
assert, 16

bestFitness, 17
bestSolution, 17

cbuf, 18
compare.algorithms1, 18
contourplothelper, 19

ees1.challenge, 20
ees1.explore, 20
ees1.mating, 21
ees1.mating1, 21
ees1.mutation, 22
ees1.recombination, 22
ees1.selection, 23
elog.debug, 23
elog.error, 23
elog.info, 24
elog.level, 24
enforceBounds, 25
es.evaluate, 25
Estimates (Estimates-class), 26

Estimates-class, 26
extremize, 26

f0.ackley, 27
f0.ackley4, 27
f0.adtn.rosenbrock2, 28
f0.bohachevsky, 28
f0.bohachevsky4, 29
f0.cigar, 29
f0.cigar4, 30
f0.griewank, 30
f0.griewank4, 31
f0.nlnn.rosenbrock2, 31
f0.periodtuningpp, 32
f0.periodtuningpp12, 32
f0.periodtuningpp24, 33
f0.periodtuningpp48, 34
f0.periodtuningpp72, 35
f0.rosenbrock2, 36
f0.rosenbrock4, 36
f0.rosenbrockn, 37
f0.schaffer, 37
f0.schaffer4, 38
f0.schwefel, 38
f0.schwefel4, 39
f0.test, 39
f1.ackley, 40
f1.adtn.rosenbrock2, 40
f1.bohachevsky, 41
f1.cigar, 41
f1.griewank, 42
f1.nlnn.rosenbrock2, 42
f1.rosenbrock2, 43
f1.rosenbrockn, 43
f1.schaffer, 44
f1.schwefel, 44
f1.test, 45
fixdfcolumns, 45

generateSolution, 46

79

80 INDEX

getFitness, 46
GetLogLevel, 47
getSolution, 47
gm.mean, 48
gm.sd, 48

histplothelper, 49

initSolution, 49

lowerBound, 50

Magnitude, 50

naiveperiod, 51
NetLogoFunction

(NetLogoFunction-class), 51
NetLogoFunction-class, 51
NLWrapper.FindJar, 51
NLWrapper.GetParameter, 52
NLWrapper.Model, 52, 52, 53–56
NLWrapper.Run, 53
NLWrapper.RunExperiment, 54
NLWrapper.SetParameter, 55
NLWrapper.SetRandomSeed, 55
NLWrapper.Shutdown, 56

ObjectiveFunction, 5–10, 26, 66, 68–70
ObjectiveFunction

(ObjectiveFunction-class), 56
ObjectiveFunction-class, 56
Options, 5–10, 26
Options (Options-class), 56
Options-class, 56
OptionsACOR (OptionsACOR-class), 57
OptionsACOR-class, 57
OptionsEES1 (OptionsEES1-class), 57
OptionsEES1-class, 57
OptionsEES2 (OptionsEES2-class), 57
OptionsEES2-class, 57
OptionsFactory, 57
OptionsGA (OptionsGA-class), 58
OptionsGA-class, 58
OptionsPSO (OptionsPSO-class), 58
OptionsPSO-class, 58
OptionsSAA (OptionsSAA-class), 58
OptionsSAA-class, 58
OptionsTS (OptionsTS-class), 58
OptionsTS-class, 58

paramconverter, 59
partSolutionSpace, 59
PlainFunction (PlainFunction-class), 60
PlainFunction-class, 60
pop.first, 60
pop.last, 60
predatorprey, 61
predatorprey.plot0, 61
predatorprey.plot1, 62
pso.best, 63
pso.chi, 63
pso.lbest, 64
pso.neighborhood.K2, 64
pso.neighborhood.K4, 65
pso.neighborhood.KN, 65
pso.printbest, 66
pso.Velocity, 66
push, 67

random.wheel, 67
RepastFunction (RepastFunction-class),

67
RepastFunction-class, 67

saa.bolt, 68
saa.neighborhood, 68
saa.neighborhood1, 69
saa.neighborhoodH, 69
saa.neighborhoodN, 70
saa.tbyk, 70
saa.tcte, 71
saa.texp, 71
scatterplotlothelper, 72
searchrow, 72
SetLogLevel, 73
show.comp1, 73
slope, 74
slopes, 74
sortSolution, 75
summarize.comp1, 75

tabu.getNeighbors, 76
tabu.istabu, 76

upperBound, 77

xmeanci1, 77
xmeanci2, 78
xyplothelper, 78

	abm.acor
	abm.ees1
	abm.ees2
	abm.ga
	abm.pso
	abm.saa
	abm.tabu
	acor.archive
	acor.F
	acor.lthgaussian
	acor.N
	acor.probabilities
	acor.S
	acor.sigma
	acor.updateants
	acor.W
	acor.weigth
	assert
	bestFitness
	bestSolution
	cbuf
	compare.algorithms1
	contourplothelper
	ees1.challenge
	ees1.explore
	ees1.mating
	ees1.mating1
	ees1.mutation
	ees1.recombination
	ees1.selection
	elog.debug
	elog.error
	elog.info
	elog.level
	enforceBounds
	es.evaluate
	Estimates-class
	extremize
	f0.ackley
	f0.ackley4
	f0.adtn.rosenbrock2
	f0.bohachevsky
	f0.bohachevsky4
	f0.cigar
	f0.cigar4
	f0.griewank
	f0.griewank4
	f0.nlnn.rosenbrock2
	f0.periodtuningpp
	f0.periodtuningpp12
	f0.periodtuningpp24
	f0.periodtuningpp48
	f0.periodtuningpp72
	f0.rosenbrock2
	f0.rosenbrock4
	f0.rosenbrockn
	f0.schaffer
	f0.schaffer4
	f0.schwefel
	f0.schwefel4
	f0.test
	f1.ackley
	f1.adtn.rosenbrock2
	f1.bohachevsky
	f1.cigar
	f1.griewank
	f1.nlnn.rosenbrock2
	f1.rosenbrock2
	f1.rosenbrockn
	f1.schaffer
	f1.schwefel
	f1.test
	fixdfcolumns
	generateSolution
	getFitness
	GetLogLevel
	getSolution
	gm.mean
	gm.sd
	histplothelper
	initSolution
	lowerBound
	Magnitude
	naiveperiod
	NetLogoFunction-class
	NLWrapper.FindJar
	NLWrapper.GetParameter
	NLWrapper.Model
	NLWrapper.Run
	NLWrapper.RunExperiment
	NLWrapper.SetParameter
	NLWrapper.SetRandomSeed
	NLWrapper.Shutdown
	ObjectiveFunction-class
	Options-class
	OptionsACOR-class
	OptionsEES1-class
	OptionsEES2-class
	OptionsFactory
	OptionsGA-class
	OptionsPSO-class
	OptionsSAA-class
	OptionsTS-class
	paramconverter
	partSolutionSpace
	PlainFunction-class
	pop.first
	pop.last
	predatorprey
	predatorprey.plot0
	predatorprey.plot1
	pso.best
	pso.chi
	pso.lbest
	pso.neighborhood.K2
	pso.neighborhood.K4
	pso.neighborhood.KN
	pso.printbest
	pso.Velocity
	push
	random.wheel
	RepastFunction-class
	saa.bolt
	saa.neighborhood
	saa.neighborhood1
	saa.neighborhoodH
	saa.neighborhoodN
	saa.tbyk
	saa.tcte
	saa.texp
	scatterplotlothelper
	searchrow
	SetLogLevel
	show.comp1
	slope
	slopes
	sortSolution
	summarize.comp1
	tabu.getNeighbors
	tabu.istabu
	upperBound
	xmeanci1
	xmeanci2
	xyplothelper
	Index

