
Package ‘dfms’
January 26, 2026

Version 1.0.0

Title Dynamic Factor Models

Description Efficient estimation of Dynamic Factor Models using the Expectation Maximiza-
tion (EM) algorithm
or Two-Step (2S) estimation, supporting datasets with missing data and mixed-
frequency nowcasting applications.
Factors follow a stationary VAR process of order p. Estimation options include: run-
ning the Kalman Filter and
Smoother once with PCA initial values (2S) as in Doz, Giannone and Reich-
lin (2011) <doi:10.1016/j.jeconom.2011.02.012>;
iterated Kalman Filtering and Smoothing until EM convergence as in Doz, Giannone and Reich-
lin (2012)
<doi:10.1162/REST_a_00225>; or the adapted EM algorithm of Banbura and Mod-
ugno (2014) <doi:10.1002/jae.2306>,
allowing arbitrary missing-data patterns and monthly-quarterly mixed-
frequency datasets. The implementation uses
the 'Armadillo' 'C++' library and the 'collapse' package for fast estimation. A comprehen-
sive set of methods supports
interpretation and visualization, forecasting, and decomposition of the 'news' content of macroe-
conomic data releases
following Banbura and Modugno (2014). Information criteria to choose the number of fac-
tors are also provided,
following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.

URL https://docs.ropensci.org/dfms/, https://github.com/ropensci/dfms

BugReports https://github.com/ropensci/dfms/issues

Depends R (>= 4.1.0)

Imports Rcpp (>= 1.0.1), collapse (>= 2.0.0)

LinkingTo Rcpp, RcppArmadillo

Suggests xts, vars, magrittr, testthat (>= 3.0.0), knitr, rmarkdown,
covr

License GPL-3

Encoding UTF-8

1

https://doi.org/10.1016/j.jeconom.2011.02.012
https://doi.org/10.1162/REST_a_00225
https://doi.org/10.1002/jae.2306
https://doi.org/10.1111/1468-0262.00273
https://docs.ropensci.org/dfms/
https://github.com/ropensci/dfms
https://github.com/ropensci/dfms/issues

2 dfms-package

LazyData true

RoxygenNote 7.3.2

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

Author Sebastian Krantz [aut, cre],
Rytis Bagdziunas [aut],
Santtu Tikka [rev],
Eli Holmes [rev]

Maintainer Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

Repository CRAN

Date/Publication 2026-01-26 15:50:02 UTC

Contents

dfms-package . 2
.VAR . 4
ainv . 5
as.data.frame.dfm . 6
BM14_Models . 7
DFM . 8
em_converged . 15
FIS . 16
ICr . 17
news . 19
plot.dfm . 22
predict.dfm . 24
residuals.dfm . 27
SKF . 29
SKFS . 30
summary.dfm . 32
tsnarmimp . 33

Index 35

dfms-package Dynamic Factor Models

dfms-package 3

Description

dfms provides efficient estimation of Dynamic Factor Models via the EM Algorithm — following
Doz, Giannone & Reichlin (2011, 2012) and Banbura & Modugno (2014). Contents:

Information Criteria to Determine the Number of Factors
ICr()

• plot(<ICr>)

• screeplot(<ICr>)

Fit a Dynamic Factor Model
DFM()

• summary(<dfm>)

• plot(<dfm>)

• as.data.frame(<dfm>)

• residuals(<dfm>)

• fitted(<dfm>)

Generate Forecasts
predict(<dfm>)

• plot(<dfm_forecast>)

• as.data.frame(<dfm_forecast>)

News Decomposition
news(<dfm>)

• as.data.frame(<dfm_news_list>)

Fast Stationary Kalman Filtering and Smoothing
SKF() — Stationary Kalman Filter
FIS() — Fixed Interval Smoother
SKFS() — Stationary Kalman Filter + Smoother

4 .VAR

Helper Functions

.VAR() — (Fast) Barebones Vector-Autoregression
ainv() — Armadillo’s Inverse Function
apinv() — Armadillo’s Pseudo-Inverse Function
tsnarmimp() — Remove and Impute Missing Values in a Multivariate Time Series
em_converged() — Convergence Test for EM-Algorithm

Data

BM14_M — Monthly Series by Banbura and Modugno (2014)
BM14_Q — Quarterly Series by Banbura and Modugno (2014)
BM14_Models — Series Metadata + Small/Medium/Large Model Specifications

References

Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic
factor models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205. doi:10.
1016/j.jeconom.2011.02.012

Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large,
approximate dynamic factor models. Review of Economics and Statistics, 94(4), 1014-1024. doi:
10.1162/REST_a_00225

Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets
with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160. doi:
10.1002/jae.2306

.VAR (Fast) Barebones Vector-Autoregression

Description

Quickly estimate a VAR(p) model using Armadillo’s inverse function.

Usage

.VAR(x, p = 1L)

Arguments

x data numeric matrix with time series in columns - without missing values.

p positive integer. The lag order of the VAR.

doi:10.1016/j.jeconom.2011.02.012
doi:10.1016/j.jeconom.2011.02.012
doi:10.1162/REST_a_00225
doi:10.1162/REST_a_00225
doi:10.1002/jae.2306
doi:10.1002/jae.2306

ainv 5

Value

A list containing matrices Y = x[-(1:p),], X which contains lags 1 - p of x combined column-wise,
A which is the np× n transition matrix, where n is the number of series in x, and the VAR residual
matrix res = Y - X %*% A.

A list with the following elements:

Y x[-(1:p),].

X lags 1 - p of x combined column-wise.

A np× n transition matrix, where n is the number of series in x.

res VAR residual matrix: Y - X %*% A.

See Also

dfms-package

Examples

var = .VAR(diff(EuStockMarkets), 3)
str(var)
var$A
rm(var)

ainv Armadillo’s Inverse Functions

Description

Matrix inverse and pseudo-inverse by the Armadillo C++ library.

Usage

ainv(x)

apinv(x)

Arguments

x a numeric matrix, must be square for ainv.

Value

The matrix-inverse or pseudo-inverse.

See Also

dfms-package

6 as.data.frame.dfm

Examples

ainv(crossprod(diff(EuStockMarkets)))

as.data.frame.dfm Extract Factor Estimates in a Data Frame

Description

Extract Factor Estimates in a Data Frame

Usage

S3 method for class 'dfm'
as.data.frame(
x,
...,
method = "all",
pivot = c("long", "wide.factor", "wide.method", "wide", "t.wide"),
time = seq_row(x$F_pca),
stringsAsFactors = TRUE

)

Arguments

x an object class ’dfm’.

