Package ‘crossmap’

January 24, 2026

Title Apply Functions to All Combinations of List Elements
Version 0.5.0

Description Provides an extension to the 'purrr’ family of mapping
functions to apply a function to each combination of elements in a
list of inputs. Also includes functions for automatically detecting
output type in mapping functions, finding every combination of
elements of lists or rows of data frames, and applying multiple models
to multiple subsets of a dataset.

License MIT + file LICENSE

URL https://pkg.rossellhayes.com/crossmap/,
https://github.com/rossellhayes/crossmap

BugReports https://github.com/rossellhayes/crossmap/issues

Imports backports, cli, dplyr (>= 1.0.0), generics, lifecycle,
parallelly, purrr, rlang, stats, utils, vctrs

Suggests broom, covr, crayon, estimatr, furrr, future, testthat,
tibble, withr

Encoding UTF-8
RoxygenNote 7.3.3
NeedsCompilation no

Author Alexander Rossell Hayes [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-9412-0457>)

Maintainer Alexander Rossell Hayes <alexander@rossellhayes.com>
Repository CRAN
Date/Publication 2026-01-24 17:40:02 UTC

Contents

AULONAMES . . . v o v v v e e e e e e e e e e
Cross_fIt L e
cross_fit_glm

https://pkg.rossellhayes.com/crossmap/
https://github.com/rossellhayes/crossmap
https://github.com/rossellhayes/crossmap/issues
https://orcid.org/0000-0001-9412-0457

2 autonames
cross_fit_robust e e 6
CIOSS_JOIM .« v v v v v e et et e e e e e 7
cross_list . . .o e 8
future_map_vec 9
future_xmap 12
future_xmap_mat e e e e e 15
MAP_VEC « « ¢ v v v vt e e e e e e e e e e e e e e e 16
tidy_glance L e 18
XMAP o v o v e 19
XMAP_MAL . . . o v vt vt e 21
xpluck . . .o e 22

Index 24

autonames Automatically generate names for vectors

Description

Automatically generate names for vectors
Usage
autonames(x, ..., trimws = TRUE)
Arguments
X A vector
Additional arguments passed to format ()
trimws Whether to trim whitespace surrounding automatically formatted names. De-
faults to TRUE.
Value

Returns the names of a named vector and the elements of an unnamed vector formatted as charac-

ters.

Examples

autonames(c(a = "apple”, b = "banana”, c = "cantaloupe"))
autonames(c("apple”, "banana”, "cantaloupe”))

autonames(10*(1:4))
autonames(104(1:4), big.mark = " ")
autonames(10*(1:4), scientific = TRUE)

cross_fit 3

cross_fit Cross map a model across multiple formulas, subsets, and weights

Description

Applies a modeling function to every combination of a set of formulas and a set of data subsets.

Usage

cross_fit(
data,
formulas,
cols = NULL,
weights = NULL,
clusters = NULL,
families = NULL,
fn = 1m,
fn_args = list(),
tidy = tidy_glance,
tidy_args = list(),

errors = c("stop”, "warn")
)
Arguments

data A data frame

formulas A list of formulas to apply to each subset of the data. If named, these names
will be used in the model column of the output. Otherwise, the formulas will be
converted to strings in the model column

cols Columns to subset the data. Can be any expression supported by <tidy-select>.
If NULL, the data is not subset into columns. Defaults to NULL.

weights A list of columns passed to weights in fn. If one of the elements is NULL or NA,
that model will not be weighted. Defaults to NULL.

clusters A list of columns passed to clusters if supported by fn. If one of the elements
is NULL or NA, that model will not be clustered. Defaults to NULL.

families A list of glm model families passed to family if supported by fn. Defaults to
gaussian("identity"), the equivalent of Im(). See family for examples.

fn The modeling function. Either an unquoted function name or a purrr-style
lambda function with two arguments. To use multiple modeling functions, see
cross_fit_glm(). Defaults to Im.

fn_args A list of additional arguments to fn.

tidy A logical or function to use to tidy model output into data.frame columns. If

TRUE, uses the default tidying function: tidy_glance(). If FALSE, NA, or NULL,
the untidied model output will be returned in a list column named fit. An

4 cross_fit

alternative function can be specified with an unquoted function name or a purrr-
style lambda function with one argument (see usage with broom::tidy(conf.int =
TRUE) in examples). Defaults to tidy_glance.

tidy_args A list of additional arguments to the tidy function

errors If "stop”, the default, the function will stop and return an error if any subset
produces an error. If "warn”, the function will produce a warning for subsets
that produce an error and return results for all subsets that do not.

