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Introduction

In multivariate time series analysis, vectorautoregressions (VARs) are widely applied in fields such as brain

connectivity modeling [e.g., Goebel et al., 2003, Chiang et al., 2017, Wegmann et al., 2024] and the modeling

of macroeconomic and financial time series [e.g., Sims, 1980, Karlsson, 2013, Crump et al., 2021]. Especially

in macroeconomic applications, VARs have probably become the workhorse model for forecasting. The VAR

model of order p, VAR(p), can be formulated as follows:1

y′

t =

p
∑

l=1

y′

t−lAl + ε′

t, εt ∼ N (0, Σt), t = 1, . . . ,T, (1)

where yt is the M -dimensional vector of interest, Al, for l = 1, . . ., p, an unknown M ×M matrix of regression

coefficients, εt an M -dimensional vector of errors, and Σt the corresponding M × M variance-covariance

matrix. For ease of notation, let Φ := (A1, . . . , Ap)′ denote the (K = pM) × M matrix containing all VAR

coefficients and let φ := vec(Φ) denote the vectorization thereof with length n = pM2.

To facilitate efficient and reliable estimation when M gets large, we consider two different decompositions of

the variance-covariance matrix Σt explained in the following paragraphs.

VAR with factor stochastic volatility Assuming that the errors feature a factor stochastic volatility

structure, following Kastner and Huber [2020], we decompose the variance-covariance matrix into

Σt = ΛVtΛ
′ + Qt. (2)

Both Qt = diag(eh1t , . . . , ehMt) and Vt = diag(ehM+1,t , . . . , ehM+r,t) are diagonal matrices of dimension M

and r, respectively, and Λ is the M × r matrix of factor loadings. This is obviously equivalent to introducing

r conditionally independent latent factors ft ∼ Nr(0, Vt) and rewriting the error term in (1) as

ε′

t = f ′

tΛ
′ + η′

t, (3)

where ηt ∼ NM (0, Qt). The matrix Qt contains the idiosyncratic, series specific, variances. The matrix

Vt contains the factor specific variances governing the contemporaneous dependencies. The logarithms of

the elements in Qt and Vt follow a priori independent autoregressive processes of order one (AR(1)). More

1For simplicity of exposition we omit the intercept in the following (which nonetheless bayesianVARs implements by default).
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specifically, the evolution of the idiosyncratic log-variance hit ∼ N (µi + φi(hi,t−1 − µi), σ2

i ), for i = 1, . . . , M ,

is described by the parameters µi, the level, φi, the persistence and σ2

i , the variance. The factor-specific

log-variance hjt ∼ N (φjhj,t−1, σ2

j ), for j = M + 1, . . . , M + r, is assumed to have mean zero to identify the

scaling of the elements of Λ. Without imposing restrictions on the factor loadings, the VAR with factor

stochastic volatility is invariant to the way the variables are ordered.

VAR with Cholesky stochastic volatility Assuming that the errors feature a Cholesky stochastic

volatility structure, following Cogley and Sargent [2005], we decompose the variance-covariance matrix into

Σt = U ′−1DtU
−1, (4)

where U is an M × M upper triangular matrix with ones on the diagonal. The logarithms of the elements of

the M -dimensional diagonal matrix Dt = diag(eh1t , . . . , ehMt) are assumed to follow a priori independent

AR(1) processes, i.e. hit ∼ N (µi + φi(hi,t−1 − µi), σ2

i ), for i = 1, . . . , M . Since Ut is a triangular matrix, the

VAR with Cholesky stochastic volatility depends on the way the variables are ordered.

Prior Distributions

While flexible, VARs are known to be overparameterized: In macroeconomic applications the number of

available observations T can be relatively small compared to the number of VAR coefficients n, since the data

is usually reported on a quarterly or yearly basis. Bayesian shrinkage priors can be used to alleviate this issue.

In the following paragraphs, we discuss several prior options for the VAR coefficients before briefly discussing

prior choices for the variance-covariance matrix. In general, we assume that the joint prior distribution has a

product form p(φ, Σt) = p(φ)p(Σt), i.e. we assume that a priori φ and Σt are independent. The generic

prior for the VAR coefficients is conditionally normal φ|V ∼ Nn(0, V ), where V = diag(v1, . . . , vn) is an

n-dimensional diagonal matrix. The priors distinguish themselves in their treatment of V .