... not used.

method character. The factor estimates to use: any of "qml", "2s", "pca" (multiple can
be supplied) or "all" for all estimates.

pivot character. The orientation of the frame: "long", "wide.factor" or "wide.method",
"wide" or "t.wide".

time a vector identifying the time dimension, or NULL to omit a time variable.

stringsAsFactors

make factors from method and factor identifiers. Same as option to as.data.frame.table.

Value

A data frame of factor estimates.

See Also

dfms-package

BM14_Models 7

Examples

library(xts)
Fit DFM with 3 factors and 3 lags in the transition equation
mod <- DFM(diff(BM14_M), r = 3, p = 3)

Taking a single estimate:
print(head(as.data.frame(mod, method = "qml")))
print(head(as.data.frame(mod, method = "qml", pivot = "wide")))

Adding a proper time variable
time <- index(BM14_M)[-1L]
print(head(as.data.frame(mod, method = "qml", time = time)))

All estimates: different pivoting methods
for (pv in c("long", "wide.factor", "wide.method", "wide", "t.wide")) {

cat("\npivot = ", pv, "\n")
print(head(as.data.frame(mod, pivot = pv, time = time), 3))

}

BM14_Models Euro Area Macroeconomic Data from Banbura and Modugno 2014

Description

A data extract from BM 2014 replication files. Some proprietary series (mostly PMI’s) are excluded.
The dataset BM14_Models provides information about all series and their inclusion in the ’small’,
’medium’ and ’large’ sized dynamic factor models estimated by BM 2014. The actual data is
contained in xts format in BM14_M for monthly data and BM14_Q for quarterly data.

Usage

BM14_Models
BM14_M
BM14_Q

Format

BM14_Models is a data frame with 101 obs. (series) and 8 columns:

series BM14 series code (converted to snake case for R)

label BM14 series label

code original series code from data source

freq series frequency

log_trans logical indicating whether the series was transformed by the natural log before differenc-
ing. Note that all data are provided in untransformed levels, and all data was (log-)differenced
by BM14 before estimation.

8 DFM

small logical indicating series included in the ’small’ model of BM14. Proprietary series are ex-
cluded.

medium logical indicating series included in the ’medium’ model of BM14. Proprietary series are
excluded.

large logical indicating series included in the ’large’ model of BM14. This comprises all series,
thus the variable is redundant but included for completeness. Proprietary series are excluded.

Source

Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets
with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160.

See Also

dfms-package

Examples

library(magrittr)
library(xts)

Constructing the database for the large model
BM14 = merge(BM14_M, BM14_Q)
BM14[, BM14_Models$log_trans] %<>% log()
BM14[, BM14_Models$freq == "M"] %<>% diff()
BM14[, BM14_Models$freq == "Q"] %<>% diff(3)

Small Model Database
head(BM14[, BM14_Models$small])

Medium-Sized Model Database
head(BM14[, BM14_Models$medium])

DFM Estimate a Dynamic Factor Model

Description

Efficient estimation of a Dynamic Factor Model via the EM Algorithm - on stationary data with
time-invariant system matrices and classical assumptions, while permitting missing data.

Usage

DFM(
X,
r,
p = 1L,

DFM 9

...,
idio.ar1 = FALSE,
quarterly.vars = NULL,
rQ = c("none", "diagonal", "identity"),
rR = c("diagonal", "identity", "none"),
em.method = c("auto", "DGR", "BM", "none"),
min.iter = 25L,
max.iter = 100L,
tol = 1e-04,
pos.corr = TRUE,
check.increased = FALSE,
save.full.state = TRUE

)

Arguments

X a T x n numeric data matrix or frame of stationary time series. May contain
missing values. Note that data is internally standardized (scaled and centered)
before estimation.

r integer. Number of factors.

p integer. Number of lags in factor VAR.

... (optional) arguments to tsnarmimp. The default settings impute internal missing
values with a cubic spline and the edges with the median and a 3-period moving
average.

idio.ar1 logical. Model observation errors as AR(1) processes: et = ρet−1 + vt. Note
that this substantially increases computation time, and is generally not needed if
n is large (>30). See theoretical vignette for details.

quarterly.vars character. Names of quarterly variables in X (if any). Monthly variables should
be to the left of the quarterly variables in the data matrix and quarterly observa-
tions should be provided every 3rd period.

rQ character. Restrictions on the state (transition) covariance matrix (Q).

rR character. Restrictions on the observation (measurement) covariance matrix (R).

em.method character. The implementation of the Expectation Maximization Algorithm
used. The options are:

"auto" Automatic selection: "BM" if anyNA(X), else "DGR".

"DGR" The classical EM implementation of Doz, Giannone and Reichlin (2012). This implementation is efficient and quite robust, missing values are removed on a casewise basis in the Kalman Filter and Smoother, but not explicitly accounted for in EM iterations.

"BM" The modified EM algorithm of Banbura and Modugno (2014) which also accounts for missing data in the EM iterations. Optimal for datasets with systematically missing data e.g. datasets with ragged edges or series at different frequencies.

"none" Performs no EM iterations and just returns the Two-Step estimates from running the data through the Kalman Filter and Smoother once as in Doz, Giannone and Reichlin (2011) (the Kalman Filter is Initialized with system matrices obtained from a regression and VAR on PCA factor estimates). This yields significant performance gains over the iterative methods. Final system matrices are estimated by running a regression and a VAR on the smoothed factors.

min.iter integer. Minimum number of EM iterations (to ensure a convergence path).

10 DFM

max.iter integer. Maximum number of EM iterations.

tol numeric. EM convergence tolerance.

pos.corr logical. Increase the likelihood that factors correlate positively with the data, by
scaling the eigenvectors such that the principal components (used to initialize
the Kalman Filter) co-vary positively with the row-means of the standardized
data.

check.increased

logical. Check if likelihood has increased. Passed to em_converged. If TRUE,
the algorithm only terminates if convergence was reached with decreasing like-
lihood.

save.full.state

logical. Save full state-space matrices and smoothed states in ss_full? Set to
FALSE to reduce object size.

Details

This function efficiently estimates a Dynamic Factor Model with the following classical assump-
tions:

1. Linearity

2. Idiosynchratic measurement (observation) errors (R is diagonal)

3. No direct relationship between series and lagged factors (ceteris paribus contemporaneous
factors)

4. No relationship between lagged error terms in the either measurement or transition equation
(no serial correlation), unless explicitly modeled as AR(1) processes using idio.ar1 = TRUE.

Factors are allowed to evolve in a V AR(p) process, and data is internally standardized (scaled
and centered) before estimation (removing the need of intercept terms). By assumptions 1-4, this
translates into the following dynamic form:

xt = C0ft + et ∼ N(0,R)

ft =
p∑

j=1

Ajft−j + ut ∼ N(0,Q0)

where the first equation is called the measurement or observation equation and the second equation
is called transition, state or process equation, and

n number of series in xt (r and p as the arguments to DFM).

xt n× 1 vector of observed series at time t: (x1t, . . . , xnt)
′. Some observations can be missing.

ft r × 1 vector of factors at time t: (f1t, . . . , frt)′.

