
Package ‘cobalt’
January 29, 2026

Title Covariate Balance Tables and Plots

Version 4.6.2

Description Generate balance tables and plots for covariates of groups preprocessed through
matching, weighting or subclassification, for example, using propensity scores. Includes
integration with 'MatchIt', 'WeightIt', 'MatchThem', 'twang', 'Matching', 'optmatch', 'CBPS', 'ebal',
'cem', 'sbw', and 'designmatch' for assessing balance on the output of their preprocessing
functions. Users can also specify data for balance assessment not generated through
the above packages. Also included are methods for assessing balance in clustered or
multiply imputed data sets or data sets with multi-
category, continuous, or longitudinal treatments.

Depends R (>= 4.1.0)

Imports stats, utils, grid, grDevices, ggplot2 (>= 3.5.0), gtable (>=
0.3.6), gridExtra (>= 2.3), chk (>= 0.10.0), rlang (>= 1.1.5),
cli (>= 3.6.5)

Suggests MatchIt (>= 4.0.0), WeightIt (>= 1.0.0), twang (>= 1.6),
twangContinuous, Matching, optmatch, ebal, CBPS (>= 0.17),
optweight, mice (>= 3.8.0), MatchThem (>= 0.9.3), cem (>=
1.1.30), sbw (>= 1.1.5), gbm (>= 2.1.7), brglm2 (>= 0.9),
caret, knitr, rmarkdown, testthat (>= 3.0.0)

License GPL (>= 2)

Encoding UTF-8

LazyData true

VignetteBuilder knitr

URL https://ngreifer.github.io/cobalt/,

https://github.com/ngreifer/cobalt

BugReports https://github.com/ngreifer/cobalt/issues

Config/testthat/edition 3

RoxygenNote 7.3.3

NeedsCompilation no

Author Noah Greifer [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3067-7154>)

1

https://ngreifer.github.io/cobalt/
https://github.com/ngreifer/cobalt
https://github.com/ngreifer/cobalt/issues
https://orcid.org/0000-0003-3067-7154


2 Contents

Maintainer Noah Greifer <noah.greifer@gmail.com>

Repository CRAN

Date/Publication 2026-01-29 22:40:10 UTC

Contents

bal.compute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bal.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
bal.tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
bal.tab.CBPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
bal.tab.cem.match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
bal.tab.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
bal.tab.designmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
bal.tab.ebalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
bal.tab.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
bal.tab.Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
bal.tab.matchit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
bal.tab.mimids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
bal.tab.optmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
bal.tab.ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
bal.tab.sbwcau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
bal.tab.time.list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
bal.tab.weightit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
balance-statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
balance-summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
class-bal.tab.cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
class-bal.tab.imp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
class-bal.tab.msm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
class-bal.tab.multi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
class-bal.tab.subclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
display-options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
f.build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
get.w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
lalonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
love.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
print.bal.tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
set.cobalt.options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
splitfactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
var.names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Index 110



bal.compute 3

bal.compute Efficiently compute scalar balance statistics

Description

These are functions primarily designed for programmers who want to be able to quickly compute
one of several scalar (single number) sample balance statistics, e.g., for use in selecting a tuning
parameter when estimating balancing weights. bal.compute() computes a scalar balance statis-
tics from the supplied inputs. bal.init() initializes the input so that when bal.compute() is
used on the output along with a set of weights, the computation of the balance statistic is fast.
vignette("optimizing-balance") provides an overview and more examples of how to use these
functions. available.stats() returns the balance statistics available for the given treatment type.

Usage

bal.compute(x, ...)

## S3 method for class 'bal.init'
bal.compute(x, weights = NULL, ...)

## Default S3 method:
bal.compute(x, treat = NULL, stat, s.weights = NULL, weights = NULL, ...)

bal.init(x, treat = NULL, stat, s.weights = NULL, ...)

available.stats(treat.type = "binary")

Arguments

x for bal.compute(), a bal.init object created by bal.init() or a matrix or
data frame containing the covariates. For bal.init(), a matrix or data frame
containing the covariates.

... other arguments used to specify options for the balance statistic. See Details
for which arguments are allowed with each balance statistic. Ignored for the
bal.init method of bal.compute().

weights a vector of balancing weights to compute the weighted statistics.

treat a vector containing the treatment variable. Can be NULL to compute target bal-
ance statistics.

stat string; the name of the statistic to compute. See Details.

s.weights optional; a vector of sampling weights.

treat.type string; the treatment type, either "binary", "multinomial", "continuous", or
"target". Abbreviations allowed.



4 bal.compute

Details

The following list contains the allowable balance statistics that can be supplied to bal.init() or
the default method of bal.compute(), the additional arguments that can be used with each one, and
the treatment types allowed with each one. For all balance statistics, lower values indicate better
balance. Target balance refers to the similarity between a sample and the same sample but weighted.

smd.mean, smd.max, smd.rms The mean, maximum, or root-mean-squared absolute standardized
mean difference, computed using col_w_smd(). The other allowable arguments include estimand
("ATE", "ATT", or "ATC") to select the estimand (default is "ATE"), focal to identify the focal
treatment group when the ATT is the estimand and the treatment has more than two categories,
and pairwise to select whether mean differences should be computed between each pair of
treatment groups or between each treatment group and the target group identified by estimand
(default TRUE). Can be used with binary and multi-category treatments and for target balance.

ks.mean, ks.max, ks.rms The mean, maximum, or root-mean-squared Kolmogorov-Smirnov statis-
tic, computed using col_w_ks(). The other allowable arguments include estimand ("ATE",
"ATT", or "ATC") to select the estimand (default is "ATE"), focal to identify the focal treat-
ment group when the ATT is the estimand and the treatment has more than two categories,
and pairwise to select whether statistics should be computed between each pair of treatment
groups or between each treatment group and the target group identified by estimand (default
TRUE). Can be used with binary and multi-category treatments and for target balance.

ovl.mean, ovl.max, ovl.rms The mean, maximum, or root-mean-squared overlapping coefficient
complement, computed using col_w_ovl(). The other allowable arguments include estimand
("ATE", "ATT", or "ATC") to select the estimand (default is "ATE"), integrate to select
whether integration is done using using integrate() (TRUE) or a Riemann sum (FALSE, the
default), focal to identify the focal treatment group when the ATT is the estimand and the
treatment has more than two categories, pairwise to select whether statistics should be com-
puted between each pair of treatment groups or between each treatment group and the target
group identified by estimand (default TRUE). Can be used with binary and multi-category
treatments and for target balance.

mahalanobis The Mahalanobis distance between the treatment group means. This is similar to
smd.rms but the covariates are standardized to remove correlations between them and de-
emphasize redundant covariates. The other allowable arguments include estimand ("ATE",
"ATT", or "ATC") to select the estimand (default is "ATE") and focal to identify the focal
treatment group when the ATT is the estimand. Can only be used with binary treatments and
for target balance.

energy.dist The total energy distance between each treatment group and the target sample, which
is a scalar measure of the similarity between two multivariate distributions. The other allow-
able arguments include estimand ("ATE", "ATT", "ATC", or NULL) to select the estimand (de-
fault is NULL), focal to identify the focal treatment group when the ATT is the estimand and
the treatment has more than two categories, and improved to select whether the "improved"
energy distance should be used when estimand = "ATE", which emphasizes difference be-
tween treatment groups in addition to difference between each treatment group and the target
sample (default TRUE). When estimand = NULL, only the energy distance between the treat-
ment groups will be computed (i.e., as opposed to the energy distance between each treatment
groups and the target sample). Can be used with binary and multi-category treatments and for
target balance.



bal.compute 5

kernel.dist The kernel distance between the treatment groups, which is a scalar measure of the
similarity between two multivariate distributions. Can only be used with binary treatments.

l1.med The median L1 statistic computed across a random selection of possible coarsening of the
data. The other allowable arguments include estimand ("ATE", "ATT", or "ATC") to select
the estimand (default is "ATE"), focal to identify the focal treatment group when the ATT
is the estimand and the treatment has more than two categories, l1.min.bin (default 2) and
l1.max.bin default (12) to select the minimum and maximum number of bins with which
to bin continuous variables and l1.n (default 101) to select the number of binnings used
to select the binning at the median. covs should be supplied without splitting factors into
dummies to ensure the binning works correctly; for simplicity, the .covs argument can be
supplied, which will override covs but isn’t used by other statistics. Can be used with binary
and multi-category treatments.

r2, r2.2, r2.3 The post-weighting R2 of a model for the treatment. The other allowable arguments
include poly to add polynomial terms of the supplied order to the model and int (default
FALSE) to add two-way interaction between covariates into the model. Using r2.2 is a shortcut
to requesting squares, and using r2.3 is a shortcut to requesting cubes. Can be used with
binary and continuous treatments. For binary treatments, the McKelvey and Zavoina R2 from
a logistic regression is used; for continuous treatments, the R2 from a linear regression is used.

p.mean, p.max, p.rms The mean, maximum, or root-mean-squared absolute Pearson correlation
between the treatment and covariates, computed using col_w_corr(). Can only be used with
continuous treatments.

s.mean, s.max, s.rms The mean, maximum, or root-mean-squared absolute Spearman correlation
between the treatment and covariates, computed using col_w_corr(). Can only be used with
continuous treatments.

distance.cov, distance.cor The distance covariance or distance correlation, respectively, be-
tween the scaled covariates and treatment, which is a scalar measure of the independence of
two possibly multivariate distributions. The distance correlation is scale-free and ranges from
0 (completely independent) to 1 (perfectly associated). Can only be used with continuous
treatments.

Although statistics can be computed directly using bal.compute() alone, the intended workflow
is to use bal.init() to initialize a bal.init object, which can then be passed to bal.compute()
many times with different sets of weights, thereby minimizing the processing that bal.init() does
because it is only done once. In contrast, using bal.compute() on covariates directly (i.e., using
the default method) calls bal.init() internally each time, which can slow down evaluation. When
speed isn’t of interest or to calculate a balance statistic outside the context of balance optimization,
the default method of bal.compute() can be a quick shortcut to avoid having to create a bal.init
object first.

Value

For bal.compute(), a single numeric value. For bal.init(), a bal.init object containing the
components created in the initialization and the function used to compute the balance statistic. For
available.stats(), a character vector of available statistics.

See Also

balance-summary, bal.tab()



6 bal.compute

See vignette("optimizing-balance") for references and definitions of some of the above quan-
tities.

Examples

# Select the optimal number of subclasses for
# subclassification:
data("lalonde")
covs <- c("age", "educ", "race", "married",

"nodegree", "re74", "re75")

# Estimate propensity score
p <- glm(reformulate(covs, "treat"),

data = lalonde,
family = "binomial")$fitted.values

# Function to compute subclassification weights
subclass_ATE <- function(treat, p, nsub) {

m <- MatchIt::matchit(treat ~ 1,
data = lalonde,
distance = p,
method = "subclass",
estimand = "ATE",
subclass = nsub)

m$weights
}

# Initialize balance statistic; largest KS statistic
init <- bal.init(lalonde[covs],

treat = lalonde$treat,
stat = "ks.max",
estimand = "ATE")

# Statistic prior to subclassification:
bal.compute(init)

# Testing 4 to 50 subclasses
nsubs <- 4:50
stats <- vapply(nsubs, function(n) {

w <- subclass_ATE(lalonde$treat, p, n)
bal.compute(init, w)

}, numeric(1L))

plot(stats ~ nsubs)

# 6 subclass gives lowest ks.max value (.238)
nsubs[which.min(stats)]
stats[which.min(stats)]

# See which statistics are available
available.stats("binary")
available.stats("multinomial")
available.stats("continuous")



bal.plot 7

available.stats("target")

bal.plot Visualize Distributional Balance

Description

Generates density plots, bar graphs, or scatterplots displaying distributional balance between treat-
ment and covariates using ggplot2.

Usage

bal.plot(
x,
var.name,
...,
which,
which.sub = NULL,
cluster = NULL,
which.cluster = NULL,
imp = NULL,
which.imp = NULL,
which.treat = NULL,
which.time = NULL,
mirror = FALSE,
type = "density",
colors = NULL,
grid = FALSE,
sample.names,
position = "right",
facet.formula = NULL,
disp.means = getOption("cobalt_disp.means", FALSE),
alpha.weight = TRUE

)

Arguments

x the object for which balance is to be assessed; can be any object for which there
is support in bal.tab().

var.name character; the name of the variable whose values are to be plotted. To view dis-
tributions of the distance measure (e.g., propensity score), if any, use "distance"
as the argument unless the distance variable has been named. If there are du-
plicate variable names across inputs, bal.plot() will first look in the covariate
data.frame from x, followed by addl, and then distance, if any. If not speci-
fied, will use the first covariate available with a warning.



8 bal.plot

... other arguments to define the variable, treatment, and weights. Some inputs are
required depending on the method. See Additional Arguments. Can also be used
to supply the bw, adjust, kernel, and n arguments for ggplot2::geom_density()
and the bins argument for ggplot2::geom_histogram().

which whether to display distributional balance for the adjusted ("adjusted") or un-
adjusted sample ("unadjusted") or both at the same time ("both"). When
multiple weights are present, the names of the weights can be supplied, too. The
default is to display balance for the adjusted sample only unless no weights,
subclasses, or matching strata are specified. Multiple values and abbreviations
allowed.

which.sub numeric; if subclassification is used, a vector corresponding to the subclass(es)
for which the distributions are to be displayed. If .all (the default), distributions
from all subclasses are displayed in a grid.

cluster optional; a vector of cluster membership, or the name of a variable in an avail-
able data set passed to bal.plot() that contains cluster membership.

which.cluster if clusters are used, which cluster(s) to display. Can be cluster names or numer-
ical indices for which to display balance. Indices correspond to the alphabetical
order of cluster names. If .all (the default), all clusters are displayed. If .none,
cluster information is ignored and the marginal distribution of the covariates is
displayed.

imp optional; a vector of imputation indices, or the name of a variable in an available
data set passed to bal.plot() that contains imputation indices.

which.imp if imputations are used, which imputations(s) to display. Must be numerical
indices for which to display balance. If .all (the default), all imputations are
displayed. If .none, data from all imputations are combined into one distribu-
tion.

which.treat which treatment groups to display. If NULL (the default) or NA, all treatment
groups are displayed.

which.time for longitudinal treatments, which time points to display. Can be treatment
names or time period indices. If NULL (the default) or NA, all time points are
displayed.

mirror logical; if the treatment is binary, the covariate is continuous, and densities or
histograms are requested, whether to display mirrored densities/histograms or
overlapping densities/histograms. Ignored otherwise.

type character; for binary and multi-category treatments with a continuous covari-
ate, whether to display densities ("density"), histograms ("histogram"), or
empirical cumulative density function plots ("ecdf"). The default is to display
densities. Abbreviations are allowed.

colors a vector of colors for the plotted densities/histograms. See ’Color Specification’
at graphics::par(). Defaults to the default ggplot2 colors.

grid logical; whether gridlines should be shown on the plot. Default is TRUE.

sample.names character; new names to be given to the samples (i.e., in place of "Unadjusted
Sample" and "Adjusted Sample"). For example, when matching it used, it may
be useful to enter c("Unmatched", "Matched").



bal.plot 9

position the position of the legend. This can be any value that would be appropriate as
an argument to legend.position in ggplot2::theme().

facet.formula a formula designating which facets should be on the rows and columns. This
should be of the "historical" formula interface to ggplot2::facet_grid(). If
of the form a ~ b, a will be faceted on the rows and b on the columns. To only
facet on the rows, provide a one-sided formula with an empty left-hand side. To
only facet on the columns, the formula should be of the form a ~ . (i.e., with
only . on the right-hand side). The allowable facets depend on which arguments
have been supplied to bal.plot(); possible values include which, cluster,
imp, and (for longitudinal treatments) time. If NULL, bal.plot() will decide
what looks best; this argument exists in case you disagree with its choice.

disp.means logical; for a categorical treatment with a continuous covariate, whether a line
should be drawn for each treatment level denoting the (weighted) mean of the
covariate. Ignored if type is not "density" or "histogram". Default is FALSE.

alpha.weight logical; if both the treatment and the covariate are continuous, whether points
should be shaded according to their weight. Fainter points are those that have
smaller weights. Default is TRUE.

Details

bal.plot() uses ggplot2::ggplot() from the ggplot2 package, and (invisibly) returns a "ggplot"
object. For categorical treatments with continuous covariates or continuous treatments with categor-
ical covariates, density plots are created using ggplot2::geom_density(), histograms are created
using ggplot2::geom_histogram(), and empirical CDF plots are created using ggplot2::geom_step();
for categorical treatments with categorical covariates, bar graphs are created using ggplot2::geom_bar();
for continuous treatments with continuous covariates, scatterplots are created using ggplot2::geom_point().

For continuous treatments with continuous covariates, four additional lines are presented for aid in
balance assessment. The red line is the linear fit line. The blue line is a smoothing curve generated
with ggplot2’s ggplot2::geom_smooth() with method = "auto". The horizontal black line is a
horizontal reference line intercepting the (unweighted) treatment mean. The vertical black line is a
reference line intercepting the (unweighted) treatment mean. Balance is indicated by the flatness of
both fit lines and whether they pass through the intersection of the two black reference lines.

When multiple plots are to be displayed (i.e., when requesting subclass balance, cluster balance,
or imputation balance, or when multiple sets of weights are provided or which = "both", or when
treatment is longitudinal), the plots will be displayed in a grid using ggplot2’s ggplot2::facet_grid().
Subclassification cannot be used with clusters or multiply imputed data.

To change the plot and axis titles, use ggplot2::labs(). Because the output is a ggplot object,
other elements can be changed using ggplot2 functions; see here for an example.

Value

A "ggplot" object, returned invisibly.

Additional Arguments

bal.plot() works like bal.tab() in that it can take a variety of types of inputs and yield the
same output for each. Depending on what kind of input is given, different additional parameters

https://stackoverflow.com/questions/61255335/change-legend-generated-by-bal-plot


10 bal.plot

are required in .... For details on what is required and allowed for each additional input and their
defaults, see the help file for the bal.tab() method associated with the input. The following are
the required additional arguments based on each input type:

• For matchit objects: None
• For weightit objects: None
• For ps, ps.cont, mnps, and iptw objects: (stop.method; see defaults).
• For Match objects: formula and data or covs and treat.
• For optmatch objects: formula and data or covs (treat is not required).
• For CBPS objects: None
• For ebalance objects: formula and data or covs and treat.
• For formulas: data
• For data.frames: treat
• For designmatch objects: formula and data or covs and treat.
• For sbw objects: None
• For mimids and wimids objects: None, but an argument to which.imp should be specified.
• For other objects processed through bal.tab()’s default method, whichever arguments are

required to identify treatment, variables, and a conditioning method (if any).

See Also

bal.tab(), love.plot()

Examples

data("lalonde", package = "cobalt")

#Nearest Neighbor Matching
library(MatchIt)
m.out <- matchit(treat ~ age + educ + race + married +

nodegree + re74 + re75,
data = lalonde)

bal.plot(m.out, "age", which = "both")
bal.plot(m.out, "re74", which = "both", type = "ecdf")
bal.plot(m.out, "race", which = "both")
bal.plot(m.out, "distance", which = "both", mirror = TRUE,

type = "histogram", colors = c("white", "black"))

#Entropy balancing with a continuous treatment
library(WeightIt)
w.out <- weightit(re75 ~ age + I(age^2) + educ +

race + married + nodegree,
data = lalonde, method = "ebal")

bal.plot(w.out, "age", which = "both")
bal.plot(w.out, "married", which = "both")



bal.tab 11

bal.tab Display Balance Statistics in a Table

Description

Generates balance statistics on covariates in relation to an observed treatment variable. It is a generic
function that dispatches to the method corresponding to the class of the first argument.

