Package ‘bruceR’

January 29, 2026

Title Broadly Useful Convenient and Efficient R Functions
Version 2026.1

Date 2026-01-29

Maintainer Han Wu Shuang Bao <baohws@foxmail.com>

Description Broadly useful convenient and efficient R functions
that bring users concise and elegant R data analyses.
This package includes easy-to-use functions for
(1) basic R programming
(e.g., set working directory to the path of currently opened file;
import/export data from/to files in any format;
print tables to Microsoft Word);
(2) multivariate computation
(e.g., compute scale sums/means/... with reverse scoring);
(3) reliability analyses and factor analyses;
(4) descriptive statistics and correlation analyses;
(5) t-test, multi-factor analysis of variance (ANOVA),
simple-effect analysis, and post-hoc multiple comparison;
(6) tidy report of statistical models
(to R Console and Microsoft Word);
(7) mediation and moderation analyses (PROCESS);
and (8) additional toolbox for statistics and graphics.

License GPL-3
Encoding UTF-8
LazyData true

LazyDataCompression xz
URL https://psychbruce.github.io/bruceR/

BugReports https://github.com/psychbruce/bruceR/issues
Depends R (>=4.0.0)

Imports rstudioapi, data.table, rio, crayon, plyr, dplyr, tidyr,
stringr, ggplot2, psych, afex, emmeans, effectsize, mediation,
interactions, lavaan, jtools, texreg

https://psychbruce.github.io/bruceR/
https://github.com/psychbruce/bruceR/issues

2 Contents

Suggests pacman, glue, tibble, forcats, haven, foreign, readxl,
openxlsx, clipr, cowplot, ggtext, see, car, Imtest, Ime4,
ImerTest, nnet, vars, phia, performance, MASS, MuMIn,
BayesFactor, GGally, GPArotation

RoxygenNote 7.3.3
NeedsCompilation no

Author Han Wu Shuang Bao [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3043-710X>)

Repository CRAN
Date/Publication 2026-01-29 14:20:02 UTC

Contents
bruceR-package 3
add e 6
Alpha . . . e e 8
CC o e e e 9
cef_plot e 10
CFA . e e 12
COIT . . . e e e e 13
cor_diff e 15
cor_multilevel e 15
Describe e e e 16
dtime e e e 18
EFA . e e e e e 18
EMMEANS . . . e 21
EXPOTL . . . o v e e 26
formatF e e e e 28
formatN e 29
formula_expand 29
formula_paste e e e 30
Freq e 30
GLM_SUmMmary o vttt e e e e e e e e e e e e e e 31
grand_mean_Centerot e e e e e 32
granger_causality L. 33
GrAN@ET_LESt o v i e e e e e e e e e e e e e e e e e e 34
GIOUP_MEAN_CENLET « o v v v v e e e it et e e e e e e 35
HLM_ICC_rWG e e e e e 36
HLM_summary oottt e e e e e e e e e e e e e e 38
IMPOTt o o e e 40
lavaan_summary L. e e e e e 42
LOOKUP e e e e e 44
MANOVA . . e e e 45
Med_SUMMATY o vt ettt e e e e e e e e e e 49
model_summary e e e e e e e e e e e 50

https://orcid.org/0000-0003-3043-710X

bruceR-package 3

pkg_depend L. e e e 54
Print . . . e 55
print_table e 56
PROCESS e 57
RECODE e 63
TEEIESS « o v v e 64
rep_char 66
RESCALE e 66
RGB . . . e 67
Run . . . e 68
scaler e e 68
set.wd . oL L e 69
Show_colors e e 70
theme bruce e 71
TTEST . . e 73
Goallino e 76
DoanyYiNTo e e e e e e e e e e e e e e e 77
9% COMPUTE% %« o o e e e 78
JonONCINTo o o e e e e e e e e e e e e 81
Jopartin%oo e e 82
Go™NTo . . . e 83
Index 84
bruceR-package bruceR: BRoadly Useful Convenient and Efficient R functions
Description

Broadly useful convenient and efficient R functions that bring users concise and elegant R data anal-
yses. This package includes easy-to-use functions for (1) basic R programming (e.g., set working
directory to the path of currently opened file; import/export data from/to files in any format; print
tables to Microsoft Word); (2) multivariate computation (e.g., compute scale sums/means/... with
reverse scoring); (3) reliability analyses and factor analyses; (4) descriptive statistics and correlation
analyses; (5) t-test, multi-factor analysis of variance (ANOVA), simple-effect analysis, and post-hoc
multiple comparison; (6) tidy report of statistical models (to R Console and Microsoft Word); (7)
mediation and moderation analyses (PROCESS); and (8) additional toolbox for statistics and graph-

1CS.

Main Functions in bruceR

1. Basic R Programming:

e set.wd() (alias: set_wd())
e import()

e export()

e ccQ

* pkg_depend()

e formatF ()
e formatN()
e print_table()
e Print()

* Glue()

* Run()

* %%

* %notin%

* %allin%

* %anyin%

* %nonein%
* Y%partinik

2. Multivariate Computation:

e add()

e added()
e .sum()
e .mean()
e SUM()

o MEAN()

e STD()

« MODE ()

e COUNT()
e CONSEC()
+ RECODE()
e RESCALE()
e LOOKUP()

3. Reliability and Factor Analyses:

e Alpha()
* EFAQ)
¢ PCAQ)
e CFAQ)

4. Descriptive Statistics and Correlation Analyses:

e Describe()

* Freq()

e Corr()

e cor_diff()

e cor_multilevel()

bruceR-package

5. T-Test, Multi-Factor ANOVA, Simple-Effect Analysis, and Post-Hoc Multiple Compari-

son:

bruceR-package

« TTESTQ)
* MANOVA()
« EMMEANS()

6. Tidy Report of Regression Models:

* model_summary ()
e lavaan_summary()
e GLM_summary ()

¢ HLM_summary ()

* HLM_ICC_rWG()

* regress()

7. Mediation and Moderation Analyses:

* PROCESS()
e med_summary ()

e lavaan_summary ()

8. Additional Toolbox for Statistics and Graphics:

e grand_mean_center ()
* group_mean_center()
e ccf_plot()

e granger_test()

e granger_causality()
¢ theme_bruce()

¢ show_colors()

Author(s)

Maintainer: Han Wu Shuang Bao <baohws@foxmail.com> (ORCID)

See Also

Useful links:

* https://psychbruce.github.io/bruceR/

* Report bugs at https://github.com/psychbruce/bruceR/issues

https://orcid.org/0000-0003-3043-710X
https://psychbruce.github.io/bruceR/
https://github.com/psychbruce/bruceR/issues

6 add

add Create, modify, and delete variables.

Description

Enhanced functions to create, modify, and/or delete variables. The functions integrate the advan-
tages of base: :within(), dplyr: :mutate(), dplyr::transmute(), and data.table::1let().

Usage
add(data, expr, when, by, drop = FALSE)

added(data, expr, when, by, drop = FALSE)

Arguments
data A data. table (preferred).
expr Passing to data. table: DT[, let(expr),]
R expression(s) to compute variables. Execute each line of expression one by
one, such that newly created variables are available immediately. This is an ad-
vantage of dplyr: :mutate() and has been implemented here for data. table.
when [Optional] Passing to data.table: DT[when, ,]
Compute for which rows or rows meeting what condition(s)?
by [Optional] Passing to data.table: DT[, , by]
Compute by what group(s)?
drop Drop existing variables and return only new variables? Defaults to FALSE, which
returns all variables.
Value

* add() returns a new data. table, with the raw data unchanged.

* added() returns nothing and has already changed the raw data.

Examples
====== Usage 1: add() ======
d = as.data.table(within.1)

d$Xyz = 1:8
d

add() does not change the raw data:
add(d, {B =1; C =2})
d

new data should be assigned to an object:

add

d =d %% add({
ID = str_extract(ID, "\\d") # modify a variable

XYZ = NULL # delete a variable
A = .mean("A", 1:4) # create a new variable
B=Ax4 # new variable is immediately available
cC=1 # never need ,/; at the end of any line
»
d
====== Usage 2: added() ======

d = as.data.table(within.1)
d$XYZ = 1:8
d

added() has already changed the raw data:
added(d, {B =1; C = 2})
d

raw data has already become the new data:

added(d, {
ID = str_extract(ID, "\\d")
XYZ = NULL
A = .mean("A", 1:4)
B=A=x4
C=1
»
d
====== Using “when” and ~by’~ ======

d = as.data.table(between.?2)
d

added(d, {SCORE2 = SCORE - mean(SCORE)},
A==1&B %in% 1:2, # “when™: for what conditions

by=B) # “by : by what groups
d
na.omit(d)
====== Return Only New Variables ====== #i#

newvars = add(within.1, {
ID = str_extract(ID, "\\d")
A = .mean("A", 1:4)

}, drop=TRUE)

newvars

====== Better Than ~“base::within()~ ======

8 Alpha

d = as.data.table(within.1)

wrong order: C B A

within(d, {
A=4
B=A+1
C=6
»
correct order: A B C
add(d, {
A=4
B=A+1
C=6
»
Alpha Reliability analysis (Cronbach’s o and McDonald’s w).
Description

An extension of psych: :alpha() and psych: :omega(), reporting (1) scale statistics (Cronbach’s
« and McDonald’s w) and (2) item statistics (item-rest correlation [i.e., corrected item-total corre-
lation] and Cronbach’s « if item deleted).

Three options to specify variables:

1. var + items: common and unique parts of variable names (suggested).
2. vars: a character vector of variable names (suggested).

3. varrange: starting and stopping positions of variables (NOT suggested).

Usage

Alpha(data, var, items, vars = NULL, varrange = NULL, rev = NULL, digits = 3)

Arguments

data Data frame.

var [Option 1] Common part across variables: e.g., "RSES"”, "XX.{i}.pre" (if var
string has any placeholder in braces {. ..}, then items will be pasted into the
braces, see examples)

items [Option 1] Unique part across variables: e.g., 1:10, c("a", "b", "c")

vars [Option 2] Character vector specifying variables: e.g., c("X1", "X2", "X3",
HX4”, ”XSM)

varrange [Option 3] Character string specifying positions ("start:stop”) of variables:

e.g., "A1:E5"

cc 9

rev [Optional] Variables that need to be reversed. It can be (1) a character vector
specifying the reverse-scoring variables (recommended), or (2) a numeric vector
specifying the item number of reverse-scoring variables (not recommended).

digits Number of decimal places of output. Defaults to 3.

Value

A list of results obtained from psych: :alpha() and psych: :omega().

See Also

MEAN()
EFAQ)
CFAQ)

Examples

?psych::bfi

data = psych::bfi

Alpha(data, "E", 1:5) # "E1" & "E2" should be reversed
Alpha(data, "E", 1:5, rev=1:2) # correct
Alpha(data, "E", 1:5, rev=cc("E1, E2")) # also correct
Alpha(data, vars=cc("E1, E2, E3, E4, E5"), rev=cc("E1, E2"))
Alpha(data, varrange="E1:E5", rev=cc("E1, E2"))

using dplyr::select()
data %>% select(E1, E2, E3, E4, E5) %>%
Alpha(vars=names(.), rev=cc("E1, E2"))

cc Split up a string (with separators) into a character vector.

Description

Split up a string (with separators) into a character vector (whitespace around separator is trimmed).

Usage
cc(..., sep = "auto", trim = TRUE)
Arguments
Character string(s).
sep Pattern for separation. Defaults to "auto”: , ; | \n \t

trim Remove whitespace from start and end of string(s)? Defaults to TRUE.

10

Value

Character vector.

Examples
cc("a,b,c,d,e")
cc("a,b,c,d,e™”)
cc("a,b,c,d, e", trim=FALSE)
cc("1, 2, 3, 4, 5")
cc("A1,B2;C3]|D4\tES5"

cc("A, B, C",
"D E ",
cC’F", "G"))

cc(”
American
British
Chinese

)

ccf_plot

ccf_plot Cross-correlation analysis.

Description

Plot the results of cross-correlation analysis using ggplot2.

Usage

ccf_plot(
formula,
data,
lag.max = 30,
sig.level = 0.05,
xbreaks = seq(-100, 100, 10),
ybreaks = seq(-1, 1, 0.2),

ylim = NULL,
alpha.ns = 1,
pos.color = "black”,
neg.color = "black”,
ci.color = "blue”,

title = NULL,

ccf_plot

11

subtitle = NULL,

xlab = "Lag",
ylab = "Cross-Correlation”
)
Arguments
formula Model formula like y ~ x.
data Data frame.
lag.max Maximum time lag. Defaults to 30.
sig.level Significance level. Defaults to 0. 05.
xbreaks X-axis breaks.
ybreaks Y-axis breaks.
ylim Y-axis limits. Defaults to NULL to automatically estimate.
alpha.ns Color transparency (opacity: 0~1) for non-significant values. Defaults to 1 for
no transparency (i.e., opaque color).
pos.color Color for positive values. Defaults to "black”.
neg.color Color for negative values. Defaults to "black”.
ci.color Color for upper and lower bounds of significant values. Defaults to "blue”.
title Plot title. Defaults to an illustration of the formula.
subtitle Plot subtitle.
xlab X-axis title. Defaults to "Lag".
ylab Y-axis title. Defaults to "Cross-Correlation”.
Details
Significant correlations with negative time lags suggest shifts in a predictor precede shifts in an
outcome.
Value

A ggplot object, which can be further modified using ggplot2 syntax and saved using ggsave().

See Also

granger_test()

Examples

resemble the default plot output by “ccf()"
p1 = ccf_plot(chicken ~ egg, data=lmtest::ChickEgg)

p1

a more colorful plot
p2 = ccf_plot(chicken ~ egg, data=lmtest::ChickEgg, alpha.ns=0.3,

pos.color="#CD201F",

12 CFA
neg.color="#21759B",
ci.color="black")
p2
CFA Confirmatory Factor Analysis (CFA).
Description

An extension of lavaan: :cfa().

Usage
CFA(
data,
model = "A =~ a[1:5]; B =~ b[c(1,3,5)]; C =~ c1 + c2 + c3",
estimator = "ML",
highorder = "",
orthogonal = FALSE,
missing = "listwise”,
digits =
file = NULL
)
Arguments
data Data frame.
model Model formula. See examples.
estimator The estimator to be used (for details, see lavaan options).
Defaults to "ML". Can be one of the following:
e "ML": Maximum Likelihood (can be extended to "MLM", "MLMV", "MLMVS",
"MLF", or "MLR" for robust standard errors and robust test statistics)
e "GLS": Generalized Least Squares
e "WLS": Weighted Least Squares
e "ULS": Unweighted Least Squares
e "DWLS": Diagonally Weighted Least Squares
e "DLS": Distributionally-weighted Least Squares
highorder High-order factor. Defaults to "".
orthogonal Defaults to FALSE. If TRUE, all covariances among latent variables are set to zero.
missing Defaults to "1istwise”. Alternative is "fiml" ("Full Information Maximum
Likelihood").
digits Number of decimal places of output. Defaults to 3.
file File name of MS Word (" .doc").

Corr

Value

A list of results returned by lavaan: :cfa().

See Also

Alpha()
EFAQ)

lavaan_summary ()

Examples

data.cfa=lavaan: :HolzingerSwineford1939
CFA(data.cfa, "Visual =~ x[1:3]; Textual =~ x[c(4,5,6)]; Speed =~ x7 + x8 + x9")
CFA(data.cfa, model="

Visual =~ x[1:3]

Textual =~ x[c(4,5,6)]

Speed =~ x7 + x8 + x9

", highorder="Ability")

data.bfi = na.omit(psych::bfi)
CFA(data.bfi, "E =~ E[1:5]; A =~ A[1:5]; C =~ C[1:5]; N =~ N[1:5]; 0 =~ O[1:5]1")

13

Corr Correlation analysis.