C0 n× r measurement (observation) matrix.

Aj r × r state transition matrix at lag j.

DFM 11

Q0 r × r state covariance matrix.

R n× n measurement (observation) covariance matrix. It is diagonal by assumption 2 that E[xit|x−i,t, xi,t−1, . . . , ft, ft−1, . . .] = Cft∀i.

This model can be estimated using a classical form of the Kalman Filter and the Expectation Maxi-
mization (EM) algorithm, after transforming it to State-Space (stacked, VAR(1)) form:

xt = CFt + et ∼ N(0,R)

Ft = A Ft−1 + ut ∼ N(0,Q)

where

n number of series in xt (r and p as the arguments to DFM).

xt n× 1 vector of observed series at time t: (x1t, . . . , xnt)
′. Some observations can be missing.

Ft rp× 1 vector of stacked factors at time t: (f1t, . . . , frt, f1,t−1, . . . , fr,t−1, . . . , f1,t−p, . . . , fr,t−p)
′.

C n× rp observation matrix. Only the first n× r terms are non-zero, by assumption 3 that E[xt|Ft] = E[xt|ft] (no relationship of observed series with lagged factors given contemporaneous factors).

A stacked rp× rp state transition matrix consisting of 3 parts: the top r × rp part provides the dynamic relationships captured by (A1, . . . ,Ap) in the dynamic form, the terms A[(r+1):rp, 1:(rp-r)] constitute an (rp− r)× (rp− r) identity matrix mapping all lagged factors to their known values at times t. The remaining part A[(rp-r+1):rp, (rp-r+1):rp] is an r × r matrix of zeros.

Q rp× rp state covariance matrix. The top r × r part gives the contemporaneous relationships, the rest are zeros by assumption 4.

R n× n observation covariance matrix. It is diagonal by assumption 2 and identical to R as stated in the dynamic form.

The filter is initialized with PCA estimates on the imputed dataset—see SKFS for a complete code
example.

When modeling observations errors as AR(1) processes (idio.ar1 = TRUE) and/or when quarterly
variables are included (quarterly.vars = c(...)), the state-space form of the model is augmented
in order to estimate the additional parameters and apply appropriate restrictions - see the theoretical
vignette for details. But DFM() returns matrices for the classical form of the factor model, and thus
these modifications do not affect the output format.

Value

A list-like object of class ’dfm’ with the following elements:

X_imp T × n matrix with the imputed and standardized (scaled and centered) data—
after applying tsnarmimp. It has attributes attached allowing for reconstruction
of the original data:

https://raw.githubusercontent.com/ropensci/dfms/main/vignettes/dynamic_factor_models_paper.pdf
https://raw.githubusercontent.com/ropensci/dfms/main/vignettes/dynamic_factor_models_paper.pdf

12 DFM

"stats" is a n× 5 matrix of summary statistics of class "qsu" (see qsu).

"missing" is a T × n logical matrix indicating missing or infinite values in the original data (which are imputed in X_imp).

"attributes" contains the attributes of the original data input.

"is.list" is a logical value indicating whether the original data input was a list / data frame.

eigen eigen(cov(X_imp)).
F_pca T×r matrix of principal component factor estimates - X_imp %*% eigen$vectors.
P_0 r × r initial factor covariance matrix estimate based on PCA results.
F_2s T × r matrix two-step factor estimates as in Doz, Giannone and Reichlin (2011)

- obtained from running the data through the Kalman Filter and Smoother once,
where the Filter is initialized with results from PCA.

P_2s r × r × T covariance matrices of two-step factor estimates.
F_qml T × r matrix of quasi-maximum likelihood factor estimates - obtained by iter-

atively Kalman Filtering and Smoothing the factor estimates until EM conver-
gence.

P_qml r × r × T covariance matrices of QML factor estimates.
A r × rp factor transition matrix.
C n× r observation matrix.
Q r × r state (error) covariance matrix.
R n× n observation (error) covariance matrix.
ss_full list of full state-space matrices and full-state smoothing results used internally

(A, C, Q, R, F_0, P_0, F_smooth, P_smooth). Only stored when save.full.state
= TRUE.

e T × n estimates of observation errors et. Only available if idio.ar1 = TRUE.
rho n×1 estimates of AR(1) coefficients (ρ) in observation errors: et = ρet−1+vt.

Only available if idio.ar1 = TRUE.
loglik vector of log-likelihoods - one for each EM iteration. The final value corre-

sponds to the log-likelihood of the reported model.
tol The numeric convergence tolerance used.
converged single logical valued indicating whether the EM algorithm converged (within

max.iter iterations subject to tol).
anyNA single logical valued indicating whether there were any (internal) missing values

in the data (determined after removal of rows with too many missing values). If
FALSE, X_imp is simply the original data in matrix form, and does not have the
"missing" attribute attached.

rm.rows vector of any cases (rows) that were removed beforehand (subject to max.missing
and na.rm.method). If no cases were removed the slot is NULL.

quarterly.vars names of the quarterly variables (if any).
em.method The EM method used.
call call object obtained from match.call().

DFM 13

References

Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic
factor models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205.

Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large,
approximate dynamic factor models. Review of Economics and Statistics, 94(4), 1014-1024.

Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets
with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160.

Stock, J. H., & Watson, M. W. (2016). Dynamic Factor Models, Factor-Augmented Vector Au-
toregressions, and Structural Vector Autoregressions in Macroeconomics. Handbook of Macroeco-
nomics, 2, 415–525. https://doi.org/10.1016/bs.hesmac.2016.04.002

See Also

dfms-package

Examples

library(magrittr)
library(xts)
library(vars)

BM14 Replication Data. Constructing the database:
BM14 <- merge(BM14_M, BM14_Q)
BM14[, BM14_Models$log_trans] %<>% log()
BM14[, BM14_Models$freq == "M"] %<>% diff()
BM14[, BM14_Models$freq == "Q"] %<>% diff(3)

Small Model ---------------------------------------

IC for number of factors
IC_small <- ICr(BM14[, BM14_Models$small], max.r = 5)
plot(IC_small)
screeplot(IC_small)

I take 2 factors. Now number of lags
VARselect(IC_small$F_pca[, 1:2])

Estimating the model with 2 factors and 3 lags
dfm_small <- DFM(BM14[, BM14_Models$small], r = 2, p = 3,

quarterly.vars = BM14_Models %$% series[freq == "Q" & small])

Inspecting the model
summary(dfm_small)
plot(dfm_small) # Factors and data
plot(dfm_small, method = "all", type = "individual") # Factor estimates
plot(dfm_small, type = "residual") # Residuals from factor predictions