Usage

bal.tab(x, ...)

## # Arguments common across all input types:
## bal.tab(x,
## stats,
## int = FALSE,
## poly = 1,
## distance = NULL,
## addl = NULL,
## data = NULL,
## continuous,
## binary,
## s.d.denom,
## thresholds = NULL,
## weights = NULL,
## cluster = NULL,
## imp = NULL,
## pairwise = TRUE,
## s.weights = NULL,
## abs = FALSE,
## subset = NULL,
## quick = TRUE,
## ...)

Arguments

x an input object on which to assess balance. Can be the output of a call to a
balancing function in another package or a formula or data frame. Input to this
argument will determine which bal.tab() method is used. Each input type
has its own documentation page, which is linked in the See Also section below.
Some input types require or allow additional arguments to be specified. For
inputs with no dedicated method, the default method will be dispatched. See
Details below.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.



12 bal.tab

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. If weights are
supplied, each set of weights should have a corresponding entry to s.d.denom.
Abbreviations allowed. If left blank and weights, subclasses, or matching strata
are supplied, bal.tab() will figure out which one is best based on the estimand,
if given (for ATT, "treated"; for ATC, "control"; otherwise "pooled") and
other clues if not.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.



bal.tab 13

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

Details

bal.tab() performs various calculations on the the data objects given. This page details the argu-
ments and calculations that are used across bal.tab() methods.

With Binary Point Treatments:
Balance statistics can be requested with the stats argument. The default balance statistic for
mean differences for continuous variables is the standardized mean difference, which is the dif-
ference in the means divided by a measure of spread (i.e., a d-type effect size measure). This is
the default because it puts the mean differences on the same scale for comparison with each other
and with a given threshold. For binary variables, the default balance statistic is the raw difference
in proportion. Although standardized differences in proportion can be computed, raw differences
in proportion for binary variables are already on the same scale, and computing the standardized
difference in proportion can obscure the true difference in proportion by dividing the difference
in proportion by a number that is itself a function of the observed proportions.
Standardized mean differences are calculated using col_w_smd() as follows: the numerator is the
mean of the treated group minus the mean of the control group, and the denominator is a measure
of spread calculated in accordance with the argument to s.d.denom or the default of the specific
method used. Common approaches in the literature include using the standard deviation of the
treated group or using the "pooled" standard deviation (i.e., the square root of the mean of the
group variances) in calculating standardized mean differences. The computed spread bal.tab()



14 bal.tab

uses is always that of the full, unadjusted sample (i.e., before matching, weighting, or subclassifi-
cation), as recommended by Stuart (2010).
Prior to computation, all variables are checked for variable type, which allows users to differen-
tiate balance statistic calculations based on type using the arguments to continuous and binary.
First, if a given covariate is numeric and has only 2 levels, it is converted into a binary (0,1) vari-
able. If 0 is a value in the original variable, it retains its value and the other value is converted to 1;
otherwise, the lower value is converted to 0 and the other to 1. Next, if the covariate is not numeric
or logical (i.e., is a character or factor variable), it will be split into new binary variables, named
with the original variable and the value, separated by an underscore. Otherwise, the covariate will
be used as is and treated as a continuous variable.
When weighting or matching are used, an "effective sample size" is calculated for each group us-
ing the following formula: (

∑
w)2/

∑
w2. The effective sample size is "approximately the num-

ber of observations from a simple random sample that yields an estimate with sampling variation
equal to the sampling variation obtained with the weighted comparison observations" (Ridgeway
et al., 2016). The calculated number tends to underestimate the true effective sample size of the
weighted samples. The number depends on the variability of the weights, so sometimes trimming
units with large weights can actually increase the effective sample size, even though units are
being down-weighted. When matching is used, an additional "unweighted" sample size will be
displayed indicating the total number of units contributing to the weighted sample.
When subclassification is used, the balance tables for each subclass stored in $Subclass.Balance
use values calculated as described above. For the aggregate balance table stored in $Balance.Across.Subclass,
the values of each statistic are computed as a weighted average of the statistic across subclasses,
weighted by the proportion of units in each subclass. See class-bal.tab.subclass for more
details.

With Continuous Point Treatments:
When continuous treatment variables are considered, the balance statistic calculated is the Pearson
correlation between the covariate and treatment. The correlation after adjustment is computed
using col_w_cov() as the weighted covariance between the covariate and treatment divided by
the product of the standard deviations of the unweighted covariate and treatment, in an analogous
way to how how the weighted standardized mean difference uses an unweighted measure of spread
in its denominator, with the purpose of avoiding the analogous paradox (i.e., where the covariance
decreases but is accompanied by a change in the standard deviations, thereby distorting the actual
resulting balance computed using the weighted standard deviations). This can sometimes yield
correlations greater than 1 in absolute value; these usually indicate degenerate cases anyway.

With Multi-Category Point Treatments:
For information on using bal.tab() with multi-category treatments, see class-bal.tab.multi.
Essentially, bal.tab() compares pairs of treatment groups in a standard way.

With Longitudinal Treatments:
For information on using bal.tab() with longitudinal treatments, see class-bal.tab.msm and
vignette("longitudinal-treat"). Essentially, bal.tab() summarizes balance at each time
point and summarizes across time points.

With Clustered or Multiply Imputed Data:
For information on using bal.tab() with clustered data, see class-bal.tab.cluster. For
information on using bal.tab() with multiply imputed data, see class-bal.tab.imp.



bal.tab 15

quick:
Calculations can take some time, especially when there are many variables, interactions, or clus-
ters. When certain values are not printed, by default they are not computed. In particular, summary
tables are not computed when their display has not been requested. This can speed up the overall
production of the output when these values are not to be used later. However, when they are to be
used later, such as when output is to be further examined with print() or is to be used in some
other way after the original call to bal.tab(), it may be useful to compute them even if they are
not to be printed initially. To do so, users can set quick = FALSE, which will cause bal.tab() to
calculate all values and components it can. Note that love.plot() is fully functional even when
quick = TRUE and values are requested that are otherwise not computed in bal.tab() with quick
= TRUE.

Missing Data:
If there is missing data in the covariates (i.e., NAs in the covariates provided to bal.tab()), a few
additional things happen. A warning will appear mentioning that missing values were present in
the data set. The computed balance summaries will be for the variables ignoring the missing val-
ues. New variables will be created representing missingness indicators for each variable, named
var: <NA> (with var replaced by the actual name of the variable). If int = TRUE, balance for the
pairwise interactions between the missingness indicators will also be computed. These variables
are treated like regular variables once created.

Value

An object of class "bal.tab". The use of continuous treatments, subclasses, clusters, and/or impu-
tations will also cause the object to inherit other classes. The class "bal.tab" has its own print()
method (print.bal.tab()), which formats the output nicely and in accordance with print-related
options given in the call to bal.tab(), and which can be called with its own options.

For scenarios with binary point treatments and no subclasses, imputations, or clusters, the following
are the elements of the bal.tab object:

Balance A data frame containing balance information for each covariate. Balance con-
tains the following columns, with additional columns present when other bal-
ance statistics are requested, and some columns omitted when not requested:

• Type: Whether the covariate is binary, continuous, or a measure of distance
(e.g., the propensity score).

• M.0.Un: The mean of the control group prior to adjusting.
• SD.0.Un: The standard deviation of the control group prior to adjusting.
• M.1.Un: The mean of the treated group prior to adjusting.
• SD.1.Un: The standard deviation of the treated group prior to adjusting.
• Diff.Un: The (standardized) difference in means between the two groups

prior to adjusting. See the binary and continuous arguments on the
bal.tab method pages to determine whether standardized or raw mean dif-
ferences are being reported. By default, the standardized mean difference is
displayed for continuous variables and the raw mean difference (difference
in proportion) is displayed for binary variables.

• M.0.Adj: The mean of the control group after adjusting.
• SD.0.Adj: The standard deviation of the control group after adjusting.



16 bal.tab

• M.1.Adj: The mean of the treated group after adjusting.
• SD.1.Adj: The standard deviation of the treated group after adjusting.
• Diff.Adj: The (standardized) difference in means between the two groups

after adjusting. See the binary and continuous arguments on the bal.tab
method pages to determine whether standardized or raw mean differences
are being reported. By default, the standardized mean difference is dis-
played for continuous variables and the raw mean difference (difference in
proportion) is displayed for binary variables.

• M.Threshold: Whether or not the calculated mean difference after adjust-
ing exceeds or is within the threshold given by thresholds. If a threshold
for mean differences is not specified, this column will be NA.

Balanced.Means If a threshold on mean differences is specified, a table tallying the number of
variables that exceed or are within the threshold.

Max.Imbalance.Means

If a threshold on mean differences is specified, a table displaying the variable
with the greatest absolute mean difference.

Observations A table displaying the sample sizes before and after adjusting. Often the effec-
tive sample size (ESS) will be displayed. See Details.

call The original function call, if adjustment was performed by a function in another
package.

If the treatment is continuous, instead of producing mean differences, bal.tab() will produce
correlations between the covariates and the treatment. The default corresponding entries in the
output will be "Corr.Un", "Corr.Adj", and "R.Threshold" (and accordingly for the balance tally
and maximum imbalance tables).

If multiple weights are supplied, "Adj" in Balance will be replaced by the provided names of the
sets of weights, and extra columns will be added for each set of weights. Additional columns and
rows for other items in the output will be created as well.

For bal.tab output with subclassification, see class-bal.tab.subclass.

References

Ridgeway, G., McCaffrey, D., Morral, A., Burgette, L., & Griffin, B. A. (2016). Toolkit for Weight-
ing and Analysis of Nonequivalent Groups: A tutorial for the twang package. R vignette. RAND.

Stuart, E. A. (2010). Matching Methods for Causal Inference: A Review and a Look Forward.
Statistical Science, 25(1), 1-21. doi:10.1214/09STS313

See Also

For information on the use of bal.tab() with specific types of objects, use the following links:

• bal.tab.matchit() for the method for objects returned by MatchIt.

• bal.tab.weightit() for the method for weightit and weightitMSM objects returned by
WeightIt.

• bal.tab.ps() for the method for ps, mnps, and iptw objects returned by twang and for
ps.cont objects returned by twangContinuous.

https://doi.org/10.1214/09-STS313


bal.tab.CBPS 17

• bal.tab.Match() for the method for objects returned by Matching.

• bal.tab.optmatch() for the method for objects returned by optmatch.

• bal.tab.cem.match() for the method for objects returned by cem.

• bal.tab.CBPS() for the method for objects returned by CBPS.

• bal.tab.ebalance() for the method for objects returned by ebal.
• bal.tab.designmatch() for the method for objects returned by designmatch.

• bal.tab.mimids() for the method for objects returned by MatchThem.

• bal.tab.sbwcau() for the method for objects returned by sbw.

• bal.tab.formula() and bal.tab.data.frame() for the methods for formula and data
frame interfaces when the user has covariate values and weights (including matching weights)
or subclasses or wants to evaluate balance on an unconditioned data set. For data that corre-
sponds to a longitudinal treatment (i.e., to be analyzed with a marginal structural model), see
bal.tab.time.list().

See vignette("faq") for answers to frequently asked questions about bal.tab().

Examples

## See individual pages above for examples with
## different inputs, or see `vignette("cobalt")`

bal.tab.CBPS Balance Statistics for CBPS Objects

Description

Generates balance statistics for CBPS and CBMSM objects from the CBPS package.

Usage

## S3 method for class 'CBPS'
bal.tab(
x,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,



18 bal.tab.CBPS

imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x a CBPS or CBMSM object; the output of a call to CBPS::CBPS() or CBPS::CBMSM().

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
Propensity scores generated by CBPS() and CBMSM() are automatically included
and named "prop.score". For CBMSM objects, can be a list of allowable argu-
ments, one for each time point, but each dataset in the list supplied to distance
must have one row per individual, unlike the data frame in the original call to
CBMSM().

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For CBMSM objects, can be a list of allowable
arguments, one for each time point, but each dataset in the list supplied to addl
must have one row per individual, unlike the data frame in the original call to
CBMSM().

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().



bal.tab.CBPS 19

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, will be set to "treated" if the estimand of the call to
CBPS() is the ATT and "pooled" if the estimand is the ATE.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used. If sampling weights
are used in CBPS(), it is critical that they are specified in bal.tab() as well
using the s.weights argument.

abs logical; whether displayed balance statistics should be in absolute value or not.
subset a logical or numeric vector denoting whether each observation should be in-

cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab.CBPS() and bal.tab.CBMSM() generate a list of balance summaries for the CBPS or CBMSM
object given and functions similarly to CBPS::balance().



20 bal.tab.cem.match

Value

For point treatments, if clusters are not specified, an object of class "bal.tab" containing balance
summaries for the CBPS object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

If CBPS() is used with multi-category treatments, an object of class "bal.tab.multi" contain-
ing balance summaries for each pairwise treatment comparison and a summary of balance across
pairwise comparisons. See bal.tab.multi() for details.

If CBMSM() is used for longitudinal treatments, an object of class "bal.tab.msm" containing balance
summaries for each time period and a summary of balance across time periods. See class-bal.tab.msm
for details.

See Also

• bal.tab() for details of calculations.

• class-bal.tab.cluster for more information on clustered data.

• bal.tab.multi() for more information on multi-category treatments.

• class-bal.tab.msm for more information on longitudinal treatments.

Examples

data("lalonde", package = "cobalt")

## Using CBPS() for generating covariate balancing
## propensity score weights
library(CBPS)
cbps.out <- CBPS(treat ~ age + educ + married + race +

nodegree + re74 + re75,
data = lalonde)

bal.tab(cbps.out)

bal.tab.cem.match Balance Statistics for cem Objects

Description

Generates balance statistics for cem.match objects from cem.



bal.tab.cem.match 21

Usage

## S3 method for class 'cem.match'
bal.tab(
x,
data,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x a cem.match or cem.match.list object; the output of a call to cem::cem().

data a data frame containing variables named in other arguments. An argument to
data is required. It must be the same data used in the call to cem() or a mids
object from which the data supplied to datalist in the cem() call originated.

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.



22 bal.tab.cem.match

For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, will be set to "treated", where the treated group
corresponds to the baseline.group in the call to cem().

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.



bal.tab.cem.match 23

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab.cem.match() generates a list of balance summaries for the cem.match object given, and
functions similarly to cem::imbalance().

Value

If clusters and imputations are not specified, an object of class "bal.tab" containing balance sum-
maries for the cem.match object. See bal.tab() for details.

If imputations are specified, an object of class "bal.tab.imp" containing balance summaries for
each imputation and a summary of balance across imputations. See class-bal.tab.imp for details.

If cem() is used with multi-category treatments, an object of class "bal.tab.multi" containing
balance summaries for each pairwise treatment comparison. See bal.tab.multi() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

bal.tab() for details of calculations.

Examples

data("lalonde", package = "cobalt")

## Coarsened exact matching
library(cem)
cem.out <- cem("treat",

data = lalonde,
drop = "re78")

bal.tab(cem.out, data = lalonde, un = TRUE,
stats = c("m", "k"))



24 bal.tab.default

bal.tab.default Balance Statistics for Other Objects

Description

Generates balance statistics using an object for which there is not a defined method.

Usage

## Default S3 method:
bal.tab(

x,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x An object containing information about conditioning. See Details.

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will



bal.tab.default 25

be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. If weights are
supplied, each set of weights should have a corresponding entry to s.d.denom.
Abbreviations allowed. If left blank and weights, subclasses, or matching strata
are supplied, bal.tab() will figure out which one is best based on the estimand,
if given (for ATT, "treated"; for ATC, "control"; otherwise "pooled") and
other clues if not.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.



26 bal.tab.default

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... other arguments that would be passed to bal.tab.formula(), bal.tab.data.frame(),
or bal.tab.time.list(). See Details.

Details

bal.tab.default() processes its input and attempt to extract enough information from it to dis-
play covariate balance for x. The purpose of this method is to allow users who have created their
own objects containing conditioning information (i.e., weights, subclasses, treatments, covariates,
etc.) to access the capabilities of bal.tab() without having a special method written for them. By
including the correct items in x, bal.tab.default() can present balance tables as if the input was
the output of one of the specifically supported packages (e.g., MatchIt, twang, etc.).

The function will search x for the following named items and attempt to process them:

treat A vector (numeric, character, factor) containing the values of the treatment for each unit
or the name of the column in data containing them. Essentially the same input to treat in
bal.tab.data.frame().

treat.list A list of vectors (numeric, character, factor) containing, for each time point, the
values of the treatment for each unit or the name of the column in data containing them.
Essentially the same input to treat.list in bal.tab.time.list().

covs A data.frame containing the values of the covariates for each unit. Essentially the same
input to covs in bal.tab.data.frame().

covs.list A list of data.frames containing, for each time point, the values of the covariates for
each unit. Essentially the same input to covs.list in bal.tab.time.list().

formula A formula with the treatment variable as the response and the covariates for which bal-
ance is to be assessed as the terms. Essentially the same input to formula in bal.tab.formula().

formula.list A list of formulas with, for each time point, the treatment variable as the response
and the covariates for which balance is to be assessed as the terms. Essentially the same input
to formula.list in bal.tab.time.list().

data A data.frame containing variables with the names used in other arguments and components
(e.g., formula, weights, etc.). Essentially the same input to data in bal.tab.formula(),
bal.tab.data.frame(), or bal.tab.time.list().



bal.tab.default 27

weights A vector, list, or data.frame containing weights for each unit or a string containing the
names of the weights variables in data. Essentially the same input to weights in bal.tab.data.frame()
or bal.tab.time.list().

distance A vector, formula, or data frame containing distance values (e.g., propensity scores)
or a character vector containing their names. If a formula or variable names are specified,
bal.tab() will look in the argument to data, if specified. Essentially the same input to
distance in bal.tab.data.frame().

formula.list A list of vectors or data.frames containing, for each time point, distance values
(e.g., propensity scores) for each unit or a string containing the name of the distance variable
in data. Essentially the same input to distance.list in bal.tab.time.list().

subclass A vector containing subclass membership for each unit or a string containing the name of
the subclass variable in data. Essentially the same input to subclass in bal.tab.data.frame().

match.strata A vector containing matching stratum membership for each unit or a string con-
taining the name of the matching stratum variable in data. Essentially the same input to
match.strata in bal.tab.data.frame().

estimand A character vector; whether the desired estimand is the "ATT", "ATC", or "ATE" for
each set of weights. Essentially the same input to estimand in bal.tab.data.frame().

s.weights A vector containing sampling weights for each unit or a string containing the name of
the sampling weight variable in data. Essentially the same input to s.weights in bal.tab.data.frame()
or bal.tab.time.list().

focal The name of the focal treatment when multi-category treatments are used. Essentially the
same input to focal in bal.tab.data.frame().

call A call object containing the function call, usually generated by using match.call() inside
the function that created x.

Any of these items can also be supplied directly to bal.tab.default, e.g., bal.tab.default(x,
formula = treat ~ x1 + x2). If supplied, it will override the object with the same role in x. In addi-
tion, any arguments to bal.tab.formula(), bal.tab.data.frame(), and bal.tab.time.list()
are allowed and perform the same function.

At least some inputs containing information to create the treatment and covariates are required (e.g.,
formula and data or covs and treat). All other arguments are optional and have the same de-
faults as those in bal.tab.data.frame() or bal.tab.time.list(). If treat.list, covs.list,
or formula.list are supplied in x or as an argument to bal.tab.default(), the function will
proceed considering a longitudinal treatment. Otherwise, it will proceed considering a point treat-
ment.

bal.tab.default(), like other bal.tab() methods, is just a shortcut to supply arguments to
bal.tab.data.frame() or bal.tab.time.list(). Therefore, any matters regarding argument
priority or function are described in the documentation for these methods.