Hierarchical Minnesota prior The original Minnesota prior proposed in Litterman [1986] is mainly

characterized by two assumptions: First, the own past of a given variable is more important in predicting its

current value than the past of other variables. Second, the most recent past is assumed to be more important

in predicting current values than the more distant past. Hence, V is structured in a way, such that the

sub-diagonal elements of Φ (the own-lag coefficients) are shrunken less than the off-diagonal elements (the

cross-lag coefficients). And, coefficients associated with more recent lags are shrunken less than the ones

associated with more distant lags. Denote Vi the block of V that corresponds to the K coefficients in the ith

equation, and let Vi,jj be its diagonal elements. The diagonal elements are set to

Vi,jj =







λ1

l2 for coefficients on own lag l for l = 1, . . . , p,

λ2σ̂2
i

l2σ̂2
j

for coefficients on lag l of variable j ̸= i,
(5)

where σ̂2

i is the OLS variance of a univariate AR(6) model of the ith variable. The term l2 in the denominator

automatically imposes more shrinkage on the coefficients towards their prior mean as lag length increases. The

term
σ̂2

i

σ̂2
j

adjusts not only for different scales in the data, it is also intended to account for different scales of the

responses of one economic variable to another. To shrink own-lag coefficients less than cross-lag coefficients,

one could set λ1 > λ2. The hierarchical Minnesota prior, however, treats both shrinkage parameters as
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unknown. Following Huber and Feldkircher [2019], we place independent gamma priors on λ1 and λ2,

λi ∼ G(ci, di), for i = 1, 2. (6)

Semi-global local shrinkage Global local shrinkage priors in the fashion of Polson and Scott [2011] are

also used in the VAR literature [e.g., Follett and Yu, 2019, Huber and Feldkircher, 2019, Kastner and Huber,

2020]. In order to combine the merits of tailor-made priors, such as the Minnesota prior, with the flexibility

of off-the-shelf global local shrinkage priors, Gruber and Kastner [2025] propose the class of semi-global local

priors. Other than global local priors, which shrink globally, semi-global local priors shrink semi-globally,

meaning that semi-global shrinkage is imposed on k pre-specified subgroups of the parameter space. Let Aj ,

for j = 1, . . ., k, denote the generic index set that labels the coefficients of the jth group in φ (e.g., the first

group could be the own-lag coefficients associated with the first lag, the second group could be the cross-lag

coefficients associated with the first lag, etc.). Then, a semi-global local prior with k groups has the following

hierarchical representation:

φi ∼ K(ϑiζj), ϑi ∼ f, ζj ∼ g, i ∈ Aj , j = 1, . . . , k, (7)

where K(δ) denotes a symmetric unimodal density with variance δ, ζj represents the semi-global shrinkage,

and ϑi the local shrinkage. The only additional input required is the partitioning of φ into k subgroups.

Several options for grouping the coefficients are ready-made in bayesianVARs, though any custom grouping

could be specified as well. The equation-specific grouping indicates that the covariates of each equation

form M separate groups (column-wise shrinkage w.r.t. Φ). The covariate-specific partitioning implies that

the K covariates across all equations form separate groups (row-wise shrinkage w.r.t. Φ). The own-lag-

cross-lag-lagwise (olcl-lagwise) partitioning mimics some features of the Minnesota prior: In each lag, the

diagonal elements (the own-lags) and the off-diagonal elements (the cross-lags) constitute separate groups,

which makes 2p groups in total. The following list of hierarchical shrinkage priors, which can be cast in

the form of semi-global (local) priors, are implemented in bayesianVARs (in alphabetical order): Dirichlet-

Laplace (DL) prior [Bhattacharya et al., 2015], Horseshoe prior [Carvalho et al., 2010], normal-gamma (NG)

prior [Brown and Griffin, 2010], R2-induced Dirichlet decomposition (R2D2) prior [Zhang et al., 2022] and

stochastic-search-variable-selection (SSVS) prior [George et al., 2008]. Fore more detailed characteristics and

comparisons of those priors we refer to Gruber and Kastner [2025].

Priors for the variance-covariance matrix In the case that the variance-covariance is modeled via the

factor decomposition, the priors from Kastner et al. [2017] and Kastner [2019] are used. In the case that

the errors are assumed to feature the Cholesky stochastic volatility structure, bayesianVARs implements the

DL prior, the HS prior, the NG prior, the R2D2 prior, and the SSVS prior for the free off-diagonal elements

in U . Concerning the latent variables and their associated parameters in Dt, the priors from Kastner and

Frühwirth-Schnatter [2014] are used.

Homoscedastic VARs It should be noted that bayesianVARs also implements homoskedastic VARs where

Σt = Σ for all t. In case of the VAR with factor structure on the errors it holds that Vt = V = Ir and

Qt = Q = diag(q1, . . . , qM ) for all t. A priori, the ith diagonal element qi ∼ IG(af , bf ) is assumed to follow

an inverse gamma distribution for i = 1, . . . , M , independently. In case of the VAR with Cholesky structure

on the errors, it holds that Dt = D = diag(d1, . . . , dM ) for all t. The prior distribution of the ith diagonal
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element is inverse gamma, i.e. di ∼ IG(ac, bc) for i = 1, . . . , M , independently.