10 periods ahead forecast
plot(predict(dfm_small), xlim = c(300, 370))

14 DFM

Medium-Sized Model ---------------------------------

IC for number of factors
IC_medium <- ICr(BM14[, BM14_Models$medium])
plot(IC_medium)
screeplot(IC_medium)

I take 3 factors. Now number of lags
VARselect(IC_medium$F_pca[, 1:3])

Estimating the model with 3 factors and 3 lags
dfm_medium <- DFM(BM14[, BM14_Models$medium], r = 3, p = 3,

quarterly.vars = BM14_Models %$% series[freq == "Q" & medium])

Inspecting the model
summary(dfm_medium)
plot(dfm_medium) # Factors and data
plot(dfm_medium, method = "all", type = "individual") # Factor estimates
plot(dfm_medium, type = "residual") # Residuals from factor predictions

10 periods ahead forecast
plot(predict(dfm_medium), xlim = c(300, 370))

Large Model ---------------------------------

IC for number of factors
IC_large <- ICr(BM14)
plot(IC_large)
screeplot(IC_large)

I take 6 factors. Now number of lags
VARselect(IC_large$F_pca[, 1:6])

Estimating the model with 6 factors and 3 lags
dfm_large <- DFM(BM14, r = 6, p = 3,

quarterly.vars = BM14_Models %$% series[freq == "Q"])

Inspecting the model
summary(dfm_large)
plot(dfm_large) # Factors and data
plot(dfm_large, method = "all", type = "individual") # Factor estimates
plot(dfm_large, type = "residual") # Residuals from factor predictions

10 periods ahead forecast
plot(predict(dfm_large), xlim = c(300, 370))

Mixed-Frequency Model with AR(1) Idiosyncratic Errors ---------

Estimate model with AR(1) observation errors

em_converged 15

This models e(t) = rho * e(t-1) + v(t) for each series
dfm_large_ar1 <- DFM(BM14, r = 6, p = 3, idio.ar1 = TRUE,

quarterly.vars = BM14_Models %$% series[freq == "Q"])

Model summary shows AR(1) coefficients
summary(dfm_large_ar1)

Access AR(1) coefficients (rho) for each series
head(dfm_large_ar1$rho)

Access estimated observation errors
head(dfm_large_ar1$e)

Compare with model without AR(1) errors
dfm_large_ar1$loglik # Log-likelihood path

em_converged Convergence Test for EM-Algorithm

Description

Convergence Test for EM-Algorithm

Usage

em_converged(loglik, previous_loglik, tol = 1e-04, check.increased = FALSE)

Arguments

loglik numeric. Current value of the log-likelihood function.
previous_loglik

numeric. Value of the log-likelihood function at the previous iteration.

tol numerical. The tolerance of the test. If |LL(t) - LL(t-1)| / avg < tol, where avg =
(|LL(t)| + |LL(t-1)|)/2, then algorithm has converged.

check.increased

logical. Check if likelihood has increased.

Value

A logical statement indicating whether EM algorithm has converged. if check.increased = TRUE,
a vector with 2 elements indicating the convergence status and whether the likelihood has decreased.

See Also

dfms-package

16 FIS

Examples

em_converged(1001, 1000)
em_converged(10001, 10000)
em_converged(10001, 10000, check = TRUE)
em_converged(10000, 10001, check = TRUE)

FIS (Fast) Fixed-Interval Smoother (Kalman Smoother)

Description

(Fast) Fixed-Interval Smoother (Kalman Smoother)

Usage

FIS(A, F, F_pred, P, P_pred, F_0 = NULL, P_0 = NULL)

Arguments

A transition matrix (rp× rp).

F state estimates (T × rp).

F_pred state predicted estimates (T × rp).

P variance estimates (rp× rp× T).

P_pred predicted variance estimates (rp× rp× T).

F_0 initial state vector (rp× 1) or empty (NULL).

P_0 initial state covariance (rp× rp) or empty (NULL).

Details

The Kalman Smoother is given by:

Jt = PtA + inv(Ppred
t+1)

Fsmooth
t = Ft + Jt(Fsmooth

t+1 − Fpred
t+1)

Psmooth
t = Pt + Jt(Psmooth

t+1 − Ppred
t+1)J′t

The initial smoothed values for period t = T are set equal to the filtered values. If F_0 and P_0
are supplied, the smoothed initial conditions (t = 0 values) are also calculated and returned. For
further details see any textbook on time series such as Shumway & Stoffer (2017), which provide
an analogous R implementation in astsa::Ksmooth0.

ICr 17

Value

Smoothed state and covariance estimates, including initial (t = 0) values.

F_smooth T × rp smoothed state vectors, equal to the filtered state in period T .

P_smooth rp×rp×T smoothed state covariance, equal to the filtered covariance in period
T .

F_smooth_0 1× rp initial smoothed state vectors, based on F_0.

P_smooth_0 rp× rp initial smoothed state covariance, based on P_0.

References

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R
Examples. Springer.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter.

See Also

SKF SKFS dfms-package

Examples

See ?SKFS

ICr Information Criteria to Determine the Number of Factors (r)

Description

Minimizes 3 information criteria proposed by Bai and Ng (2002) to determine the optimal number
of factors r* to be used in an approximate factor model. A Screeplot can also be computed to eyeball
the number of factors in the spirit of Onatski (2010).

Usage

ICr(X, max.r = min(20, ncol(X) - 1))

S3 method for class 'ICr'
print(x, ...)

S3 method for class 'ICr'
plot(x, ...)

S3 method for class 'ICr'
screeplot(x, type = "pve", show.grid = TRUE, max.r = 30, ...)

18 ICr

Arguments

X a T x n numeric data matrix or frame of stationary time series.

max.r integer. The maximum number of factors for which IC should be computed (or
eigenvalues to be displayed in the screeplot).

x an object of type ’ICr’.

... further arguments to ts.plot or plot.

type character. Either "ev" (eigenvalues), "pve" (percent variance explained), or
"cum.pve" (cumulative PVE). Multiple plots can be requested.

show.grid logical. TRUE shows gridlines in each plot.

Details

Following Bai and Ng (2002) and De Valk et al. (2019), let NSSR(r) be the normalized sum of
squared residuals SSR(r)/(n×T) when r factors are estimated using principal components. Then
the information criteria can be written as follows:

ICr1 = ln(NSSR(r)) + r

(
n+ T

nT

)
+ ln

(
nT

n+ T

)
ICr2 = ln(NSSR(r)) + r

(
n+ T

nT

)
+ ln(min(n, T))

ICr3 = ln(NSSR(r)) + r

(
ln(min(n, T))

min(n, T)

)
The optimal number of factors r* corresponds to the minimum IC. The three criteria are are asymp-
totically equivalent, but may give significantly different results for finite samples. The penalty in
ICr2 is highest in finite samples.