Value

For point treatments, if clusters and imputations are not specified, an object of class "bal.tab"
containing balance summaries for the specified treatment and covariates. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.



28 bal.tab.default

If imputations are specified, an object of class "bal.tab.imp" containing balance summaries
for each imputation and a summary of balance across imputations, just as with clusters. See
class-bal.tab.imp for details.

If multi-category treatments are used, an object of class "bal.tab.multi" containing balance sum-
maries for each pairwise treatment comparison and a summary of balance across pairwise compar-
isons. See bal.tab.multi() for details.

If longitudinal treatments are used, an object of class "bal.tab.msm" containing balance sum-
maries at each time point. Each balance summary is its own bal.tab object. See class-bal.tab.msm
for more details.

See Also

• bal.tab.formula() and bal.tab.time.list() for additional arguments to be supplied.

• bal.tab() for output and details of calculations.

• class-bal.tab.cluster for more information on clustered data.

• class-bal.tab.imp for more information on multiply imputed data.

• bal.tab.multi() for more information on multi-category treatments.

Examples

data("lalonde", package = "cobalt")
covs <- subset(lalonde, select = -c(treat, re78))

##Writing a function the produces output for direct
##use in bal.tab.default

ate.weights <- function(treat, covs) {
data <- data.frame(treat, covs)
formula <- formula(data)
ps <- glm(formula, data = data,

family = "binomial")$fitted.values
weights <- treat/ps + (1-treat)/(1-ps)
call <- match.call()
out <- list(treat = treat,

covs = covs,
distance = ps,
weights = weights,
estimand = "ATE",
call = call)

return(out)
}

out <- ate.weights(lalonde$treat, covs)

bal.tab(out, un = TRUE)



bal.tab.designmatch 29

bal.tab.designmatch Balance Statistics for designmatch Objects

Description

Generates balance statistics for output objects from designmatch.

Usage

## S3 method for class 'designmatch'
bal.tab(
x,
formula = NULL,
data = NULL,
treat = NULL,
covs = NULL,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x the output of a call to designmatch::bmatch() or related wrapper functions
from the designmatch package.

formula a formula with the treatment variable as the response and the covariates for
which balance is to be assessed as the predictors. All named variables must be
in data. See Details.

data a data frame containing variables named in formula, if supplied, and other ar-
guments.

treat a vector of treatment statuses. See Details.



30 bal.tab.designmatch

covs a data frame of covariate values for which to check balance. See Details.

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, will be set to "treated".

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.



bal.tab.designmatch 31

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab() generates a list of balance summaries for the object given, and functions similarly to
designmatch::meantab(). Note that output objects from designmatch do not have their own
class; bal.tab() first checks whether the object meets the criteria to be treated as a designmatch
object before dispatching the correct method. Renaming or removing items from the output object
can create unintended consequences.

The input to bal.tab.designmatch() must include either both formula and data or both covs
and treat. Using the covs + treat input mirrors how designmatch::meantab() is used (note
that to see identical results to meantab(), s.d.denom must be set to "pooled").

Value

If clusters and imputations are not specified, an object of class "bal.tab" containing balance sum-
maries for the given object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

bal.tab() for details of calculations.



32 bal.tab.ebalance

Examples

## Not run:
library(designmatch)
data("lalonde", package = "cobalt")

covariates <- as.matrix(lalonde[c("age", "educ", "re74", "re75")])
treat <- lalonde$treat
dmout <- bmatch(treat,

total_groups = sum(treat == 1),
mom = list(covs = covariates,

tols = absstddif(covariates,
treat, .05))

)

## Using treat and covs
bal.tab(dmout, treat = treat, covs = covariates)

## End(Not run)

bal.tab.ebalance Balance Statistics for ebalance Objects

Description

Generates balance statistics for output objects from ebal.

Usage

## S3 method for class 'ebalance'
bal.tab(
x,
formula = NULL,
data = NULL,
treat = NULL,
covs = NULL,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,



bal.tab.ebalance 33

pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x an ebalance object (the output of a call to ebal::ebalance() or ebal::ebalance.trim()).

formula a formula with the treatment variable as the response and the covariates for
which balance is to be assessed as the predictors. All named variables must be
in data. See Details.

data a data frame containing variables named in formula, if supplied, and other ar-
guments.

treat a vector of treatment statuses. See Details.

covs a data frame of covariate values for which to check balance. See Details.

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().



34 bal.tab.ebalance

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, will be set to "treated".

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab() generates a list of balance summaries for the object given. The input to bal.tab.ebalance()
must include either both formula and data or both covs and treat.



bal.tab.formula 35

Value

If clusters and imputations are not specified, an object of class "bal.tab" containing balance sum-
maries for the given object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

bal.tab() for details of calculations.

Examples

data("lalonde", package = "cobalt")

covs <- subset(lalonde, select = -c(re78, treat))
covs0 <- splitfactor(covs)

e.out <- ebal::ebalance(lalonde$treat, covs0)

## Using formula and data
bal.tab(e.out, formula = treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = lalonde)

## Using treat and covs
bal.tab(e.out, treat = lalonde$treat, covs = covs)

bal.tab.formula Balance Statistics for Data Sets

Description

Generates balance statistics for unadjusted, matched, weighted, or stratified data using either a
data.frame or formula interface.

Usage

## S3 method for class 'formula'
bal.tab(
x,
data = NULL,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,



36 bal.tab.formula

continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
subclass = NULL,
match.strata = NULL,
method,
estimand = NULL,
focal = NULL,
...

)

## S3 method for class 'data.frame'
bal.tab(
x,
treat,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
subclass = NULL,
match.strata = NULL,
method,
estimand = NULL,
focal = NULL,
...



bal.tab.formula 37

)

## S3 method for class 'matrix'
bal.tab(
x,
treat,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
subclass = NULL,
match.strata = NULL,
method,
estimand = NULL,
focal = NULL,
...

)

Arguments

x either a data.frame containing covariate values for each unit or a formula with
the treatment variable as the response and the covariates for which balance is to
be assessed as the terms. If a formula is supplied, all terms must be present as
variable names in data or the global environment.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.



38 bal.tab.formula

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If weights are supplied, each set of weights should have a correspond-
ing entry to s.d.denom; a single entry will be recycled to all sets of weights.
If left blank and one of weights, subclass, or match.strata are supplied,
bal.tab() will figure out which one is best based on estimand, if given (for
ATT, "treated"; for ATC, "control"; otherwise "pooled") and other clues if
not.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.



bal.tab.formula 39

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

subclass optional; either a vector containing subclass membership for each unit or a string
containing the name of the subclass variable in data.

match.strata optional; either a vector containing matching stratum membership for each unit
or a string containing the name of the matching stratum variable in data. See
Details.

method character; the method of adjustment, if any. If weights are specified, the
user can specify either "matching" or "weighting"; "weighting" is the default.
If multiple sets of weights are used, each must have a corresponding value for
method, but if they are all of the same type, only one value is required. If
subclass is specified, "subclassification" is the default. Abbreviations allowed.
The only distinction between "matching" and "weighting" is how sample sizes
are displayed.

estimand character; whether the desired estimand is the "ATT", "ATC", or "ATE" for
each set of weights. This argument can be used in place of s.d.denom to specify
how standardized differences are calculated.

focal the name of the focal treatment when multi-category treatments are used. See
bal.tab.multi() for details.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

treat either a vector containing treatment status values for each unit or a string con-
taining the name of the treatment variable in data. Required for the data.frame
method.

Details

bal.tab.data.frame() generates a list of balance summaries for the covariates and treatment sta-
tus values given. bal.tab.formula() does the same but uses a formula interface instead. When the



40 bal.tab.formula

formula interface is used, the formula and data are reshaped into a treatment vector and data.frame
of covariates and then simply passed through the data.frame method.

If weights, subclass and match.strata are all NULL, balance information will be presented only
for the unadjusted sample.

The argument to match.strata corresponds to a factor vector containing the name or index of each
pair/stratum for units conditioned through matching, for example, using the optmatch package. If
more than one of weights, subclass, or match.strata are specified, bal.tab() will attempt to
figure out which one to apply. Currently only one of these can be applied ta a time. bal.tab()
behaves differently depending on whether subclasses are used in conditioning or not. If they are
used, bal.tab() creates balance statistics for each subclass and for the sample in aggregate. See
class-bal.tab.subclass for more information.

Multiple sets of weights can be supplied simultaneously by entering a data.frame or a charac-
ter vector containing the names of weight variables found in data or a list of weights vectors or
names. The arguments to method, s.d.denom, and estimand, if any, must be either the same
length as the number of sets of weights or of length one, where the sole entry is applied to all sets.
When standardized differences are computed for the unadjusted group, they are done using the first
entry to s.d.denom or estimand. When only one set of weights is supplied, the output for the
adjusted group will simply be called "Adj", but otherwise will be named after each corresponding
set of weights. Specifying multiple sets of weights will also add components to other outputs of
bal.tab().

Value

For point treatments, if clusters and imputations are not specified, an object of class "bal.tab"
containing balance summaries for the specified treatment and covariates. See bal.tab() for details.

If imputations are specified, an object of class "bal.tab.imp" containing balance summaries for
each imputation and a summary of balance across imputations. See class-bal.tab.imp for details.

If multi-category treatments are used, an object of class "bal.tab.multi" containing balance sum-
maries for each pairwise treatment comparison. See bal.tab.multi() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

• bal.tab() for details of calculations.

• class-bal.tab.cluster for more information on clustered data.

• class-bal.tab.imp for more information on multiply imputed data.

• bal.tab.multi() for more information on multi-category treatments.

Examples

data("lalonde", package = "cobalt")
lalonde$p.score <- glm(treat ~ age + educ + race, data = lalonde,

family = "binomial")$fitted.values
covariates <- subset(lalonde, select = c(age, educ, race))



bal.tab.Match 41

## Propensity score weighting using IPTW
lalonde$iptw.weights <- ifelse(lalonde$treat==1,

1/lalonde$p.score,
1/(1-lalonde$p.score))

# data frame interface:
bal.tab(covariates, treat = "treat", data = lalonde,

weights = "iptw.weights", s.d.denom = "pooled")

# Formula interface:
bal.tab(treat ~ age + educ + race, data = lalonde,

weights = "iptw.weights", s.d.denom = "pooled")

## Propensity score subclassification
lalonde$subclass <- findInterval(lalonde$p.score,

quantile(lalonde$p.score,
(0:6)/6), all.inside = TRUE)

# data frame interface:
bal.tab(covariates, treat = "treat", data = lalonde,

subclass = "subclass", disp.subclass = TRUE,
s.d.denom = "pooled")

# Formula interface:
bal.tab(treat ~ age + educ + race, data = lalonde,

subclass = "subclass", disp.subclass = TRUE,
s.d.denom = "pooled")

bal.tab.Match Balance Statistics for Matching Objects

Description

Generates balance statistics for output objects from Matching.

Usage

## S3 method for class 'Match'
bal.tab(
x,
formula = NULL,
data = NULL,
treat = NULL,
covs = NULL,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,



42 bal.tab.Match

continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x a Match object (the output of a call to Matching::Match() or Matching::Matchby()).
formula a formula with the treatment variable as the response and the covariates for

which balance is to be assessed as the predictors. All named variables must be
in data. See Details.

data a data frame containing variables named in formula, if supplied, and other ar-
guments.

treat a vector of treatment statuses. See Details.
covs a data frame of covariate values for which to check balance. See Details.
stats character; which statistic(s) should be reported. See stats for allowable

options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.



bal.tab.Match 43

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, bal.tab() will use "treated" if the estimand of the
call to Match() is the ATT, "pooled" if the estimand is the ATE, and "control" if
the estimand is the ATC.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.



44 bal.tab.Match

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab() generates a list of balance summaries for the object given, and functions similarly to
Matching::MatchBalance(). The input to bal.tab.Match() must include either both formula
and data or both covs and treat. Using the formula + data inputs mirrors how Matching::MatchBalance()
is used.

cobalt functions do not support Match object with sampling weights, i.e., with an argument passed
to the weights argument of Matching::Match().

Value

If clusters and imputations are not specified, an object of class "bal.tab" containing balance sum-
maries for the given object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

bal.tab() for details of calculations.

Examples

data("lalonde", package = "cobalt")
library(Matching)

## Estimate propensity score
p.fit <- glm(treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = lalonde,
family = "binomial")

Match.out <- Match(Tr = lalonde$treat,
X = fitted(p.fit))

## Using formula and data
bal.tab(Match.out, formula = treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = lalonde)



bal.tab.matchit 45

bal.tab.matchit Balance Statistics for MatchIt Objects

Description

Generates balance statistics for matchit objects from MatchIt.

Usage

## S3 method for class 'matchit'
bal.tab(
x,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
method,
...

)

Arguments

x a matchit object; the output of a call to MatchIt::matchit().

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition



46 bal.tab.matchit

to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if speci-
fied. The distance measure (e.g., propensity score) generated by matchit() is
automatically included and named "distance".

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, bal.tab() will figure out which one is best based on
the estimand of the matchit object: if ATT, "treated"; if ATC, "control",
otherwise "pooled".

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.



bal.tab.matchit 47

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used. If s.weights was
specified in the call to matchit(), they will automatically be included and do
not need be specified again (though there is no harm if they are).

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

method a character vector containing the method of adjustment. Ignored unless sub-
classification was used in the original call to matchit(). If "weighting",
the subclassification weights will be used and subclasses will be ignored. If
"subclassification", balance will be assessed using the subclasses (see class-bal.tab.subclass
for details). Abbreviations allowed.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab.matchit() generates a list of balance summaries for the matchit object given, and func-
tions similarly to MatchIt::summary.matchit(). bal.tab() behaves differently depending on
whether subclasses are used in conditioning or not. If they are used, bal.tab() creates balance
statistics for each subclass and for the sample in aggregate; see class-bal.tab.subclass for
more information.

Value

If subclassification is used and method is set to "subclassification", an object of class "bal.tab.subclass"
containing balance summaries within and across subclasses. See class-bal.tab.subclass for de-
tails.

If matching is used and clusters are not specified, an object of class "bal.tab" containing balance
summaries for the matchit object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

• bal.tab() for details of calculations.



48 bal.tab.mimids

Examples

library(MatchIt)
data("lalonde", package = "cobalt")

## Nearest Neighbor matching
m.out1 <- matchit(treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = lalonde,
method = "nearest")

bal.tab(m.out1, un = TRUE,
thresholds = c(m = .1, v = 2))

## Subclassification
m.out2 <- matchit(treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = lalonde,
method = "subclass")

bal.tab(m.out2, disp.subclass = TRUE)

bal.tab.mimids Balance Statistics for MatchThem Objects

Description

Generates balance statistics for mimids and wimids objects from MatchThem.

Usage

## S3 method for class 'mimids'
bal.tab(
x,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
pairwise = TRUE,
s.weights = NULL,



bal.tab.mimids 49

abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x a mimids or wimids object; the output of a call to MatchThem::matchthem() or
MatchThem::weightthem().

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
The distance measure generated by matchthem() or weightthem() is automat-
ically included and named "distance" or "prop.score", respectively.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, the defaults depend on the options specified in the
original function calls; see bal.tab.matchit() and bal.tab.weightit() for
details on the defaults.



50 bal.tab.mimids

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab.mimids() and bal.tab.wimids() generate a list of balance summaries for the mimids
or wimids object given.

Value

If clusters are not specified, an object of class "bal.tab.imp" containing balance summaries for
each imputation and a summary of balance across imputations. See class-bal.tab.imp for details.

If clusters are specified, an object of class "bal.tab.imp.cluster" containing summaries between
and across all clusters and imputations.



bal.tab.optmatch 51

See Also

• bal.tab() for details of calculations

• bal.tab.matchit() and bal.tab.weightit()

Examples

library(MatchThem)

data("lalonde_mis", package = "cobalt")

# Imputing the missing data
imp <- mice::mice(lalonde_mis, m = 5,

print = FALSE)

# Matching using within-imputation propensity scores
mt.out1 <- matchthem(treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = imp, approach = "within")

bal.tab(mt.out1)

# Matching using across-imputation average propensity scores
mt.out2 <- matchthem(treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = imp, approach = "across")

bal.tab(mt.out2)

# Weighting using within-imputation propensity scores
wt.out <- weightthem(treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = imp, approach = "within",
estimand = "ATT")

bal.tab(wt.out)

bal.tab.optmatch Balance Statistics for optmatch Objects

Description

Generates balance statistics for output objects from optmatch.

Usage

## S3 method for class 'optmatch'
bal.tab(
x,
formula = NULL,



52 bal.tab.optmatch

data = NULL,
treat = NULL,
covs = NULL,
estimand = NULL,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x an optmatch object (the output of a call to optmatch::pairmatch() or optmatch::fullmatch()).

formula a formula with the treatment variable as the response and the covariates for
which balance is to be assessed as the predictors. All named variables must be
in data. See Details.

data a data frame containing variables named in formula, if supplied, and other ar-
guments.

treat a vector of treatment statuses. See Details.

covs a data frame of covariate values for which to check balance. See Details.

estimand character; whether the desired estimand is the "ATT", "ATC", or "ATE". De-
fault is "ATT".

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will



bal.tab.optmatch 53

be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If unspecified, bal.tab() will figure out which one is best based on
the estimand, if given (for ATT, "treated"; for ATC, "control"; otherwise
"pooled") and other clues if not.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.



54 bal.tab.optmatch

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab() generates a list of balance summaries for the object given. The input to bal.tab.optmatch()
must include either both formula and data or just covs (treat is not necessary).

Value

If clusters and imputations are not specified, an object of class "bal.tab" containing balance sum-
maries for the given object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

bal.tab() for details of calculations.

Examples

data("lalonde", package = "cobalt")

lalonde$prop.score <- glm(treat ~ age + educ + race +
married + nodegree + re74 + re75,

data = lalonde, family = binomial)$fitted.values
pm <- optmatch::pairmatch(treat ~ prop.score, data = lalonde)

## Using formula and data; LHS of formula not required
bal.tab(pm, formula = ~ age + educ + race +

married + nodegree + re74 + re75,
data = lalonde)

## Using covs
covs <- subset(lalonde, select = -c(re78, treat))
bal.tab(pm, covs = covs)



bal.tab.ps 55

bal.tab.ps Balance Statistics for twang Objects

Description

Generates balance statistics for ps, mnps, and iptw objects from twang and for ps.cont objects
from twangContinuous.

Usage

## S3 method for class 'ps'
bal.tab(
x,
stop.method,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x a ps, mnps, iptw, or ps.cont object; the output of a call to twang::ps(),
twang::mnps(), twang::iptw() or twangContinuous::ps.cont().

stop.method a string containing the names of the stopping methods used in the original call
to ps(), mnps(), or iptw(). Examples include "es.max" or "ks.mean" for ps
and mnps objects. bal.tab() will assess balance for the weights created by
those stopping methods. The names can be abbreviated as long as the abbre-
viations are specific enough. If no stopping methods are provided, bal.tab()
will default to displaying balance for all available stopping methods. Ignored
for ps.cont objects.



56 bal.tab.ps

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if speci-
fied. The propensity scores generated by ps() and iptw() (but not mnps() or
ps.cont()) are automatically included and named "prop.score.{stop.method}".

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, for ps objects, bal.tab() will use "treated" if the
estimand of the call to ps() is the ATT and "pooled" if the estimand is the ATE;
for mnps objects, bal.tab() will use "treated" if treatATT was specified in the
original call to mnps and "pooled" otherwise. Use "all" to get the same values
computed by bal.table() in twang.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.



bal.tab.ps 57

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will be
weighted according to these weights if weights are used. If sampw was supplied
in the call to ps(), mnps(), iptw(), or ps.cont(), they will automatically be
supplied to s.weights and do not need be specified again (though there is no
harm if they are).