Value

A tibble with a column for the model formula, columns for subsets, columns for the model family
and type (if applicable), columns for the weights and clusters (if applicable), and columns of tidy
model output or a list column of models (if tidy = FALSE)

See Also
cross_fit_glm() to map a model across multiple model types.

cross_fit_robust() to map robust linear models.

xmap () to apply any function to combinations of inputs.

Examples

cross_fit(mtcars, mpg ~ wt, cyl)
cross_fit(mtcars, list(mpg ~ wt, mpg ~ hp), cyl)
cross_fit(mtcars, list(wt = mpg ~ wt, hp = mpg ~ hp), cyl)

cross_fit(mtcars, list(mpg ~ wt, mpg ~ hp), c(cyl, vs))
cross_fit(mtcars, list(mpg ~ wt, mpg ~ hp), dplyr::starts_with("c"))

cross_fit(mtcars, list(hp
cross_fit(mtcars, list(hp

mpg ~ hp), cyl, weights = wt)
mpg ~ hp), cyl, weights = c(wt, NA))

cross_fit(
mtcars, list(vs ~ cyl, vs ~ hp), am,
fn = glm, fn_args = list(family = binomial(link = logit))
)
cross_fit(
mtcars, list(vs ~ cyl, vs ~ hp), am,
fn =~ glm(.x, .y, family = binomial(link = logit))
)

cross_fit(mtcars, list(mpg ~ wt, mpg ~ hp), cyl, tidy = FALSE)
cross_fit(mtcars, list(mpg ~ wt, mpg ~ hp), cyl, tidy_args = c(conf.int = TRUE))

cross_fit(mtcars, list(mpg ~ wt, mpg ~ hp), cyl, tidy = broom::tidy)

cross_fit(
mtcars, list(mpg ~ wt, mpg ~ hp), cyl,
tidy = ~ broom::tidy(., conf.int = TRUE)

)

cross_fit_glm

cross_fit_glm

Cross fit generalized linear models

Description

Cross fit generalized linear models

Usage

cross_fit_glm(

data,
formulas,

cols = NULL,

weights = NULL,

families =

gaussian(link = identity),

fn_args = list(),
tidy = tidy_glance,
tidy_args = list(),

errors = c("stop”, "warn")
)
Arguments

data A data frame

formulas A list of formulas to apply to each subset of the data. If named, these names
will be used in the model column of the output. Otherwise, the formulas will be
converted to strings in the model column.

cols Columns to subset the data. Can be any expression supported by <tidy-select>.
If NULL, the data is not subset into columns. Defaults to NULL.

weights A list of columns passed to weights in fn. If one of the elements is NULL or NA,
that model will not be weighted. Defaults to NULL.

families A list of glm model families. Defaults to gaussian(”identity"), the equiva-
lent of 1m(). See family for examples.

fn_args A list of additional arguments to glm().

tidy A logical or function to use to tidy model output into data.frame columns. If
TRUE, uses the default tidying function: tidy_glance(). If FALSE, NA, or NULL,
the untidied model output will be returned in a list column named fit. An
alternative function can be specified with an unquoted function name or a purrr-
style lambda function with one argument (see usage with broom::tidy(conf.int =
TRUE) in examples). Defaults to tidy_glance.

tidy_args A list of additional arguments to the tidy function

errors If "stop”, the default, the function will stop and return an error if any subset

produces an error. If "warn", the function will produce a warning for subsets
that produce an error and return results for all subsets that do not.

6 cross_fit_robust

Value

A tibble with a column for the model formula, columns for subsets, columns for the model family
and type, columns for the weights (if applicable), and columns of tidy model output or a list column
of models (if tidy = FALSE)

See Also

cross_fit() to use any modeling function.