In the Screeplot a horizontal dashed line is shown signifying an eigenvalue of 1, or a share of
variance corresponding to 1 divided by the number of eigenvalues.

Value

A list of 4 elements:

F_pca T x n matrix of principle component factor estimates.

eigenvalues the eigenvalues of the covariance matrix of X.

IC r.max x 3 ’table’ containing the 3 information criteria of Bai and Ng (2002),
computed for all values of r from 1:r.max.

r.star vector of length 3 containing the number of factors (r) minimizing each infor-
mation criterion.

Note

To determine the number of lags (p) in the factor transition equation, use the function vars::VARselect
with r* principle components (also returned by ICr).

news 19

References

Bai, J., Ng, S. (2002). Determining the Number of Factors in Approximate Factor Models. Econo-
metrica, 70(1), 191-221. https://doi.org/10.1111/1468-0262.00273.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues.
The Review of Economics and Statistics, 92(4), 1004-1016.

De Valk, S., de Mattos, D., & Ferreira, P. (2019). Nowcasting: An R package for predicting eco-
nomic variables using dynamic factor models. The R Journal, 11(1), 230-244.

See Also

dfms-package

Examples

library(xts)
library(vars)

ics <- ICr(diff(BM14_M))
print(ics)
plot(ics)
screeplot(ics)

Optimal lag-order with 6 factors chosen
VARselect(ics$F_pca[, 1:6])

news News Decomposition

Description

Compute the Banbura and Modugno (2014) news decomposition of forecast updates. Given an
old vintage and an updated vintage, the function decomposes the forecast revision at t.fcst into
contributions from new releases.

Usage

news(object, ...)

S3 method for class 'dfm'
news(
object,
comparison,
t.fcst = nrow(object$X_imp),
target.vars = NULL,
series = NULL,
standardized = FALSE,

20 news

...
)

S3 method for class 'dfm_news'
print(x, digits = 4L, ...)

S3 method for class 'dfm_news_list'
print(x, digits = 4L, ...)

S3 method for class 'dfm_news_list'
x$name

S3 method for class 'dfm_news_list'
x[[i]]

S3 method for class 'dfm_news_list'
x[i]

S3 method for class 'dfm_news_list'
as.data.frame(x, ...)

Arguments

object a dfm object for the old vintage.

... not used.

comparison a dfm object or a new dataset for the updated vintage.

t.fcst integer. Forecast target time index.

target.vars Integer or character identifying target variables. Defaults to all variables.

series optional character vector for naming variables.

standardized logical. Return results on standardized scale?

x an object of class ’dfm_news’ or ’dfm_news_list’.

digits integer. Number of digits to print.

name character. Element name.

i index. Element position or name.

Details

Let yoldt and ynewt be the old and new forecasts of a target series at t = tfcst. For each new release
i (a previously missing observation that becomes observed), the innovation is

νi = xnew
i − x̂old

i ,

where x̂old
i is the smoothed estimate from the old vintage. The revision is decomposed as

ynewt − yoldt =
∑
i

giνi,

news 21

with gain weights computed from Kalman smoother covariances:

g = σyCyP1P
−1
2 .

Here σy is the target series standard deviation, Cy is the loading row for the target series, P1 collects
cross-covariances between the target and each news item, and P2 is the covariance matrix of the
news items (including measurement error where appropriate). See Section 2.3 and Appendix D in
Banbura and Modugno (2014).

The function uses the system matrices and scaling from the new vintage. The old data are re-
standardized to the new-vintage scale before smoothing so that innovations and gains are computed
on a consistent scale. Set standardized = FALSE to report results on the original data scale.

Value

For a single target, a dfm_news object with elements:

• y_old: old forecast for the target variable at t.fcst.

• y_new: new forecast for the target variable at t.fcst.

• news_df: data frame with one row per series and columns:

– series: series name.
– actual: actual release (if any).
– forecast: old-vintage forecast of the release.
– news: total innovation for the series on the output scale. If there is a single release, news

equals actual - forecast. With multiple releases, news aggregates those innovations
for the series.

– gain: effective weight on news such that impact = news * gain (on the output scale).
– gain_std: effective weight on the standardized innovations.
– impact: contribution of the series to the target revision.

If target.vars selects multiple targets, a dfm_news_list object is returned, where each element
is a dfm_news object and list names correspond to targets.

Note

This implementation is translated from the original MATLAB codes and is consistent with the
BM2014 news decomposition formulas. If the model was estimated with max.missing < 1 and
na.rm.method = "LE" in tsnarmimp (called by DFM()), leading or trailing rows with many missing
values may be removed by DFM(). If old and new vintages are both dfm objects, and they drop
different rows, then t.fcst can become out of bounds. When comparison is provided as raw
data, news() drops object$rm.rows from the new dataset (if present) and forces max.missing =
1 for the re-estimation call to keep row alignment. To avoid issues, estimate both vintages with
max.missing = 1. For mixed-frequency or idiosyncratic AR(1) models, news() relies on the full
state-space matrices stored in dfm$ss_full.

References

Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets
with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160.

22 plot.dfm

See Also

dfms-package

Examples

(1) Monthly DFM example
X <- collapse::qM(BM14_M)[, BM14_Models$medium[BM14_Models$freq == "M"]]
X_old <- X
Creating earlier vintage
X_old[nrow(X) - 1, sample(which(is.finite(X[nrow(X) - 1,]) & is.na(X[nrow(X),])), 5)] <- NA
X_old[nrow(X), sample(which(is.finite(X[nrow(X),])), 5)] <- NA
Estimating DFM
dfm <- DFM(X_old, r = 2, p = 2, em.method = "none")
News computation (second DFM fit internally with same settings and rows)
res <- news(dfm, X, target.vars = c("ip_tot_cstr", "orders", "urx"))
See results
print(res)
head(res$news_df)

(2) MQ nowcast of GDP (idio.ar1 = FALSE for speed)
library(magrittr)
library(xts)
Creating MQ dataset
BM14 <- merge(BM14_M, BM14_Q)
BM14[, BM14_Models$log_trans] %<>% log()
BM14[, BM14_Models$freq == "M"] %<>% diff()
BM14[, BM14_Models$freq == "Q"] %<>% diff(3)
X <- BM14[-1, BM14_Models$small]
quarterly.vars <- BM14_Models$series[BM14_Models$small & BM14_Models$freq == "Q"]
Creating earlier vintage
X_old <- X
X_old[355, "ip_tot_cstr"] <- NA
X_old[355, "new_cars"] <- NA
X_old[356, "new_cars"] <- NA
X_old[356, "pms_pmi"] <- NA
X_old[356, "euro325"] <- NA
X_old[356, "capacity"] <- NA
Estimating DFM
dfm <- DFM(X_old, r = 2, p = 2, quarterly.vars = quarterly.vars, max.missing = 1)
News computation (second DFM fit internally with same settings and rows)
res_mq <- news(dfm, X, t.fcst = 356, target.vars = "gdp")
See results
print(res_mq)
head(res_mq$news_df)

plot.dfm Plot DFM

plot.dfm 23

Description

Plot DFM

Usage

S3 method for class 'dfm'
plot(
x,
method = switch(x$em.method, none = "2s", "qml"),
type = c("joint", "individual", "residual"),
scale.factors = TRUE,
...