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab.ps() generates a list of balance summaries for the input object given, and functions simi-
larly to twang::bal.table(). The variances used in the denominator of the standardized mean dif-
ferences computed in twang::bal.table() are weighted and computed using survey::svyvar()
and are unweighted here (except when s.weights are specified, in which case col_w_sd() is used).
twang also uses "all" as the default s.d.denom when the estimand is the ATE; the default here is
"pooled". For these reasons, results may differ slightly between the two packages.

Value

For binary or continuous point treatments, if clusters are not specified, an object of class "bal.tab"
containing balance summaries for the ps object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.



58 bal.tab.sbwcau

If mnps() is used with multi-category treatments, an object of class "bal.tab.multi" contain-
ing balance summaries for each pairwise treatment comparison and a summary of balance across
pairwise comparisons. See bal.tab.multi() for details.

See Also

• bal.tab() for details of calculations.

• class-bal.tab.cluster for more information on clustered data.

• bal.tab.multi() for more information on multi-category treatments.

• class-bal.tab.msm for more information on longitudinal treatments.

Examples

library(twang)
data("lalonde", package = "cobalt")

## Using ps() for generalized boosted modeling
ps.out <- ps(treat ~ age + educ + married + race +

nodegree + re74 + re75, data = lalonde,
stop.method = c("ks.mean", "es.mean"),
estimand = "ATT", verbose = FALSE)

bal.tab(ps.out, stop.method = "ks.mean", un = TRUE,
stats = c("m", "ks"),
thresholds = c(m = .1))

bal.tab.sbwcau Balance Statistics for sbw Objects

Description

Generates balance statistics for sbwcau objects from sbw.

Usage

## S3 method for class 'sbwcau'
bal.tab(
x,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,



bal.tab.sbwcau 59

s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x an sbwcau object; the output of a call to sbw::sbw().

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().



60 bal.tab.sbwcau

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbrevia-
tions allowed. If not specified, bal.tab() will figure out which one is best
based on the par component of the sbwcau object: if "att", "treated"; if "atc",
"control"; otherwise "pooled".

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab.sbwcau() generates a list of balance summaries for the sbwcau object given, and func-
tions similarly to sbw::summarize().



bal.tab.time.list 61

Value

If clusters are not specified, an object of class "bal.tab" containing balance summaries for the
sbwcau object. See bal.tab() for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

• bal.tab() for details of calculations.

Examples

library(sbw)
data("lalonde", package = "cobalt")

## Stable balancing weights for the ATT
sbw.out <- sbw(splitfactor(lalonde, drop.first = "if2"),

ind = "treat",
bal = list(bal_cov = c("age", "educ", "race_black",

"race_hispan", "race_white",
"married", "nodegree",
"re74", "re75"),

bal_alg = FALSE,
bal_tol = .001),

par = list(par_est = "att"))

bal.tab(sbw.out, un = TRUE, poly = 2)

bal.tab.time.list Balance Statistics for Longitudinal Datasets

Description

Generates balance statistics for data coming from a longitudinal treatment scenario. The primary
input is in the form of a list of formulas or data.frames contain the covariates at each time point.
bal.tab() automatically classifies this list as either a data.frame.list or formula.list, respec-
tively.

Usage

## S3 method for class 'formula.list'
bal.tab(
x,
stats,
int = FALSE,
poly = 1,



62 bal.tab.time.list

distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

## S3 method for class 'data.frame.list'
bal.tab(
x,
treat.list,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)

Arguments

x either a list of data frames containing all the covariates to be assessed at each
time point or a list of formulas with the treatment for each time period on the left
and the covariates for which balance is to be displayed on the right. Covariates
to be assessed at multiple points must be included in the entries for each time



bal.tab.time.list 63

point. Data must be in the "wide" format, with one row per unit. If a formula list
is supplied, an argument to data is required unless all objects in the formulas
exist in the environment.

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
For longitudinal treatments, can be a list of allowable arguments, one for each
time point.

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. It is recommended not to set this argument for longitudinal treatments.

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within
the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.



64 bal.tab.time.list

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used.

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

treat.list treatment status for each unit at each time point. This can be specified as a
list or data frame of vectors, each of which contains the treatment status of each
individual at each time point, or a list or vector of the names of variables in data
that contain treatment at each time point. Required for the data.frame.list
method.

Details

bal.tab.formula.list() and bal.tab.data.frame.list() generate a list of balance summaries
for each time point based on the treatments and covariates provided. All data must be in the "wide"
format, with exactly one row per unit and columns representing variables at different time points.
See the WeightIt::weightitMSM() documentation for an example of how to transform long data
into wide data using reshape().

Multiple sets of weights can be supplied simultaneously by including entering a data frame or a
character vector containing the names of weight variables found in data or a list thereof. When
only one set of weights is supplied, the output for the adjusted group will simply be called "Adj",
but otherwise will be named after each corresponding set of weights. Specifying multiple sets of
weights will also add components to other outputs of bal.tab().



bal.tab.time.list 65

Value

An object of class bal.tab.msm containing balance summaries at each time point. Each balance
summary is its own bal.tab object. See class-bal.tab.msm for more details.

See bal.tab() base methods() for more detailed information on the value of the bal.tab objects
produced for each time point.

See Also

• bal.tab() for details of calculations.

• class-bal.tab.msm for output and related options.

• class-bal.tab.cluster for more information on clustered data.

• class-bal.tab.imp for more information on multiply imputed data.

• bal.tab.multi() for more information on multi-category treatments.

Examples

data("msmdata", package = "WeightIt")

## Estimating longitudinal propensity scores and weights
ps1 <- glm(A_1 ~ X1_0 + X2_0,

data = msmdata,
family = "binomial")$fitted.values

w1 <- ifelse(msmdata$A_1 == 1, 1 / ps1, 1 / (1 - ps1))

ps2 <- glm(A_2 ~ X1_1 + X2_1 +
A_1 + X1_0 + X2_0,

data = msmdata,
family = "binomial")$fitted.values

w2 <- ifelse(msmdata$A_2 == 1, 1 / ps2, 1 / (1 - ps2))

ps3 <- glm(A_3 ~ X1_2 + X2_2 +
A_2 + X1_1 + X2_1 +
A_1 + X1_0 + X2_0,

data = msmdata,
family = "binomial")$fitted.values

w3 <- ifelse(msmdata$A_3 == 1, 1 / ps3, 1 / (1 - ps3))

w <- w1 * w2 * w3

# Formula interface plus addl:
bal.tab(list(A_1 ~ X1_0 + X2_0,

A_2 ~ X1_1 + X2_1 +
A_1 + X1_0 + X2_0,

A_3 ~ X1_2 + X2_2 +
A_2 + X1_1 + X2_1 +
A_1 + X1_0 + X2_0),

data = msmdata,
weights = w,
distance = list(~ps1, ~ps2, ~ps3),
addl = ~X1_0 * X2_0,



66 bal.tab.weightit

un = TRUE)

# data frame interface:
bal.tab(list(msmdata[c("X1_0", "X2_0")],

msmdata[c("X1_1", "X2_1", "A_1", "X1_0", "X2_0")],
msmdata[c("X1_2", "X2_2", "A_2", "X1_1", "X2_1",

"A_1", "X1_0", "X2_0")]),
treat.list = msmdata[c("A_1", "A_2", "A_3")],
weights = w,
distance = list(~ps1, ~ps2, ~ps3),
un = TRUE)

bal.tab.weightit Balance Statistics for WeightIt Objects

Description

Generates balance statistics for weightit and weightitMSM objects from WeightIt.

Usage

## S3 method for class 'weightit'
bal.tab(
x,
stats,
int = FALSE,
poly = 1,
distance = NULL,
addl = NULL,
data = NULL,
continuous,
binary,
s.d.denom,
thresholds = NULL,
weights = NULL,
cluster = NULL,
imp = NULL,
pairwise = TRUE,
s.weights = NULL,
abs = FALSE,
subset = NULL,
quick = TRUE,
...

)



bal.tab.weightit 67

Arguments

x a weightit or weightitMSM object; the output of a call to WeightIt::weightit()
or WeightIt::weightitMSM().

stats character; which statistic(s) should be reported. See stats for allowable
options. For binary and multi-category treatments, "mean.diffs" (i.e., mean
differences) is the default. For continuous treatments, "correlations" (i.e.,
treatment-covariate Pearson correlations) is the default. Multiple options are
allowed.

int logical or numeric; whether or not to include 2-way interactions of covariates
included in covs and in addl. If numeric, will be passed to poly as well.

poly numeric; the highest polynomial of each continuous covariate to display. For
example, if 2, squares of each continuous covariate will be displayed (in addition
to the covariate itself); if 3, squares and cubes of each continuous covariate will
be displayed, etc. If 1, the default, only the base covariate will be displayed. If
int is numeric, poly will take on the value of int.

distance an optional formula or data frame containing distance values (e.g., propensity
scores) or a character vector containing their names. If a formula or variable
names are specified, bal.tab() will look in the argument to data, if specified.
Propensity scores generated by weightit() and weightitMSM() are automati-
cally included and named "prop.score".

addl an optional formula or data frame containing additional covariates for which to
present balance or a character vector containing their names. If a formula or
variable names are specified, bal.tab() will look in the arguments to the input
object, covs, and data, if specified. For longitudinal treatments, can be a list of
allowable arguments, one for each time point.

data an optional data frame containing variables named in other arguments. For some
input object types, this is required.

continuous whether mean differences for continuous variables should be standardized ("std")
or raw ("raw"). Default "std". Abbreviations allowed. This option can be set
globally using set.cobalt.options().

binary whether mean differences for binary variables (i.e., difference in proportion)
should be standardized ("std") or raw ("raw"). Default "raw". Abbreviations
allowed. This option can be set globally using set.cobalt.options().

s.d.denom character; how the denominator for standardized mean differences should be
calculated, if requested. See col_w_smd() for allowable options. Abbreviations
allowed. If not specified, bal.tab() will figure out which one is best based on
the estimand of the weightit object: if ATT, "treated"; if ATC, "control";
otherwise "pooled".

thresholds a named vector of balance thresholds, where the name corresponds to the statis-
tic (i.e., in stats) that the threshold applies to. For example, to request thresh-
olds on mean differences and variance ratios, one can set thresholds = c(m =
.05, v = 2). Requesting a threshold automatically requests the display of that
statistic. When specified, extra columns are inserted into the Balance table de-
scribing whether the requested balance statistics exceeded the threshold or not.
Summary tables tallying the number of variables that exceeded and were within



68 bal.tab.weightit

the threshold and displaying the variables with the greatest imbalance on that
balance measure are added to the output.

weights a vector, list, or data.frame containing weights for each unit, or a string con-
taining the names of the weights variables in data, or an object with a get.w()
method or a list thereof. The weights can be, e.g., inverse probability weights or
matching weights resulting from a matching algorithm.

cluster either a vector containing cluster membership for each unit or a string containing
the name of the cluster membership variable in data or the input object. See
class-bal.tab.cluster for details.

imp either a vector containing imputation indices for each unit or a string contain-
ing the name of the imputation index variable in data or the input object. See
class-bal.tab.imp for details. Not necessary if data is a mids object.

pairwise whether balance should be computed for pairs of treatments or for each treat-
ment against all groups combined. See bal.tab.multi() for details. This can
also be used with a binary treatment to assess balance with respect to the full
sample.

s.weights Optional; either a vector containing sampling weights for each unit or a string
containing the name of the sampling weight variable in data. These function
like regular weights except that both the adjusted and unadjusted samples will
be weighted according to these weights if weights are used. If s.weights was
supplied in the call to weightit() or weightitMSM(), they will automatically
be included and do not need be specified again (though there is no harm if they
are).

abs logical; whether displayed balance statistics should be in absolute value or not.

subset a logical or numeric vector denoting whether each observation should be in-
cluded or which observations should be included. If logical, it should have
length equal to the number of units. NAs will be treated as FALSE. This can be
used as an alternative to cluster to examine balance on subsets of the data.

quick logical; if TRUE, will not compute any values that will not be displayed. Set to
FALSE if computed values not displayed will be used later.

... for some input types, other arguments that are required or allowed. Otherwise,
further arguments to control display of output. See display options for details.

Details

bal.tab.weightit() generates a list of balance summaries for the weightit object given.

Value

For point treatments, if clusters and imputations are not specified, an object of class "bal.tab"
containing balance summaries for the weightit object. See bal.tab() for details.

If imputations are specified, an object of class "bal.tab.imp" containing balance summaries for
each imputation and a summary of balance across imputations. See class-bal.tab.imp for details.

If weightit() is used with multi-category treatments, an object of class "bal.tab.multi" con-
taining balance summaries for each pairwise treatment comparison. See bal.tab.multi() for
details.



balance-statistics 69

If weightitMSM() is used for longitudinal treatments, an object of class "bal.tab.msm" containing
balance summaries for each time period. See class-bal.tab.msm for details.

If clusters are specified, an object of class "bal.tab.cluster" containing balance summaries
within each cluster and a summary of balance across clusters. See class-bal.tab.cluster for
details.

See Also

• bal.tab() for details of calculations.

Examples

library(WeightIt)
data("lalonde", package = "cobalt")

## Basic propensity score weighting
w.out1 <- weightit(treat ~ age + educ + race +

married + nodegree + re74 + re75,
data = lalonde)

bal.tab(w.out1, un = TRUE,
thresholds = c(m = .1, v = 2))

## Weighting with a multi-category treatment
w.out2 <- weightit(race ~ age + educ + married +

nodegree + re74 + re75,
data = lalonde)

bal.tab(w.out2, un = TRUE)
bal.tab(w.out2, un = TRUE, pairwise = FALSE)

## IPW for longitudinal treatments
data("msmdata", package = "WeightIt")

wmsm.out <- weightitMSM(list(A_1 ~ X1_0 + X2_0,
A_2 ~ X1_1 + X2_1 +

A_1 + X1_0 + X2_0,
A_3 ~ X1_2 + X2_2 +

A_2 + X1_1 + X2_1 +
A_1 + X1_0 + X2_0),

data = msmdata)

bal.tab(wmsm.out)

balance-statistics Balance Statistics in bal.tab and love.plot



70 balance-statistics

Description

bal.tab() and love.plot() display balance statistics for the included covariates. The stats
argument in each of these functions controls which balance statistics are to be displayed. The
argument to stats should be a character vector with the names of the desired balance statistics.

This page describes all of the available balance statistics and how to request them. Abbreviations
are allowed, so you can use the first few letters of each balance statistics to request it instead of
typing out its whole name. That convention is used throughout the documentation. For example,
to request mean differences and variance ratios in bal.tab() or love.plot(), you could include
stats = c("m", "v"). In addition, the thresholds argument uses the same naming conventions
and can be used to request balance thresholds on each statistic. For example, to request a balance
threshold of .1 for mean differences, you could include thresholds = c(m = .1).

Below, each allowable entry to stats and thresholds are described, along with other details or
option that accompany them.

Binary/Multi-Category Treatments:
"mean.diffs" Mean differences as computed by col_w_smd(). Can be abbreviated as "m". Set-

ting the arguments continuous and binary to either "std" or "raw" will determine whether
standardized mean differences or raw mean differences are calculated for continuous and
categorical variables, respectively. When standardized mean differences are requested, the
s.d.denom argument controls how the standardization occurs. When abs = TRUE, negative
values become positive. Mean differences are requested by default when no entry to stats
is provided.

"variance.ratios" Variance ratios as computed by col_w_vr(). Can be abbreviated as "v".
Will not be computed for binary variables. When abs = TRUE, values less than 1 will have
their inverse taken. When used with love.plot, the x-axis scaled will be logged so that, e.g.,
.5 is as far away from 1 as 2 is.

"ks.statistics" Kolmogorov-Smirnov (KS) statistics as computed by col_w_ks().
"ovl.coefficients" Overlapping (OVL) statistics as computed by col_w_ovl(). Can be ab-

breviated as "ovl". Additional arguments passed to col_w_ovl(), such as integrate or bw,
can be supplied to bal.tab() or love.plot().

Continuous Treatments:
"correlations" Pearson correlations as computed by col_w_cov(). Can be abbreviated as

"cor". Setting the arguments continuous and binary to either "std" or "raw" will de-
termine whether correlations or covariances are calculated for continuous and categorical
variables, respectively (they are both "std" by default). When correlations are requested,
the s.d.denom argument controls how the standardization occurs. When abs = TRUE, nega-
tive values become positive. Pearson correlations are requested by default when no entry to
stats is provided.

"spearman.correlations" Spearman correlations as computed by col_w_cov(). Can be ab-
breviated as "sp". All arguments are the same as those for "correlations". When abs =
TRUE, negative values become positive.

"distance.correlations" Distance correlations as computed by col_w_dcov(). Can be ab-
breviated as "dis". Setting the arguments continuous and binary to either "std" or "raw"
will determine whether distance correlations or distance covariances are calculated for contin-
uous and categorical variables, respectively (they are both "std" by default). When distance
correlations are requested, the s.d.denom argument controls how the standardization occurs.



balance-summary 71

"mean.diffs.target" Mean differences computed between the weighted and unweighted sam-
ple to ensure the weighted sample is representative of the original population. Can be abbre-
viated as "m". Setting the arguments continuous and binary to either "std" or "raw" will
determine whether standardized mean differences or raw mean differences are calculated for
continuous and categorical variables, respectively. The standardization factor will be com-
puted in the unweighted sample. When abs = TRUE, negative values become positive. This
statistic is only computed for the adjusted samples.

"ks.statistics.target" KS statistics computed between the weighted and unweighted sam-
ple to ensure the weighted sample is representative of the original population. Can be abbre-
viated as "ks". This statistic is only computed for the adjusted samples.

"ovl.coefficients.target" Overlapping coefficients computed between the weighted and
unweighted sample to ensure the weighted sample is representative of the original population.
Can be abbreviated as "ovl". This statistic is only computed for the adjusted samples.

If a statistic is requested in thresholds, it will automatically be placed in stats. For exam-
ple, bal.tab(..., stats = "m", thresholds = c(v = 2)) will display both mean differences
and variance ratios, and the variance ratios will have a balance threshold set to 2.

Examples

data(lalonde)

#Binary treatments
bal.tab(treat ~ age + educ + married + re74, data = lalonde,

stats = c("m", "v", "ks"))
love.plot(treat ~ age + educ + married + re74, data = lalonde,

stats = c("m", "v", "ks"), binary = "std",
thresholds = c(m = .1, v = 2))

#Continuous treatments
bal.tab(re75 ~ age + educ + married + re74, data = lalonde,

stats = c("cor", "sp"))
love.plot(re75 ~ age + educ + married + re74, data = lalonde,

thresholds = c(cor = .1, sp = .1))

balance-summary Compute Balance and Summary Statistics for Covariates

Description

These functions quickly compute balance statistics for the given covariates. These functions are
used in bal.tab(), but they are available for use in programming without having to call bal.tab()
to get them.

• col_w_mean() computes the (weighted) means for a set of covariates and weights and is
essentially a weighted version of colMeans().

• col_w_sd() computes the (weighted) standard deviations for a set of covariates and weights.



72 balance-summary

• col_w_smd() computes the (weighted) (absolute) (standardized) difference in means for a set
of covariates, a binary treatment, and weights.

• col_w_vr() computes the (weighted) variance ratio for a set of covariates, a binary treatment,
and weights.

• col_w_ks() computes the (weighted) Kolmogorov-Smirnov (KS) statistic for a set of covari-
ates, a binary treatment, and weights.

• col_w_ovl() computes the complement of the (weighted) overlapping coefficient compliment
for a set of covariates, a binary treatment, and weights (based on Franklin et al, 2014).