Algorithm

In a nutshell, bayesianVARs implements a Markov chain Monte Carlo (MCMC) algorithm which alternately

samples from the full conditional posterior distribution of the VAR coefficients p(φ|•) and from the full

conditional posterior distribution of the paths of the variance-covariance matrix p(Σt|•) for t = 1, . . ., T , with

• indicating that we condition on the remaining parameters and latent quantities of the model. To render

computation of the necessary steps required for sampling from p(φ|•) feasible, bayesianVARs implements the

equation-per-equation algorithm proposed in Kastner and Huber [2020] for the VAR with factor stochastic

volatility and the correct triangular algorithm from Carriero et al. [2022] for the VAR with Cholesky stochastic

volatility. The hyperparameters of the hierarchical shrinkage priors are sampled from the respective full

conditional posterior distributions outlined in Gruber and Kastner [2025]. To sample from p(Σt|•) for t = 1,

. . ., T , for the VAR with factor stochastic volatility, bayesianVARs accesses the package factorstochvol

[Hosszejni and Kastner, 2021]. For the VAR with Cholesky stochastic volatility, the latent variables and

associated parameters in Dt are sampled using the package stochvol [Kastner, 2016]. The free off-diagonal

elements in U are sampled equation-per-equation as proposed in Cogley and Sargent [2005]. Last but not

least, all computationally intensive tasks are written in C++ and interfaced with R via Rcpp [Eddelbuettel

and François, 2011] and RcppArmadillo [Eddelbuettel and Sanderson, 2014] for increased computational

efficiency.

Case study

We demonstrate the main functionality of bayesianVARs using the usmacro_growth dataset included in

the package. The dataset – obtained from FRED-QD, a quarterly database for macroeconomic research

[McCracken and Ng, 2021] – contains the time-series of 21 variables transformed to growth rates through

taking log-differences (except for interest rates).

set.seed(123)

library(bayesianVARs)

variables <- c("GDPC1", "GDPCTPI", "FEDFUNDS", "EXUSUKx", "S&P 500")

train_data <- 100 * usmacro_growth[1:230, variables]

test_data <- 100 * usmacro_growth[231:234, variables]

The workhorse function of bayesianVARs for conducting MCMC inference is the function bvar. Though it

offers a low barrier to entry for users (in case only data is supplied without any further sampler and or prior

configurations, default values are used), we encourage the user to specify the model to be estimated in more

detail using the helper functions specify_prior_phi (prior configuration concerning the VAR coefficients)

and specify_prior_sigma (prior configuration concerning the variance-covariance of the VAR). In our

demonstration, we specify a VAR with p = 2 lags with factor stochastic volatility and r = 4 factors and a

semi-global local HS prior with olcl-lagwise partitioning for the VAR coefficients. It is possible to impose

standard global local priors by specifying specify_prior_phi’s argument global_grouping = "global".

An arbitrary grouping for semi-global local priors can be achieved by supplying an indicator matrix to

global_grouping.
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Figure 1: Visualization of estimated in-sample prediction intervals. The red solid line depicts the median, the
red shaded region the 90% credible interval and the black dotted line the observed data used for estimation.

prior_phi <- specify_prior_phi(data = train_data,

lags = 2L,

prior = "HS",

global_grouping = "olcl-lagwise")

prior_sigma <- specify_prior_sigma(data = train_data,

type = "factor",

factor_factors = 4L)

mod <- bvar(train_data, lags = 2L, draws = 10000, burnin = 2000,

prior_phi = prior_phi, prior_sigma = prior_sigma,

sv_keep = "all")

The plot methods shows the model fit via 90% in-sample prediction intervals by default, see Figure 1.

plot(mod, quantiles = c(0.05,0.5,0.95), dates = rownames(mod$Yraw))

The object output by bvar contains the posterior draws. The extractors coef and vcov come in handy to

access the posterior draws of Φ and Σt, respectively. The function posterior_heatmap visualizes posterior

summaries, such as the posterior median or posterior interquartile-range, as heatmaps, see Figure 2.

phi <- coef(mod)

posterior_heatmap(phi, median, detect_lags = TRUE,

border_color = rgb(0,0,0, alpha = 0.2))

posterior_heatmap(phi, IQR, detect_lags = TRUE,
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Figure 2: Posterior summary of the VAR coefficients. Left: Heatmap of the posterior median. Right: Heatmap
of the posterior interquartile range.

border_color = rgb(0,0,0, alpha = 0.2))

The predict method simulates from the posterior predictive distribution. Log-predictive likelihoods will be

computed if the ex-post observed data is supplied.

pred <- predict(mod, ahead = 1:4, LPL = TRUE, Y_obs = test_data)

The plot method for draws of the posterior predictive distribution defaults to displaying fan-charts by joining

line charts for the observed data of the estimation sample with credible intervals of the posterior predictive

distribution, see Figure 3.

plot(pred, first_obs = 216,

dates = c(rownames(train_data[-c(1:215),]), rownames(test_data)))

The calculated log-predictive likelihoods could be used to comparing forecasting performances of different

models.

pred$LPL

#> t+1 t+2 t+3 t+4

#> -4.431981 -4.870581 -5.628659 -7.011924
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Figure 3: Fan-charts visualizing the last 15 out of 230 observations used for estimation through black solid
lines, the median of the h-step ahead predictive distribution through red solid lines and the 50%/90% credible
intervals of the h-step ahead predictive distribution through red shaded regions for h = 1, . . . , 4.
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