Description

Correlation analysis.

Usage

Corr(
data,
method = "pearson”,
p.adjust = "none”,
all.as.numeric = TRUE,
digits = 2,
file = NULL,
plot = TRUE,
plot.r.size = 4,
plot.colors = NULL,
plot.file = NULL,
plot.width = 8,
plot.height = 6,
plot.dpi = 500

14

Arguments

data

method

p.adjust

all.as.numeric

digits

file

plot

plot.
plot.
plot.
plot.
plot.
plot.

Value

r.size
colors
file
width
height
dpi

Corr

Data frame.
"pearson” (default), "spearman”, or "kendall".

Adjustment of p values for multiple tests: "none”, "fdr", "holm", "bonferroni”,
... For details, see stats::p.adjust().

TRUE (default) or FALSE. Transform all variables into numeric (continuous).
Number of decimal places of output. Defaults to 2.

File name of MS Word (" .doc").

TRUE (default) or FALSE. Plot the correlation matrix.

Font size of correlation text label. Defaults to 4.

Plot colors (character vector). Defaults to "RdBu” of the Color Brewer Palette.
NULL (default, plot in RStudio) or a file name ("xxx.png").

Width (in "inch") of the saved plot. Defaults to 8.

Height (in "inch") of the saved plot. Defaults to 6.

DPI (dots per inch) of the saved plot. Defaults to 500.

Invisibly return a list with (1) correlation results from psych::corr.test() and (2) a ggplot
object if plot=TRUE.

See Also

Describe()

cor_multilevel()

Examples

Corr(airquality)

Corr(airquality, p.adjust="bonferroni”,
plot.colors=c("#b2182b", "white", "#2166ac"))

d = as.data.table(psych::bfi)
added(d, {
gender = as.factor(gender)

education = as.

E = .mean("E",
A = .mean("A",
C = .mean("C",
N = .mean("N",
0 = .mean("0",
»
Corr(d[,

factor(education)

1:5, rev=c(1,2), range=1:6)
: rev=1, range=1:6)

rev=c(4,5), range=1:6)

range=1:6)

1:
1:
1
1 rev=c(2,5), range=1:6)

5,
5,
:5,
5,

. (age, gender, education, E, A, C, N, 0)1)

cor_diff 15

cor_diff Test the difference between two correlations.

Description

Test the difference between two correlations.

Usage

cor_diff(r1, n1, r2, n2, n = NULL, rcov = NULL)

Arguments
ri, r2 Correlation coefficients (Pearson’s r).
n,nl1, n2 Sample sizes.
rcov [Optional] Only for nonindependent 7s:
r1is r(X,Y),
r2is r(X,7Z),
then, as Y and Z are also correlated,
we should also consider rcov: r(Y,Z)
Value

Invisibly return the p value.

Examples

two independent rs (X~Y vs. Z~W)
cor_diff(r1=0.20, n1=100, r2=0.45, n2=100)

two nonindependent rs (X~Y vs. X~Z, with Y and Z also correlated [rcov])
cor_diff(r1=0.20, r2=0.45, n=100, rcov=0.80)

cor_multilevel Multilevel correlations (within-level and between-level).

Description

Multilevel correlations (within-level and between-level). For details, see description in HLM_ICC_rWG().

Usage

cor_multilevel(data, group, digits = 3)

16 Describe

Arguments

data Data frame.

group Grouping variable.

digits Number of decimal places of output. Defaults to 3.
Value

Invisibly return a list of results.

See Also

Corr()
HLM_ICC_rWG()

Examples

see https://psychbruce.github.io/supp/CEM

Describe Descriptive statistics.

Description

Descriptive statistics.

Usage
Describe(
data,
all.as.numeric = TRUE,
digits = 2,
file = NULL,
plot = FALSE,
upper.triangle = FALSE,
upper.smooth = "none”,

plot.file = NULL,
plot.width = 8,
plot.height = 6,
plot.dpi = 500

Describe 17

Arguments

data Data frame or numeric vector.

all.as.numeric TRUE (default) or FALSE. Transform all variables into numeric (continuous).

digits Number of decimal places of output. Defaults to 2.
file File name of MS Word (" .doc").
plot TRUE or FALSE (default). Visualize the descriptive statistics using GGally: : ggpairs().

upper.triangle TRUE or FALSE (default). Add (scatter) plots to upper triangle (time consuming
when sample size is large).

upper . smooth "none” (default), "1m", or "loess"”. Add fitting lines to scatter plots (if any).
plot.file NULL (default, plot in RStudio) or a file name ("xxx.png").
plot.width Width (in "inch") of the saved plot. Defaults to 8.
plot.height Height (in "inch") of the saved plot. Defaults to 6.
plot.dpi DPI (dots per inch) of the saved plot. Defaults to 500.
Value

Invisibly return a list with (1) a data frame of descriptive statistics and (2) a ggplot object if
plot=TRUE.

See Also
Corr()

Examples

set.seed(1)
Describe(rnorm(1000000), plot=TRUE)

Describe(airquality)
Describe(airquality, plot=TRUE, upper.triangle=TRUE, upper.smooth="1m")

?psych::bfi
Describe(psych::bfi[c("age"”, "gender"”, "education”)])

d = as.data.table(psych::bfi)
added(d, {
gender = as.factor(gender)
education = as.factor(education)
E = .mean("E", 1:5, rev=c(1,2), range=1:6)

A = .mean("A", 1:5, rev=1, range=1:6)

C = .mean("C", 1:5, rev=c(4,5), range=1:6)

N = .mean(”"N", 1:5, range=1:6)

0 = .mean("0", 1:5, rev=c(2,5), range=1:6)
»

Describe(d[, .(age, gender, education)], plot=TRUE, all.as.numeric=FALSE)
Describe(d[, .(age, gender, education, E, A, C, N, 0)], plot=TRUE)

18 EFA

dtime Timer (compute time difference).

Description

Timer (compute time difference).

Usage

dtime(t@, unit = "secs"”, digits = 0)

Arguments
t0 Time at the beginning.
unit Options: "auto”, "secs”, "mins”, "hours”, "days", "weeks”. Defaults to
"secs"”.
digits Number of decimal places of output. Defaults to .
Value

A character string of time difference.
Examples
Not run:

t0 = Sys.time()
dtime(t0Q)

End(Not run)

EFA Principal Component Analysis (PCA) and Exploratory Factor analysis
(EFA).

Description

An extension of psych: :principal() and psych::fa(), performing either Principal Component
Analysis (PCA) or Exploratory Factor Analysis (EFA).

Three options to specify variables:

1. var + items: common and unique parts of variable names (suggested).
2. vars: a character vector of variable names (suggested).

3. varrange: starting and stopping positions of variables (NOT suggested).

EFA 19
Usage
EFA(
data,
var,
items,
vars = NULL,
varrange = NULL,
rev = NULL,
method = C(”pca”, "pall’ ”ml”, Hminres”’ ”ulsH, ”O]_S”, lesll’ Hgls”, Halphall)’
rotation = c("none”, "varimax”, "oblimin", "promax", "quartimax", "equamax"),
nfactors = c("eigen”, "parallel”, "(any number >= 1)"),
sort.loadings = TRUE,
hide.loadings = 0,
plot.scree = TRUE,
kaiser = TRUE,
max.iter = 25,
min.eigen = 1,
digits = 3,
file = NULL
)
PCA(..., method = "pca")
Arguments
data Data frame.
var [Option 1] Common part across variables: e.g., "RSES”, "XX.{i}.pre" (if var
string has any placeholder in braces {. ..}, then items will be pasted into the
braces, see examples)
items [Option 1] Unique part across variables: e.g., 1:10, c("a", "b", "c")
vars [Option 2] Character vector specifying variables: e.g., c("X1", "X2", "X3",
1IX4II’ IIX5II)
varrange [Option 3] Character string specifying positions ("start:stop”) of variables:
e.g., "A1:E5"
rev [Optional] Variables that need to be reversed. It can be (1) a character vector
specifying the reverse-scoring variables (recommended), or (2) a numeric vector
specifying the item number of reverse-scoring variables (not recommended).
method Extraction method.

]

* "pca”: Principal Component Analysis (default)

’

* "pa": Principal Axis Factor Analysis
e "ml"”: Maximum Likelihood Factor Analysis
* "minres”: Minimum Residual Factor Analysis

n

uls”: Unweighted Least Squares Factor Analysis

e "0ls": Ordinary Least Squares Factor Analysis
* "wls": Weighted Least Squares Factor Analysis

20

rotation

nfactors

sort.loadings

hide.loadings

plot.scree
kaiser

max.iter

min.eigen
digits
file

Value

A list of results:

EFA

e "gls": Generalized Least Squares Factor Analysis
* "alpha”: Alpha Factor Analysis (Kaiser & Coftey, 1965)

Rotation method.

* "none”: None (not suggested)
e "varimax": Varimax (default)
e "oblimin": Direct Oblimin
e "promax”: Promax
e "quartimax": Quartimax
* "equamax”: Equamax
How to determine the number of factors/components?
* "eigen”: based on eigenvalue (> minimum eigenvalue) (default)
e "parallel”: based on parallel analysis
* any number >= 1: user-defined fixed number
Sort factor/component loadings by size? Defaults to TRUE.

A number (0~1) for hiding absolute factor/component loadings below this value.
Defaults to @ (does not hide any loading).

Display the scree plot? Defaults to TRUE.
Do the Kaiser normalization (as in SPSS)? Defaults to TRUE.

Maximum number of iterations for convergence. Defaults to 25 (the same as in
SPSS).

Minimum eigenvalue (used if nfactors="eigen"). Defaults to 1.
Number of decimal places of output. Defaults to 3.

File name of MS Word (" .doc").

Arguments passed from PCA() to EFA().

result The R object returned from psych: :principal() or psych::fa()

result.kaiser The R object returned from psych: :kaiser () (if any)

extraction.method Extraction method

rotation.method Rotation method

eigenvalues A data.frame of eigenvalues and sum of squared (SS) loadings

loadings A data.frame of factor/component loadings and communalities

scree.plot A ggplot object of the scree plot

Functions

* EFA(): Exploratory Factor Analysis

e PCA(): Principal Component Analysis - a wrapper of EFA(. .., method="pca")

EMMEANS 21

Note

Results based on the varimax rotation method are identical to SPSS. The other rotation methods
may produce results slightly different from SPSS.

See Also

MEAN()
Alpha()
CFAQ

Examples

data = psych::bfi
EFA(data, "E", 1:5) # var + items
EFA(data, "E", 1:5, nfactors=2) # var + items

EFA(data, varrange="A1:05",
nfactors="parallel”,
hide.loadings=0.45)

the same as above:

using dplyr::select() and dplyr::matches()

to select variables whose names end with numbers

(regexp: \d matches all numbers, $ matches the end of a string)
data %>% select(matches("\\d$")) %>%

EFA(vars=names(.), # all selected variables
method="pca", # default
rotation="varimax", # default

nfactors="parallel”, # parallel analysis
hide.loadings=0.45) # hide loadings < 0.45

EMMEANS Simple-effect analysis and post-hoc multiple comparison.

Description

Perform (1) simple-effect (and simple-simple-effect) analyses, including both simple main effects
and simple interaction effects, and (2) post-hoc multiple comparisons (e.g., pairwise, sequential,
polynomial), with p values adjusted for factors with >= 3 levels. This function is based on and ex-
tends emmeans: : joint_tests(), emmeans: :emmeans(), and emmeans: :contrast(). You only
need to specify the model object, to-be-tested effect(s), and moderator(s). Almost all results you
need will be displayed together, including effect sizes (partial > and Cohen’s d) and their confi-
dence intervals (CIs). 90% ClIs for partial 2 and 95% CIs for Cohen’s d are reported.

22 EMMEANS
Usage
EMMEANS (
model,
effect = NULL,
by = NULL,
contrast = "pairwise”,
reverse = TRUE,
p.adjust = "bonferroni”,
sd.pooled = NULL,
model.type = "multivariate”,
digits = 3,
file = NULL
)
Arguments
model The model object returned by MANOVA().
effect Effect(s) you want to test. If set to a character string (e.g., "A"), it reports the
results of omnibus test or simple main effect. If set to a character vector (e.g.,
c("A", "B")), it also reports the results of simple interaction effect.
by Moderator variable(s). Defaults to NULL.
contrast Contrast method for multiple comparisons. Defaults to "pairwise”.
Options: "pairwise”, "revpairwise”, "seq”, "consec”, "poly"”, "eff". For
details, see emmeans::contrast-methods.
reverse The order of levels to be contrasted. Defaults to TRUE (higher level vs. lower
level).
p.adjust Adjustment method of p values for multiple comparisons. Defaults to "bonferroni”.
For polynomial contrasts, defaults to "none”.
Options: "none”, "fdr", "hochberg”, "hommel”, "holm", "tukey”, "mvt",
"dunnettx”, "sidak”, "scheffe”, "bonferroni”. For details, see stats: :p.adjust()
and emmeans: : summary.emmGrid().
sd.pooled By default, it uses sqrt (MSE) (root mean square error, RMSE) as the pooled SD
to compute Cohen’s d. Users may specify this argument as the SD of a reference
group, or use effectsize::sd_pooled() to obtain a pooled SD. For an issue
about the computation method of Cohen’s d, see the Disclaimer section.
model . type "multivariate” returns the results of pairwise comparisons identical to SPSS,
which uses the 1m (rather than aov) object of the model for emmeans: : joint_tests()
and emmeans: :emmeans ().
"univariate” requires also specifying aov. include=TRUE in MANOVA (), which
is not recommended by the afex package, see afex: :aov_ez().
digits Number of decimal places of output. Defaults to 3.
file File name of MS Word (" .doc").

EMMEANS 23

Value

The same model object as returned by MANOVA() (for recursive use), with a list of tables: sim
(simple effects), emm (estimated marginal means), con (contrasts). Each EMMEANS(...) appends
one list to the returned object.

Disclaimer

By default, the root mean square error (RMSE) is used to compute the pooled SD for Cohen’s d.
Specifically, it uses:

1. the square root of mean square error (MSE) for between-subjects designs;

2. the square root of mean variance of all paired differences of the residuals of repeated measures
for within-subjects and mixed designs.

Disclaimer: There is substantial disagreement on the appropriate pooled SD to use in computing
the effect size. For alternative methods, see emmeans: :eff_size() and effectsize::t_to_d().
Please do not take the default output as the only right results and users are completely responsible
for specifying sd.pooled.

Interaction Plot

You can save the returned object and use the emmeans: :emmip() function to create an interaction
plot (based on the fitted model and a formula). See examples below for the usage. emmeans: :emmip ()
returns a ggplot object, which can be modified and saved with ggplot2 syntax.

Statistical Details

Some may confuse the statistical terms "simple effects", "post-hoc tests", and "multiple compar-
isons". Such a confusion is not uncommon. Here I explain what these terms actually refer to.

1. Simple Effect:
When we speak of "simple effect"”, we are referring to ...

* simple main effect
* simple interaction effect (only for designs with 3 or more factors)
 simple simple effect (only for designs with 3 or more factors)
When the interaction effect in ANOVA is significant, we should then perform a "simple-effect

analysis". In regression, we call this "simple-slope analysis". They are identical in statistical
principles.