• col_w_cov() and col_w_corr() compute the (weighted) (absolute) treatment-covariate co-
variance or correlation for a set of covariates, a continuous treatment, and weights.

• col_w_dcov() and col_w_dcorr() compute the (weighted) treatment-covariate distance co-
variance or distance correlation for a set of covariates, a continuous treatment, and weights.

Usage

col_w_mean(
mat,
weights = NULL,
s.weights = NULL,
subset = NULL,
na.rm = TRUE,
...

)

col_w_sd(
mat,
weights = NULL,
s.weights = NULL,
bin.vars,
subset = NULL,
na.rm = TRUE,
...

)

col_w_smd(
mat,
treat,
weights = NULL,
std = TRUE,
s.d.denom = "pooled",
abs = FALSE,
s.weights = NULL,
bin.vars,
subset = NULL,
weighted.weights = weights,
na.rm = TRUE,
...



balance-summary 73

)

col_w_vr(
mat,
treat,
weights = NULL,
abs = FALSE,
s.weights = NULL,
bin.vars,
subset = NULL,
na.rm = TRUE,
...

)

col_w_ks(
mat,
treat,
weights = NULL,
s.weights = NULL,
bin.vars,
subset = NULL,
na.rm = TRUE,
...

)

col_w_ovl(
mat,
treat,
weights = NULL,
s.weights = NULL,
bin.vars,
subset = NULL,
na.rm = TRUE,
integrate = TRUE,
steps = 1001L,
...

)

col_w_cov(
mat,
treat,
weights = NULL,
type = "pearson",
std = FALSE,
s.d.denom = "all",
abs = FALSE,
s.weights = NULL,
bin.vars,



74 balance-summary

subset = NULL,
weighted.weights = weights,
na.rm = TRUE,
...

)

col_w_corr(
mat,
treat,
weights = NULL,
type = "pearson",
s.d.denom = "all",
abs = FALSE,
s.weights = NULL,
bin.vars,
subset = NULL,
weighted.weights = weights,
na.rm = TRUE,
...

)

col_w_dcov(
mat,
treat,
weights = NULL,
std = FALSE,
s.d.denom = "all",
s.weights = NULL,
subset = NULL,
weighted.weights = weights,
na.rm = TRUE,
...

)

col_w_dcorr(
mat,
treat,
weights = NULL,
s.d.denom = "all",
s.weights = NULL,
subset = NULL,
weighted.weights = weights,
na.rm = TRUE,
...

)



balance-summary 75

Arguments

mat a numeric matrix or a data frame containing the covariates for which the statistic
is to be computed. If a data frame, splitfactor() with drop.first = "if2"
will be called if any character or factor variables are present. This can slow
down the function, so it’s generally best to supply a numeric matrix. If a numeric
vector is supplied, it will be converted to a 1-column matrix first.

weights numeric; an optional set of weights used to compute the weighted statistics. If
sampling weights are supplied through s.weights, the weights should not in-
corporate these weights, as weights and s.weights will be multiplied together
prior to computing the weighted statistics.

s.weights numeric; an optional set of sampling weights used to compute the weighted
statistics. If weights are supplied through weights, weights and s.weights
will be multiplied together prior to computing the weighted statistics. Some
functions use s.weights in a particular way; for others, supplying weights
and s.weights is equivalent to supplying their product to either weights or
s.weights. See Details.

subset a logical vector with length equal to the number of rows of mat used to subset
the data. See Details for notes on its use with col_w_smd(), col_w_cov(), and
col_w_corr().

na.rm logical; whether NAs should be ignored or not. If FALSE, any variable with
any NAs will have its corresponding statistic returned as NA. If TRUE, any variable
with any NAs will have its corresponding statistic computed as if the missing
value were not there.

... for all functions, additional arguments supplied to splitfactor() when mat
is a data.frame. data, var.name, drop.first, and drop.level are ignored;
drop.first is automatically set to "if2". For col_w_ovl(), other arguments
passed to density() besides x and weights. Note that the default value for
bw when unspecified is "nrd" rather than the default in density(), which is
"nrd0".

bin.vars a vector used to denote whether each variable is binary or not. Can be a logical
vector with length equal to the number of columns of mat or a vector of numeric
indices or character names of the binary variables. If missing (the default), the
function will figure out which covariates are binary or not, which can increase
computation time. If NULL, it will be assumed no variables are binary. All func-
tions other than col_w_mean() treat binary variables different from continuous
variables. If a factor or character variable is in mat, all the dummies created
will automatically be marked as binary, but it should still receive an entry when
bin.vars is supplied as logical.

treat a vector of treatment status for each individual. For col_w_smd(), col_w_vr(),
col_w_ks(), and col_w_ovl(), treat should have exactly two unique values.
For col_w_cov(), col_w_corr(), col_w_dcov(), and col_w_dcorr(), treat
should be a many-valued numeric vector.

std logical; for col_w_smd(), whether the computed mean differences for each
variable should be standardized; for col_w_cov(), whether treatment-covariate
correlations should be computed (TRUE) rather than covariances (FALSE); for



76 balance-summary

col_w_dcov(), whether treatment-covariate distance correlations should be com-
puted (TRUE) rather than distance covariances (FALSE). Can have either length
1, whereby all variables will be standardized or not, or length equal to the num-
ber of columns of mat, whereby only variables with a value of TRUE will be
standardized. See Details.

s.d.denom for col_w_smd(), col_w_cov(), and col_w_dcov() when std is TRUE for some
variables, and for col_w_corr() and col_w_dcorr(), how the standardization
factor should be computed. For col_w_smd() (i.e., when computing standard-
ized mean differences), allowable options include

• "treated" - uses the standard deviation of the variable in the treated group
• "control" - uses the standard deviation of the variable in the control group
• "pooled" - uses the square root of the average of the variances of the vari-

able in the treated and control groups
• "all" - uses the standard deviation of the variable in the full sample
• "weighted" - uses the standard deviation of the variable in the full sample

weighted by weighted.weights

• "hedges" - uses the small-sample corrected version of Hedge’s G described
in the WWC Procedures Handbook (see References)

• the name of one of the treatment values - uses the standard deviation of the
variable in that treatment group.

For col_w_cov(), col_w_corr(), col_w_dcov(), and col_w_dcorr(), only
"all" and "weighted" are allowed. Abbreviations allowed. This can also be
supplied as a numeric vector of standard deviations with length equal to the
number of columns of mat; the values will be used as the standardization factors.

abs logical; for col_w_smd(), col_w_cov(), and col_w_corr(), whether the re-
turned statistics should be in absolute value (TRUE) or not. For col_w_vr(),
whether the ratio should always include the larger variance in the numerator, so
that the ratio is always greater than or equal to 1. Default is FALSE.

weighted.weights

for col_w_smd(), col_w_cov(), col_w_corr(), col_w_dcov(), and col_w_dcorr(),
when std = TRUE and s.d.denom = "weighted", a vector of weights to be ap-
plied to the computation of the denominator standard deviation. If not specified,
will use the argument to weights. When s.d.denom is not "weighted", this is
ignored. The main purpose of this is to allow weights to be NULL while weight-
ing the denominator standard deviations for assessing balance in the unweighted
sample but using the standard deviations of the weighted sample.

integrate logical; for col_w_ovl(), whether to use integrate() to calculate the area
of overlap for continuous variables. If FALSE, a midpoint Riemann sum will be
used instead. The Riemann sum is a little slower and very slightly imprecise
(unnoticibly in most contexts). When TRUE, integrate() will be tried, and if it
fails, the Riemann sum will be used as a fallback. The default (TRUE) is to use
integrate() when possible.

steps for col_w_ovl() when integrate = FALSE, the number of points to use to com-
pute the Riemann sum to approximate the integral. Default is 1001 for 1000
partitions.



balance-summary 77

type for col_w_cov() and col_w_corr(), the type of covariance/correlation to be
computed. Allowable options include "pearson" and "spearman". When "spearman"
is requested, the covariates and treatment are first turned into ranks using rank()
with na.last = "keep".

Details

col_w_mean() computes column weighted means for a matrix of variables. It is similar to colMeans()
but (optionally) incorporates weights. weights and s.weights are multiplied together prior to be-
ing used, and there is no distinction between them. This could be used to compute the weighted
means of each covariate in the general population to examine the degree to which a weighting
method has left the weighted samples resembling the original population.

col_w_sd() computes column weighted standard deviations for a matrix of variables. weights and
s.weights are multiplied together prior to being used, and there is no distinction between them.
The variance of binary variables is computed as p(1 − p), where p is the (weighted) proportion of
1s, while the variance of continuous variables is computed using the standard formula; the standard
deviation is the square root of this variance.

col_w_smd() computes the mean difference for each covariate between treatment groups defined
by treat. These mean differences can optionally be weighted, standardized, and/or in absolute
value. The standardization factor is computed using the unweighted standard deviation or variance
when s.weights are absent, and is computed using the s.weights-weighted standard deviation or
variance when s.weights are present, except when s.d.denom = "weighted", in which case the
product of weighted.weights and s.weights (if present) are used to weight the standardization
factor. The standardization factor is computed using the whole sample even when subset is used.
Note that unlike bal.tab(), col_w_smd() requires the user to specify whether each individual
variable should be standardized using std rather than relying on continuous or binary. The
weighted mean difference is computed using the product of weights and s.weights, if specified.
The variance of binary variables is computed as p(1 − p), where p is the (weighted) proportion of
1s, while the variance of continuous variables is computed using the standard formula.

col_w_vr() computes the variance ratio for each covariate between treatment groups defined by
treat. When abs = TRUE, pmax(out, 1/out) is applied to the output so that the ratio is always
greater than or equal to 1. For binary variables, the variance is computed as p(1 − p), where p is
the (weighted) proportion of 1s, while the variance of continuous variables is computed using the
standard formula. Note that in bal.tab(), variance ratios are not computed for binary variables,
while here, they are (but likely should not be interpreted). weights and s.weights are multiplied
together prior to being used, and there is no distinction between them. Because of how the weighted
variance is computed, exactly balanced groups may have variance ratios that differ slightly from 1.

col_w_ks() computes the KS statistic for each covariate using the method implemented in twang.
The KS statistics can optionally be weighted. For binary variables, the KS statistic is just the
difference in proportions. weights and s.weights are multiplied together prior to being used, and
there is no distinction between them.

col_w_ovl() computes the complement of the overlapping coefficient as described by Franklin
et al. (2014). It does so by computing the density of the covariate in the treated and control
groups, then finding the area where those density overlap, and subtracting that number from 1,
yielding a value between 0 and 1 where 1 indicates complete imbalance, and 0 indicates perfect
balance. density() is used to model the density in each group. The bandwidth of the covariate
in the smaller treatment group is used for both groups. The area of overlap can be computed using



78 balance-summary

integrate, which quickly and accurately computes the integral, or using a midpoint Riemann sum
with 1000 partitions, which approximates the area more slowly. A reason to prefer the Riemann
sum is that integrate can fail for unknown reasons, though Riemann sums will fail with some
extreme distributions. When either method fails, the resulting value will be NA. For binary variables,
the complement of the overlapping coefficient is just the difference in proportions. weights and
s.weights are multiplied together prior to being used, and there is no distinction between them.
The weights are used to compute the weighted density by supplying them to the weights argument
of density.

col_w_cov() computes the covariances between a continuous treatment and the covariates to as-
sess balance for a continuous treatment as recommended in Austin (2019). These covariances can
optionally be weighted or in absolute value or can be requested as correlations (i.e., standardized
covariances). Each correlations is computed as the covariance between the treatment and covariate
divided by a standardization factor, which is equal to the square root of the product of the variance
of treatment and the variance of the covariate. The standardization factor is computed using the
unweighted variances when s.weights are absent, and is computed using the sampling weighted
variances when s.weights are present, except when s.d.denom = "weighted", in which case the
product of weighted.weights and s.weights (if present) are used to weight the standardization
factor. For this reason, the computed correlation can be greater than 1 or less than -1. The stan-
dardization factor is always computed using the whole sample even when subset is used. The
covariance is computed using the product of weights and s.weights, if specified. The variance
of binary variables is computed as p(1 − p), where p is the (weighted) proportion of 1s, while the
variance of continuous variables is computed using the standard formula.

col_w_corr() is a wrapper for col_w_cov with std set to TRUE.

col_w_dcov() computes the distance covariances between a continuous treatment and the covari-
ates to assess balance for a continuous treatment. A multivariate version is described by Huling et
al. (2023) for computing a scalar value that represents the balance for all covariates simultaneously;
the statistic computed here is for one covariate at a time. The distance covariances can optionally be
weighted or can be requested as distance correlations (i.e., standardized distance covariances). The
distance correlations are computed as the distance covariance between the treatment and covariate
divided by a standardization factor, which is equal to the square root of the product of the distance
variance of treatment and the distance variance of the covariate, where the distance variance is
the distance covariance of a variable with itself. The standardization factor is computed using the
unweighted distance variances when s.weights are absent, and is computed using the sampling
weighted distance variances when s.weights are present, except when s.d.denom = "weighted",
in which case the product of weighted.weights and s.weights (if present) are used to weight the
standardization factor. For this reason, the computed distance correlation can be greater than 1. The
standardization factor is always computed using the whole sample even when subset is used. The
distance covariance is computed using the product of weights and s.weights, if specified.

col_w_dcorr() is a wrapper for col_w_dcov with std set to TRUE.

Value

A vector of balance statistics, one for each variable in mat. If mat has column names, the output
will be named as well.



balance-summary 79

References

Austin, P. C. (2019). Assessing covariate balance when using the generalized propensity score with
quantitative or continuous exposures. Statistical Methods in Medical Research, 28(5), 1365–1377.
doi:10.1177/0962280218756159

Franklin, J. M., Rassen, J. A., Ackermann, D., Bartels, D. B., & Schneeweiss, S. (2014). Metrics
for covariate balance in cohort studies of causal effects. Statistics in Medicine, 33(10), 1685–1699.
doi:10.1002/sim.6058

Huling, J. D., Greifer, N., & Chen, G. (2023). Independence Weights for Causal Inference with
Continuous Treatments. Journal of the American Statistical Association, 0(0), 1–14. doi:10.1080/
01621459.2023.2213485

What Works Clearinghouse. (2020). WWC Procedures Handbook (Version 4.1). Retrieved from
https://ies.ed.gov/ncee/wwc/Handbooks

See Also

• bal.tab()

• bal.compute()

• balance-statistics

Examples

data("lalonde", package = "cobalt")

treat <- lalonde$treat
covs <- subset(lalonde, select = -c(treat, re78))
covs0 <- splitfactor(covs, drop.first = "if2")
bin.vars <- c(FALSE, FALSE, TRUE, TRUE, TRUE,

TRUE, TRUE, FALSE, FALSE)
W <- WeightIt::weightit(treat ~ covs, method = "glm",

estimand = "ATE")
weights <- W$weights

round(data.frame(
m0 = col_w_mean(covs0, weights = weights, subset = treat == 0),
sd0 = col_w_sd(covs0, weights = weights,

bin.vars = bin.vars, subset = treat == 0),
m1 = col_w_mean(covs0, weights = weights, subset = treat == 1),
sd1 = col_w_sd(covs0, weights = weights,

bin.vars = bin.vars, subset = treat == 1),
smd = col_w_smd(covs0, treat = treat, weights = weights,

std = TRUE, bin.vars = bin.vars),
vr = col_w_vr(covs0, treat = treat, weights = weights,

bin.vars = bin.vars),
ks = col_w_ks(covs0, treat = treat, weights = weights,

bin.vars = bin.vars),
ovl = col_w_ovl(covs0, treat = treat, weights = weights,

bin.vars = bin.vars),
row.names = colnames(covs0)

), 4)

https://doi.org/10.1177/0962280218756159
https://doi.org/10.1002/sim.6058
https://doi.org/10.1080/01621459.2023.2213485
https://doi.org/10.1080/01621459.2023.2213485
https://ies.ed.gov/ncee/wwc/Handbooks


80 class-bal.tab.cluster

# Compare to bal.tab():
bal.tab(covs, treat = treat, weights = weights,

disp = c("m", "sd"),
stats = c("m", "v", "ks", "ovl"),
estimand = "ATE", method = "weighting",
binary = "std")

class-bal.tab.cluster Using bal.tab() with Clustered Data

Description

When using bal.tab() with clustered data, the output will be different from the case with single-
level data, and there are some options that are common across all bal.tab() methods. This page
outlines the outputs and options in this case.

There are two main components of the output of bal.tab() with clustered data: the within-cluster
balance summaries and the across-cluster balance summary. The within-cluster balance summaries
display balance for units within each cluster separately.

The across-cluster balance summary pools information across the within-cluster balance summaries
to simplify balance assessment. It provides a combination (e.g., mean or maximum) of each balance
statistic for each covariate across all clusters. This allows you to see how bad the worst imbalance is
and what balance looks like on average. The balance summary will not be computed if longitudinal
treatments, multi-category treatments, or multiply imputed data are used.

In order to use the thresholds argument with bal.tab() with clustered data and the balance
summary across clustered displayed, cluster.fun must be supplied and set to a single string,
which is not the default.

Allowable arguments

There are four arguments for each bal.tab() method that can handle clustered data: cluster,
which.cluster, cluster.summary, and cluster.fun.

cluster A vector of cluster membership. This can be factor, character, or numeric vector. This
argument is required to let bal.tab() know that the data is clustered. If a data argument is
specified, this can also be the name of a variable in data that contains cluster membership.

which.cluster This is a display option that does not affect computation. If .all (the default),
all clusters in cluster will be displayed. If .none, no clusters will be displayed. Otherwise,
can be a vector of cluster names or numerical indices for which to display balance. Indices
correspond to the alphabetical order of cluster names (or the order of cluster levels if a factor).

cluster.summary This is a display option that does not affect computation. If TRUE, the balance
summary across clusters will be displayed. The default is TRUE, and if which.cluster is
.none, it will automatically be set to TRUE.



class-bal.tab.imp 81

cluster.fun This is a display option that does not affect computation. Can be "min", "mean", or
"max" and corresponds to which function is used in the across-cluster summary to combine
results across clusters. For example, if cluster.fun = "mean" the mean balance statistic
across clusters will be displayed. The default when abs = FALSE in the bal.tab() call is to
display all three. The default when abs = TRUE in the bal.tab() call is to display just the
mean and maximum absolute balance statistic.

Output

The output is a bal.tab.cluster object, which inherits from bal.tab. It has the following ele-
ments:

• Cluster.Balance: For each cluster, a regular bal.tab object containing a balance table, a
sample size summary, and other balance assessment tools, depending on which options are
specified.

• Cluster.Summary: The balance summary across clusters. This will include the combina-
tion of each balance statistic for each covariate across all clusters according to the value of
cluster.fun.

• Observations: A table of sample sizes or effective sample sizes for each cluster before and
after adjustment.

As with other methods, multiple weights can be specified, and values for all weights will appear in
all tables.

See Also

• bal.tab()

• bal.tab.data.frame()

• print.bal.tab()

• vignette("segmented-data") for examples

class-bal.tab.imp Using bal.tab() with Multiply Imputed Data

Description

When using bal.tab() with multiply imputed data, the output will be different from the case with
a single data set. Multiply imputed data can be used with all bal.tab() methods, and the mimids
and wimids methods for MatchThem objects automatically incorporate multiply imputed data.
This page outlines the outputs and options available with multiply imputed data.

There are two main components of the output of bal.tab() with multiply imputed data: the within-
imputation balance summaries and the across-imputation balance summary. The within-imputation
balance summaries display balance for units within each imputed data set separately. In general,
this will not be very useful because interest rarely lies in the qualities of any individual imputed
data set.