)

S3 method for class 'dfm'
screeplot(x, ...)

Arguments

x an object class ’dfm’.

method character. The factor estimates to use: one of "qml", "2s", "pca" or "all" to
plot all estimates.

type character. The type of plot: "joint", "individual" or "residual".

scale.factors logical. Standardize factor estimates, this usually improves the plot since the
factor estimates corresponding to the greatest PCA eigenvalues tend to have a
greater variance than the data.

... for plot.dfm: further arguments to plot, ts.plot, or boxplot, depending on
the type of plot. For screeplot.dfm: further arguments to screeplot.ICr.

Value

Nothing.

See Also

dfms-package

Examples

Fit DFM with 3 factors and 3 lags in the transition equation
mod <- DFM(diff(BM14_M), r = 3, p = 3)
plot(mod)
plot(mod, type = "individual", method = "all")
plot(mod, type = "residual")

24 predict.dfm

predict.dfm DFM Forecasts

Description

This function produces h-step ahead forecasts of both the factors and the data, with an option to
also forecast autocorrelated residuals with a univariate method and produce a combined forecast.

Usage

S3 method for class 'dfm'
predict(
object,
h = 10L,
method = switch(object$em.method, none = "2s", "qml"),
standardized = TRUE,
use.full.state = TRUE,
resFUN = NULL,
resAC = 0.1,
...

)

S3 method for class 'dfm_forecast'
print(x, digits = 4L, ...)

S3 method for class 'dfm_forecast'
plot(
x,
main = paste(x$h, "Period Ahead DFM Forecast"),
xlab = "Time",
ylab = "Standardized Data",
factors = seq_len(ncol(x$F)),
scale.factors = TRUE,
factor.col = rainbow(length(factors)),
factor.lwd = 1.5,
fcst.lty = "dashed",
data.col = c("grey85", "grey65"),
legend = TRUE,
legend.items = paste0("f", factors),
grid = FALSE,
vline = TRUE,
vline.lty = "dotted",
vline.col = "black",
...

)

S3 method for class 'dfm_forecast'

predict.dfm 25

as.data.frame(
x,
...,
use = c("factors", "data", "both"),
pivot = c("long", "wide"),
time = seq_len(nrow(x$F) + x$h),
stringsAsFactors = TRUE

)

Arguments

object an object of class ’dfm’.

h integer. The forecast horizon.

method character. The factor estimates to use: one of "qml", "2s" or "pca".

standardized logical. FALSE will return data forecasts on the original scale.

use.full.state logical. Use the full state-space (if available) when computing residuals for op-
tional residual forecasting. When idio.ar1 = TRUE, this yields residuals after
both factor and idiosyncratic components; set to FALSE to use factor-only resid-
uals. Falls back to the compact form if unavailable or if method = "pca".

resFUN an (optional) function to compute a univariate forecast of the residuals. The
function needs to have a second argument providing the forecast horizon (h) and
return a vector of forecasts. See Examples.

resAC numeric. Threshold for residual autocorrelation to apply resFUN: only residual
series where AC1 > resAC will be forecasted.

... not used.

x an object class ’dfm_forecast’.

digits integer. The number of digits to print out.

main, xlab, ylab character. Graphical parameters passed to ts.plot.

factors integers indicating which factors to display. Setting this to NA, NULL or 0 will
omit factor plots.

scale.factors logical. Standardize factor estimates, this usually improves the plot since the
factor estimates corresponding to the greatest PCA eigenvalues tend to have a
greater variance than the data.

factor.col, factor.lwd
graphical parameters affecting the colour and line width of factor estimates
plots. See par.

fcst.lty integer or character giving the line type of the forecasts of factors and data. See
par.

data.col character vector of length 2 indicating the colours of historical data and forecasts
of that data. Setting this to NA, NULL or "" will not plot data and data forecasts.

legend logical. TRUE draws a legend in the top-left of the chart.

legend.items character names of factors for the legend.

grid logical. TRUE draws a grid on the background of the plot.

26 predict.dfm

vline logical. TRUE draws a vertical line deliminating historical data and forecasts.

vline.lty, vline.col
graphical parameters affecting the appearance of the vertical line. See par.

use character. Which forecasts to use "factors", "data" or "both".

pivot character. The orientation of the frame: "long" or "wide".

time a vector identifying the time dimension, must be of length T + h, or NULL to omit
a time variable.

stringsAsFactors

logical. If TRUE and pivot = "long" the ’Variable’ column is created as a factor.
Same as option to as.data.frame.table.

Value

A list-like object of class ’dfm_forecast’ with the following elements:

X_fcst h× n matrix with the forecasts of the variables.

F_fcst h× r matrix with the factor forecasts.

X T × n matrix with the standardized (scaled and centered) data - with attributes
attached allowing reconstruction of the original data:

"stats" is a n× 5 matrix of summary statistics of class "qsu" (see qsu). Only attached if standardized = TRUE.

"attributes" contains the attributes of the original data input.

"is.list" is a logical value indicating whether the original data input was a list / data frame.

F T × r matrix of factor estimates.

method the factor estimation method used.

anyNA logical indicating whether X contains any missing values.

h the forecast horizon.

resid.fc logical indicating whether a univariate forecasting function was applied to the
residuals.

resid.fc.ind indices indicating for which variables (columns of X) the residuals were fore-
casted using the univariate function.

call call object obtained from match.call().

See Also

dfms-package

residuals.dfm 27

Examples

library(xts)
library(collapse)

Fit DFM with 3 factors and 3 lags in the transition equation
mod <- DFM(diff(BM14_M), r = 3, p = 3)

15 period ahead forecast
fc <- predict(mod, h = 15)
print(fc)
plot(fc, xlim = c(300, 370))

Also forecasting autocorrelated residuals with an AR(1)
fcfun <- function(x, h) predict(ar(na_rm(x)), n.ahead = h)$pred
fcar <- predict(mod, resFUN = fcfun, h = 15)
plot(fcar, xlim = c(300, 370))

Retrieving a data frame of the forecasts
head(as.data.frame(fcar, pivot = "wide")) # Factors
head(as.data.frame(fcar, use = "data")) # Data
head(as.data.frame(fcar, use = "both")) # Both

residuals.dfm DFM Residuals and Fitted Values

Description

The residuals et = xt − CFt or fitted values CFt of the DFM observation equation.