In a two-factors design, we only test "'simple main effect''. That is, at different levels of a factor
"B", the main effects of "A" would be different. However, in a three-factors (or more) design,
we may also test ''simple interaction effect'" and ''simple simple effect''. That is, at different
combinations of levels of factors "B" and "C", the main effects of "A" would be different.

To note, simple effects per se never require p-value adjustment, because what we test in simple-
effect analyses are still "omnibus F-tests".

2. Post-Hoc Test:

The term "post-hoc" means that the tests are performed after ANOVA. Given this, some may
(wrongly) regard simple-effect analyses also as a kind of post-hoc tests. However, these two

24 EMMEANS
terms should be distinguished. In many situations, "post-hoc tests" only refer to ''post-hoc com-
parisons'' using z-tests and some p-value adjustment techniques. We need post-hoc comparisons
only when there are factors with 3 or more levels.

Post-hoc tests are totally independent of whether there is a significant interaction effect. It only
deals with factors with multiple levels. In most cases, we use pairwise comparisons to do post-
hoc tests. See the next part for details.
3. Multiple Comparison:
As mentioned above, multiple comparisons are indeed post-hoc tests but have no relationship with
simple-effect analyses. Post-hoc multiple comparisons are independent of interaction effects and
simple effects. Furthermore, if a simple main effect contains 3 or more levels, we also need to
do multiple comparisons within the simple-effect analysis. In this situation, we also need p-value
adjustment with methods such as Bonferroni, Tukey’s HSD (honest significant difference), FDR
(false discovery rate), and so forth.
Options for multiple comparison:
* "pairwise”: Pairwise comparisons (defaults to "higher level - lower level")
* "seq"” or "consec”: Consecutive (sequential) comparisons
e "poly": Polynomial contrasts (linear, quadratic, cubic, quartic, ...)
» "eff": Effect contrasts (vs. the grand mean)
See Also
TTEST()
MANOVA ()
bruceR-demodata
Examples

#i### Between-Subjects Design #i###

between.1

MANOVA (between.1, dv="SCORE", between="A") %>%
EMMEANS ("A™)

MANOVA (between.1, dv="SCORE", between="A") %>%
EMMEANS (A", p.adjust="tukey")

MANOVA (between.1, dv="SCORE", between="A") %>%
EMMEANS (A", contrast="seq")

MANOVA (between.1, dv="SCORE", between="A") %>%
EMMEANS("A", contrast="poly")

between.?2
MANOVA (between.2, dv="SCORE", between=c("A", "B")) %>%
EMMEANS("A", by="B") %>%
EMMEANS("B", by="A")
How to create an interaction plot using ~emmeans::emmip()~?
See help page: ?emmeans::emmip()
m = MANOVA(between.2, dv="SCORE", between=c("A", "B"))
emmip(m, ~ A | B, CIs=TRUE)
emmip(m, ~ B | A, CIs=TRUE)

EMMEANS 25

emmip(m, B ~ A, CIs=TRUE)
emmip(m, A ~ B, CIs=TRUE)

between.3

MANOVA (between. 3, dv="SCORE", between=c("A", "B", "C")) %>%
EMMEANS("A", by="B") %>%
EMMEANS (c("A", "B"), by="C") %>%
EMMEANS("A", by=c("B", "C"))

Just to name a few...

You may test other combinations...

#i### Within-Subjects Design #it##

within.1
MANOVA(within.1, dvs="A1:A4", dvs.pattern="A(.)",
within="A") %>%
EMMEANS ("A")

within.2
MANOVA(within.2, dvs="A1B1:A2B3", dvs.pattern="A(.)B(.)",
within=c("A", "B")) %>%
EMMEANS (A", by="B") %>%
EMMEANS("B", by="A") # singular error matrix

This would produce a WARNING because of
the linear dependence of A2B2 and A2B3.
See: Corr(within.2[c("A2B2", "A2B3")])

within.3
MANOVA(within.3, dvs="A1B1C1:A2B2C2", dvs.pattern="A(.)B(.)C(.)",
within=c("A", "B", "C")) %>%
EMMEANS("A”, by="B") %>%
EMMEANS(c("A", "B"), by="C") %>%
EMMEANS("A”, by=c("B", "C"))
Just to name a few...
You may test other combinations...

#i#t## Mixed Design #i#H##

mixed.2_1blw
MANOVA(mixed.2_1b1w, dvs="B1:B3", dvs.pattern="B(.)",
between="A", within="B", sph.correction="GG") %>%
EMMEANS("A", by="B") %>%
EMMEANS("B", by="A")

mixed.3_1b2w
MANOVA (mixed.3_1b2w, dvs="B1C1:B2C2", dvs.pattern="B(.)C(.)",
between="A", within=c("B", "C")) %>%
EMMEANS("A", by="B") %>%
EMMEANS(c("A", "B"), by="C") %>%
EMMEANS (A", by=c("B", "C"))

26

export

Just to name a few...
You may test other combinations...

mixed.3_2blw
MANOVA(mixed.3_2blw, dvs="B1:B2", dvs.pattern="B(.)",
between=c("A", "C"), within="B") %>%
EMMEANS("A", by="B") %>%
EMMEANS("A", by="C") %>%
EMMEANS(c("A", "B"), by="C") %>%
EMMEANS("B"”, by=c("A", "C"))
Just to name a few...
You may test other combinations...

#i##H# Other Examples #i#H##

air = airquality
air$Day.lor2 = ifelse(air$Day %% 2 == 1, 1, 2) %>%
factor(levels=1:2, labels=c("odd"”, "even"))
MANOVA(air, dv="Temp", between=c("Month”, "Day.lor2"),
covariate=c("Solar.R", "Wind")) %>%
EMMEANS("Month"”, contrast="seq") %>%
EMMEANS ("Month"”, by="Day.lor2", contrast="poly")

export Export data to a file (TXT, CSV, Excel, SPSS, Stata, ...) or clipboard.

Description

Export data to a file, with format automatically judged from file extension. This function is inspired
by rio: :export() and has several modifications. Its purpose is to avoid using lots of write_xxx()
functions in your code and to provide one tidy function for data export.

It supports many file formats and uses corresponding R functions:
* Plain text (.txt, .csv, .csv2, .tsv, .psv), using data. table: :fwrite(); if the encoding argu-
ment is specified, using utils: :write.table() instead
* Excel (.xIs, .xIsx), using openxlsx: :write.x1sx()
» SPSS (.sav), using haven: :write_sav()
* Stata (.dta), using haven: :write_dta()
* R objects (.rda, .rdata, .RData), using save()
* R serialized objects (.rds), using saveRDS()
* Clipboard (on Windows and Mac OS), using clipr::write_clip()

* Other formats, using rio: :export()

export 27
Usage
export(

X’

file,

encoding = NULL,

header = "auto",

sheet = NULL,

overwrite = TRUE,
verbose = FALSE

)
Arguments
X Any R object, usually a data frame (data.frame, data.table, tbl_df). Mul-
tiple R objects should be included in a named 1ist (see examples). To save R
objects, specify file with extensions .rda, .rdata, or .RData.
file File name (with extension). If unspecified, data will be exported to clipboard.
encoding File encoding. Defaults to NULL.
Options: "UTF-8", "GBK", "CP936", etc.
If you find messy code for Chinese text in the exported data (often in CSV when
opened with Excel), it is usually useful to set encoding="GBK" or encoding="CP936".
header Does the first row contain column names (TRUE or FALSE)? Defaults to "auto”.
sheet [Only for Excel] Excel sheet name(s). Defaults to "Sheetl", "Sheet2", ... You
may specify multiple sheet names in a character vector c() with the same length
as x (see examples).
overwrite Overwrite the existing file (if any)? Defaults to TRUE.
verbose Print output information? Defaults to FALSE.
Value

No return value.

See Also

import()
print_table()

Examples

Not run:

export(airquality) # paste to clipboard
export(airquality, file="mydata.csv")
export(airquality, file="mydata.sav")

export(list(airquality, npk), file="mydata.xlsx") # Sheetl, Sheet2
export(list(air=airquality, npk=npk), file="mydata.xlsx") # a named list

28 formatF

export(list(airquality, npk), sheet=c("air"”, "npk"), file="mydata.xlsx")

export(list(a=1, b=npk, c="character”), file="abc.Rdata") # .rda, .rdata
d = import(”abc.Rdata") # load only the first object and rename it to ~d°
load("abc.Rdata”) # load all objects with original names to environment

export(lm(yield ~ NxPxK, data=npk), file="1lm_npk.Rdata")
model = import("lm_npk.Rdata")
load("1m_npk.Rdata") # because x is unnamed, the object has a name "List1”

export(list(mi=Im(yield ~ NxPxK, data=npk)), file="1lm_npk.Rdata")
model = import("lm_npk.Rdata")

load("1m_npk.Rdata") # because x is named, the object has a name "m1”

End(Not run)

formatF Format numeric values.

Description

Format numeric values.

Usage

formatF(x, digits = 3)

Arguments

X A number or numeric vector.

digits Number of decimal places of output. Defaults to 3.
Value

Formatted character string.

See Also

format ()
formatN()

Examples

formatF (pi, 20)

formatN

29

formatN Format "1234" to "1,234".

Description

Format "1234" to "1,234".

Usage
formatN(x, mark = ",")

Arguments
X A number or numeric vector.
mark Usually ", ".

Value

Formatted character string.

See Also

format ()
formatF ()

Examples

formatN(1234)

formula_expand Expand all interaction terms in a formula.

Description

Expand all interaction terms in a formula.

Usage

formula_expand(formula, as.char = FALSE)

Arguments

formula R formula or a character string indicating the formula.

as.char Return character? Defaults to FALSE.

30

Value

A formula/character object including all expanded terms.

Examples

formula_expand(y ~ a*bx*c)
formula_expand("y ~ axbxc")

Freq

formula_paste Paste a formula into a string.

Description

Paste a formula into a string.

Usage

formula_paste(formula)

Arguments

formula R formula.

Value

A character string indicating the formula.

Examples

formula_paste(y ~ x)
formula_paste(y ~ x + (1 | g))

Freq Frequency statistics.

Description

Frequency statistics.

Usage

nn

Freq(x, varname, labels, sort =

, digits = 1, file = NULL)

GLM_summary

Arguments

X
varname
labels
sort

digits
file

Value

31
A vector of values (or a data frame).
[Optional] Variable name, if x is a data frame.
[Optional] A vector re-defining the labels of values.
"" (default, sorted by the order of variable values/labels), "-" (decreasing by

N), or "+" (increasing by N).
Number of decimal places of output. Defaults to 1.
File name of MS Word (" .doc").

A data frame of frequency statistics.

Examples

data = psych::bfi

Input ~data$variable~

Freg(data$educati
Freq(datas$gender,
Freq(data$age)

Input one data
Freg(data, "educa
Freq(data, "gende
Freg(data, "age")

on)
labels=c("Male"”, "Female"))

frame and one variable name
tion")
r", labels=c("Male”, "Female"))

GLM_summary

Tidy report of GLM (1m and glm models).

Description

NOTE: model_sum

mary () is preferred.

Usage
GLM_summary(model, robust = FALSE, cluster = NULL, digits = 3, ...)
Arguments
model A model fitted with 1m or glm function.
robust [Only for 1m and g1m] Robust standard errors. Add a table with heteroskedasticity-

robust standard errors (aka. Huber-White standard errors).
Options: FALSE (default), TRUE ("HC1"), "HC@", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". For details, see sandwich: : vcovHC() and jtools: :summ.1m().

Note: "HC1" is the default of Stata, while "HC3" is the default suggested by the
sandwich package.

32 grand_mean_center

cluster [Only for 1m and glm] Cluster-robust standard errors are computed if cluster is
set to the name of the input data’s cluster variable or is a vector of clusters.

digits Number of decimal places of output. Defaults to 3.

Other arguments. You may re-define formula, data, or family.

Value

No return value.

See Also

print_table() (print simple table)
model_summary () (strongly suggested)
HLM_summary ()

regress()

Examples

Example 1: OLS regression

Im = Im(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
GLM_summary (1m)

GLM_summary (1m, robust="HC1")

Stata's default is "HC1"

R package <sandwich>'s default is "HC3"

Example 2: Logistic regression

glm = glm(case ~ age + parity + education + spontaneous + induced,
data=infert, family=binomial)

GLM_summary (glm)

GLM_summary(glm, robust="HC1", cluster="stratum")

grand_mean_center Grand-mean centering.

Description

Compute grand-mean centered variables. Usually used for GLM interaction-term predictors and
HLM level-2 predictors.

Usage

grand_mean_center(data, vars = names(data), std = FALSE, add.suffix = "")

granger_causality 33
Arguments

data Data object.

vars Variable(s) to be centered.

std Standardized or not. Defaults to FALSE.

add. suffix The suffix of the centered variable(s). Defaults to ""”. You may set it to "_c",

"_center”, etc.

Value

A new data object containing the centered variable(s).

See Also

group_mean_center ()

Examples
d = data.table(a=1:5, b=6:10)
d.c = grand_mean_center(d, "a
d.
d.c = grand_mean_center(d, c(
d.

")

nan

a ’

"b"), add.suffix="_center")

granger_causality

Granger causality test (multivariate).

Description

Granger test of predictive causality (between multivariate time series) based on vector autoregres-
sion model using vars: :VAR(). Its output resembles the output of the vargranger command in
Stata (but here using an F’ test).

Usage

granger_causality(

varmodel,

var.y = NULL,

var.x = NULL,

test = c("F", "Chisq"),
file = NULL,
check.dropped = FALSE

34 granger_test

Arguments

varmodel VAR model fitted using vars: : VAR().

var.y, var.x [Optional] Defaults to NULL (all variables). If specified, then perform tests
for specific variables. Values can be a single variable (e.g., "X"), a vector of
variables (e.g., c("X1", "X2")), or a string containing regular expression (e.g.,
"X1X2").

test F test and/or Wald ? test. Defaults to both: c("F", "Chisq").

file File name of MS Word (" .doc").

check.dropped Check dropped variables. Defaults to FALSE.

Details

Granger causality test (based on VAR model) examines whether the lagged values of a predictor (or
predictors) help to predict an outcome when controlling for the lagged values of the outcome itself.
Granger causality does not represent a true causal effect.

Value

A data frame of results.

See Also

ccf_plot()
granger_test()

Examples

R package "vars” should be installed
library(vars)

data(Canada)

VARselect(Canada)

vm = VAR(Canada, p=3)
model_summary (vm)
granger_causality(vm)

granger_test Granger causality test (bivariate).

Description

Granger test of predictive causality (between two time series) using Imtest: :grangertest().

Usage

granger_test(formula, data, lags = 1:5, test.reverse = TRUE, file = NULL, ...)

group_mean_center 35

Arguments
formula Model formula like y ~ x.
data Data frame.
lags Time lags. Defaults to 1:5.

test.reverse Whether to test reverse causality. Defaults to TRUE.
file File name of MS Word (" .doc").

Arguments passed on to Imtest: :grangertest(). For example, you may use
robust standard errors by specifying the vcov argument (see GitHub Issue #23).
Details

Granger causality test examines whether the lagged values of a predictor have an incremental role in
predicting (i.e., help to predict) an outcome when controlling for the lagged values of the outcome.
Granger causality does not represent a true causal effect.

Value

A data frame of results.

See Also
ccf_plot()

granger_causality()

Examples

granger_test(chicken ~ egg, data=lmtest::ChickEgg)
granger_test(chicken ~ egg, data=lmtest::ChickEgg, lags=1:10, file="Granger.doc")
unlink("Granger.doc”) # delete file for code check

group_mean_center Group-mean centering.