82 class-bal.tab.imp

The across-imputation balance summary pools information across the within-imputation balance
summaries to simplify balance assessment. It provides the average, smallest, and largest balance
statistic for each covariate across all imputations. This allows you to see how bad the worst im-
balance is and what balance looks like on average across the imputations. The summary behaves
differently depending on whether abs is specified as TRUE or FALSE. When abs = TRUE, the across-
imputation balance summary will display the mean absolute balance statistics and the maximum
absolute balance statistics. When abs = FALSE, the across-imputation balance summary will dis-
play the minimum, mean, and maximum of the balance statistic in its original form.

In order to use the thresholds argument with bal.tab() with multiply imputed data and the
balance summary across imputations displayed, imp.fun must be supplied and set to a single string,
which is not the default. See vignette("segmented-data") for details.

Allowable arguments

There are four arguments for each bal.tab() method that can handle multiply imputed data: imp,
which.imp, imp.summary, and imp.fun.

imp A vector of imputation membership. This can be factor, character, or numeric vector. This ar-
gument is required to let bal.tab() know that the data is multiply imputed unless MatchThem
objects are used. If a data argument is specified, this can also be the name of a variable in
data that contains imputation membership. If the data argument is a mids object, the output
of a call to mice(), imp does not need to be specified and will automatically be extracted from
the mids object.

which.imp This is a display option that does not affect computation. If .all, all imputations in
imp will be displayed. If .none (the default), no imputations will be displayed. Otherwise,
can be a vector of imputation indices for which to display balance.

imp.summary This is a display option that does not affect computation. If TRUE, the balance sum-
mary across imputations will be displayed. The default is TRUE, and if which.imp is .none, it
will automatically be set to TRUE.

imp.fun This is a display option that does not affect computation. Can be "min", "mean", or "max"
and corresponds to which function is used in the across-imputation summary to combine re-
sults across imputations. For example, if imp.fun = "mean" the mean balance statistic across
imputations will be displayed. The default when abs = FALSE in the bal.tab() call is to dis-
play all three. The default when abs = TRUE in the bal.tab() call is to display just the mean
and maximum absolute balance statistic.

Output

The output is a bal.tab.imp object, which inherits from bal.tab. It has the following elements:

• Imputation.Balance: For each imputation, a regular bal.tab object containing a balance
table, a sample size summary, and other balance assessment tools, depending on which options
are specified.

• Balance.Across.Imputations: The balance summary across imputations. This will include
the combination of each balance statistic for each covariate across all imputations according
to the value of imp.fun.

• Observations: A table of sample sizes or effective sample sizes averaged across imputations
before and after adjustment.



class-bal.tab.msm 83

As with other methods, multiple weights can be specified, and values for all weights will appear in
all tables.

See Also

• bal.tab()

• bal.tab.data.frame()

• print.bal.tab()

• vignette("segmented-data") for examples

class-bal.tab.msm Using bal.tab() with Longitudinal Treatments

Description

When using [bal.tab()] with longitudinal treatments, the output will be different from the case with point treatments, and there are some options that are common across all `bal.tab()` methods for dealing with longitudinal data. This page outlines the outputs and options in this case.

There are two main components of the output of `bal.tab()` with longitudinal treatments: the time-point-specific balance summary and across-time-points balance summary. The time-point-specific balance summaries are standard point treatment balance summaries at each time point.

The across-time-points balance summary is, for each variable, the greatest imbalance across all time-point-specific balance summaries. If the greatest observed imbalance is tolerable, then all other imbalances for that variable will be tolerable too, so focusing on reducing the greatest imbalance is sufficient for reducing imbalance overall. The balance summary will not be computed if multi-category treatments or multiply imputed data are used.

Allowable arguments

There are two additional arguments for each bal.tab() method that can handle longitudinal treat-
ments: which.time and msm.summary.

which.time This is a display option that does not affect computation. If .all (the default), all
time points will be displayed. If .none, no time points will be displayed. Otherwise, can be a
vector of treatment names or indices for which to display balance.

msm.summary This is a display option that does not affect computation. If TRUE, the balance sum-
mary across time points will be displayed. The default is TRUE, and if which.time is .none,
it will automatically be set to TRUE.

Output

The output is a bal.tab.msm object, which inherits from bal.tab. It has the following elements:

• Time.Balance: For each time point, a regular bal.tab object containing a balance table, a
sample size summary, and other balance assessment tools, depending on which options are
specified.

• Balance.Across.Times: The balance summary across time points. This will include the
maximum balance statistic(s) for each covariate across all time points.

• Observations: A table of sample sizes or effective sample sizes for each time point before
and after adjustment.

As with other methods, multiple weights can be specified, and values for all weights will appear in
all tables.



84 class-bal.tab.multi

Note

The balance tables presented here are not the same as those recommended by Jackson (2016) and
computed in his R package, confoundr, as these do not take into account treatment history. The
balance statistics presented here should be used with caution and may not reflect balance in an
accurate way.

References

Jackson, J. W. (2016). Diagnostics for Confounding of Time-varying and Other Joint Exposures:
Epidemiology, 27(6), 859–869. doi:10.1097/EDE.0000000000000547

See Also

• bal.tab()

• bal.tab.time.list()

• print.bal.tab()

• vignette("longitudinal-treat") for examples

class-bal.tab.multi Using bal.tab() with Multi-Category Treatments

Description

When using bal.tab() with multi-category treatments, the output will be different from the case
with binary or continuous treatments, and there are some options that are common across all
bal.tab() methods. This page outlines the outputs and options in this case.

There are two main components of the output of bal.tab() with multi-category treatments: the
two-group treatment comparisons and the balance summary. The two-group treatment comparisons
are standard binary treatment comparison either for pairs of groups (e.g., for treatments A, B, and
C, "A vs. B", "A vs. C", and "B vs. C") or each group against all the groups (i.e., the entire sample).

The balance summary is, for each variable, the greatest imbalance across all two-group compar-
isons. So, for variable X1, if "A vs. B" had a standardized mean difference of 0.52, "A vs. C" had a
standardized mean difference of .17, and "B vs. C" had a standardized mean difference of .35, the
balance summary would have 0.52 for the value of the standardized mean difference for X1. The
same goes for other variables and other measures of balance. If the greatest observed imbalance is
tolerable, then all other imbalances for that variable will be tolerable too, so focusing on reducing
the greatest imbalance is sufficient for reducing imbalance overall. (Note that when s.d.denom =
"pooled", i.e., when the estimand is the ATE, the pooled standard deviation in the denominator
will be the average of the standard deviations across all treatment groups, not just those used in the
pairwise comparison.) The balance summary will not be computed if multiply imputed data are
used.

https://CRAN.R-project.org/package=confoundr
https://doi.org/10.1097/EDE.0000000000000547


class-bal.tab.multi 85

Allowable arguments

There are four arguments for each bal.tab() method that can handle multi-category treatments:
pairwise, focal, which.treat, and multi.summary.

pairwise Whether to compute the two-group comparisons pairwise or not. If TRUE, bal.tab()
will compute comparisons for each pair of treatments. This can be valuable if treatments are
to be compared with one another (which is often the case). If FALSE, bal.tab() will compute
balance for each treatment group against the full unadjusted sample when focal is NULL and
for each non-focal group against the focal group otherwise.

focal When one group is to be compared to multiple control groups in an ATT analysis, the group
considered "treated" is the focal group. By specifying the name or index of the treatment
condition considered focal, bal.tab() will only compute and display pairwise balance for
treatment comparisons that include the focal group when pairwise = FALSE.

which.treat This is a display option that does not affect computation. When displaying the
bal.tab output, which treatments should be displayed? If a vector of length 1 is entered,
all comparisons involving that treatment group will be displayed. If a vector of length 2 or
more is entered, all comparisons involving treatments that both appear in the input will be
displayed. For example, inputting "A" will display "A vs. B" and "A vs. C", while entering
c("A", "B") will only display "A vs. B". .none indicates no treatment comparisons will
be displayed, and .all indicates all treatment comparisons will be displayed. .none is the
default.

multi.summary If TRUE, the balance summary across all comparisons will be computed and dis-
played. This includes one row for each covariate with maximum balance statistic across all
pairwise comparisons. Note that, if variance ratios or KS statistics are requested in addition
to mean differences, the displayed values may not come from the same pairwise comparisons;
that is, the greatest standardized mean difference and the greatest variance ratio may not come
from the same comparison. The default is TRUE, and if which.treat is .none, it will auto-
matically be set to TRUE.

Output

The output is a bal.tab.multi object, which inherits from bal.tab. It has the following elements:

• Pair.Balance:For each pair of treatment groups, a regular bal.tab object containing a bal-
ance table, a sample size summary, and other balance assessment tools, depending on which
options are specified. If pairwise is FALSE, the comparisons will be between each group and
the groups combined (labeled "All") when focal is NULL and between each non-focal group
and the focal group otherwise.

• Balance.Across.Pairs: The balance summary across two-group comparisons. This will
include the greatest (i.e., maximum) absolute balance statistics(s) for each covariate across all
comparisons computed. Thresholds can be requested for each balance measure as with binary
treatments.

• Observations: A table of sample sizes or effective sample sizes for each treatment group
before and after adjustment.

As with other methods, multiple weights can be specified, and values for all weights will appear in
all tables.



86 class-bal.tab.subclass

Note

In versions 4.3.1 and earlier, setting pairwise = FALSE would compare each group to the full ad-
justed sample. Now, each group is compared to the full unadjusted sample (unadjusted except for
s.weights, if supplied).

In versions 4.3.1 and earlier, pairwise was ignored with non-NULL focal and was automatically set
to FALSE. pairwise can be specified and its default is now TRUE, so balance between all treatment
groups will be computed by default rather than only between each non-group and the focal group.
To recover previous functionality, set pairwise = FALSE with non-NULL focal.

See Also

• bal.tab()

• bal.tab.data.frame()

• print.bal.tab()

• vignette("segmented-data") for examples

class-bal.tab.subclass

Using bal.tab() with Subclassified Data

Description

When using bal.tab() with subclassified data, i.e., data split into subclasses where balance may
hold, the output will be different from the standard, non-subclassified case, and there is an additional
option for controlling display. This page outlines the outputs and options in this case.

There are two main components of the output of bal.tab() with subclassified data: the balance
within subclasses and the balance summary across subclasses. The within-subclass balance displays
essentially are standard balance displays for each subclass, except that only "adjusted" values are
available, because the subclassification itself is the adjustment.

The balance summary is, for each variable, like a weighted average of the balance statistics across
subclasses. This is computed internally by assigning each individual a weight based on their sub-
class and treatment group membership and then computing weighted balance statistics as usual
with these weights. This summary is the same one would get if subclasses were supplied to the
match.strata argument rather than to subclass. Because the means and mean differences are
additive, their computed values will be weighted averages of the subclass-specific values, but for
other statistics, the computed values will not be.

Allowable arguments

There are three arguments for bal.tab() that relate to subclasses: subclass, which.subclass,
and subclass.summary.

subclass For the data.frame and formula methods of bal.tab(), a vector of subclass mem-
bership or the name of the variable in data containing subclass membership. When using
subclassification with a function compatible with cobalt, such as matchit() in MatchIt, this
argument can be omitted because the subclasses are in the output object.



display-options 87

which.subclass This is a display option that does not affect computation. If .all, all subclasses
in subclass will be displayed. If .none (the default), no subclasses will be displayed. Other-
wise, can be a vector of subclass indices for which to display balance.

subclass.summary This is a display option that does not affect computation. If TRUE, the balance
summary across subclasses will be displayed. The default is TRUE, and if which.subclass is
.none, it will automatically be set to TRUE.

Output

The output is a bal.tab.subclass object, which inherits from bal.tab. It has the following
elements:

• Subclass.Balance: A list of data frames containing balance information for each covariate
in each subclass.

• Balance.Across.Subclass: A data frame containing balance statistics for each covariate
aggregated across subclasses and for the original sample (i.e., unadjusted). See bal.tab()
for details on what this includes.

• Observations: A table of sample sizes in each subclass and overall.

See Also

• bal.tab()

• bal.tab.data.frame()

• print.bal.tab()

display-options Options for Displaying bal.tab() Output

Description

Several additional arguments can be passed to bal.tab() that control the display of the output;
these arguments are documented here. Not all arguments are applicable to all uses of bal.tab(); for
example, which.subclass, which controls which subclasses are displayed when subclassification
is used, won’t do anything when subclassification is not used. Note that when quick = TRUE is set
in the call to bal.tab() (which is the default), setting any of these arguments to FALSE can prevent
some values from being computed, which can have unintended effects.

Allowed arguments

disp.bal.tab logical; whether to display the table of balance statistics. Default is TRUE, so the
balance table is displayed.

imbalanced.only logical; whether to display only the covariates that failed to meet at least one
of balance thresholds. Default is FALSE, so all covariates are displayed.

un logical; whether to print statistics for the unadjusted sample as well as for the adjusted sample.
Default is FALSE, so only the statistics for the adjusted sample are displayed.



88 display-options

disp character; which distribution summary statistic(s) should be reported. Allowable options
include "means" and "sds". Multiple options are allowed. Abbreviations allowed.

stats character; which statistic(s) should be reported. See stats to see which options are avail-
able. Multiple options are allowed. Abbreviations allowed. For binary and multi-category
treatments, the default is "mean.diffs" (i.e., [standardized] mean differences), and for con-
tinuous treatments, the default is "correlations" (i.e., treatment-covariate Pearson correla-
tions).

factor_sep character; the string used to separate factor variables from their levels when variable
names are printed. Default is "_".

int_sep character; the string used to separate two variables involved in an interaction when
variable names are printed. Default is " * ". Older versions of cobalt used "_".

disp.call logical; whether to display the function call from the original input object, if present.
Default is FALSE, so the function call is not displayed.

When subclassification is used:

which.subclass Which subclasses (if any) should be displayed. If .all, all subclasses will be
displayed. If .none (the default), no subclasses will be displayed. Otherwise, can be a vector
of subclass indices for which to display balance.

subclass.summary logical; whether to display the balance summary across subclasses. If
TRUE, the balance summary across subclasses will be displayed. The default is TRUE, and
if which.subclass is .none, it will automatically be set to TRUE.

When the treatment is multi-category:

which.treat For which treatments or treatment combinations balance tables should be dis-
played. If a vector of length 1 is entered, all comparisons involving that treatment group will
be displayed. If a vector of length 2 or more is entered, all comparisons involving treatments
that both appear in the input will be displayed. For example, setting which.treat = "A" will
display "A vs. B" and "A vs. C", while setting which.treat = c("A", "B") will only display
"A vs. B". .none indicates no treatment comparisons will be displayed, and .all indicates
all treatment comparisons will be displayed. Default is .none. See bal.tab.multi().

multi.summary logical; whether to display the balance summary across all treatment pairs.
This includes one row for each covariate with maximum balance statistic across all pairwise
comparisons. Note that, if variance ratios or KS statistics are requested, the displayed values
may not come from the same pairwise comparisons; that is, the greatest standardized mean
difference and the greatest variance ratio may not come from the same comparison. Default
is TRUE when which.treat is .none and FALSE otherwise. See bal.tab.multi().

When clusters are present:

which.cluster For which clusters balance tables should be displayed. If .all, all clusters in
cluster will be displayed. If .none, no clusters will be displayed. Otherwise, can be a vector
of cluster names or numerical indices for which to display balance. Indices correspond to the
alphabetical order of cluster names (or the order of cluster levels if a factor). Default is .all.
See class-bal.tab.cluster.

cluster.summary logical; whether to display the balance summary across clusters. Default is
TRUE when which.cluster is .none and FALSE otherwise (note the default for which.cluster
is .all). See class-bal.tab.cluster.



display-options 89

cluster.fun Which function is used in the across-cluster summary to combine results across
clusters. Can be "min", "mean", or "max". For example, if cluster.fun = "mean" the
mean balance statistic across clusters will be displayed. The default when abs = FALSE in the
bal.tab() call is to display all three. The default when abs = TRUE in the bal.tab() call is
to display just the mean and maximum absolute balance statistic. See class-bal.tab.cluster.

When multiple imputations are present:

which.imp For which imputations balance tables should be displayed. If .all, all imputa-
tions in imp will be displayed. If .none, no imputations will be displayed. Otherwise,
can be a vector of imputation indices for which to display balance. Default is .none. See
class-bal.tab.imp.

imp.summary logical; whether to display the balance summary across imputations. Default is
TRUE when which.imp is .none and FALSE otherwise. See class-bal.tab.imp.

imp.fun Which function is used in the across-imputation summary to combine results across
imputations. Can be "min", "mean", or "max". For example, if imp.fun = "mean" the mean
balance statistic across imputations will be displayed. The default when abs = FALSE in the
bal.tab() call is to display all three. The default when abs = TRUE in the bal.tab() call is
to display just the mean and maximum absolute balance statistic. See class-bal.tab.imp.

When the treatment is longitudinal:

which.time For which time points balance tables should be displayed. If .all, all time points
will be displayed. If .none, no time points will be displayed. Otherwise, can be a vec-
tor of treatment names or indices for which to display balance. Default is .none. See
class-bal.tab.msm.

msm.summary logical; whether to display the balance summary across time points. Default is
TRUE when which.time is .none and FALSE otherwise. See class-bal.tab.msm.

Setting options globally

In addition to being able to be specified as arguments, if you find you frequently set a display
option to something other than its default, you can set that as a global option (for the present R
session) using set.cobalt.options() and retrieve it using get.cobalt.options(). Note that
global options cannot be set for which.subclass, which.cluster, which.imp, which.treat, or
which.time.

Note

When calling bal.tab() using do.call(), if you are using .all or .none as inputs to arguments,
you need to use alist() rather than list() to group the arguments. For example, do.call(bal.tab,
list(., which.cluster = .none)) will produce an error, but do.call(bal.tab, alist(., which.cluster
= .none)) should work correctly.

See Also

bal.tab(), print.bal.tab()



90 f.build

f.build Convenient Formula Generation

Description

f.build() returns a formula of the form y ~ x1 + x2 + ... from a data frame input. It can be much
quicker to use f.build() than to hand-write the precise formula, which may contain errors. It can
be used in place of a formula in, for example, glm(), matchit(), or bal.tab(). It provides similar
functionality to reformulate().

Usage

f.build(y = NULL, rhs = NULL)

Arguments

y the quoted name of the response (left hand side) variable in the formula. Only
one variable is supported. If missing, NULL, or the empty string (""), the formula
will have no response variable. If rhs is not supplied, y will replace rhs and y
will be set to "".

rhs a data frame whose variable names will be the terms on the right hand side of
the formula, or a character vector whose values will be the terms on the right
hand side of the formula. If missing, the argument to y will replace rhs and y
will be set to ""; in essence, f.build("x") is the same as f.build("", "x"),
both producing ~ x.

Value

a formula object.

See Also

reformulate()

Examples

data(lalonde)
covs <- subset(lalonde, select = -c(treat, re78))
lm(f.build("treat", covs), data = lalonde)



get.w 91

get.w Extract Weights from Preprocessing Objects

Description

Extracts weights from the outputs of preprocessing functions.

Usage

get.w(x, ...)