Usage

S3 method for class 'dfm'
residuals(
object,
method = switch(object$em.method, none = "2s", "qml"),
orig.format = FALSE,
standardized = FALSE,
na.keep = TRUE,
use.full.state = TRUE,
...

)

S3 method for class 'dfm'
fitted(
object,
method = switch(object$em.method, none = "2s", "qml"),
orig.format = FALSE,

28 residuals.dfm

standardized = FALSE,
na.keep = TRUE,
use.full.state = TRUE,
...

)

Arguments

object an object of class ’dfm’.
method character. The factor estimates to use: one of "qml", "2s" or "pca".
orig.format logical. TRUE returns residuals/fitted values in a data format similar to X.
standardized logical. FALSE will put residuals/fitted values on the original data scale.
na.keep logical. TRUE inserts missing values where X is missing (default TRUE as resid-

uals/fitted values are only defined for observed data). FALSE returns the raw
prediction, which can be used to interpolate data based on the DFM. For residu-
als, FALSE returns the difference between the prediction and the initial imputed
version of X use for PCA to initialize the Kalman Filter.

use.full.state logical. Use the full state-space (if available) for fitted values and residuals. This
includes idiosyncratic state components when idio.ar1 = TRUE, so fitted values
reflect the full observation equation and residuals measure what is left after both
factor and idiosyncratic components. Set to FALSE to obtain factor-only fitted
values and residuals. Falls back to the compact form if unavailable or if method
= "pca".

... not used.

Value

A matrix of DFM residuals or fitted values. If orig.format = TRUE the format may be different,
e.g. a data frame.

See Also

dfms-package

Examples

library(xts)
Fit DFM with 3 factors and 3 lags in the transition equation
mod <- DFM(diff(BM14_M), r = 3, p = 3)

Residuals
head(resid(mod))
plot(resid(mod, orig.format = TRUE)) # this is an xts object

Fitted values
head(fitted(mod))
head(fitted(mod, orig.format = TRUE)) # this is an xts object

SKF 29

SKF (Fast) Stationary Kalman Filter

Description

A simple and fast C++ implementation of the Kalman Filter for stationary data (or random walks
- data should be mean zero and without a trend) with time-invariant system matrices and missing
data.

Usage

SKF(X, A, C, Q, R, F_0, P_0, loglik = FALSE)

Arguments

X numeric data matrix (T × n).

A transition matrix (rp× rp).

C observation matrix (n× rp).

Q state covariance (rp× rp).

R observation covariance (n× n).

F_0 initial state vector (rp× 1).

P_0 initial state covariance (rp× rp).

loglik logical. Compute log-likelihood?

Details

The underlying state space model is:

xt = CFt + et ∼ N(0,R)

Ft = A Ft−1 + ut ∼ N(0,Q)

where xt is X[t,]. The filter then first performs a time update (prediction)

Ft = A Ft−1

Pt = A Pt−1A′ + Q

where Pt = Cov(Ft). This is followed by the measurement update (filtering)

Kt = PtC′(C PtC′ + R)−1

Ft = Ft + Kt(xt − C Ft)

Pt = Pt − KtC Pt

30 SKFS

If a row of the data is all missing the measurement update is skipped i.e. the prediction becomes the
filtered value. The log-likelihood is computed as

1/2
∑
t

log(|St|)− e′tStet − n log(2π)

where St = (CPtC
′ +R)−1 and et = xt − CFt is the prediction error.

For further details see any textbook on time series such as Shumway & Stoffer (2017), which
provide an analogous R implementation in astsa::Kfilter0. For another fast (C-based) imple-
mentation that also allows time-varying system matrices and non-stationary data see FKF::fkf.

Value

Predicted and filtered state vectors and covariances.

F T × rp filtered state vectors.

P rp× rp× T filtered state covariances.

F_pred T × rp predicted state vectors.

P_pred rp× rp× T predicted state covariances.

loglik value of the log likelihood.

References

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R
Examples. Springer.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter.

Hamilton, J. D. (1994). Time Series Analysis. Princeton university press.

See Also

FIS SKFS dfms-package

Examples

See ?SKFS

SKFS (Fast) Stationary Kalman Filter and Smoother

Description

(Fast) Stationary Kalman Filter and Smoother

Usage

SKFS(X, A, C, Q, R, F_0, P_0, loglik = FALSE)

SKFS 31

Arguments

X numeric data matrix (T × n).

A transition matrix (rp× rp).

C observation matrix (n× rp).

Q state covariance (rp× rp).

R observation covariance (n× n).

F_0 initial state vector (rp× 1).

P_0 initial state covariance (rp× rp).

loglik logical. Compute log-likelihood?

Value

All results from SKF and FIS, and additionally a rp × rp × T matrix PPm_smooth, which is equal
to the estimate of Cov(F smooth

t , F smooth
t−1 |T) and needed for EM iterations. See ’Property 6.3: The

Lag-One Covariance Smoother’ in Shumway & Stoffer (2017).

References

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R
Examples. Springer.

See Also

SKF FIS dfms-package

Examples

library(collapse)

Two-Step factor estimates from monthly BM (2014) data
X <- fscale(diff(qM(BM14_M))) # Standardizing as KF has no intercept
r <- 5L # 5 Factors
p <- 3L # 3 Lags
n <- ncol(X)

Initializing the Kalman Filter with PCA results
X_imp <- tsnarmimp(X) # Imputing Data
v <- eigen(cov(X_imp))$vectors[, 1:r] # PCA
F_pc <- X_imp %*% v # Principal component factor estimates
C <- cbind(v, matrix(0, n, r*p-r)) # Observation matrix
res <- X - tcrossprod(F_pc, v) # Residuals from static predictions
R <- diag(fvar(res)) # Observation residual covariance
var <- .VAR(F_pc, p) # VAR(p)
A <- rbind(t(var$A), diag(1, r*p-r, r*p))
Q <- matrix(0, r*p, r*p) # VAR residual matrix
Q[1:r, 1:r] <- cov(var$res)
F_0 <- var$X[1L,] # Initial factor estimate and covariance
P_0 <- ainv(diag((r*p)^2) - kronecker(A,A)) %*% unattrib(Q)

32 summary.dfm

dim(P_0) <- c(r*p, r*p)

Run standartized data through Kalman Filter and Smoother once
kfs_res <- SKFS(X, A, C, Q, R, F_0, P_0, FALSE)

Two-step solution is state mean from the Kalman Smoother
F_kal <- kfs_res$F_smooth[, 1:r, drop = FALSE]
colnames(F_kal) <- paste0("f", 1:r)