Examples

cross_fit_glm(

data = mtcars,
formulas = list(am ~ gear, am ~ cyl),
cols = vs,
families = list(gaussian(”identity"), binomial("logit"))
)
cross_fit_robust Cross fit robust linear models
Description

Cross fit robust linear models

Usage

cross_fit_robust(
data,
formulas,
cols = NULL,
weights = NULL,
clusters = NULL,
fn_args = list(),
tidy = tidy_glance,
tidy_args = list(),

errors = c("stop”, "warn”)
)
Arguments

data A data frame

formulas A list of formulas to apply to each subset of the data. If named, these names
will be used in the model column of the output. Otherwise, the formulas will be
converted to strings in the model column.

cols Columns to subset the data. Can be any expression supported by <tidy-select>.

If NULL, the data is not subset into columns. Defaults to NULL.

cross_join

weights

clusters

fn_args

tidy

tidy_args

errors

Value

A list of columns passed to weights in fn. If one of the elements is NULL or NA,
that model will not be weighted. Defaults to NULL.

A list of columns passed to clusters. If one of the elements is NULL or NA, that
model will not be clustered. Defaults to NULL.

A list of additional arguments to estimatr: :1m_robust().

A logical or function to use to tidy model output into data.frame columns. If
TRUE, uses the default tidying function: tidy_glance(). If FALSE, NA, or NULL,
the untidied model output will be returned in a list column named fit. An
alternative function can be specified with an unquoted function name or a purrr-
style lambda function with one argument (see usage with broom::tidy(conf.int =
TRUE) in examples). Defaults to tidy_glance.

A list of additional arguments to the tidy function

If "stop”, the default, the function will stop and return an error if any subset
produces an error. If "warn", the function will produce a warning for subsets
that produce an error and return results for all subsets that do not.

A tibble with a column for the model formula, columns for subsets, columns for the weights and
clusters (if applicable), and columns of tidy model output or a list column of models (if tidy =

FALSE)

See Also

cross_fit() to use any modeling function.

Examples

cross_fit_robust(mtcars, mpg ~ wt, cyl, clusters = list(NULL, am))

cross_join

Crossing join

Description

Adds columns from a set of data frames, creating all combinations of their rows

Usage

cross_join(..., copy = FALSE)

8 cross_list

Arguments
Data frames or a list of data frames — including data frame extensions (e.g.
tibbles) and lazy data frames (e.g. from dbplyr or dtplyr). NULL inputs are
silently ignored.

copy If inputs are not from the same data source, and copy is TRUE, then they will be

copied into the same src as the first input. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

Value

An object of the same type as the first input. The order of the rows and columns of the first input is
preserved as much as possible. The output has the following properties:

* Rows from each input will be duplicated.

* Output columns include all columns from each input. If columns have the same name, suffixes
are added to disambiguate.

* Groups are taken from the first input.

See Also

cross_list() to find combinations of elements of vectors and lists.

Examples

fruits <- dplyr::tibble(

fruit = c("apple”, "banana”, "cantaloupe"),
color = c("red”, "yellow”, "orange")

)

desserts <- dplyr::tibble(
dessert = c("cupcake”, "muffin”, "streudel”),
makes = c(8, 6, 1)

)

cross_join(fruits, desserts)
cross_join(list(fruits, desserts))
cross_join(rep(list(fruits), 3))

cross_list List all combinations of values

Description

List all combinations of values

future_map_vec 9

Usage

cross_list(...)

cross_tbl(...)

Arguments

Inputs or a list of inputs. NULL inputs are silently ignored.

Value

A list for cross_list() or tibble for cross_tb1(). Names will match the names of the inputs. Un-
named inputs will be left unnamed for cross_list () and automatically named for cross_tb1().

See Also

cross_join() to find combinations of data frame rows.
purrr::cross() for an implementation that results in a differently formatted list.

expand.grid() for an implementation that results in a data.frame.

Examples
fruits <- c("apple”, "banana”, "cantaloupe")
desserts <- c(”"cupcake”, "muffin”, "streudel”)

cross_list(list(fruits, desserts))
cross_list(fruits, desserts)
cross_tbl(fruits, desserts)

cross_list(list(fruit = fruits, dessert = desserts))
cross_list(fruit = fruits, dessert = desserts)
cross_tbl(fruit = fruits, dessert = desserts)

future_map_vec Parallelized mapping functions that automatically determine type

Description

These functions work exactly the same as map_vec(), map2_vec(), pmap_vec(), imap_vec() and
xmap_vec (), but allow you to map in parallel.