## S3 method for class 'matchit'
get.w(x, ...)

## S3 method for class 'ps'
get.w(x, stop.method = NULL, estimand, s.weights = FALSE, ...)

## S3 method for class 'mnps'
get.w(x, stop.method = NULL, s.weights = FALSE, ...)

## S3 method for class 'ps.cont'
get.w(x, s.weights = FALSE, ...)

## S3 method for class 'iptw'
get.w(x, stop.method = NULL, s.weights = FALSE, ...)

## S3 method for class 'Match'
get.w(x, ...)

## S3 method for class 'CBPS'
get.w(x, estimand, ...)

## S3 method for class 'CBMSM'
get.w(x, ...)

## S3 method for class 'ebalance'
get.w(x, treat, ...)

## S3 method for class 'optmatch'
get.w(x, estimand, ...)

## S3 method for class 'cem.match'
get.w(x, estimand, ...)

## S3 method for class 'weightit'
get.w(x, s.weights = FALSE, ...)



92 get.w

## S3 method for class 'designmatch'
get.w(x, treat, estimand, ...)

## S3 method for class 'mimids'
get.w(x, ...)

## S3 method for class 'wimids'
get.w(x, ...)

## S3 method for class 'sbwcau'
get.w(x, ...)

Arguments

x output from the corresponding preprocessing packages.

... arguments passed to other methods.

stop.method the name of the stop method used in the original call to ps() or mnps() in twang,
e.g., "es.mean". If empty, will return weights from all stop method available
into a data.frame. Abbreviations allowed.

estimand if weights are computed using the propensity score (i.e., for the ps and CBPS
methods), which estimand to use to compute the weights. If "ATE", weights will
be computed as 1/ps for the treated group and 1/(1-ps) for the control group.
If "ATT", weights will be computed as 1 for the treated group and ps/(1-ps) for
the control group. If not specified, get.w() will try to figure out which estimand
is desired based on the object.
If weights are computed using subclasses/matching strata (i.e., for the cem and
designmatch methods), which estimand to use to compute the weights. First, a
subclass propensity score is computed as the proportion of treated units in each
subclass, and the one of the formulas above will be used based on the estimand
requested. If not specified, "ATT" is assumed.

s.weights whether the sampling weights included in the original call to the fitting func-
tion should be included in the weights. If TRUE, the returned weights will be
the product of the balancing weights estimated by the fitting function and the
sampling weights. If FALSE, only the balancing weights will be returned.

treat a vector of treatment status for each unit. This is required for methods that
include treat as an argument. The treatment variable that was used in the
original preprocessing function call should be used.

Details

The output of get.w() can be used in calls to the formula and data frame methods of bal.tab()
(see example below). In this way, the output of multiple preprocessing packages can be viewed
simultaneously and compared. The weights can also be used in weights statements in regression
methods to compute weighted effects.

twang has a function called get.weights() that performs the same function on ps objects but
offers slightly finer control. Note that the weights generated by get.w() for ps objects do not
include sampling weights by default.



lalonde 93

When sampling weights are used with CBPS() in CBPS, the returned weights will already have the
sampling weights incorporated. To retrieve the balancing weights on their own, divide the returned
weights by the original sampling weights. For other packages, the balancing weights are returned
separately unless s.weights = TRUE, which means they must be multiplied by the sampling weights
for effect estimation.

When Match() in Matching is used with CommonSupport = TRUE, the returned weights will be
incorrect. This option is not recommended by the package authors.

Value

A vector or data frame of weights for each unit. These may be matching weights or balancing
weights.

Examples

data("lalonde", package = "cobalt")

m.out <- MatchIt::matchit(treat ~ age + educ + race,
data = lalonde,
estimand = "ATT")

w.out <- WeightIt::weightit(treat ~ age + educ + race,
data = lalonde,
estimand = "ATT")

bal.tab(treat ~ age + educ + race, data = lalonde,
weights = data.frame(matched = get.w(m.out),

weighted = get.w(w.out)),
method = c("matching", "weighting"),
estimand = "ATT")

lalonde Data from National Supported Work Demonstration and PSID, as an-
alyzed by Dehejia and Wahba (1999).

Description

This is a subsample of the data from the treated group in the National Supported Work Demonstra-
tion (NSW) and the comparison sample from the Population Survey of Income Dynamics (PSID).
This data was previously analyzed extensively by Lalonde (1986) and Dehejia and Wahba (1999).

Usage

lalonde

lalonde_mis



94 love.plot

Format

A data frame with 614 observations (185 treated, 429 control). There are 9 variables measured for
each individual.

• "treat" is the treatment assignment (1=treated, 0=control).

• "age" is age in years.

• "educ" is education in number of years of schooling.

• "race" is the individual’s race/ethnicity, (Black, Hispanic, or White). Note some other versions
of this dataset use indicator variables black and hispan instead of a single race variable.

• "married" is an indicator for married (1=married, 0=not married).

• "nodegree" is an indicator for whether the individual has a high school degree (1=no degree,
0=degree).

• "re74" is income in 1974, in U.S. dollars.

• "re75" is income in 1975, in U.S. dollars.

• "re78" is income in 1978, in U.S. dollars.

"treat" is the treatment variable, "re78" is the outcome, and the others are pre-treatment covariates.

An object of class data.frame with 614 rows and 9 columns.

Details

lalonds_mis is the same dataset with missing values in three of the covariates.

References

Lalonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental
data. American Economic Review 76: 604-620.

Dehejia, R.H. and Wahba, S. (1999). Causal Effects in Nonexperimental Studies: Re-Evaluating the
Evaluation of Training Programs. Journal of the American Statistical Association 94: 1053-1062.

love.plot Display Balance Statistics in a Love Plot

Description

Generates a "Love" plot graphically displaying covariate balance before and after adjusting. Options
are available for producing publication-ready plots. Detailed examples are available in vignette("love.plot").



love.plot 95

Usage

love.plot(
x,
stats,
abs,
agg.fun = NULL,
var.order = NULL,
drop.missing = TRUE,
drop.distance = FALSE,
thresholds = NULL,
line = FALSE,
stars = "none",
grid = FALSE,
limits = NULL,
colors = NULL,
shapes = NULL,
alpha = 1,
size = 3,
wrap = 30,
var.names = NULL,
title,
sample.names,
labels = FALSE,
position = "right",
themes = NULL,
...

)

Arguments

x the valid input to a call to bal.tab() (e.g., the output of a preprocessing func-
tion). Other arguments that would be supplied to bal.tab() can be entered with
.... Can also be a bal.tab object, i.e., the output of a call to bal.tab(). See
Examples. If x is not a bal.tab object, love.plot() calls bal.tab() with the
arguments supplied.

stats character; which statistic(s) should be reported. See stats for allowable op-
tions. For binary and multi-category treatments, "mean.diffs" (i.e., mean differ-
ences) is the default. For continuous treatments, "correlations" (i.e., treatment-
covariate Pearson correlations) is the default. Multiple options are allowed.

abs logical; whether to present the statistic in absolute value or not. For variance
ratios, this will force all ratios to be greater than or equal to 1. If x is a bal.tab
object, love.plot() might ignore abs depending on the original bal.tab()
call. If unspecified, uses whatever was used in the call to bal.tab().

agg.fun if balance is to be displayed across clusters or imputations rather than within
a single cluster or imputation, which summarizing function ("mean", "max", or
"range") of the balance statistics should be used. If "range" is entered, love.plot()
will display a line from the min to the max with a point at the mean for each co-
variate. Abbreviations allowed; "range" is default. Remember to set which.<ARG> = .none



96 love.plot

(where <ARG> is the grouping argument, such as cluster or imp) to use agg.fun.
See Details.

var.order a character or love.plot object; how to order the variables in the plot. See
Details.

drop.missing logical; whether to drop rows for variables for which the statistic has a value
of NA, for example, variance ratios for binary variables. If FALSE, there will
be rows for these variables but no points representing their value. Default is
TRUE, so that variables with missing balance statistics are absent. When multiple
stats are requested, only variables with NAs for all stats will be dropped if
drop.missing = TRUE. This argument used to be called no.missing, and that
name still works (but has been deprecated).

drop.distance logical; whether to ignore the distance measure (if there are any) in plotting.

thresholds numeric; an optional value to be used as a threshold marker in the plot. Should
be a named vector where each name corresponds to the statistic for which the
threshold is to be applied. See example at stats. If x is a bal.tab object and a
threshold was set in it (e.g., with thresholds), its threshold will be used unless
overridden using the threshold argument in love.plot().

line logical; whether to display a line connecting the points for each sample.

stars when mean differences are to be displayed, which variable names should have
a star (i.e., an asterisk) next to them. Allowable values are "none", "std" (for
variables with mean differences that have been standardized), or "raw" (for vari-
ables with mean differences that have not been standardized). If "raw", the x-
axis title will be "Standardized Mean Differences". Otherwise, it will be "Mean
Differences". Ignored when mean difference are not displayed. See Details for
an explanation of the purpose of this option.

grid logical; whether gridlines should be shown on the plot. Default is FALSE.

limits numeric; the bounds for the x-axis of the plot. Must a (named) list of vectors of
length 2 in ascending order, one for each value of stats that is to have limits;
e.g., list(m = c(-.2, .2)). If values exceed the limits, they will be plotted at
the edge.

colors the colors of the points on the plot. See ’Color Specification’ at graphics::par()
or the ggplot2 aesthetic specifications vignette (vignette("ggplot2-specs")).
The first value corresponds to the color for the unadjusted sample, and the sec-
ond color to the adjusted sample. If only one is specified, it will apply to both.
Defaults to the default ggplot2 colors.

shapes the shapes of the points on the plot. Must be one or two numbers between 1
and 25 or the name of a valid shape. See the ggplot2 aesthetic specifications
vignette (vignette("ggplot2-specs")) for valid options. Values 15 to 25 are
recommended. The first value corresponds to the shape for the unadjusted sam-
ple, and the second color to the adjusted sample. If only one is specified, it will
apply to both. Defaults to 19 ("circle filled").

alpha numeric; the transparency of the points. See ggplot2::scale_alpha().

size numeric; the size of the points on the plot. Defaults to 3. In previous versions,
the size was scaled by a factor of 3. Now size corresponds directly to the size
aesthetic in ggplot2::geom_point().



love.plot 97

wrap numeric; the number of characters at which to wrap axis labels to the next line.
Defaults to 30. Decrease this if the axis labels are excessively long.

var.names an optional object providing alternate names for the variables in the plot, which
will otherwise be the variable names as they are stored. This may be useful
when variables have ugly names. See Details on how to specify var.names.
var.names() can be a useful tool for extracting and editing the names from the
bal.tab object.

title character; the title of the plot.
sample.names character; new names to be given to the samples (i.e., in place of "Unadjusted"

and "Adjusted"). For example, when matching it used, it may be useful to enter
c("Unmatched", "Matched").

labels logical or character; labels to give the plots when multiple stats are re-
quested. If TRUE, the labels will be capital letters. Otherwise, must be a string
with the same length as stats. This can be useful when the plots are to be used
in an article.

position the position of the legend. When stats has length 1, this can be any value that
would be appropriate as an argument to legend.position in ggplot2::theme().
When stat has length greater than 1, can be one of "none", "left", "right",
"bottom", or "top".

themes an optional list of theme objects to append to each individual plot. Each entry
should be the output of a call to ggplot2::theme() in ggplot2. This is a way
to customize the individual plots when multiple stats are requested since the
final output is not a manipulable ggplot object. It can be used with length-
1 stats, but it probably makes more sense to just add the theme() call after
love.plot().

... additional arguments passed to bal.tab() or options for display of the plot.
The following related arguments are currently accepted:
use.grid whether to use gridExtra::arrangeGrob() in gridExtra to make

the plot when stats has length 1. See section Value.
disp.subclass whether to display individual subclasses if subclassification is

used. Overrides the disp.subclass option in the original bal.tab() call
if x is a bal.tab object.

star_char character; when stars are used, the character that should be the
"star" next to the starred variables. The default is "*". "†" or "\u2020"
(i.e., dagger) might be appealing as well.

Additionally, any of the which. arguments used with clustered or multiply im-
puted data or longitudinal or multi-category treatments can be specified to dis-
play balance on selected groupings. Set to .none to aggregate across groups
(in which agg.fun comes into effect) and set to .all to view all groups. See
display-options for options, and see vignette("segmented-data") for details
and examples.

Details

love.plot can be used with clusters, imputations, and multi-category and longitudinal treatments
in addition to the standard case. Setting the corresponding which. argument to .none will ag-
gregate across that dimension. When aggregating, an argument should be specified to agg.fun



98 love.plot

referring to whether the mean, minimum ("min"), or maximum ("max") balance statistic or range
("range", the default) of balance statistics for each covariate should be presented in the plot. See
vignette("segmented-data") for examples.

With subclasses, balance will be displayed for the unadjusted sample and the aggregated subclassi-
fied sample. If disp.subclass is TRUE, each subclass will be displayed additionally as a number
on the plot.

Variable order using var.order:
The order that the variables are presented in depends on the argument to var.order. If NULL, the
default, they will be displayed in the same order as in the call to bal.tab(), which is the order
of the underlying data set. If "alphabetical", they will be displayed in alphabetical order. If
"unadjusted", they will be ordered by the balance statistic of the unadjusted sample. To order
by the values of the adjusted sample, "adjusted" can be supplied if only one set of weights (or
subclasses) are specified; otherwise, the name of the set of weights should be specified.
If multiple stats are requested, the order will be determined by the first entry to stats; for exam-
ple, if both "mean.diffs" and "ks.statistics" are requested and var.order = "unadjusted",
the variables will be displayed in order of the unadjusted mean differences for both plots. If mul-
tiple plots are produced simultaneously (i.e., for individual clusters or imputations), var.order
can only be NULL or "alphabetical".
If a love.plot object is supplied, the plot being drawn will use the variable order in the supplied
love.plot object. This can be useful when making more than one plot and the variable order
should be the same across plots.

Variable names using var.names:
The default in love.plot() is to present variables as they are named in the output of the call to
bal.tab(), so it is important to know this output before specifying alternate variable names when
using var.names, as the displayed variable names may differ from those in the original data.
There are several ways to specify alternate names for presentation in the displayed plot using the
var.names argument by specifying a list of old and new variable names, pairing the old name
with the new name. You can do this in three ways: 1) use a vector or list of new variable names,
with the names of the values the old variable names; 2) use a data frame with exactly one column
containing the new variable names and the row names containing the old variable names; or 3)
use a data frame with two columns, the first (or the one named "old") containing the old variable
names and the second (or the one named "new") containing the new variable names. If a variable
in the output from bal.tab() is not provided in the list of old variable names, love.plot() will
use the original old variable name.
love.plot() can replace old variables names with new ones based on exact matching for the
name strings or matching using the variable name components. For example, if a factor variable
"X" with levels "a", "b", and "c" is displayed with love.plot(), the variables "X_a", "X_b",
and "X_c" will be displayed. You can enter replacement names for all three variables individually
with var.names, or you can simply specify a replacement name for "X", and "X" will be re-
placed by the given name in all instances it appears, including not just factor expansions, but also
polynomials and interactions in int = TRUE in the original bal.tab() call. In an interaction with
another variable, say "Y", there are several ways to replace the name of the interaction term "X_a
* Y". If the entire string ("X_a * Y") is included in var.names, the entire string will be replaced.
If "X_a" is included in var.names, only it will be replaced (and it will be replaced everywhere
else it appears). If "X" is included in var.names, only it will be replaced (and it will be replaced
everywhere else it appears). See example at var.names().



love.plot 99

Stars and the x-axis label with mean differences:
When mean differences are to be displayed, love.plot() attempts to figure out the appropriate
label for the x-axis. If all mean differences are standardized, the x-axis label will be "Standard-
ized Mean Differences". If all mean differences are raw (i.e., unstandardized), the x-axis label
will be "Mean Differences". Otherwise, love.plot() turns to the stars argument. If "raw",
the x-axis label will be "Standardized Mean Differences" (i.e., because un-starred variables have
standardized mean differences displayed). If "std", the x-axis label will be "Mean Differences"
(i.e., because un-starred variables have raw mean differences displayed). If "none", the x-axis
label will be "Mean Differences" and a warning will be issued recommending the use of stars.
The default is to display standardized mean differences for continuous variables, raw mean dif-
ferences for binary variables, and no stars, so this warning will be issued in most default uses of
love.plot(). The purpose of this is to correct behavior of previous versions of cobalt in which
the default x-axis label was "Mean Differences", even when standardized mean differences were
displayed, yielding a potentially misleading plot. This warning requires the user to think about
what values are being displayed. The idea of using stars is that the user can, in a caption for the
plot, explain that variables with an asterisk have standardized (or raw) mean differences display,
in contrast to un-starred variables.

Value

When only one type of balance statistic is requested, the returned object is a standard ggplot object
that can be manipulated using ggplot2 syntax. This facilitates changing fonts, background colors,
and features of the legend outside of what love.plot() provides automatically.

When more than one type of balance statistic is requested, the plot is constructed using gridExtra::arrangeGrob()
in gridExtra, which arranges multiple plots and their shared legend into one plot. Because the out-
put of arrangeGrob is a gtable object, its features cannot be manipulated in the standard way. Use
the themes argument to change theme elements of the component plots. The original plots are
stored in the "plots" attribute of the output object.

Note

love.plot can also be called by using plot() or autoplot() on a bal.tab object. If used in this
way, some messages may appear twice. It is recommended that you just use love.plot() instead.

See Also

bal.tab(), vignette("love.plot")

Examples

data("lalonde", package = "cobalt")

## Propensity score weighting
library(WeightIt)
w.out1 <- weightit(treat ~ age + educ + race + married +

nodegree + re74 + re75,
data = lalonde)

love.plot(w.out1, thresholds = c(m = .1),
var.order = "unadjusted")



100 print.bal.tab

## Using alternate variable names
v <- data.frame(old = c("age", "educ", "race_black", "race_hispan",

"race_white", "married", "nodegree", "re74",
"re75", "distance"),

new = c("Age", "Years of Education", "Black",
"Hispanic", "White", "Married", "No Degree",
"Earnings 1974", "Earnings 1975",
"Propensity Score"))

love.plot(w.out1, stats = "m", threshold = .1,
var.order = "unadjusted", var.names = v)

#Using multiple stats
love.plot(w.out1, stats = c("m", "ks"),

thresholds = c(m = .1, ks = .05),
var.order = "unadjusted", var.names = v, stars = "raw",
position = "bottom", wrap = 20)

#Changing visual elements
love.plot(w.out1, thresholds = c(m = .1),

var.order = "unadjusted", var.names = v, abs = TRUE,
shapes = c("triangle filled", "circle"),
colors = c("red", "blue"), line = TRUE,
grid = FALSE, sample.names = c("Original", "Weighted"),
stars = "raw", position = "top")

print.bal.tab Print Results of a Call to bal.tab()

Description

Prints bal.tab() output in a clean way. Provides options for printing.

Usage

## S3 method for class 'bal.tab'
print(
x,
imbalanced.only,
un,
disp.bal.tab,
disp.call,
stats,
disp.thresholds,
disp,
which.subclass,
subclass.summary,



print.bal.tab 101

which.imp,
imp.summary,
imp.fun,
which.treat,
multi.summary,
which.time,
msm.summary,
which.cluster,
cluster.summary,
cluster.fun,
digits = max(3L, getOption("digits") - 3),
...

)

Arguments

x a bal.tab object; the output of a call to bal.tab().
imbalanced.only

logical; whether to display only the covariates that failed to meet at least
one of balance thresholds. Depends only on whether threshold were initial
set in the call to bal.tab() and not on any arguments to print() (except
disp.bal.tab).

un logical; whether to display balance values for the unadjusted sample. Ignored
(and set to TRUE) if no conditioning was performed.

disp.bal.tab logical; whether to display the table of balance statistics. If FALSE, only other
values (e.g., the call, sample sizes, balance tallies, and maximum imbalances)
will be presented.

disp.call logical; whether to display the function call for the input object, if any.
stats character; which statistic(s) should be reported. For binary or multi-category

treatments, the options are "mean.diffs" for mean differences (standardized or
not according the selected bal.tab() options), "variance.ratios" for variance
ratios, and "ks.statistics" for Kolmogorov-Smirnov statistics. "mean.diffs" is
the default. For continuous treatments, the only option is "correlations" for
treatment-covariate correlations. Multiple options are allowed. Abbreviations
allowed. Statistics that weren’t requested in the original call to bal.tab() can-
not be requested with print() unless quick = FALSE in the original call.

disp.thresholds

logical; whether to display thresholds for each statistic for which thresholds
were originally requested in the call to bal.tab(). Should be a named logical
vector with names corresponding to the thresholds. For example, if thresholds
for mean differences were requested in bal.tab(), set disp.thresholds = c(m
= FALSE) to prevent them from being printed. If a statistic was prevented from
being displayed by another argument to print(), the thresholds will not be
displayed.

disp character; which distribution summary statistics to display. Allowable options
include "means" and "sds". Statistics that weren’t requested in the original call
to bal.tab() cannot be requested with print() unless quick = FALSE in the
original call.