See that this is equal to the Two-Step estimate by DFM()
all.equal(F_kal, DFM(X, r, p, em.method = "none", pos.corr = FALSE)$F_2s)

Same in two steps using SKF() and FIS()
kfs_res2 <- with(SKF(X, A, C, Q, R, F_0, P_0, FALSE), FIS(A, F, F_pred, P, P_pred))
F_kal2 <- kfs_res2$F_smooth[, 1:r, drop = FALSE]
colnames(F_kal2) <- paste0("f", 1:r)
all.equal(F_kal, F_kal2)

rm(X, r, p, n, X_imp, v, F_pc, C, res, R, var, A, Q, F_0, P_0, kfs_res, F_kal, kfs_res2, F_kal2)

summary.dfm DFM Summary Methods

Description

Summary and print methods for class ’dfm’. print.dfm just prints basic model information and
the factor transition matrix A, coef.dfm returns A and C in a plain list, whereas summary.dfm re-
turns all system matrices and additional residual and goodness of fit statistics—with a print method
allowing full or compact printout.

Usage

S3 method for class 'dfm'
print(x, digits = 4L, ...)

S3 method for class 'dfm'
coef(object, ...)

S3 method for class 'dfm'
logLik(object, ...)

S3 method for class 'dfm'
summary(object, method = switch(object$em.method, none = "2s", "qml"), ...)

S3 method for class 'dfm_summary'
print(x, digits = 4L, compact = sum(x$info["n"] > 15, x$info["n"] > 40), ...)

tsnarmimp 33

Arguments

x, object an object class ’dfm’.

digits integer. The number of digits to print out.

... not used.

method character. The factor estimates to use: one of "qml", "2s" or "pca".

compact integer. Display a more compact printout: 0 prints everything, 1 omits the ob-
servation matrix C and residual covariance matrix cov(resid(model)), and 2
omits all disaggregated information on the input data. Sensible default are cho-
sen for different sizes of the input dataset so as to limit large printouts.

Value

Summary information following a dynamic factor model estimation. coef() returns A and C.

See Also

dfms-package

Examples

mod <- DFM(diff(BM14_Q), 2, 3)
print(mod)
summary(mod)

tsnarmimp Remove and Impute Missing Values in a Multivariate Time Series

Description

This function imputes missing values in a stationary multivariate time series using various methods,
and removes cases with too many missing values.

Usage

tsnarmimp(
X,
max.missing = 0.8,
na.rm.method = c("LE", "all"),
na.impute = c("median.ma.spline", "median.ma", "median", "rnorm"),
ma.terms = 3L

)

34 tsnarmimp

Arguments

X a T x n numeric data matrix (incl. ts or xts objects) or data frame of stationary
time series.

max.missing numeric. Proportion of series missing for a case to be considered missing.

na.rm.method character. Method to apply concerning missing cases selected through max.missing:
"LE" only removes cases at the beginning or end of the sample, whereas "all"
always removes missing cases.

na.impute character. Method to impute missing values for the PCA estimates used to ini-
tialize the EM algorithm. Note that data are standardized (scaled and centered)
beforehand. Available options are:

"median" simple series-wise median imputation.

"rnorm" imputation with random numbers drawn from a standard normal distribution.

"median.ma" values are initially imputed with the median, but then a moving average is applied to smooth the estimates.

"median.ma.spline" "internal" missing values (not at the beginning or end of the sample) are imputed using a cubic spline, whereas missing values at the beginning and end are imputed with the median of the series and smoothed with a moving average.

ma.terms the order of the (2-sided) moving average applied in na.impute methods "median.ma"
and "median.ma.spline".

Value

The imputed matrix X_imp, with attributes:

"missing" a missingness matrix W matching the dimensions of X_imp.

"rm.rows" and a vector of indices of rows (cases) with too many missing values that were
removed.

See Also

dfms-package

Examples

library(xts)
str(tsnarmimp(BM14_M))

Index

∗ datasets
BM14_Models, 7

.VAR, 4

.VAR(), 4
[.dfm_news_list (news), 19
[[.dfm_news_list (news), 19
$.dfm_news_list (news), 19

ainv, 5
ainv(), 4
apinv (ainv), 5
apinv(), 4
as.data.frame(<dfm>), 3
as.data.frame(<dfm_forecast>), 3
as.data.frame(<dfm_news_list>), 3
as.data.frame.dfm, 6
as.data.frame.dfm_forecast

(predict.dfm), 24
as.data.frame.dfm_news_list (news), 19
as.data.frame.table, 6, 26
attributes, 12, 26

BM14_M, 4
BM14_M (BM14_Models), 7
BM14_Models, 4, 7
BM14_Q, 4
BM14_Q (BM14_Models), 7
boxplot, 23

coef.dfm (summary.dfm), 32

DFM, 8
DFM(), 3
dfms (dfms-package), 2
dfms-package, 2, 5, 6, 8, 13, 15, 17, 19, 22,

23, 26, 28, 30, 31, 33, 34

em_converged, 10, 15
em_converged(), 4

FIS, 16, 30, 31

FIS(), 3
fitted(<dfm>), 3
fitted.dfm (residuals.dfm), 27

ICr, 17
ICr(), 3

logLik.dfm (summary.dfm), 32

news, 19
news(<dfm>), 3

par, 25, 26
plot, 18, 23
plot(<dfm>), 3
plot(<dfm_forecast>), 3
plot(<ICr>), 3
plot.dfm, 22
plot.dfm_forecast (predict.dfm), 24
plot.ICr (ICr), 17
predict(<dfm>), 3
predict.dfm, 24
print.dfm (summary.dfm), 32
print.dfm_forecast (predict.dfm), 24
print.dfm_news (news), 19
print.dfm_news_list (news), 19
print.dfm_summary (summary.dfm), 32
print.ICr (ICr), 17

qsu, 12, 26

resid.dfm (residuals.dfm), 27
residuals(<dfm>), 3
residuals.dfm, 27

screeplot(<ICr>), 3
screeplot.dfm (plot.dfm), 22
screeplot.ICr, 23
screeplot.ICr (ICr), 17
SKF, 17, 29, 31
SKF(), 3

35

36 INDEX

SKFS, 11, 17, 30, 30
SKFS(), 3
summary(<dfm>), 3
summary.dfm, 32

ts.plot, 18, 23, 25
tsnarmimp, 9, 11, 21, 33
tsnarmimp(), 4

	dfms-package
	.VAR
	ainv
	as.data.frame.dfm
	BM14_Models
	DFM
	em_converged
	FIS
	ICr
	news
	plot.dfm
	predict.dfm
	residuals.dfm
	SKF
	SKFS
	summary.dfm
	tsnarmimp
	Index