10

Usage

future_map_vec(

)

X,
.f,

L

.class = NULL,
.progress = FALSE,
.options = furrr::furrr_options()

future_map2_vec(

)

X,

-y,
.f,

L

.class = NULL,
.progress = FALSE,
.options = furrr::furrr_options()

future_pmap_vec(

)

1,
f,

L

.class = NULL,
.progress = FALSE,
.options = furrr::furrr_options()

future_imap_vec(

)

X,
.f,

L

.class = NULL,
.progress = FALSE,
.options = furrr::furrr_options()

future_xmap_vec(

1,
f,

L

.class = NULL,
.progress = FALSE,
.options = furrr::furrr_options()

future_map_vec

future_map_vec 11

Arguments

A list or atomic vector.

f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:
* For a single argument function, use .
* For a two argument function, use .x and .y
* For more arguments, use . .1, ..2, ..3etc

This syntax allows you to create very compact anonymous functions.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

Additional arguments passed on to . f
.class If .class is specified, all

.progress A single logical. Should a progress bar be displayed? Only works with multises-
sion, multicore, and multiprocess futures. Note that if a multicore/multisession
future falls back to sequential, then a progress bar will not be displayed.

Warning: The .progress argument will be deprecated and removed in a future
version of furrr in favor of using the more robust progressr package.

.options The future specific options to use with the workers. This must be the result
from a call to furrr_options().

Y A vector the same length as . x. Vectors of length 1 will be recycled.

.1 A list of vectors, such as a data frame. The length of .1 determines the number
of arguments that .f will be called with. List names will be used if present.
Value

Equivalent to map_vec(), map2_vec(), pmap_vec(), imap_vec() and xmap_vec()

See Also

The original functions: furrr::future_map(), furrr::future_map2(), furrr::future_pmap(),
furrr::future_imap() and future_xmap()

Non-parallelized equivalents: map_vec(), map2_vec(), pmap_vec(), imap_vec() and xmap_vec()

Examples
fruits <- c("apple”, "banana", "carrot”, "durian”, "eggplant")
desserts <- c("bread”, "cake", "cupcake", "streudel”, "muffin”)
X <- sample(5)
y <- sample(5)
z <- sample(5)

names(z) <- fruits

https://CRAN.R-project.org/package=progressr

12 future_xmap

future_map_vec(x, ~ . * 2)
future_map_vec(fruits, paste@, "s")

future_map2_vec(x, y, ~ .x + .y)
future_map2_vec(fruits, desserts, paste)

future_pmap_vec(list(x, y, z), sum)
future_pmap_vec(list(x, fruits, desserts), paste)

future_imap_vec(x, ~ .x + .y)
future_imap_vec(x, ~ paste@(.y, ": ", .x))
future_imap_vec(z, paste)

future_xmap_vec(list(x, y), ~ .x * .y)
future_xmap_vec(list(fruits, desserts), paste)

future_xmap Map over each combination of list elements simultaneously via futures

Description

These functions work exactly the same as xmap () functions, but allow you to run the map in parallel
using future: : future()

Usage

future_xmap(.1l, .f, ..., .progress = FALSE, .options = furrr::furrr_options())

future_xmap_chr(
.1,
.f,
.progress = FALSE,
.options = furrr::furrr_options()

)
future_xmap_dbl(
.1,
.f,

.progress = FALSE,
.options = furrr::furrr_options()

future_xmap_dfc(
.1,
.f,

future_xmap 13

.progress = FALSE,
.options = furrr::furrr_options()

)
future_xmap_dfr(
.1,
.f,
.id = NULL,

.progress = FALSE,
.options = furrr::furrr_options()

)
future_xmap_int(
.1,
.f,

.progress = FALSE,
.options = furrr::furrr_options()

)
future_xmap_1gl(
.1,
.f,

.progress = FALSE,
.options = furrr::furrr_options()

)
future_xwalk(.1l, .f, ..., .progress = FALSE, .options = furrr::furrr_options())
Arguments
.1 A list of vectors, such as a data frame. The length of .1 determines the number
of arguments that .f will be called with. List names will be used if present.
f A function, formula, or vector (not necessarily atomic).