102 print.bal.tab

which.subclass when used with subclassification, which subclass(es) to display. If NULL, all
subclasses will be displayed. If NA, no subclasses will be displayed. Otherwise,
can be a vector of subclass indices for which to display balance. To display the
subclasses requested in the original call to bal.tab(), omit this argument. See
class-bal.tab.subclass for details.

subclass.summary

logical; when used with subclassification, whether to display the subclass bal-
ance summary table. If which.subclass is NA, subclass.summary will be set
to TRUE. See class-bal.tab.subclass for details.

which.imp when used with multiply imputed data, which imputation(s) to display. If NULL,
all imputations will be displayed. If NA, no imputations will be displayed. Oth-
erwise, can be a vector of imputations numbers for which to display balance.
To display the imputations requested in the original call to bal.tab(), omit this
argument. See class-bal.tab.imp for details.

imp.summary logical; when used with multiply imputed data, whether to display the imputa-
tion summary table. If which.imp is NA, imp.summary will be set to TRUE. See
class-bal.tab.imp for details.

imp.fun character; when used with multiply imputed data, a character vector of func-
tions of balance statistics to display when displaying balance across imputa-
tions. Can be "mean", "min", or "max". More than one are allowed. See
class-bal.tab.imp for details.

which.treat when used with multi-category treatments, which treatments to display. See
bal.tab.multi() for details.

multi.summary logical; when used with multi-category treatments, whether to display the bal-
ance summary table across pairwise comparisons. See bal.tab.multi() for
details.

which.time when used with longitudinal treatments, which time periods to display if longi-
tudinal treatments are used. See class-bal.tab.msm for details.

msm.summary logical; when used with longitudinal treatments, whether to display the bal-
ance summary table across time periods. See class-bal.tab.msm for details.

which.cluster when used with clustered data, which cluster(s) to display. If NULL, all clus-
ters will be displayed. If NA, no clusters will be displayed. Otherwise, can be
a vector of cluster names or numerical indices for which to display balance.
Indices correspond to the alphabetical order of cluster names. To display the
clusters requested in the original call to bal.tab(), omit this argument. See
class-bal.tab.cluster for details.

cluster.summary

logical; when used with clustered data, whether to display the cluster sum-
mary table. If which.cluster is NA, cluster.summary will be set to TRUE. See
class-bal.tab.cluster for details.

cluster.fun character; when used with clustered data, a character vector of functions of
balance statistics to display when displaying balance across clusters. Can be
"mean", "min", or "max". More than one are allowed. See class-bal.tab.cluster
for details.

digits the number of digits to display.

... further arguments passed to or from other methods.



set.cobalt.options 103

Details

Simply calling bal.tab() will print its results, but it can be useful to store the results into an object
and print them again later, possibly with different print options specified. The print() function
automatically dispatches the correct method for the bal.tab object given.

Any parameter used in bal.tab() for calculations, such as int, addl, or distance, cannot be used
with print(); only those parameters listed above, those that solely determine printing options, can
be used. To change computation options, a new call to bal.tab() must be performed.

Prior versions of print() had separate methods for each bal.tab class. Now they are dispatched
internally.

Note

Unless quick = FALSE in the original call to bal.tab() (which is not the default), some values may
not be calculated, in which case using print() will not display these values even when requested.
For example, if stats = "m" and quick = TRUE in the original call to bal.tab() (the default for
both), setting stats = "ks" in print() will not print the KS statistics because they were not calcu-
lated.

See Also

print(), bal.tab()

display-options for further information on some of these options.

Examples

data("lalonde", package = "cobalt")
library(WeightIt)

w.out <- weightit(treat ~ age + educ + married +
race + re74 + re75,

data = lalonde)

b <- bal.tab(w.out, stats = c("m", "v", "ks"),
un = TRUE, v.threshold = 2)

print(b, un = FALSE, stats = c("m", "v"),
disp.thresholds = c(v = FALSE))

set.cobalt.options Set and Get Options in cobalt

Description

Makes it easier to set cobalt options. set.cobalt.options() is essentially a wrapper for options()
but performs several checks, and get.cobalt.options() is essentially a wrapper for getOption().



104 set.cobalt.options

Usage

set.cobalt.options(..., default = FALSE)

get.cobalt.options(...)

Arguments

... For set.cobalt.options(), bal.tab() parameters and the values they should
take. These should be the name of the parameter in bal.tab() without "cobalt_"
preceding them. See examples. If any values are NULL, the corresponding op-
tions will be set back to their defaults.
For get.cobalt.options(), one or more strings containing the name of a pa-
rameter option to be retrieved. See examples. If empty, all available options and
their values will be returned.

default if TRUE, sets all cobalt options not named in ... to their default values.

Details

When an option is set to NULL, it is set to its default value. The defaults are not displayed but are
listed on the help pages where they appear. Most options correspond to display options, which can
be accessed here. Some others (e.g., continuous and binary) are described on the bal.tab() help
page.

See Also

• options()

• display-options for some arguments that can be set via options.

Examples

# Set un to be TRUE to always display unadjusted
# balance measures and set binary to "std" to
# produce standardized mean differences for
# binary variables.

set.cobalt.options(un = TRUE, binary = "std")

# Note: the above is equivalent to:
# options(cobalt_un = TRUE, cobalt_binary = "std")
# but performs some additional checks

get.cobalt.options("un", "binary")

# Note: the above is equivalent to:
# getOption("cobalt_un")
# getOption("cobalt_binary")

# Return all cobalt options to their defaults

set.cobalt.options(default = TRUE)



splitfactor 105

# View all available options
get.cobalt.options()

splitfactor Split and Unsplit Factors into Dummy Variables

Description

splitfactor() splits factor variables into dummy (0/1) variables. This can be useful when func-
tions do not process factor variables well or require numeric matrices to operate. unsplitfactor()
combines dummy variables into factor variables, undoing the operation of splitfactor().

Usage

splitfactor(
data,
var.name,
drop.level = NULL,
drop.first = TRUE,
drop.singleton = FALSE,
drop.na = TRUE,
sep = "_",
replace = TRUE,
split.with = NULL,
check = TRUE

)

unsplitfactor(
data,
var.name,
dropped.level = NULL,
dropped.na = TRUE,
sep = "_",
replace = TRUE

)

Arguments

data A data.frame containing the variables to be split or unsplit. In splitfactor(),
can be a factor variable to be split.

var.name For splitfactor(), the names of the factor variables to split. If not specified,
will split all factor variables in data. If data is a factor, the stem for each of the
new variables to be created. For unsplitfactor(), the name of the previously
split factor. If not specified and data is the output of a call to splitfactor(),
all previously split variables will be unsplit.



106 splitfactor

drop.level The name of a level of var.name for which to drop the dummy variable. Only
works if there is only one variable to be split.

drop.first Whether to drop the first dummy created for each factor. If "if2", will only drop
the first category if the factor has exactly two levels. The default is to always
drop the first dummy (TRUE).

drop.singleton Whether to drop a factor variable if it only has one level.

drop.na If NAs are present in the variable, how to handle them. If TRUE, no new dummy
will be created for NA values, but all created dummies will have NA where the
original variable was NA. If FALSE, NA will be treated like any other factor level,
given its own column, and the other dummies will have a value of 0 where the
original variable is NA.

sep A character separating the the stem from the value of the variable for each
dummy. For example, for "race_black", sep = "_".

replace Whether to replace the original variable(s) with the new variable(s) (TRUE) or
the append the newly created variable(s) to the end of the data set (FALSE).

split.with A list of vectors or factors with lengths equal to the number of columns of data
that are to be split in the same way data is. See Details.

check Whether to make sure the variables specified in var.name are actually factor
(or character) variables. If splitting non-factor (or non-character) variables into
dummies, set check = FALSE. If check = FALSE and data is a data.frame, an
argument to var.name must be specified.

dropped.level The value of each original factor variable whose dummy was dropped when the
variable was split. If left empty and a dummy was dropped, the resulting factor
will have the value NA instead of the dropped value. There should be one entry
per variable to unsplit. If no dummy was dropped for a variable, an entry is still
required, but it will be ignored.

dropped.na If TRUE, will assume that NAs in the variables to be unsplit correspond to NA in the
unsplit factor (i.e., that drop.na = TRUE was specified in split.factor()). If
FALSE, will assume there is a dummy called "var.name_stem_NA" (e.g., "x_NA")
that contains 1s where the unsplit factor should be NA (i.e., that drop.na = FALSE
was specified in split.factor(). If NAs are stored in a different column with
the same stem, e.g., "x_miss", that name (e.g., "miss") can be entered instead.

Details

If there are NAs in the variable to be split, the new variables created by splitfactor() will have
NA where the original variable is NA.

When using unsplitfactor() on a data.frame that was generated with splitfactor(), the
arguments dropped.na, and sep are unnecessary.

If split.with is supplied, the elements will be split in the same way data is. For example, if data
contained a 4-level factor that was to be split, the entries of split.with at the same index as the
factor and would be duplicated so that resulting entries will have the same length as the number of
columns of data after being split. The resulting values are stored in the "split.with" attribute of
the output object. See Examples.



var.names 107

Value

For splitfactor(), a data.frame containing the original data set with the newly created dum-
mies. For unsplitfactor(). a data.frame containing the original data set with the newly created
factor variables.

See Also

model.matrix()

Examples

data("lalonde", package = "cobalt")

lalonde.split <- splitfactor(lalonde, "race",
replace = TRUE,
drop.first = TRUE)

# A data set with "race_hispan" and "race_white" instead
# of "race".

lalonde.unsplit <- unsplitfactor(lalonde.split, "race",
replace = TRUE,
dropped.level = "black")

all.equal(lalonde, lalonde.unsplit) #TRUE

# Demonstrating the use of split.with:
to.split <- list(letters[1:ncol(lalonde)],

1:ncol(lalonde))

lalonde.split <- splitfactor(lalonde, split.with = to.split,
drop.first = FALSE)

attr(lalonde.split, "split.with")

var.names Extract Variable Names from bal.tab Objects

Description

This function extracts variable names from a bal.tab object for use in specifying alternate variable
names in love.plot(). Optionally, a file can be written for easy editing of names.

Usage

var.names(b, type, file = NULL, minimal = FALSE)



108 var.names

Arguments

b a bal.tab object; the output of a call to bal.tab().

type the type of output desired. Can either be "df" for a data.frame or "vec" for a
named vector. See "Value". The default is "vec" unless file is not NULL.

file optional; a file name to save the output if type = "df". See utils::write.csv(),
which var.name() calls. Must end in .csv.

minimal whether the output should contain all variable names (i.e., all rows that appear
the output of bal.tab()) or just the unique base variables. See "Details".

Details

The purpose of the function is to make supplying new variable names to the var.names argument
in love.plot() easier. Rather than manually creating a vector or data.frame with all the vari-
able names that one desires to change, one can use var.names() to extract variable names from a
bal.tab object and edit the output. Importantly, the output can be saved to a CSV file, which can
be easily edited and read back into R for use in love.plot(), as demonstrated in the Example.

When minimal = TRUE, only a minimal set of variables will be output. For example, if the variables
analyzed in bal.tab() are age, race, and married, and int = TRUE in bal.tab(), many variables
will appear in the output, including expansions of the factor variables, the polynomial terms, and
the interactions. Rather than renaming all of these variables individually, one can rename just the
three base variables, and all variables that arise from them will be accordingly renamed. Setting
minimal = TRUE requests only these base variables.

Value

If type = "vec", a character vector the the variable names both as the names and the entries.

If type = "df", a data.frame with two columns called "old" and "new", each with the variables
as the entries.

If file is not NULL, the output will be returned invisibly.

Note

Not all programs can properly read the Unicode characters for the polynomial terms when requested.
These may appear strange in, e.g., Excel, but R will process the characters correctly.

Examples

data(lalonde, package = "cobalt")

b1 <- bal.tab(treat ~ age + race + married, data = lalonde,
int = TRUE)

v1 <- var.names(b1, type = "vec", minimal = TRUE)
v1["age"] <- "Age (Years)"
v1["race"] <- "Race/Eth"
v1["married"] <- "Married"
love.plot(b1, var.names = v1)
## Not run:
b2 <- bal.tab(treat ~ age + race + married + educ + nodegree +



var.names 109

re74 + re75 + I(re74==0) + I(re75==0),
data = lalonde)

var.names(b2, file = "varnames.csv")

##Manually edit the CSV (e.g., in Excel), then save it.
v2 <- read.csv("varnames.csv")
love.plot(b2, var.names = v2)

## End(Not run)



Index

∗ datasets
lalonde, 93

alist(), 89
available.stats (bal.compute), 3

bal.compute, 3
bal.compute(), 79
bal.init (bal.compute), 3
bal.plot, 7
bal.tab, 11
bal.tab(), 5, 7, 9, 10, 20, 23, 27, 28, 31, 35,

40, 44, 47, 51, 54, 57, 58, 61, 65,
68–71, 79–81, 83, 84, 86, 87, 89, 90,
92, 95, 99, 101, 103, 104, 108

bal.tab.CBPS, 17
bal.tab.CBPS(), 17
bal.tab.cem.match, 20
bal.tab.cem.match(), 17
bal.tab.data.frame (bal.tab.formula), 35
bal.tab.data.frame(), 17, 26, 27, 81, 83,

86, 87
bal.tab.data.frame.list

(bal.tab.time.list), 61
bal.tab.default, 24
bal.tab.designmatch, 29
bal.tab.designmatch(), 17
bal.tab.ebalance, 32
bal.tab.ebalance(), 17
bal.tab.formula, 35
bal.tab.formula(), 17, 26–28
bal.tab.formula.list

(bal.tab.time.list), 61
bal.tab.Match, 41
bal.tab.Match(), 17
bal.tab.matchit, 45
bal.tab.matchit(), 16, 49, 51
bal.tab.matrix (bal.tab.formula), 35
bal.tab.mimids, 48
bal.tab.mimids(), 17

bal.tab.multi(), 13, 19, 20, 22, 23, 26, 28,
31, 34, 39, 40, 43, 47, 50, 53, 57, 58,
60, 64, 65, 68, 88, 102

bal.tab.optmatch, 51
bal.tab.optmatch(), 17
bal.tab.ps, 55
bal.tab.ps(), 16
bal.tab.sbwcau, 58
bal.tab.sbwcau(), 17
bal.tab.time.list, 61
bal.tab.time.list(), 17, 26–28, 84
bal.tab.weightit, 66
bal.tab.weightit(), 16, 49, 51
balance-statistics, 69, 79
balance-summary, 71

CBPS::balance(), 19
CBPS::CBMSM(), 18
CBPS::CBPS(), 18
class-bal.tab.cluster, 80
class-bal.tab.imp, 81
class-bal.tab.msm, 83
class-bal.tab.multi, 84
class-bal.tab.subclass, 86
col_w_corr (balance-summary), 71
col_w_corr(), 5
col_w_cov (balance-summary), 71
col_w_cov(), 14, 70
col_w_dcorr (balance-summary), 71
col_w_dcov (balance-summary), 71
col_w_dcov(), 70
col_w_ks (balance-summary), 71
col_w_ks(), 4, 70
col_w_mean (balance-summary), 71
col_w_ovl (balance-summary), 71
col_w_ovl(), 4, 70
col_w_sd (balance-summary), 71
col_w_sd(), 57
col_w_smd (balance-summary), 71

110



INDEX 111

col_w_smd(), 4, 12, 13, 19, 22, 25, 30, 34, 38,
43, 46, 49, 53, 56, 60, 63, 67, 70

col_w_vr (balance-summary), 71
col_w_vr(), 70
colMeans(), 71, 77

default method, 11
defaults, 10
density(), 75, 77
display options, 11, 19, 23, 31, 34, 39, 44,

47, 50, 54, 57, 60, 64, 68
display-options, 87, 97
do.call(), 89

ebal::ebalance(), 33
ebal::ebalance.trim(), 33

f.build, 90
formula, 90

get.cobalt.options
(set.cobalt.options), 103

get.cobalt.options(), 89
get.w, 91
get.w(), 13, 19, 22, 25, 30, 34, 38, 43, 46, 50,

53, 57, 60, 64, 68
getOption(), 103
ggplot2::facet_grid(), 9
ggplot2::geom_bar(), 9
ggplot2::geom_density(), 8, 9
ggplot2::geom_histogram(), 8, 9
ggplot2::geom_point(), 9, 96
ggplot2::geom_smooth(), 9
ggplot2::geom_step(), 9
ggplot2::ggplot(), 9
ggplot2::labs(), 9
ggplot2::scale_alpha(), 96
ggplot2::theme(), 9, 97
glm(), 90
graphics::par(), 8, 96
gridExtra::arrangeGrob(), 97, 99

here, 104

integrate(), 4, 76

lalonde, 93
lalonde_mis (lalonde), 93
list(), 89
love.plot, 94

love.plot(), 10, 70, 107, 108

match.call(), 27
Matching::Match(), 42
Matching::MatchBalance(), 44
Matching::Matchby(), 42
MatchIt::matchit(), 45
MatchIt::summary.matchit(), 47
MatchThem::matchthem(), 49
MatchThem::weightthem(), 49
model.matrix(), 107

options(), 103, 104
optmatch::fullmatch(), 52
optmatch::pairmatch(), 52

print(), 103
print.bal.tab, 100
print.bal.tab(), 15, 81, 83, 84, 86, 87, 89

rank(), 77
reformulate(), 90
reshape(), 64

sbw::sbw(), 59
sbw::summarize(), 60
set.cobalt.options, 103
set.cobalt.options(), 12, 18, 22, 25, 30,

33, 38, 43, 46, 49, 53, 56, 59, 63, 67,
89

splitfactor, 105
splitfactor(), 75
stats, 12, 13, 18, 21, 24, 30, 33, 37, 42, 45,

49, 52, 56, 59, 63, 67, 88, 95, 96

twang::bal.table(), 57
twang::iptw(), 55
twang::mnps(), 55
twang::ps(), 55

unsplitfactor (splitfactor), 105
utils::write.csv(), 108

var.names, 107
var.names(), 97, 98

WeightIt::weightit(), 67
WeightIt::weightitMSM(), 64, 67


	bal.compute
	bal.plot
	bal.tab
	bal.tab.CBPS
	bal.tab.cem.match
	bal.tab.default
	bal.tab.designmatch
	bal.tab.ebalance
	bal.tab.formula
	bal.tab.Match
	bal.tab.matchit
	bal.tab.mimids
	bal.tab.optmatch
	bal.tab.ps
	bal.tab.sbwcau
	bal.tab.time.list
	bal.tab.weightit
	balance-statistics
	balance-summary
	class-bal.tab.cluster
	class-bal.tab.imp
	class-bal.tab.msm
	class-bal.tab.multi
	class-bal.tab.subclass
	display-options
	f.build
	get.w
	lalonde
	love.plot
	print.bal.tab
	set.cobalt.options
	splitfactor
	var.names
	Index