Description

Compute group-mean centered variables. Usually used for HLM level-1 predictors.

Usage
group_mean_center(
data,
vars = setdiff(names(data), by),
by,
std = FALSE,
add.suffix = "",

n

add.group.mean = "_mean”

https://github.com/psychbruce/bruceR/issues/23

36 HLM_ICC_rWG

Arguments
data Data object.
vars Variable(s) to be centered.
by Grouping variable.
std Standardized or not. Defaults to FALSE.
add. suffix The suffix of the centered variable(s). Defaults to ""”. You may set it to "_c”,

"_center”, etc.

add.group.mean The suffix of the variable name(s) of group means. Defaults to "_mean” (see
Examples).

Value

A new data object containing the centered variable(s).

See Also

grand_mean_center ()

Examples

d = data.table(x=1:9, g=rep(1:3, each=3))

nyn non

group_mean_center(d, "x", by="g")

o
1

nyn non

d.c = group_mean_center(d, "x", by="g", add.suffix="_c")

HLM_ICC_rWG Tidy report of HLM indices: ICC(1), ICC(2), and rWG/rWG(J).

Description

Compute ICC(1) (non-independence of data), ICC(2) (reliability of group means), and ry ¢/ TWG(J)
(within-group agreement for single-item/multi-item measures) in multilevel analysis (HLM).

Usage

HLM_ICC_rWG(
data,
group,
icc.var,
rwg.vars = icc.var,
rwg.levels = 0,
digits = 3

HLM_ICC_rWG 37

Arguments
data Data frame.
group Grouping variable.
icc.var Key variable for analysis (usually the dependent variable).
rwg.vars Defaults to icc.var. It can be:
* A single variable (single-item measure), then computing rWG.
* Multiple variables (multi-item measure), then computing rWG(J), where J
= the number of items.
rwg.levels As rwa/Twe(s) compares the actual group variance to the expected random
variance (i.e., the variance of uniform distribution, a?EU), it is required to specify
which type of uniform distribution is.
* For continuous uniform distribution, 0%, = (max — min)*/12. Then
rwg.levels is not useful and will be set to @ (default).
« For discrete uniform distribution, 0%, = (A? — 1)/12, where A is the
number of response options (levels). Then rwg. levels should be provided
(= A in the above formula). For example, if the measure is a 5-point Likert
scale, you should set rwg. levels=5.
digits Number of decimal places of output. Defaults to 3.
Value

Invisibly return a list of results.

Statistical Details

ICC(1) (intra-class correlation, or non-independence of data):

ICC(1) = var.u0 / (var.u0 + var.e) = 02,/ (02, + 02)

ICC(1) is the ICC we often compute and report in multilevel analysis (usually in the Null Model,
where only the random intercept of group is included). It can be interpreted as either ''the propor-
tion of variance explained by groups' (i.e., heterogeneity between groups) or ''the expectation
of correlation coefficient between any two observations within any group" (i.e., homogeneity
within groups).

ICC(2) (reliability of group means):
ICC(2) = mean(var.u0 / (var.u0 + vare / n.k)) = X[02,/(c2, + 02 /ni)]/ K
ICC(2) is a measure of ''the representativeness of group-level aggregated means for within-

group individual values' or ''the degree to which an individual score can be considered a
reliable assessment of a group-level construct''.

rwalrwea(ry (within-group agreement for single-item/multi-item measures):
rwe =1—0%/0%,
rwar) =1 = (035/080)/ [T * (L= 035 /080) + 0315/ 0%0]

rwa/Twa(r) is ameasure of within-group agreement or consensus. Each group has an rywq /7w (J)-

Notes for the above formulas:

38 HLM_summary

* 02, between-group variance (i.e., tau00)

2
e

e ny: group size of the k-th group

* ¢Z: within-group variance (i.e., residual variance)

e K: number of groups

* ¢2: actual group variance of the k-th group

* 0%, ;: mean value of actual group variance of the k-th group across all J items
. a%U: expected random variance (i.e., the variance of uniform distribution)

e J: number of items

References

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for
data aggregation and Analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel theory, research,
and methods in organizations (pp. 349-381). San Francisco, CA: Jossey-Bass, Inc.

James, L.R., Demaree, R.G., & Wolf, G. (1984). Estimating within-group interrater reliability with
and without response bias. Journal of Applied Psychology, 69, 85-98.

See Also

cor_multilevel()

R package multilevel

Examples

data = 1me4::sleepstudy # continuous variable
HLM_ICC_rWG(data, group="Subject”, icc.var="Reaction")

data = lmerTest::carrots # 7-point scale

HLM_ICC_rWG(data, group="Consumer”, icc.var="Preference”,
rwg.vars="Preference”,
rwg.levels=7)

HLM_ICC_rWG(data, group="Consumer”, icc.var="Preference”,
rwg.vars=c("Sweetness”, "Bitter”, "Crisp"),
rwg.levels=7)

HLM_summary Tidy report of HLM (1mer and glmer models).

Description

NOTE: model_summary () is preferred.

Usage

HLM_summary(model = NULL, test.rand = FALSE, digits = 3, ...)

https://CRAN.R-project.org/package=multilevel

HLM_summary 39

Arguments
model A model fitted with Imer or glmer function using the 1ImerTest package.
test.rand [Only for 1mer and glmer] TRUE or FALSE (default). Test random effects (i.e.,
variance components) by using the likelihood-ratio test (LRT), which is asymp-
totically chi-square distributed. For large datasets, it is much time-consuming.
digits Number of decimal places of output. Defaults to 3.
Other arguments. You may re-define formula, data, or family.
Value

No return value.

References

Hox, J. J. (2010). Multilevel analysis: Techniques and applications (2nd ed.). New York, NY:
Routledge.

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R"2 from
generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133—-142.

Xu, R. (2003). Measuring explained variation in linear mixed effects models. Statistics in Medicine,
22, 3527-3541.

See Also

print_table() (print simple table)
model_summary () (strongly suggested)
GLM_summary ()

regress()

Examples

library(lmerTest)

Example 1: data from 1lme4::sleepstudy

(1) 'Subject' is a grouping/clustering variable

(2) 'Days' is a level-1 predictor nested within 'Subject'

(3) No level-2 predictors

ml = lmer(Reaction ~ (1 | Subject), data=sleepstudy)

m2 = lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy)

m3 = lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy)
HLM_summary (m1)

HLM_summary (m2)

HLM_summary (m3)

Example 2: data from lmerTest::carrots

(1) 'Consumer' is a grouping/clustering variable

(2) 'Sweetness' is a level-1 predictor

(3) 'Age' and 'Frequency' are level-2 predictors
hlm.1 = lmer(Preference ~ Sweetness + Age + Frequency +

40 import

(1 | Consumer), data=carrots)
hlm.2 = lmer(Preference ~ Sweetness + Age + Frequency +

(Sweetness | Consumer) + (1 | Product), data=carrots)
HLM_summary (hlm.1)
HLM_summary (hlm.2)

import Import data from a file (TXT, CSV, Excel, SPSS, Stata, ...) or clipboard.

Description

Import data from a file, with format automatically judged from file extension. This function is
inspired by rio::import() and has several modifications. Its purpose is to avoid using lots of
read_xxx() functions in your code and to provide one tidy function for data import. It supports
many file formats (local or URL) and uses the corresponding R functions:

* Plain text (.txt, .csv, .csv2, .tsv, .psv), using data. table: : fread()

» Excel (.xIs, .xlsx), using readxl: :read_excel()

» SPSS (.sav), using haven: :read_sav() or foreign: :read.spss()

* Stata (.dta), using haven: :read_dta() or foreign: :read.dta()

* R objects (.rda, .rdata, .RData), using load()

* R serialized objects (.rds), using readRDS()

* Clipboard (on Windows and Mac OS), using clipr::read_clip_tb1()

 Other formats, using rio: :import()

Usage
import(
file,
encoding = NULL,
header = "auto",
sheet = NULL,
range = NULL,

pkg = c("haven”, "foreign"),
value.labels = FALSE,

as = "data.frame”,
verbose = FALSE
)
Arguments
file File name (with extension). If unspecified, then data will be imported from

clipboard.

import

encoding

header

sheet

range

pkg

value. labels

as

verbose

Value

41

File encoding. Defaults to NULL.

Options: "UTF-8", "GBK", "CP936", etc.

If you find messy code for Chinese text in the imported data, it is usually effec-
tive to set encoding="UTF-8".

Does the first row contain column names (TRUE or FALSE)? Defaults to "auto”.
[Only for Excel] Excel sheet name (or sheet number). Defaults to the first sheet.
Ignored if the sheet is specified via range.

[Only for Excel] Excel cell range. Defaults to all cells in a sheet. You may
specify it as range="A1:E100" or range="Sheet1!A1:E100".

[Only for SPSS & Stata] Use which R package to read SPSS (.sav) or Stata (.dta)
data file? Defaults to "haven”. You may also use "foreign".

Notably, "haven” may be preferred because it is more robust to non-English
characters and can also keep variable labels (descriptions) from SPSS.

[Only for SPSS & Stata] Convert variables with value labels into R factors with
those levels? Defaults to FALSE.

Class of the imported data. Defaults to "data. frame”. Ignored if the file is an
R data object (.rds, .rda, .rdata, .RData).
Options:

e data.frame: "data.frame”, "df", "DF"

e data.table: "data.table”, "dt", "DT"

o tbl_df: "tibble"”, "tbl_df", "tbl"

Print data information? Defaults to FALSE.

A data object (default class is data. frame).

See Also

export()

Examples

Not run:

Import data from system clipboard
data = import() # read from clipboard (on Windows and Mac 0S)

If you have an Excel file named "mydata.xlsx”
export(airquality, file="mydata.xlsx")

Import data from a file
data = import("mydata.xlsx") # default: data.frame
data = import("mydata.xlsx"”, as="data.table")

End(Not run)

42

lavaan_summary

lavaan_summary

Tidy report of lavaan model.

Description

Tidy report of lavaan model.

Usage
lavaan_summary (
lavaan,
ci = c("raw”,
nsim = 100,
seed = NULL,
digits = 3,
print = TRUE,
covariance =
file = NULL
)
Arguments
lavaan
ci
nsim
seed
digits
print
covariance
file
Value

"boot"”, "bc.boot"”, "bca.boot"),

FALSE,

Model object fitted by lavaan.

Method for estimating standard error (SE) and 95% confidence interval (CI).
Defaults to "raw” (the standard approach of lavaan). Other options:

"boot" Percentile Bootstrap
"bc.boot” Bias-Corrected Percentile Bootstrap
"bca.boot” Bias-Corrected and Accelerated (BCa) Percentile Bootstrap

Number of simulation samples (bootstrap resampling) for estimating SE and
95% CI. In formal analyses, nsim=1000 (or larger) is strongly suggested.

Random seed for obtaining reproducible results. Defaults to NULL.
Number of decimal places of output. Defaults to 3.

Print results. Defaults to TRUE.

Print (co)variances. Defaults to FALSE.

File name of MS Word (.doc).

Invisibly return a list of results:

fit Model fit indices.

measure Latent variable measures.

regression Regression paths.

covariance Variances and/or covariances.

effect Defined effect estimates.

lavaan_summary 43

See Also

PROCESS, CFA

Examples

Simple Mediation:
Solar.R (X) => Ozone (M) => Temp (Y)

PROCESS(airquality, y="Temp"”, x="Solar.R",
meds="0zone"”, ci="boot"”, nsim=1000, seed=1)

model = "
Ozone ~ a*Solar.R
Temp ~ c.*Solar.R + b*0zone

Indirect := axb
Direct := c.
Total := c. + a*xb

n

lv = lavaan::sem(model=model, data=airquality)

lavaan::summary(lv, fit.measure=TRUE, ci=TRUE, nd=3) # raw output
lavaan_summary (1v)

lavaan_summary(lv, ci="boot"”, nsim=1000, seed=1)

Serial Multiple Mediation:
Solar.R (X) => Ozone (M1) => Wind(M2) => Temp (Y)

PROCESS(airquality, y="Temp"”, x="Solar.R",

meds=c("0zone"”, "Wind"),
med.type="serial”, ci="boot"”, nsim=1000, seed=1)
model@ = "

Ozone ~ al*Solar.R

Wind ~ a2xSolar.R + d12*0zone

Temp ~ c.*Solar.R + b1*0zone + b2*Wind

Indirect_All := alxbl + a2*xb2 + al*xd12xb2
Ind_X_M1_Y := al*b1l

Ind_X_M2_Y := a2xb2

Ind_X_M1_M2_Y := alxd12xb2

Direct := c.

Total := c. + alxbl + a2xb2 + alxd12*b2

1ve = lavaan::sem(model=model®, data=airquality)
lavaan: :summary(1lve, fit.measure=TRUE, ci=TRUE, nd=3) # raw output
lavaan_summary(1lve)

lavaan_summary(lv@, ci="boot"”, nsim=1000, seed=1)

modell = "

Ozone ~ al*Solar.R

Wind ~ d12%0zone

Temp ~ c.*Solar.R + b1*0zone + b2*Wind
Indirect_All := al*bl + al*d12%b2

44 LOOKUP

Ind_X_M1_Y := al*bl

Ind_X_M1_M2_Y := alxd12xb2

Direct := c.

Total := c. + alxbl + alxd12xb2

1v1l = lavaan::sem(model=modell, data=airquality)

lavaan: :summary(lv1l, fit.measure=TRUE, ci=TRUE, nd=3) # raw output
lavaan_summary(1lv1)

lavaan_summary(lv1l, ci="boot"”, nsim=1000, seed=1)

LOOKUP Search, match, and look up values (like Excel’s functions INDEX +
MATCH).

Description

In Excel, we can use VLOOKUP, HLOOKUP, XLOOKUP (a new function released in 2019), or the combi-
nation of INDEX and MATCH to search, match, and look up values. Here I provide a similar function.
If multiple values were simultaneously matched, a warning message would be printed.

Usage
LOOKUP
data,
vars,
data.ref,
vars.ref,
vars.lookup,
return = c("new.data”, "new.var”, "new.value")
)
Arguments
data Main data.
vars Character (vector), specifying the variable(s) to be searched in data.
data.ref Reference data containing both the reference variable(s) and the lookup vari-
able(s).
vars.ref Character (vector), with the same length and order as vars, specifying the
reference variable(s) to be matched in data.ref.
vars. lookup Character (vector), specifying the variable(s) to be looked up and returned from
data.ref.
return What to return. Default ("new.data") is to return a data frame with the lookup
values added. You may also set it to "new.var" or "new.value"”.
Value

New data object, new variable, or new value (see the argument return).

MANOVA 45

See Also

dplyr::left_join()

Examples

ref = data.table(City=rep(c("A", "B", "C"), each=5),
Year=rep(2013:2017, times=3),
GDP=sample(1000:2000, 15),
PM2.5=sample(10:300, 15))

ref

data = data.table(sub=1:5,
city=c("A", "A", "B", "C", "C"),
year=c(2013, 2014, 2015, 2016, 2017))
data

LOOKUP(data, c("city"”, "year"), ref, c("City"”, "Year"), "GDP")
LOOKUP(data, c("city"”, "year"), ref, c("City”, "Year"), c("GDP", "PM2.5"))

MANOVA Multi-factor ANOVA.

Description

Multi-factor ANOVA (between-subjects, within-subjects, and mixed designs), with and without co-
variates (ANCOVA). This function is based on and extends afex: :aov_ez(). You only need to
specify the data, dependent variable(s), and factors (between-subjects and/or within-subjects). Al-
most all results you need will be displayed together, including effect sizes (partial %) and their con-
fidence intervals (CIs). 90% ClIs for partial n? (two-sided) are reported, following Steiger (2004).
In addition, it reports generalized 72, following Olejnik & Algina (2003).