If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

* For a single argument function, use .

* For a two argument function, use .x and .y

* For more arguments, use . .1, ..2, ..3etc
This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

14
.progress
.options
.id

Value

future_xmap

Additional arguments passed on to . f

A single logical. Should a progress bar be displayed? Only works with multises-
sion, multicore, and multiprocess futures. Note that if a multicore/multisession
future falls back to sequential, then a progress bar will not be displayed.
Warning: The .progress argument will be deprecated and removed in a future
version of furrr in favor of using the more robust progressr package.

The future specific options to use with the workers. This must be the result
from a call to furrr_options().

Either a string or NULL. If a string, the output will contain a variable with that
name, storing either the name (if . x is named) or the index (if . x is unnamed)
of the input. If NULL, the default, no variable will be created.

Only applies to _dfr variant.

An atomic vector, list, or data frame, depending on the suffix. Atomic vectors and lists will be
named if the first element of .1 is named.

If all input is length 0, the output will be length 0. If any input is length 1, it will be recycled to the
length of the longest.

See Also

xmap () to run functions without parallel processing.

future_xmap_vec() to automatically determine output type.

future_xmap_mat() and future_xmap_arr() to return results in a matrix or array.

furrr::future_map(), furrr::future_map2(), and furrr::future_pmap() for other paral-
lelized mapping functions.

Examples
future_xmap(list(1:5, 1:5), ~ .y * .x)
future_xmap_dbl(list(1:5, 1:5), ~ .y * .x)
future_xmap_chr(list(1:5, 1:5), ~ paste(.y, "*", .x, "=", .y * .x))

apples_and_bananas <- list(
x = c("apples”, "bananas"),

pattern =
replacement = c("00",

)

n

eeu)

future_xmap_chr(apples_and_bananas, gsub)

formulas <- list(mpg ~ wt, mpg ~ hp)
subsets <- split(mtcars, mtcars$cyl)

future_xmap(list(subsets, formulas), ~ 1lm(.y, data = .x))

https://CRAN.R-project.org/package=progressr

future_xmap_mat 15

future_xmap_mat Parallelized cross map returning a matrix or array

Description

Parallelized cross map returning a matrix or array

Usage
future_xmap_mat(
.1,
.f,
.names = TRUE,

.progress = FALSE,
.options = furrr::furrr_options()

)
future_xmap_arr(
.1,
.f,
.names = TRUE,

.progress = FALSE,
.options = furrr::furrr_options()

)
Arguments
.1 A list of vectors, such as a data frame. The length of .1 determines the number
of arguments that .f will be called with. List names will be used if present.
.f A function, formula, or vector (not necessarily atomic).

If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

* For a single argument function, use .

* For a two argument function, use .x and .y

e For more arguments, use . .1, ..2, ..3etc

This syntax allows you to create very compact anonymous functions.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

Additional arguments passed on to . f

16 map_vec

.names A logical indicating whether to give names to the dimensions of the matrix or
array. If inputs are named, the names are used. If inputs are unnamed, the
elements of the input are used as names. Defaults to TRUE.

.progress A single logical. Should a progress bar be displayed? Only works with multises-
sion, multicore, and multiprocess futures. Note that if a multicore/multisession
future falls back to sequential, then a progress bar will not be displayed.

Warning: The .progress argument will be deprecated and removed in a future
version of furrr in favor of using the more robust progressr package.

.options The future specific options to use with the workers. This must be the result
from a call to furrr_options().
Value
A matrix (for future_xmap_mat()) or array (for future_xmap_arr()) with dimensions matching
the lengths of each input in .1.
See Also

Unparallelized versions: xmap_mat () and xmap_arr()
future_xmap_vec() to return a vector.

future_xmap() for the underlying functions.

Examples
future_xmap_mat(list(1:3, 1:3), ~ ..1 * ..2)
fruits <- c(a = "apple”, b = "banana”, c = "cantaloupe")

future_xmap_mat(list(1:3, fruits), paste)
future_xmap_mat(list(1:3, fruits), paste, .names = FALSE)

future_xmap_arr(list(1:3, 1:3, 1:3), ~ ..1 % ..2 % ..3)
map_vec Mapping functions that automatically determine type
Description

These functions work exactly the same as typed variants of purrr: :map(), purrr: :map2(), purrr: :pmap(),
purrr::imap() and xmap() (e.g. purrr::map_chr()), but automatically determine the type.