Usage

MANOVA (
data,
subID = NULL,
dv = NULL,
dvs = NULL,
dvs.pattern = NULL,
between = NULL,
within = NULL,
covariate = NULL,
ss.type = "III",

sph.correction = "none"”,
aov.include = FALSE,
digits = 3,

file = NULL

46 MANOVA

Arguments

data Data frame. Both wide-format and long-format are supported.
subID Subject ID (the column name). Only necessary for long-format data.
dv Dependent variable.
* For wide-format data, dv only can be used for between-subjects designs.
For within-subjects and mixed designs, please use dvs and dvs.pattern.
* For long-format data, dv is the outcome variable.
dvs Repeated measures. Only for wide-format data (within-subjects or mixed de-
signs).
Can be:
* "start:stop” to specify the range of variables (sensitive to the order of
variables):

e.g., "A1B1:A2B3" is matched to all variables in the data between "A1B1"
and "A2B3"

* a character vector to directly specify variables (insensitive to the order of
variables):
e.g., c("Cond1”, "Cond2", "Cond3") or cc("Cond1, Cond2, Cond3")
See cc() for its usage.

dvs.pattern If you use dvs, you should also specify the pattern of variable names using
regular expression.
Examples:
e "Cond(.)" extracts levels from "Cond1”, "Cond2"”, "Cond3"”, ... You
may rename the factor using the within argument (e.g., within="Condition")
e "X(..)Y(..)" extracts levels from "X01Y@1", "X@2Y02", "XaaYbc", ...
o "X(.+)Y(.+)" extracts levels from "X1Y1", "XaYb", "XaY0@2",
Tips on regular expression:
e "(.)" extracts any single character (number, letter, and other symbols)
e "(.+)" extracts >= 1 character(s)
e "(.*x)" extracts >= 0 character(s)
* "([0-91)" extracts any single number
e "([a-z])" extracts any single letter

between Between-subjects factor(s). Multiple variables should be included in a character
vector c().

within Within-subjects factor(s). Multiple variables should be included in a character
vector c().

covariate Covariates. Multiple variables should be included in a character vector c().
ss.type Type of sums of squares (SS) for ANOVA. Defaults to "III".

Options: "II", "II1", 2, and 3.
sph.correction [Only for repeated measures with >= 3 levels]

Sphericity correction method for adjusting the degrees of freedom (df) when
the sphericity assumption is violated. Defaults to "none"”. If Mauchly’s test of
sphericity is significant, you may set it to "GG" (Greenhouse-Geisser) or "HF"
(Huynh-Feldt).

MANOVA 47

aov.include Include the aov object in the returned object? Defaults to FALSE, as suggested
by afex::aov_ez() (please see the include_aov argument in this help page,
which provides a detailed explanation). If TRUE, you should also specify model . type="univariate”
in EMMEANS ().

digits Number of decimal places of output. Defaults to 3.
file File name of MS Word (" .doc").
Value

A result object (list) returned by afex: :aov_ez() with several other elements: between, within,
data.wide, data.long.

Data Preparation
How to prepare your data and specify the arguments of MANOVA()?

* Wide-format data (one person in one row, and repeated measures in multiple columns):

Betweem-subjects design MANOVA(data=, dv=, between=, ...)
Within-subjects design MANOVA(data=, dvs=, dvs.pattern=, within=, ...)
Mixed design MANOVA(data=, dvs=, dvs.pattern=, between=, within=, ...)

* Long-format data (one person in multiple rows, and repeated measures in one column):
Betweem-subjects design (not applicable)
Within-subjects design MANOVA(data=, subID=, dv=, within=, ...)
Mixed design MANOVA(data=, subID=, dv=, between=, within=, ...)

Averaging Across Multiple Observations

If observations are not uniquely identified in user-defined long-format data, the function takes aver-
ages across those multiple observations for each case. In technical details, it specifies fun_aggregate=mean
in afex: :aov_ez() and values_fn=mean in tidyr: :pivot_wider().

Interaction Plot

You can save the returned object and use emmeans: :emmip() to create an interaction plot (based
on the fitted model and a formula specification). It returns a ggplot object, which can be easily
modified and saved using ggplot2 syntax.

References
Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect
size for some common research designs. Psychological Methods, 8(4), 434—447.

Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the
analysis of variance and contrast analysis. Psychological Methods, 9(2), 164—182.

See Also

TTEST()
EMMEANS ()
bruceR-demodata

48 MANOVA

Examples

#i### Between-Subjects Design #iH#

between.1
MANOVA (between.1, dv="SCORE", between="A")

between.?2
MANOVA (between.2, dv="SCORE", between=c("A", "B"))

between.3
MANOVA (between. 3, dv="SCORE", between=c("A", "B", "C"))

How to create an interaction plot using ~emmeans::emmip()~?
See help page for its usage: ?emmeans::emmip()

m = MANOVA(between.2, dv="SCORE", between=c("A", "B"))
emmip(m, ~ A | B, CIs=TRUE)

emmip(m, ~ B | A, CIs=TRUE)

emmip(m, B ~ A, CIs=TRUE)

emmip(m, A ~ B, CIs=TRUE)

###H# Within-Subjects Design #i###

within.1

MANOVA(within.1, dvs="A1:A4", dvs.pattern="A(.)",
within="A")

the same:

MANOVA(within.1, dvs=c("A1", "A2", "A3", "A4"), dvs.pattern="A(.)",
within="MyFactor"”) # renamed the within-subjects factor

within.2
MANOVA(within.2, dvs="A1B1:A2B3", dvs.pattern="A(.)B(.)",
within=c("A", "B"))

within.3
MANOVA(within.3, dvs="A1B1C1:A2B2C2", dvs.pattern="A(.)B(.)C(.)",
within=c("A”, "B", "C"))

###H# Mixed Design #i#t##

mixed.2_1blw

MANOVA(mixed.2_1b1w, dvs="B1:B3", dvs.pattern="B(.)",
between="A", within="B")

MANOVA(mixed.2_1b1w, dvs="B1:B3", dvs.pattern="B(.)",
between="A", within="B", sph.correction="GG")

mixed.3_1b2w
MANOVA (mixed.3_1b2w, dvs="B1C1:B2C2", dvs.pattern="B(.)C(.)",
between="A", within=c("B", "C"))

mixed.3_2blw

med_summary

MANOVA(mixed.3_2b1lw, dvs="B1:B2", dvs.pattern="B(.)",
between=c("A", "C"), within="B")

#i### Other Examples ###H#

data.new = mixed.3_1b2w

names(data.new) = c("Group”, "Cond_01", "Cond_02", "Cond_03", "Cond_04")

MANOVA (data.new,
dvs="Cond_01:Cond_04",
dvs.pattern="Cond_(..)",
between="Group",
within="Condition"”) # rename the factor

?afex::obk.long
MANOVA (afex: :obk.long,

subID="id",

dv="value",
between=c("treatment”, "gender"),
within=c("phase”, "hour"),
cov="age",

sph.correction="GG")

49

med_summary Tidy report of mediation analysis.

Description

Tidy report of mediation analysis, which is performed using mediation

Usage

med_summary(model, digits = 3, file = NULL)

::mediate().

Arguments
model Mediation model built with mediation: :mediate().
digits Number of decimal places of output. Defaults to 3.
file File name of MS Word (".doc").

Value

Invisibly return a data frame containing the results.

See Also
PROCESS ()

50 model_summary

Examples

Not run:

library(mediation)
?mediation::mediate

Example 1: OLS Regression
Bias-corrected and accelerated (BCa) bootstrap confidence intervals

Hypothesis: Solar radiation -> Ozone -> Daily temperature
Im.m = Im(Ozone ~ Solar.R + Month + Wind, data=airquality)
Im.y = Im(Temp ~ Ozone + Solar.R + Month + Wind, data=airquality)
set.seed(123) # set a random seed for reproduction
med = mediate(lm.m, Im.y,

treat="Solar.R", mediator="0zone",

sims=1000, boot=TRUE, boot.ci.type="bca")
med_summary (med)

Example 2: Multilevel Linear Model (Linear Mixed Model)

(models must be fit using "lme4::1lmer"” rather than "lmerTest::1lmer")
Monte Carlo simulation (quasi-Bayesian approximation)

(bootstrap method is not applicable to "lmer” models)

Hypothesis: Crips -> Sweetness -> Preference (for carrots)
data = lmerTest::carrots # long-format data
data = na.omit(data) # omit missing values
Imm.m = 1lme4::1mer(Sweetness ~ Crisp + Gender + Age + (1 | Consumer), data=data)
Imm.y = 1lme4::1lmer (Preference ~ Sweetness + Crisp + Gender + Age + (1 | Consumer), data=data)
set.seed(123) # set a random seed for reproduction
med.1lmm = mediate(lmm.m, Imm.y,
treat="Crisp"”, mediator="Sweetness",
sims=1000)
med_summary (med. 1mm)

End(Not run)

model_summary Tidy report of regression models.

Description
Tidy report of regression models (most model types are supported). This function uses:

* texreg::screenreg()

e texreg::htmlreg()

e MuMIn: :std.coef ()

® MuMIn: :r.squaredGLMM()

e performance: :r2_mcfadden()

e performance: :r2_nagelkerke()

model_summary

Usage

model_summary (
model.list,
std = FALSE,
digits = 3,
file = NULL,
check = TRUE,

51

zero = ifelse(std, FALSE, TRUE),
modify.se = NULL,

modify.head =

line = TRUE,
bold = 0,

Arguments

model.list
std
digits

file

check

zZero

modify.se

modify.head

line

bold

Value

NULL,

A single model or a list of (various types of) models. Most types of regression
models are supported!

Standardized coefficients? Defaults to FALSE. Only applicable to linear models
and linear mixed models. Not applicable to generalized linear (mixed) models.

Number of decimal places of output. Defaults to 3.
File name of MS Word (" .doc").

If there is only one model in model.list, it checks for multicollinearity us-
ing performance: :check_collinearity(). You may turn it off by setting
check=FALSE

Display "0" before "."? Defaults to TRUE.

Modify standard errors. Useful if you need to change raw SEs to robust SEs.
New SEs should be provided as a list of numeric vectors. See usage in texreg: : screenreg().

Modify model names.

Lines look like true line (TRUE) or === --- === (FALSE). Only effective in R
Console output.

The p-value threshold below which the coefficients will be formatted in bold.

Arguments passed on to texreg: :screenreg() or texreg: :htmlreg().

Invisibly return the output (character string).

See Also

print_table() (print simple table)

GLM_summary ()
HLM_summary ()

med_summary ()

52

lavaan_summary ()

PROCESS ()

Examples

#it## Example 1: Linear Model #i#i#t#

Im1 = Im(Temp ~ Month + Day, data=airquality)

Im2 = Im(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
model_summary(1lm1)

model_summary (1m2)

model_summary(list(1m1, 1m2))

model_summary(list(lm1, 1m2), std=TRUE, digits=2)
model_summary(list(lm1, 1m2), file="OLS Models.doc")
unlink("OLS Models.doc”) # delete file for code check

#i### Example 2: Generalized Linear Model #iHt#

glml = glm(case ~ age + parity,
data=infert, family=binomial)

glm2 = glm(case ~ age + parity + education + spontaneous + induced,
data=infert, family=binomial)

model_summary(list(glml, glm2)) # "std” is not applicable to glm

model_summary(list(glml, glm2), file="GLM Models.doc")

unlink("GLM Models.doc") # delete file for code check

Example 3: Linear Mixed Model

library(lmerTest)

hlml = Imer(Reaction ~ (1 | Subject), data=sleepstudy)

hlm2 = Imer(Reaction ~ Days + (1 | Subject), data=sleepstudy)
hlm3 = Imer(Reaction ~ Days + (Days | Subject), data=sleepstudy)
model_summary(list(hlm1, hlm2, hlm3))

model_summary(list(hlml, hlm2, hlm3), std=TRUE)
model_summary(list(hlm1, hlm2, hlm3), file="HLM Models.doc")
unlink("HLM Models.doc") # delete file for code check

Example 4: Generalized Linear Mixed Model

library(lmerTest)

data.glmm = MASS::bacteria

glmml = glmer(y ~ trt + week + (1 | ID), data=data.glmm, family=binomial)
glmm2 = glmer(y ~ trt + week + hilo + (1 | ID), data=data.glmm, family=bi
model_summary(list(glmml, glmm2)) # "std"” is not applicable to glmm
model_summary(list(glmm1, glmm2), file="GLMM Models.doc")

unlink("GLMM Models.doc"”) # delete file for code check

#i#t## Example 5: Multinomial Logistic Model #i#it

library(nnet)

d = airquality

d$Month = as.factor(d$Month) # Factor levels: 5, 6, 7, 8, 9
mn1 = multinom(Month ~ Temp, data=d, Hess=TRUE)

mn2 = multinom(Month ~ Temp + Wind + Ozone, data=d, Hess=TRUE)
model_summary(mn1)

model_summary (mn2)

model_summary(mn2, file="Multinomial Logistic Model.doc")

model_summary

nomial)

unlink("Multinomial Logistic Model.doc"”) # delete file for code check

53

p Compute p value.

Description

Compute p value.

Usage

p(

= NULL,

= NULL,

= NULL,

= NULL,
chi2 = NULL,
n = NULL,
df = NULL,
df1 = NULL,
df2 = NULL,
digits = 2

)

S h &+ N

p.z(2)

p.t(t, df)
p.f(f, df1, df2)
p.r(r, n)

p.chi2(chi2, df)

Arguments

z,t,f,r,chi2 zt, F,r, x? value.
n, df, df1, df2 Sample size or degree of freedom.

digits Number of decimal places of output. Defaults to 2.

Value

p value statistics.

54 pkg_depend

Functions

z(): Two-tailed p value of z.
t(): Two-tailed p value of ¢.

p.
p.
* p.f(): One-tailed p value of F'. (Note: F' test is one-tailed only.)
p.r(): Two-tailed p value of r.

p.

chi2(): One-tailed p value of x2. (Note: x? test is one-tailed only.)

Examples

.2(1.96)

.t(2, 100)
f(4, 1, 100)
.r(0.2, 100)
.chi2(3.84, 1)

T T T T T

p(z=1.96)

p(t=2, df=100)

p(f=4, df1=1, df2=100)
p(r=0.2, n=100)
p(chi2=3.84, df=1)

pkg_depend Check dependencies of R packages.

Description

Check dependencies of R packages.

Usage

pkg_depend(pkgs, excludes = NULL)

Arguments
pkgs Package(s).
excludes [Optional] Package(s) and their dependencies excluded from the dependencies
of pkgs. Useful if you want to see the unique dependencies of pkgs.
Value

A character vector of package names.

Print 55

Print Print strings with rich formats and colors.

Description

Frustrated with print() and cat()? Try this! Run examples to see what it can do.

Usage
Print(...)
Glue(...)
Arguments
Character strings enclosed by "{ }" will be evaluated as R code.
Character strings enclosed by "<<>>" will be printed as formatted and colored
text.
Long strings are broken by line and concatenated together.
Leading whitespace and blank lines from the first and last lines are automatically
trimmed.
Details

Possible formats/colors that can be used in "<< >>" include:

(1) bold, italic, underline, reset, blurred, inverse, hidden, strikethrough;

(2) black, white, silver, red, green, blue, yellow, cyan, magenta;

(3) bgBlack, bgWhite, bgRed, bgGreen, bgBlue, bgYellow, bgCyan, bgMagenta.

See more details in glue: :glue() and glue: :glue_col().

Value

Formatted text.

Functions

* Print(): Paste and print strings.
e Glue(): Paste strings.

Examples

name = "Bruce”

Print("My name is <<underline <<bold {name}>>>>.
<<bold <<blue Pi = {pi:.15}.>>>>
<<italic <<green 1 + 1 = {1 + 1}.>>>>
sqrt({x}) = <<red {sqgrt(x):.3}>>", x=10)

56 print_table

print_table Print a three-line table (to R Console and Microsoft Word).

Description

This basic function prints any data frame as a three-line table to either R Console or Microsoft Word
(.doc). It has been used in many other functions of bruceR (see below).

Usage

print_table(
X,
digits = 3,
nspaces = 1,
row.names = TRUE,
col.names = TRUE,
title = "",
note = Hll’
append - nn’
line = TRUE,
file = NULL,
file.align.head = "auto",
file.align.text = "auto”

)

Arguments
X Matrix, data.frame (or data.table), or any model object (e.g., 1m, glm, lmer,
glmer, ...).
digits Numeric vector specifying the number of decimal places of output. Defaults to
3.
nspaces Number of whitespaces between columns. Defaults to 1.

row.names, col.names
Print row/column names. Defaults to TRUE (column names are always printed).
To modify the names, you can use a character vector with the same length as the

raw names.
title Title text, which will be inserted in <p></p> (HTML code).

note Note text, which will be inserted in <p></p> (HTML code).
append Other contents, which will be appended in the end (HTML code).
line Lines looks like true line (TRUE) or === --- === (FALSE).

file File name of MS Word (.doc).

file.align.head, file.align.text
Alignment of table head or table text: "left”, "right”, "center”. Either one
value of them OR a character vector of mixed values with the same length as the
table columns. Default alignment (if set as "auto"): left, right, right, ..., right.

PROCESS 57

Value

Invisibly return a list of data frame and HTML code.

Examples

print_table(data.frame(x=1))

print_table(airquality, file="airquality.doc")
unlink("airquality.doc") # delete file for code check

model = Im(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
print_table(model)

print_table(model, file="model.doc")

unlink("model.doc”) # delete file for code check

PROCESS Model-based mediation and moderation analyses (named after but
distinct from SPSS PROCESS).

Description

Model-based mediation and moderation analyses (i.e., using raw regression model objects with
distinct R packages, BUT NOT with the SPSS PROCESS Macro, to estimate effects in media-
tion/moderation models).

NOTE: PROCESS () DOES NOT use or transform any code or macro from the original SPSS PRO-
CESS macro developed by Hayes, though its output would link model settings to a PROCESS
Model ID in Hayes’s numbering system.

To use PROCESS () in publications, please cite not only bruceR but also the following R packages:

* interactions::sim_slopes() is used to estimate simple slopes (and conditional direct ef-
fects) in moderation, moderated moderation, and moderated mediation models (for PROCESS
ModelIDs 1,2, 3,5,7,8,9,10, 11, 12, 14, 15, 16, 17, 18, 19, 58, 59, 72, 73, 75, 76).

e mediation::mediate() is used to estimate (conditional) indirect effects in (moderated) me-
diation models (for PROCESS Model IDs 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 58,
59, 72,73,75,76).

* lavaan::sem() is used to perform serial multiple mediation analysis (for PROCESS Model
ID 6).

Usage

PROCESS(
data,

— nn
y = ’
nn

x =""
meds = c(),

58

PROCESS

mods = c(),

covs = c(),

clusters = c(),

hlm.re.m = "",

hlm.re.y = "",

hlm.type = c("1-1-1", "2-1-1", "2-2-1"),
med. type = c("parallel”, "serial"),
mod.type = c("2-way”, "3-way"),

mod.path = c("x-y", "x-m", "m-y", "all"),
cov.path = c("y", "m", "both"),

mod1.val = NULL,

mod2.val = NULL,

ci = c("boot"”, "bc.boot”, "bca.boot”, "mecmc"),
nsim = 100,

seed = NULL,

center = TRUE,

std = FALSE,

digits = 3,

file = NULL

Arguments

data Data frame.

Y, X Variable name of outcome (Y) and predictor (X).

¢ Can be: continuous (numeric) or dichotomous (factor)

meds Variable name(s) of mediator(s) (M). Use c() to combine multiple mediators.

¢ Can be: continuous (numeric) or dichotomous (factor)
* Allows any number of mediators in parallel or 2~4 mediators in serial

¢ Order matters when med. type="serial” (PROCESS Model 6: serial me-
diation)

mods Variable name(s) of 0~2 moderator(s) (W). Use c() to combine multiple mod-

erators.
e Can be: continuous (numeric), dichotomous (factor), or multicategorical
(factor)

¢ Order matters when mod. type="3-way" (PROCESS Models 3, 5.3, 11, 12,
18, 19, 72, and 73)

* Not applicable to med. type="serial” (PROCESS Model 6)

covs Variable name(s) of covariate(s) (i.e., control variables). Use c() to combine

multiple covariates.

* Can be any type and any number of variables

clusters HLM (multilevel) cluster(s): e.g., "School”, c("Prov"”, "City"), c("Sub”,

"Item").

PROCESS 59

hlm.re.m, hlm.re.y
HLM (multilevel) random effect term of M model and Y model. By default, it
converts clusters to 1lme4 syntax of random intercepts: e.g., " (1 | School)”
or "(1 | Sub) + (1| Item)".
You may specify these arguments to include more complex terms: e.g., random
slopes " (X | School)", or 3-level random effects " (1 | Prov/City)".

hlm. type HLM (multilevel) mediation type (levels of "X-M-Y"): "1-1-1" (default), "2-1-1"
(indeed the same as "1-1-1" in a mixed model), or "2-2-1" (currently not fully
supported, as limited by the mediation package). In most cases, no need to set
this argument.

med. type Type of mediator: "parallel” (default) or "serial” (only relevant to PRO-
CESS Model 6). Partial matches with "p"” or "s"” also work. In most cases, no
need to set this argument.

mod. type Type of moderator: "2-way" (default) or "3-way" (relevant to PROCESS Mod-
els 3, 5.3, 11, 12, 18, 19, 72, and 73). Partial matches with "2" or "3" also
work.

mod. path Which path(s) do the moderator(s) influence? "x-y”, "x-m"”, "m-y", or any

combination of them (use c() to combine), or "all” (i.e., all of them). No
default value.

cov.path Which path(s) do the control variable(s) influence? "y", "m", or "both" (de-
fault).

mod1.val, mod2.val
By default (NULL), it uses Mean +/- SD of a continuous moderator (numeric) or
all levels of a dichotomous/multicategorical moderator (factor) to perform sim-
ple slope analyses and/or conditional mediation analyses. You may manually
specify a vector of certain values: e.g., mod1.val=c(1, 3, 5) ormod1.val=c("A",
"B", "C").

ci Method for estimating the standard error (SE) and 95% confidence interval
(CD) of indirect effect(s). Defaults to "boot"” for (generalized) linear models
or "memc” for (generalized) linear mixed models (i.e., multilevel models).

* "boot": Percentile Bootstrap

* "bc.boot": Bias-Corrected Percentile Bootstrap

* "bca.boot": Bias-Corrected and Accelerated (BCa) Percentile Bootstrap
e "memc”: Markov Chain Monte Carlo (Quasi-Bayesian)

Note that these methods never apply to the estimates of simple slopes. You
should not report the 95% ClIs of simple slopes as Bootstrap or Monte Carlo
ClIs, because they are just standard CIs without any resampling method.

nsim Number of simulation samples (bootstrap resampling or Monte Carlo simula-
tion) for estimating SE and 95% CI. Defaults to 100 for running examples faster.
In formal analyses, however, nsim=1000 (or larger) is strongly suggested!

seed Random seed for reproducible results. Defaults to NULL. Note that all mediation
analyses include random processes (i.e., bootstrap resampling or Monte Carlo
simulation). To reproduce results, you need to set a random seed. However,
even if you set the same seed number, it is unlikely to get exactly the same
results across different R packages (e.g., lavaan vs. mediation) and software
(e.g., SPSS, Mplus, R, jamovi).

60 PROCESS

center Centering numeric (continuous) predictors? Defaults to TRUE (suggested).

std Standardizing variables to get standardized coefficients? Defaults to FALSE. If
TRUE, it will standardize all numeric (continuous) variables before building re-
gression models. However, it is not suggested to set std=TRUE for generalized
linear (mixed) models.

digits Number of decimal places of output. Defaults to 3.

file File name of MS Word (".doc"). Currently, only regression model summary
can be saved.

Value

Invisibly return a list of results:

process.id PROCESS Model ID (in Hayes’s numbering system).
process.type PROCESS model type.

model.m Mediator (M) model(s) (a list of multiple models).
model.y Outcome (Y) model.

results Effect estimates and other results (unnamed list object).

Output

Two parts of results are printed:

* PART 1. Regression model summary

¢ PART 2. Mediation/moderation effect estimates

Disclaimer

PROCESS() DOES NOT use or transform any code or macro from the original SPSS PROCESS
macro developed by Hayes, though its output would link model settings to a PROCESS Model ID
in Hayes’s numbering system.

DO NOT state that "the bruceR package runs the PROCESS Model Code developed by Hayes
(2018)" — it was not the truth. The bruceR package only links results to Hayes’s numbering
system but never uses his code.

Software Comparison

To perform mediation, moderation, and conditional process (moderated mediation) analyses, people
may use Mplus, SPSS "PROCESS" macro, or SPSS "MLmed" macro. Some R packages and func-
tions can also perform such analyses, in a somewhat complex way, including mediation: :mediate(),
interactions::sim_slopes(), and lavaan: :sem().

Furthermore, some other R packages or scripts/modules have been developed, including jamovi
module jAMM (by Marcello Gallucci, based on the lavaan package), R package processR (by
Keon-Woong Moon, not official, also based on the lavaan package), and R script file "process.R"
(the official PROCESS R code by Andrew F. Hayes, but it is not yet an R package).

http://www.statmodel.com/index.shtml
https://www.processmacro.org/index.html
https://njrockwood.com/mlmed/
https://jamovi-amm.github.io/
https://jamovi-amm.github.io/
https://CRAN.R-project.org/package=processR
https://www.processmacro.org/download.html

PROCESS 61

Distinct from these existing tools, PROCESS() provides an integrative way for performing media-
tion/moderation analyses in R. This function supports 24 kinds of SPSS PROCESS models num-
bered by Hayes (2018) (but does not use or transform his code), and also supports multilevel medi-
ation/moderation analyses. Overall, it supports the most frequently used types of mediation, mod-
eration, moderated moderation (3-way interaction), and moderated mediation (conditional indirect
effect) analyses for (generalized) linear or linear mixed models.

Specifically, PROCESS () fits regression models based on the data, variable names, and a few other
arguments that users input (with no need to specify the PROCESS Model ID or manually mean-
center the variables). The function can automatically link model settings to Hayes’s numbering
system.

Variable Centering

PROCESS() automatically conducts grand-mean centering, using grand_mean_center (), before
model building, though it can be turned off by setting center=FALSE.

The grand-mean centering is important because it:
1. makes the results of main effects accurate for interpretation (see my commentary on this issue:
Bao et al., 2022);
2. does not change any model fit indices (it only affects the interpretation of main effects);

3. is only conducted in "PART 1" (for an accurate estimate of main effects) but not in "PART
2" because it is more intuitive and interpretable to use the raw values of variables for the
simple-slope tests in "PART 2";

4. is not conflicted with group-mean centering because after group-mean centering the grand
mean of a variable will also be 0, such that the automatic grand-mean centering (with mean =
0) will not change any values of the variable.

Conduct group-mean centering, if necessary, with group_mean_center () before using PROCESS().
Remember that the automatic grand-mean centering never affects the values of a group-mean cen-
tered variable, which already has a grand mean of 0.

References

Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis (sec-
ond edition): A regression-based approach. Guilford Press.

Yzerbyt, V., Muller, D., Batailler, C., & Judd, C. M. (2018). New recommendations for testing
indirect effects in mediational models: The need to report and test component paths. Journal of
Personality and Social Psychology, 115(6), 929-943.

See Also

lavaan_summary ()
model_summary ()
med_summary ()

For more details and illustrations, see PROCESS-bruceR-SPSS (PDF and Markdown files).

https://psycnet.apa.org/record/2022-96483-005
https://github.com/psychbruce/bruceR/tree/main/note

62 PROCESS

Examples

#it## NOTE ##t##
In the following examples, I set nsim=100 to save time.
In formal analyses, nsim=1000 (or larger) is suggested!

Demo Data
?mediation::student
data = mediation::student %>%

dplyr::select(SCH_ID, free, smorale, pared, income,

gender, work, attachment, fight, late, score)

names(data)[2:3] = c("SCH_free"”, "SCH_morale")
names(data)[4:7] = c("parent_edu”, "family_inc"”, "gender"”, "partjob")
data$gender@l = 1 - data$gender # @ = female, 1 = male
dichotomous X: as.factor()
datas$gender = factor(data$gender@1, levels=0:1, labels=c("Female”, "Male"))
dichotomous Y: as.factor()
data$pass = as.factor(ifelse(data$score>=50, 1, 0))

Descriptive Statistics and Correlation Analyses #i#H##
Freq(data$gender)

Freq(data$pass)

Describe(data) # file="xxx.doc"

Corr(datal,4:11]) # file="xxx.doc"

#i#t## PROCESS Analyses #i###

Model 1
PROCESS(data, y="score”, x="late", mods="gender"”) # continuous Y
PROCESS(data, y="pass"”, x="late", mods="gender”) # dichotomous Y

(multilevel moderation)

PROCESS(data, y="score”, x="late", mods="gender"”, # continuous Y (LMM)
clusters="SCH_ID")

PROCESS(data, y="pass"”, x="late", mods="gender", # dichotomous Y (GLMM)
clusters="SCH_ID")

(Johnson-Neyman (J-N) interval and plot)
PROCESS(data, y="score", x="gender”, mods="late") -> P

P$results[[111$jn[[1]1] # Johnson-Neyman interval
P$results[[111$jn[[1]1]1$plot # Johnson-Neyman plot (ggplot object)
GLM_summary (P$model.y) # detailed results of regression

(allows multicategorical moderator)

d = airquality

d$Month = as.factor(d$Month) # moderator: factor with levels "5"~"9"
PROCESS(d, y="Temp", x="Solar.R", mods="Month")

Model 2
PROCESS(data, y="score”, x="late",
mods=c("gender"”, "family_inc"),
mod.type="2-way") # or omit "mod.type"”, default is "2-way"

RECODE

Model 3

PROCESS(data, y="score", x="late",
mods=c("gender”, "family_inc"),
mod. type="3-way")

PROCESS(data, y="pass", x="gender",
mods=c("late”, "family_inc"),
mod1.val=c(1, 3, 5), # moderator 1: late
mod2.val=seq(1, 15, 2), # moderator 2: family_inc
mod. type="3-way")

Model 4

PROCESS(data, y="score"”, x="parent_edu”,
meds="family_inc"”, covs="gender",
ci="boot"”, nsim=100, seed=1)

(allows an infinite number of multiple mediators in parallel)
PROCESS(data, y="score"”, x="parent_edu”,

meds=c("family_inc", "late"),

covs=c("gender"”, "partjob"),

ci="boot"”, nsim=100, seed=1)

(multilevel mediation)

PROCESS(data, y="score", x="SCH_free”,
meds="late"”, clusters="SCH_ID",
ci="mecmc", nsim=100, seed=1)

Model 6

PROCESS(data, y="score”, x="parent_edu”,
meds=c("family_inc"”, "late"),
covs=c("gender"”, "partjob"),
med. type="serial”,
ci="boot"”, nsim=100, seed=1)

Model 8

PROCESS(data, y="score"”, x="fight",
meds="late",
mods="gender",
mod.path=c("x-m", "x-y"),
ci="boot"”, nsim=100, seed=1)

For more examples and details, see:
https://github.com/psychbruce/bruceR/tree/main/note

RECODE Recode a variable.