Usage
map_vec(.x, .f, ..., .class = NULL)
map2_vec(.x, .y, .f, ..., .class = NULL)

pmap_vec(.1l, .f, ..., .class = NULL)

https://CRAN.R-project.org/package=progressr

map_vec 17

imap_vec(.x, .f, ..., .class = NULL)
xmap_vec(.1l, .f, ..., .class = NULL)
Arguments
X A list or atomic vector.
.f A function, formula, or vector (not necessarily atomic).

If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

* For a single argument function, use .

* For a two argument function, use .x and .y

* For more arguments, use . .1, ..2, ..3etc

This syntax allows you to create very compact anonymous functions.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

Additional arguments passed on to . f

.class If .class is specified, all
Y A vector the same length as . x. Vectors of length 1 will be recycled.
.1 A list of vectors, such as a data frame. The length of .1 determines the number

of arguments that .f will be called with. List names will be used if present.

Value

Equivalent to the typed variants of purrr: :map(), purrr: :map2(), purrr: :pmap(), purrr::imap()
and xmap () with the type automatically determined.

If the output contains multiple types, the type is determined from the highest type of the components
in the hierarchy raw < logical < integer < double < complex < character < list (as in c()).

If the output contains elements that cannot be coerced to vectors (e.g. lists), the output will be a list.

See Also
The original functions: purrr::map(), purrr::map2(), purrr::pmap(), purrr::imap() and
xmap ()

Parallelized equivalents: future_map_vec(), future_map2_vec(), future_pmap_vec(), future_imap_vec()
and future_xmap_vec()

18 tidy_glance

Examples
fruits <- c("apple”, "banana", "cantaloupe”, "durian”, "eggplant")
desserts <- c("bread”, "cake", "cupcake”, "muffin”, "streudel”)
X <- sample(5)
y <- sample(5)
z <- sample(5)

names(z) <- fruits

map_vec(x, ~ . * 2)
map_vec(fruits, paste@, "s")

map2_vec(x, y, ~ .X + .y)
map2_vec(fruits, desserts, paste)

pmap_vec(list(x, y, z), sum)
pmap_vec(list(x, fruits, desserts), paste)

imap_vec(x, ~ .x + .y)
imap_vec(x, ~ paste@(.y, ": ", .x))
imap_vec(z, paste)

xmap_vec(list(x, y), ~ .x * .y)
xmap_vec(list(fruits, desserts), paste)

tidy_glance Turn an object into a tidy tibble with glance information

Description

Apply both generics::tidy() and generics::glance() to an object and return a single tibble
with both sets of information.

Usage
tidy_glance(x, ..., tidy_args = list(), glance_args = list())
Arguments
X An object to be converted into a tidy tibble.
Additional arguments passed to generics: :tidy() and generics::glance().
Arguments are passed to both methods, but should be ignored by the inappli-
cable method. For example, if called on an Im object, conf.int will affect
generics::tidy() but not generics::glance().
tidy_args A list of additional arguments passed only to generics::tidy().

glance_args A list of additional arguments passed only to generics: :glance().

xmap 19

Value

A tibble with columns and rows from generics::tidy() and columns of repeated rows from
generics::glance().

Column names that appear in both the tidy data and glance data will be disambiguated by append-
ing "model." to the glance column names.

Examples

mod <- lm(mpg ~ wt + gsec, data = mtcars)
tidy_glance(mod)

tidy_glance(mod, conf.int = TRUE)

tidy_glance(mod, tidy_args = list(conf.int = TRUE))

xmap Map over each combination of list elements

Description

These functions are variants of purrr: :pmap() that iterate over each combination of elements in a
list.

Usage
xmap(.1l, .f, ...)

xmap_chr(.1, .f, ...)
xmap_dbl(.1, .f, ...)
xmap_dfc(.1, .f, ...)
xmap_dfr(.1, .f, ..., .id = NULL)
xmap_int(.1, .f, ...)
xmap_lgl(.1, .f, ...)

xwalk(.1, .f, ...)