Description

A wrapper of car: :recode().

64 regress

Usage

RECODE (var, recodes)

Arguments
var Variable (numeric, character, or factor).
recodes A character string definine the rule of recoding. e.g., "10:1=0; c(2,3)=1; 4=2;
5:hi=3; else=999"
Value

A vector of recoded variable.

Examples

d = data.table(var=c(NA, @, 1, 2, 3, 4, 5, 6))

added(d, {
var.new = RECODE(var, "lo:1=0; c(2,3)=1; 4=2; 5:hi=3; else=999")
»
d
regress Regression analysis.
Description

NOTE: model_summary () is preferred.

Usage
regress(
formula,
data,
family = NULL,
digits = 3,

robust = FALSE,
cluster = NULL,
test.rand = FALSE

)
Arguments
formula Model formula.
data Data frame.
family [Optional] The same as in glm and glmer (e.g., family=binomial fits a logistic

regression model).

regress

digits
robust

cluster

test.rand

Value

No return value.

See Also

65

Number of decimal places of output. Defaults to 3.

[Only for 1m and g1m] Robust standard errors. Add a table with heteroskedasticity-
robust standard errors (aka. Huber-White standard errors).

Options: FALSE (default), TRUE ("HC1"), "HC@", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". For details, see sandwich: : vcovHC() and jtools: :summ.1m().
Note: "HC1" is the default of Stata, while "HC3" is the default suggested by the
sandwich package.

[Only for 1m and glm] Cluster-robust standard errors are computed if cluster is
set to the name of the input data’s cluster variable or is a vector of clusters.
[Only for 1mer and glmer] TRUE or FALSE (default). Test random effects (i.e.,
variance components) by using the likelihood-ratio test (LRT), which is asymp-
totically chi-square distributed. For large datasets, it is much time-consuming.

print_table() (print simple table)

model_summary () (strongly suggested)

GLM_summary ()
HLM_summary ()

Examples

Not run:

1m

regress(Temp ~ Month + Day + Wind + Solar.R, data=airquality, robust=TRUE)

glm

regress(case ~ age + parity + education + spontaneous + induced,
data=infert, family=binomial, robust="HC1", cluster="stratum")

1mer

library(lmerTest)
regress(Reaction ~ Days + (Days | Subject), data=sleepstudy)
regress(Preference ~ Sweetness + Gender + Age + Frequency +

1

glmer

| Consumer), data=carrots)

library(lmerTest)

data.glmm = MASS::bacteria

regress(y ~ trt + week + (1 | ID), data=data.glmm, family=binomial)
regress(y ~ trt + week + hilo + (1 | ID), data=data.glmm, family=binomial)

End(Not run)

66 RESCALE

rep_char Repeat a character string for many times and paste them up.

Description

Repeat a character string for many times and paste them up.

Usage

rep_char(char, rep.times)

Arguments
char Character string.
rep.times Times for repeat.
Value

Character string.

Examples

rep_char(”a", 5)

RESCALE Rescale a variable (e.g., from 5-point to 7-point).

Description

Rescale a variable (e.g., from 5-point to 7-point).

Usage
RESCALE(var, from = range(var, na.rm = T), to)

Arguments
var Variable (numeric).
from Numeric vector, the range of old scale (e.g., 1:5). If not defined, it will compute
the range of var.
to Numeric vector, the range of new scale (e.g., 1:7).
Value

A vector of rescaled variable.

RGB 67

Examples

d = data.table(var=rep(1:5, 2))
added(d, {

var1 = RESCALE(var, to=1:7)

var2 = RESCALE(var, from=1:5, to=1:7)
»

d # varl is equal to var2

RGB A simple extension of rgb().

Description

A simple extension of rgb().

Usage

RGB(r, g, b, alpha)

Arguments
r,g b Red, Green, Blue: 0~255.
alpha Color transparency (opacity): 0~1. If not specified, an opaque color will be
generated.
Value

"#rrgghb” or "#rrggbbaa”.

Examples

RGB(255, @, @) # red: "#FF0000"
RGB(255, 0, 0, 0.8) # red with 80% opacity: "#FF@00@CC”

68 scaler

Run Run code parsed from text.

Description

Run code parsed from text.

Usage
Run(..., silent = FALSE)
Arguments
Character string(s) to run. You can use "{ }" to insert any R object in the envi-
ronment.
silent Suppress error/warning messages. Defaults to FALSE.
Value

Invisibly return the running expression(s).

Examples

Run(”a=1", "b=2")
Run("print({atb})")

scaler Min-max scaling (min-max normalization).

Description

This function resembles RESCALE () and it is just equivalent to RESCALE (var, to=0:1).

Usage

scaler(v, min = @, max = 1)

Arguments
Y% Variable (numeric vector).
min Minimum value (defaults to 0).

max Maximum value (defaults to 1).

set.wd 69

Value

A vector of rescaled variable.

Examples

scaler(1:5)
the same: RESCALE(1:5, to=0:1)

set.wd Set working directory to the path of currently opened file.

Description

Set working directory to the path of currently opened file (usually an R script). You may use this
function in both .R/.Rmd files and R Console. RStudio (version >= 1.2) is required for running
this function.

Usage

set.wd(path = NULL, ask = FALSE)

set_wd(path = NULL, ask = FALSE)

Arguments
path NULL (default) or a specific path. Defaults to extract the path of the currently
opened file (usually .R or .Rmd) using the rstudioapi: :getSourceEditorContext
function.
ask TRUE or FALSE (default). If TRUE, you can select a folder with the prompt of a
dialog.
Value

Invisibly return the path.

Functions

e set.wd(): Main function

e set_wd(): The alias of set.wd (the same)

See Also

setwd()

https://posit.co/download/rstudio-desktop/

70 show_colors

Examples

Not run:

RStudio (version >= 1.2) is required for running this function.

set.wd() # set working directory to the path of the currently opened file
set.wd("~/") # set working directory to the home path

set.wd("../") # set working directory to the parent path

set.wd(ask=TRUE) # select a folder with the prompt of a dialog

End(Not run)

show_colors Show colors.

Description

Show colors.

Usage

show_colors(colors)

Arguments
colors Color names.
Examples:
¢ "red"” (R base color names)
e "#FFQ000Q" (hex color names)
e see::social_colors()
e viridis::viridis_pal()(10)
e RColorBrewer: :brewer.pal(name="Set1", n=9)
* RColorBrewer: :brewer.pal(name="Set2", n=8)
* RColorBrewer: :brewer.pal(name="Spectral”, n=11)
Value

A ggplot object.

Examples

show_colors("blue”)
show_colors("#0000FF") # blue (hex name)
show_colors(RGB(@, @, 255)) # blue (RGB)
show_colors(see::social_colors())
show_colors(see::pizza_colors())

theme_bruce 71

theme_bruce A nice ggplot2 theme that enables Markdown/HTML rich text.

Description

A nice ggplot2 theme for scientific publication. It also uses ggtext::element_markdown() to
render Markdown/HTML formatted rich text. You can use a combination of Markdown and/or
HTML syntax (e.g., "*y* = *x*²") in plot text or title, and this function draws text
elements with rich text format.

For more usage, see:

o ggtext::geom_richtext()
* ggtext::geom_textbox()
e ggtext::element_markdown()

e ggtext::element_textbox()

Usage

theme_bruce(
markdown = FALSE,
base.size = 12,
line.width = 0.5,
border = "black”,

bg = "white”,
panel.bg = "white",
tag = "bold”,
plot.title = "bold",
axis.title = "plain”,

title.pos = 0.5,
subtitle.pos = 0.5,
caption.pos = 1,

font = NULL,
grid.x = "",
grid.y = "",
line.x = TRUE,
line.y = TRUE,
tick.x = TRUE,
tick.y = TRUE

)

Arguments
markdown Use element_markdown () instead of element_text(). Defaults to FALSE. If

set to TRUE, then you should also use element_markdown () in theme () (if any).

base.size Basic font size. Defaults to 12.

72

theme_bruce

non non

solar”,

line.width Line width. Defaults to 0. 5.
border TRUE, FALSE, or "black” (default).
bg Background color of whole plot. Defaults to "white”. You can use any colors
or choose from some pre-set color palettes: "stata”, "stata.grey”,
"wsj", "light", "dust".
panel.bg Background color of panel. Defaults to "white”.
tag Font face of tag. Choose from "plain”, "italic"”, "bold", "bold.italic".
plot.title Font face of title. Choose from "plain”, "italic”, "bold", "bold.italic".
axis.title Font face of axis text. Choose from "plain”, "italic”, "bold”, "bold.italic".
title.pos Title position (0~1).

subtitle.pos

caption.pos

Subtitle position (0~1).
Caption position (0~1).

FALSE, "" (default), or a color (e.g., "grey90") to set the color of panel grid (x).
FALSE, "" (default), or a color (e.g., "grey90") to set the color of panel grid (y).

font Text font. Only applicable to Windows system.
grid.x
grid.y
line.x Draw the x-axis line. Defaults to TRUE.
line.y Draw the y-axis line. Defaults to TRUE.
tick.x Draw the x-axis ticks. Defaults to TRUE.
tick.y Draw the y-axis ticks. Defaults to TRUE.
Value

A theme object that should be used for ggplot2.

Examples

Example 1 (bivariate correlation)
d = as.data.table(psych::bfi)

added(d, {

E = .mean("E", 1:5, rev=c(1,2), range=1:6)

0
D

.mean("0", 1:5, rev=c(2,5), range=1:6)

ggplot(data=d, aes(x=E, y=0)) +
geom_point(alpha=0.1) +
geom_smooth(method="1loess") +
labs(x="Extraversion_{Big 5}",

y="0penness_{Big 5}") +
theme_bruce (markdown=TRUE)

Example 2 (2x2 ANOVA)
d = data.frame(X1 = factor(rep(1:3, each=2)),

X2 = factor(rep(1:2, 3)),

Y.mean = c(5, 3, 2, 7, 3, 6),

Y.se = rep(c(0.1, 0.2, 0.1), each=2))
ggplot(data=d, aes(x=X1, y=Y.mean, fill=X2)) +

geom_bar (position="dodge", stat="identity"”, width=0.6, show.legend=FALSE) +

TTEST 73

geom_errorbar(aes(x=X1, ymin=Y.mean-Y.se, ymax=Y.mean+Y.se),
width=0.1, color="black”, position=position_dodge(0.6)) +
scale_y_continuous(expand=expansion(add=0),
limits=c(0,8), breaks=0:8) +

scale_fill_brewer(palette="Set1") +
labs(x="Independent Variable (*Xx*)", # italic X

y="Dependent Variable (xY*)", # italic Y

title="Demo Plot^{bruceR}") +
theme_bruce(markdown=TRUE, border="")

TTEST One-sample, independent-samples, and paired-samples t-test.

Description

One-sample, independent-samples, and paired-samples ¢-test, with both Frequentist and Bayesian
approaches. The output includes descriptives, ¢ statistics, mean difference with 95% CI, Cohen’s d
with 95% CI, and Bayes factor (B Fy; BayesFactor package needs to be installed). It also tests the
assumption of homogeneity of variance and allows users to determine whether variances are equal
or not.

Users can simultaneously test multiple dependent and/or independent variables. The results of one
pair of Y-X would be summarized in one row in the output. Key results can be saved in APA format
to MS Word.

Usage

TTEST(
data,
y)
x = NULL,
paired = FALSE,
paired.d.type = "dz",
var.equal = TRUE,
mean.diff = TRUE,
test.value = 0,

c("=", "<"

test.sided = , ">,
factor.rev = TRUE,
bf10 = FALSE,
bayes.prior = "medium”,
digits = 2,
file = NULL
)
Arguments

data Data frame (wide-format only, i.e., one case in one row).

74

paired

paired.d. type

var.equal

mean.diff

test.value

test.sided

factor.rev

bf10
bayes.prior
digits

file

Details

TTEST

Dependent variable(s). Multiple variables should be included in a character vec-
tor c().

For paired-samples 7-test, the number of variables should be 2, 4, 6, etc.

Independent variable(s). Multiple variables should be included in a character
vector c().

Only necessary for independent-samples -test.
For paired-samples #-test, set it as TRUE. Defaults to FALSE.

Type of Cohen’s d for paired-samples t-test (see Lakens, 2013). Defaults to
Hdzll.
Options:

"dz" (d for standardized difference) Cohen’s d, = évgdlf ff

. My,
"dav"” (d for average standard deviation) Cohen’s do, = w955
- 2
"drm” (d for repeated measures, corrected for correlation) Cohen’s d,.,, =
MaiffXy/2(1—r1,2)
\/SD?+SD3—2xr1 2xSD1 xSDs

If Levene’s test indicates a violation of the homogeneity of variance, then you
should better set this argument as FALSE. Defaults to TRUE.

Whether to display results of mean difference and its 95% CI. Defaults to TRUE.

The true value of the mean (or difference in means for a two-samples test).
Defaults to 0.

Any of "=" (two-sided, the default), "<" (one-sided), or ">" (one-sided).

Whether to reverse the levels of factor (X) such that the test compares higher vs.
lower level. Defaults to TRUE.

Show BF10 (Bayes Factor) in results? Defaults to FALSE.

Prior scale in Bayesian ¢-test. Defaults to 0.707. See details in BayesFactor: : ttestBF ().
Number of decimal places of output. Defaults to 2.

File name of MS Word (" .doc").

Note that the point estimate of Cohen’s d is computed using the common method "Cohen’s d = mean
difference / (pooled) standard deviation", which is consistent with results from other R packages
(e.g., effectsize) and software (e.g., jamovi). The 95% CI of Cohen’s d is estimated based on
the 95% CI of mean difference (i.e., also divided by the pooled standard deviation).

However, different packages and software diverge greatly on the estimate of the 95% CI of Cohen’s
d. R packages such as psych and effectsize, R software jamovi, and several online statistical
tools for estimating effect sizes indeed produce surprisingly inconsistent results on the 95% CI of

Cohen’s d.

See an illustration of this issue in the section "Examples".

Value

Invisibly return the results.

TTEST 75

References

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practi-
cal primer for #-tests and ANOVAs. Frontiers in Psychology, 4, Article 863.

See Also

MANOVA ()
EMMEANS ()

Examples

Demo data

dl = between.3

d1$Y1 = d1$SCORE # shorter name for convenience

d1$Y2 = rnorm(32) # random variable

d1$B = factor(d1$B, levels=1:2, labels=c("Low"”, "High"))
d1$C = factor(d1$C, levels=1:2, labels=c("M", "F"))

d2 = within.1

One-sample t-test
TTEST(d1, "SCORE")
TTEST(d1, "SCORE", test.value=5)

Independent-samples t-test

TTEST(d1, "SCORE", x="A")

TTEST(d1, "SCORE", x="A", var.equal=FALSE)

TTEST(d1, y="Y1", x=c("A", "B", "C"))

TTEST(d1, y=c("Y1", "Y2"), x=c("A", "B", "C"),
mean.diff=FALSE, # remove to save space
file="t-result.doc”)

unlink("t-result.doc”) # delete file for code check

Paired-samples t-test

TTEST(d2, y=c("A1", "A2"), paired=TRUE)

TTEST(d2, y=c("A1", "A2", "A3", "A4"), paired=TRUE)

Not run:
Illustration for the issue stated in "Details”
Inconsistency in the 95% CI of Cohen's d between R packages:
In this example, the true point estimate of Cohen's d = 3.00

and its 95% CI should be equal to 95% CI of mean difference.

data = data.frame(X=rep(1:2, each=3), Y=1:6)
data # simple demo data

TTEST(data, y="Y", x="X")
d=3.00 [0.73, 5.27] (estimated based on 95% CI of mean difference)

76 %allin%

MANOVA(data, dv="Y", between="X") %>%
EMMEANS ("X")
#d=3.00 [0.73, 5.27] (the same as TTEST)

psych: :cohen.d(x=data, group="X")
d = 3.67 [0.04, 7.35] (strange)

psych::d.ci(d=3.00, n1=3, n2=3)
d=3.00 [-0.15, 6.12] (significance inconsistent with t-test)

jamovi uses psych::d.ci() to compute 95% CI
so its results are also: 3.00 [-0.15, 6.12]

effectsize::cohens_d(Y ~ rev(X), data=data)
d = 3.00 [0.38, 5.50] (using the noncentrality parameter method)

effectsize::t_to_d(t=t.test(Y ~ rev(X), data=data, var.equal=TRUE)$statistic,
df_error=4)

d=3.67 [0.47, 6.74] (merely an approximate estimate, often overestimated)

see ?effectsize::t_to_d

https://www.psychometrica.de/effect_size.html

d=3.00 [0.67, 5.33] (slightly different from TTEST)

https://www.campbellcollaboration.org/escalc/

d=3.00 [0.67, 5.33] (slightly different from TTEST)

Conclusion:

TTEST() provides a reasonable estimate of Cohen's d and its 95% CI,
and effectsize::cohens_d() offers another method to compute the CI.

End(Not run)

%allin% A simple extension of %in%.

Description

A simple extension of %in%.

Usage

X %allin% vector

Arguments

X Numeric or character vector.

vector Numeric or character vector.

%anyin%

Value

TRUE or FALSE.

See Also
%in%
%anyin%
%nonein%

%partin%

Examples

1:2 %allin% 1:3 # TRUE
3:4 %allin% 1:3 # FALSE

77

%anyin% A simple extension of %in%.

Description

A simple extension of %in%.

Usage

X %anyin% vector

Arguments
X Numeric or character vector.
vector Numeric or character vector.
Value

TRUE or FALSE.

See Also
%1in%
%allin%
%nonein%

%partin

Examples

3:4 %anyin% 1:3 # TRUE
4:5 %anyin% 1:3 # FALSE

78 % %COMPUTE% %

%%COMPUTE %% Multivariate computation

Description

Easily compute multivariate sum, mean, and other scores. Reverse scoring can also be easily imple-
mented without saving extra variables. Alpha() function uses a similar method to deal with reverse
scoring.

Three options to specify variables:

1. var + items: common and unique parts of variable names (suggested).
2. vars: a character vector of variable names (suggested).

3. varrange: starting and stopping positions of variables (NOT suggested).

Usage

COUNT(data, var = NULL, items = NULL, vars = NULL, varrange = NULL, value = NA)

MODE (data, var = NULL, items = NULL, vars = NULL, varrange = NULL)

SUM(
data,
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,

range = likert,
likert = NULL,

na.rm = TRUE

)

.sum(
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,

range = likert,
likert = NULL,
na.rm = TRUE

)

MEAN(
data,
var = NULL,

% %COMPUTE% %

items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,
range = likert,
likert = NULL,

na.rm = TRUE

)

.mean(
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,

range = likert,
likert = NULL,

na.rm = TRUE

)

STD(
data,
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,

range = likert,
likert = NULL,

na.rm = TRUE
)
CONSEC(
data,
var = NULL,
items = NULL,
vars = NULL,

varrange = NULL,
values = 0:9

Arguments

data

var

items

Data frame.

79

[Option 1] Common part across variables: e.g., "RSES"”, "XX.{i}.pre" (if var
string has any placeholder in braces {. ..}, then items will be pasted into the

braces, see examples)

[Option 1] Unique part across variables: e.g., 1:10, c("a",

ubn ncn>
’

80

vars

varrange

value

rev

range, likert

na.rm

values

Value

% %COMPUTE% %

[Option 2] Character vector specifying variables: e.g., c("X1", "X2", "X3",
HX4”’ ”X5")

[Option 3] Character string specifying positions ("start:stop”) of variables:
e.g., "A1:E5"

[Only for COUNT ()] The value to be counted.

[Optional] Variables that need to be reversed. It can be (1) a character vector
specifying the reverse-scoring variables (recommended), or (2) a numeric vector
specifying the item number of reverse-scoring variables (not recommended).

[Optional] Range of likert scale: e.g., 1:5, c(1, 5). If not provided, it will be
automatically estimated from the given data (BUT you should use this carefully).

Ignore missing values. Defaults to TRUE.

[Only for CONSEC()] Values to be counted as consecutive identical values. De-
faults to all numbers (0:9).

A vector of computed values.

Functions

e COUNT(): Count a certain value across variables.

e MODE(): Compute mode across variables.

e SUM(): Compute sum across variables.

e .sum(): Tidy version of SUM(), can only be used in add() /added().

e MEAN(): Compute mean across variables.
e .mean(): Tidy version of MEAN(), can only be used in add() /added().

e STD(): Compute standard deviation across variables.

* CONSEC(): Compute consecutive identical digits across variables (especially useful in de-
tecting careless responding).

Examples

d = data.table(

x1 = 1:5,
x4 = c(2,2,5,4,5),
x3 = c(3,2,NA,NA,5),
x2 = c(4,4,NA,2,5),
x5 = ¢(5,4,1,4,5)

)

d

I deliberately set this order to show you
the difference between "vars” and "varrange”.

====== Usage
dr, "i=(
na = COUNT(d,

1: data.table ~:=" ====== ##

"x", 1:5, value=NA),

%nonein%

n.2 = COUNT(d, "x", 1:5, value=2),

sum = SUM(d, "x", 1:5),

ml = MEAN(d, "x", 1:5),

m2 = MEAN(d, vars=c("x1", "x4")),

m3 = MEAN(d, varrange="x1:x2", rev="x2", range=1:5),
CONSEC(d, "x", 1:5),

CONSEC(d, varrange="x1:x5")

cons1
cons?2

Usage 2: “add()” & “added()~ ====== ##

data = as.data.table(psych::bfi)

added(data, {
gender = as.factor(gender)

education = as.factor(education)
E = .mean("E", 1:5, rev=c(1,2), range=1:6)
A = .mean("A", 1:5, rev=1, range=1:6)
C = .mean("C", 1:5, rev=c(4,5), range=1:6)
N = .mean("N", 1:5, range=1:6)
0 = .mean("0", 1:5, rev=c(2,5), range=1:6)
}, drop=TRUE)
data
====== New Feature for “var® & “items™ ======
d = data.table(
XX.1.pre = 1:5,
XX.2.pre = 6:10,
XX.3.pre = 11:15

)

add(d, { XX.mean = .mean("XX.{i}.pre", 1:3) })
add(d, { XX.mean = .mean("XX.{items}.pre”, 1:3) }) # the same
add(d, { XX.mean = .mean("XX.{#$%"&}.pre", 1:3) }) # the same

81

%nonein%

A simple extension of %in%.

Description

A simple extension of %in%.

Usage

X %nonein% vector

Arguments

X

vector

Numeric or character vector.

Numeric or character vector.

82 %partin%

Value

TRUE or FALSE.

See Also
%1in%
%allin%
%anyin%%

%partin%

Examples

3:4 %nonein% 1:3 # FALSE
4:5 %nonein% 1:3 # TRUE

%partin A simple extension of %in%.

Description

A simple extension of %in%.

Usage

pattern %partin% vector

Arguments
pattern Character string containing regular expressions to be matched.
vector Character vector.

Value

TRUE or FALSE.

See Also
%in%
%allin%
%anyin%

%nonein%

%" % 83

Examples

"Bei"” %partin% c("Beijing”, "Shanghai”) # TRUE
"bei"” %partin% c("Beijing”, "Shanghai”) # FALSE
"[aeioulng” %partin% c("Beijing”, "Shanghai”) # TRUE

%" % Paste strings together.

Description
Paste strings together. A wrapper of paste@(). Why %*%? Because typing % and * is pretty easy by
pressing Shift + 5 + 6 + 5.

Usage
X %%y

Arguments

Y Any objects, usually a numeric or character string or vector.

Value

A character string/vector of the pasted values.

Examples

He %A% "11o"
"X %% 1:10
"Q" %"% 1:5 %*% letters[1:5]

Index

.mean (%%COMPUTE%%), 78
.mean(), 4

. sum (%%COMPUTE%%), 78
.sum(), 4
%%COMPUTE%%, 78
%"%, 4, 83

%allin%, 4,76, 77,82
%anyink, 4, 77,77, 82
%in%, 77, 82
%nonein%, 4, 77, 81, 82
%notin%, 4
%partink, 4,77, 82, 82

add, 6

add(), 4
add()/added(), 80

added (add), 6

added(), 4
afex::aov_ez(), 22,45, 47
Alpha, 8
Alpha(), 4, 13,21,78

base::within(), 6
BayesFactor: :ttestBF (), 74
bruceR (bruceR-package), 3
bruceR-package, 3

c(), 46
car::recode(), 63
cat(), 55

cc, 9

cc(), 3,46

ccf_plot, 10
ccf_plot(), 5, 34, 35
CFA, 12,43

CFA(), 4,9, 21
clipr::read_clip_tbl(), 40
clipr::write_clip(), 26
CONSEC (%%COMPUTE%%), 78
CONSEC(), 4, 80

84

cor_diff, 15

cor_diff(), 4
cor_multilevel, 15
cor_multilevel(), 4, 14, 38
Corr, 13

Corr(),4,16, 17

COUNT (%%COMPUTE%%), 78
COUNT(), 4, 80

data.table, 6
data.table::fread(), 40
data.table::furite(), 26
data.table::let(), 6
Describe, 16
Describe(), 4, 14
dplyr::left_join(), 45
dplyr::mutate(), 6
dplyr::transmute(), 6
dtime, 18

EFA, 18

EFAQ), 4,9, 13,20

effectsize: :sd_pooled(), 22
effectsize::t_to_d(), 23
EMMEANS, 21

EMMEANS (), 5, 47, 75

emmeans: :contrast(), 21
emmeans: :contrast-methods, 22
emmeans: :eff_size(), 23
emmeans: :emmeans(), 21, 22
emmeans: :emmip(), 23,47
emmeans: : joint_tests(), 21, 22
emmeans: : summary.emmGrid(), 22
export, 26

export(), 3, 41

foreign::read.dta(), 40
foreign::read.spss(), 40
format(), 28, 29
formatF, 28

INDEX

formatF (), 4, 29
formatN, 29
formatN(), 4, 28
formula_expand, 29
formula_paste, 30
Freq, 30

Freq(), 4

GGally: :ggpairs(), 17
ggsave(), 11

ggtext: :element_markdown(), 71
ggtext::element_textbox(), 71
ggtext: :geom_richtext(), 71
ggtext: :geom_textbox(), 71
GLM_summary, 31
GLM_summary(), 5, 39, 51, 65
Glue (Print), 55

Glue(), 4

glue::glue(), 55
glue::glue_col(), 55
grand_mean_center, 32
grand_mean_center(), 5, 36, 61
granger_causality, 33
granger_causality(), 5, 35
granger_test, 34
granger_test(), 5, 11,34
group_mean_center, 35
group_mean_center(), 5, 33, 61

haven: :read_dta(), 40
haven: :read_sav(), 40
haven: :write_dta(), 26
haven: :write_sav(), 26
HLM_ICC_rWg, 36
HLM_ICC_rWG(), 5, 15, 16
HLM_summary, 38
HLM_summary(), 5, 32, 51, 65

import, 40
import(), 3,27
interactions: :sim_slopes(), 57

jtools: :summ.1lm(), 31, 65

lavaan, 42

lavaan options, 12
lavaan::cfa(), 12, I3
lavaan::sem(), 57
lavaan_summary, 42

lavaan_summary(), 5, 13, 52, 61
1me4, 59
Imtest::grangertest(), 34, 35
load(), 40

LOOKUP, 44

LOOKUP(), 4

MANOVA, 45
MANOVAQ), 5, 22-24,47, 75
MEAN (%%COMPUTE%%), 78
MEANQ), 4, 9, 21, 80
med_summary, 49
med_summary (), 5, 51, 61
mediation::mediate(), 49, 57
MODE (%%COMPUTE%%), 78

MODE (), 4

model_summary, 50

model_summary(), 5, 31, 32, 38, 39, 61, 64, 65

MuMIn: :r.squaredGLMM(), 50
MuMIn: :std.coef (), 50

openxlsx::write.xlsx(), 26

p, 53

paste0d(), 83
PCA (EFA), 18
PCAQ), 4, 20

performance: :check_collinearity(), 51

performance: :r2_mcfadden(), 50
performance: :r2_nagelkerke(), 50
pkg_depend, 54

pkg_depend(), 3

Print, 55

Print(), 4

print(), 55

print_table, 56
print_table(), 4, 27, 32, 39, 51, 65
PROCESS, 43, 57
PROCESS(), 5,49, 52, 57, 60, 61
psych::alpha(), 8, 9
psych::corr.test(), 14
psych::fa(), 18, 20

psych: :kaiser(), 20

psych: :omega(), 8, 9

psych: :principal(), I8, 20

readRDS(), 40
readxl::read_excel(), 40
RECODE, 63

86

RECODE(), 4
regress, 64
regress(), 5, 32, 39
rep_char, 66
RESCALE, 66
RESCALE(), 4, 68
RGB, 67

reb(), 67
rio::export(), 26
rio::import(), 40
Run, 68

Run(), 4

sandwich: :vcovHC(), 31, 65
save(), 26

saveRDS(), 26

scaler, 68

set.wd, 69

set.wd(), 3

set_wd (set.wd), 69
set_wd(), 3

setwd(), 69
show_colors, 70
show_colors(), 5
stats::p.adjust(), 14, 22
STD (%%COMPUTE%%), 78
STDQ), 4

SUM (%%COMPUTE%%), 78
SUMQ), 4, 80

texreg: :htmlreg(), 50, 51
texreg: :screenreg(), 50, 51
theme_bruce, 71
theme_bruce(), 5

tidyr: :pivot_wider(), 47
TTEST, 73

TTEST(), 5, 24,47

utils::write.table(), 26

vars::VAR(Q), 33, 34

INDEX

	bruceR-package
	add
	Alpha
	cc
	ccf_plot
	CFA
	Corr
	cor_diff
	cor_multilevel
	Describe
	dtime
	EFA
	EMMEANS
	export
	formatF
	formatN
	formula_expand
	formula_paste
	Freq
	GLM_summary
	grand_mean_center
	granger_causality
	granger_test
	group_mean_center
	HLM_ICC_rWG
	HLM_summary
	import
	lavaan_summary
	LOOKUP
	MANOVA
	med_summary
	model_summary
	p
	pkg_depend
	Print
	print_table
	PROCESS
	RECODE
	regress
	rep_char
	RESCALE
	RGB
	Run
	scaler
	set.wd
	show_colors
	theme_bruce
	TTEST
	allin
	anyin
	COMPUTE
	nonein
	partin
	^
	Index