Arguments
.1 A list of vectors, such as a data frame. The length of .1 determines the number
of arguments that .f will be called with. List names will be used if present.
f A function, formula, or vector (not necessarily atomic).

If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

20 xmap

* For a single argument function, use .
* For a two argument function, use .x and .y
* For more arguments, use . .1, ..2, ..3etc

This syntax allows you to create very compact anonymous functions.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

Additional arguments passed on to . f

.id Either a string or NULL. If a string, the output will contain a variable with that
name, storing either the name (if . x is named) or the index (if .x is unnamed)
of the input. If NULL, the default, no variable will be created.

Only applies to _dfr variant.

Details

Typed variants return a vector of the specified type. To automatically determine type, try xmap_vec().
To return results as a matrix or array, try xmap_mat () and xmap_arr().

Note that a data frame is a very important special case, in which case xmap () and xwalk() apply the
function . f to each row. xmap_dfr() and xmap_dfc() return data frames created by row-binding
and column-binding respectively.

Value

An atomic vector, list, or data frame, depending on the suffix. Atomic vectors and lists will be
named if the first element of .1 is named.

If all input is length 0, the output will be length 0. If any input is length 1, it will be recycled to the
length of the longest.

See Also

xmap_vec() to automatically determine output type.

xmap_mat () and xmap_arr() to return results in a matrix or array.
future_xmap() to run xmap functions with parallel processing.
cross_fit() to apply multiple models to multiple subsets of data.
cross_list() to find combinations of list elements.

purrr::map(), purrr::map2(), and purrr: :pmap() for other mapping functions.

Examples
xmap(list(1:5, 1:5), ~ .y *x .x)
xmap_dbl(list(1:5, 1:5), ~ .y * .x)
xmap_chr(list(1:5, 1:5), ~ paste(.y, "*", .x, "=", .y * .X))

apples_and_bananas <- list(
x = c("apples”, "bananas"),

Xxmap_mat 21

non

pattern = "a",
replacement = c("00",

)

"

eeu)

xmap_chr(apples_and_bananas, gsub)

formulas <- list(mpg ~ wt, mpg ~ hp)
subsets <- split(mtcars, mtcars$cyl)

xmap(list(subsets, formulas), ~ 1lm(.y, data = .x))
xmap(list(data = subsets, formula = formulas), 1m)

xmap_mat Return a table applying a function to all combinations of list elements

Description

Return a table applying a function to all combinations of list elements

Usage

xmap_mat(.1, .f, ..., .names = TRUE)

xmap_arr(.1l, .f, ..., .names = TRUE)

Arguments

.1 A list of vectors, such as a data frame. The length of .1 determines the number
of arguments that .f will be called with. List names will be used if present.
f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:
* For a single argument function, use .
* For a two argument function, use .x and .y
e For more arguments, use . .1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

Additional arguments passed on to . f

.names A logical indicating whether to give names to the dimensions of the matrix or
array. If inputs are named, the names are used. If inputs are unnamed, the
elements of the input are used as names. Defaults to TRUE.

22 xpluck

Value
A matrix (for xmap_mat()) or array (for xmap_arr()) with dimensions equal to the lengths of each
inputin . 1.

See Also

future_xmap_mat() and future_xmap_arr() to run functions in parallel.
xmap_vec() to return a vector.

xmap () for the underlying functions.

Examples
xmap_mat(list(1:3, 1:3), ~ ..1 % ..2)
fruits <- c(a = "apple”, b = "banana”, c = "cantaloupe"”)

xmap_mat(list(1:3, fruits), paste)
xmap_mat(list(1:3, fruits), paste, .names = FALSE)

xmap_arr(list(1:3, 1:3, 1:3), ~ ..1 % ..2 x ..3)
xpluck Get one or more elements deep within a nested data structure
Description

xpluck() provides an alternative to purrr: :pluck(). Unlike purrr: :pluck(), xpluck() allows
you to extract multiple indices at each nesting level.

Usage
xpluck(.x, ..., .default = NULL)
Arguments
X A list or vector
A list of accessors for indexing into the object. Can be positive integers, negative
integers (to index from the right), strings (to index into names) or missing (to
keep all elements at a given level).
Unlike purrr: :pluck(), each accessor may be a vector to extract multiple ele-
ments.
If an accessor has length 0 (e.g. NULL, character (@) or numeric(@)), xpluck()
will return NULL.
.default Value to use if target is NULL or absent.
Value

A list or vector.

xpluck

Examples

objl <- list("a", list(1, elt
obj2 <- list("b", list(2, elt =
x <- list(obj1, obj2)

xpluck(x, 1:2, 2)
xpluck(x, , 2)

xpluck(x, , 2, 1)
xpluck(x, , 2, 2)
xpluck(x, , 2, 1:2)

"£00"))
"bar"))

23

Index

autonames, 2
broom: :tidy(conf.int = TRUE), 4, 5,7

c(), 17

character, 17
character(0), 22
complex, 17
cross_fit, 3
cross_fit(), 6, 7, 20
cross_fit_glm, 5
cross_fit_glm(), 3, 4
cross_fit_robust, 6
cross_fit_robust(), 4
cross_join, 7
cross_join(), 9
cross_list, 8
cross_list(), 8, 20
cross_tbl (cross_list), 8

Data frames, 8
data.frame, 9
double, 17

estimatr::1lm_robust(), 7
expand.grid(), 9

family, 3,5

format(), 2
furrr::future_imap(), 11
furrr::future_map(), 11, 14
furrr::future_map2(), 11, 14
furrr::future_pmap(), 11, 14
furrr_options(), 11, 14, 16
future::future(), 12
future_imap_vec (future_map_vec), 9
future_imap_vec(), 17
future_map2_vec (future_map_vec), 9
future_map2_vec(), 17
future_map_vec, 9
future_map_vec(), 17

future_pmap_vec (future_map_vec), 9
future_pmap_vec(), 17
future_xmap, 12
future_xmap(), 11, 16, 20
future_xmap_arr (future_xmap_mat), 15
future_xmap_arr(), 14, 22
future_xmap_chr (future_xmap), 12
future_xmap_dbl (future_xmap), 12
future_xmap_dfc (future_xmap), 12
future_xmap_dfr (future_xmap), 12
future_xmap_int (future_xmap), 12
future_xmap_lgl (future_xmap), 12
future_xmap_mat, 15
future_xmap_mat(), 14, 22
future_xmap_raw (future_xmap), 12
future_xmap_vec (future_map_vec), 9
future_xmap_vec(), 14, 16, 17
future_xwalk (future_xmap), 12

gaussian(identity), 3,5
generics::glance(), I8, 19
generics::tidy(), I8, 19
glm, 3,5

glmQ), 5

imap_vec (map_vec), 16
imap_vec(), 9, 11
integer, 17

list, 8, 9,17,22
1m, 3, 18

ImQ), 3,5
logical, 17

map2_vec (map_vec), 16
map2_vec(), 9, 11
map_vec, 16
map_vec(), 9, 11

NA, 3,5,7
NULL, 3, 5-9, 22

INDEX 95

numeric(0), 22

pmap_vec (map_vec), 16
pmap_vec(), 9, 11

purrr, 3-5,7
purrr::cross(), 9
purrr::imap(), 16, 17
purrr::map(), 16, 17, 20
purrr::map2(), 16, 17, 20
purrr::map_chr(), 16
purrr::pluck(), 22
purrr::pmap(), 16, 17, 19, 20

raw, 17

tibble, 9, 18, 19
tibbles, 8§
tidy_glance, 4, 5,7, 18
tidy_glance(), 3, 5,7

vector, 22

xmap, 19
xmap(), 4, 12, 14, 16, 17, 22
xmap_arr (xmap_mat), 21
xmap_arr(), 16, 20
xmap_chr (xmap), 19
xmap_dbl (xmap), 19
xmap_dfc (xmap), 19
xmap_dfr (xmap), 19
xmap_int (xmap), 19
xmap_lgl (xmap), 19
xmap_mat, 21
xmap_mat(), 16, 20
xmap_raw (xmap), 19
xmap_vec (map_vec), 16
xmap_vec(), 9, 11, 20, 22
xpluck, 22

xwalk (xmap), 19

	autonames
	cross_fit
	cross_fit_glm
	cross_fit_robust
	cross_join
	cross_list
	future_map_vec
	future_xmap
	future_xmap_mat
	map_vec
	tidy_glance
	xmap
	xmap_mat
	xpluck
	Index

