Package ‘amapro’

January 28, 2026
Type Package
Title Thin Wrapper for Mapping Library 'AMap'('Gaode")
Date 2026-01-27
Version 0.1.4
Author Larry Helgason [aut, cre, cph]
Maintainer Larry Helgason <larry@helgasoft.com>

Description Build and control interactive 2D and 3D maps with 'R/Shiny'. Lean set of powerful com-
mands wrapping native calls to 'AMap' <https://1bs.amap.com/api/jsapi-v2/summary/>.
Deliver rich mapping functionality with minimal overhead.

URL https://github.com/helgasoft/amapro/,
https://helgasoft.github.io/amapro/

BugReports https://github.com/helgasoft/amapro/issues/
Depends R (>=4.1.0)
Imports htmlwidgets, tcltk (>=4.1.0)

Suggests shiny (>= 1.7.0), shinyjs, shinythemes, jsonlite, rmarkdown,
knitr, testthat (>= 3.0.0)

License Apache License (>= 2)

Encoding UTF-8

Language en-US

VignetteBuilder knitr

RoxygenNote 7.3.3

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-28 03:20:02 UTC

https://lbs.amap.com/api/jsapi-v2/summary/
https://github.com/helgasoft/amapro/
https://helgasoft.github.io/amapro/
https://github.com/helgasoft/amapro/issues/

2 — Introduction —

Contents
—Introduction — e e 2
am.cmd .. L L e e 5
am.control e e 6
AMLINIL o o e e e e e 7
AMLNSPECE . . . o v v s e e e e e e e e e e e e e e e e e 8
AMLIEIN o ot e e e e e e e e e 8
am.outpuL L e 9
AMLPIOXY + v v v v v e 10
amrender .. oL oL oL L L e e e 10

Index 12

— Introduction - Introduction
Description

Essential information, tips and tricks

Details

Welcoming JavaScript library AMap into the world of R. AMap is an advanced mapping library
made in China and widely used there. It features 2D/3D animation, supports a multitude of layers
and markers, data import, flyover playback, etc. Library amapro let you control AMap from R and
Shiny. It uses AMap’s native commands/parameters wrapped in just a few commands.

Translation

AMap’s documentation is in Chinese and most links here make reference to it. If you happen not to
know Chinese, it is convenient to set your browser to auto-translate. This will help a little or a lot
depending on the website/page structure. One can also copy/paste text to Google translate.

Installation

Install amapro from Github with remotes: :install_github("helgasoft/amapro”) CRAN ver-
sion also available but usually outdated.

Run

with the following commands library(amapro); am.init() A pop-up dialog will ask for

an API key (shows once, will not be repeated). API key is obtained through registration, expecting
you to provide a Chinese phone number for SMS verification. How to get an API key if you reside
out of China?

ask a friend from China to help, or hire a local freelancer
search the web for a shared key

use a temporary Chinese phone number from sites like sms24.me, turtle-sms.xyz, etc. However
most are probably blacklisted as the registration page shows them as ‘already registered’.

select temporarily the ‘demo’ option, without guarantee to work in the long run

https://www.howtogeek.com/407924/how-to-turn-translation-on-or-off-in-chrome/
https://translate.google.com?sl=auto&tl=en
https://console.amap.com/dev/id/phone
https://www.truelancer.com/freelancers-in-china

— Introduction — 3

Shiny Demo

Interactive, hands-on showcase of many library features. Activate with the following command:
library(amapro); demo(am.shiny)

API links

amapro is based on version 2.0 of AMap (JSAPI v2.0). “API” auto-translates as “Reference book”
in web menus.

AMap:

The base library with optional plugins. Most important links are

e Summary
e Guide
API CN documentation, good auto-translation

API EN documentation in English, not recent/complete
¢ Examples - live demos

LOCA:

AMap extension with enhanced 3D features. In amapro it is invoked with a parameter - am. init(loca=TRUE,
...). The documentation auto-translates well in the browser.

¢ Intro
¢ API documentation
» Examples - live demos

Commands

Controlling map and elements is done by sending AMap commands to them. Commands can be
chained with the pipe operator I> or %>% and are executed sequentially in the order received.
Example: am.cmd('setAngle', 'carIcon', -9@) amapro uses native AMap commands and in-
troduces these additional:

* set - create new element
— with name: add new global JS object outside the map am.cmd('set', 'VectorLayer',
name="'e$layer1"')
— without name: add new element to map am.cmd('set', 'e$marker1', position=c(116.478,
39.998))

 addTo - append one existing JS object to another by name am.cmd('addTo', 'e$layerl’,
'e$marker1')

* var - set a JavaScript variable am.cmd('var', 'e$myOpacity', 0.8)

* code - execute JavaScript code am.cmd('code', 'alert("I amJS");"')
AMap commands starting with ‘get’ return data from the map or related objects. Put the data in a
Shiny input variable by setting its name in parameter r. Example: am.cmd('getCenter', 'map’,

r="inShiny1') Above command will update inpur$inShinyl with the Lng/Lat coordinates of the
map center.

https://lbs.amap.com/api/jsapi-v2/summary/
https://lbs.amap.com/api/jsapi-v2/guide/abc/quickstart
https://lbs.amap.com/api/javascript-api-v2/documentation
https://a.amap.com/jsapi/static/doc/index.html
https://lbs.amap.com/demo/list/jsapi-v2
https://lbs.amap.com/api/loca-v2/intro
https://a.amap.com/Loca/static/loca-v2/doc/html/index.html
https://lbs.amap.com/demo/loca-v2/demos/

4 — Introduction —

Events

Events could be defined for map and elements. All types of instances use on/off methods to bind
and remove events. Events are set in attribute on(or off) as a list of lists. Each event is a separate
list with event name in e, a JS function f and optionally a query q. Example:

am.init(center= c(116.475, 39.997), zoom= 17,
on= list(list(e= 'complete',
f= "function() {alert('loaded!');3}")))

on/off events without name are ignored, except for the map itself (as above example). JavaScript
function Shiny.setInputValue() can be used to send data back to Shiny.

Limitations

* only one map is created by am.init per session. It is a JS global called ‘m$jmap’.
* AMap command addTo is overwritten by amapro and cannot be used.

* most built-in AMap tile layers (Satellite, Traffic, Roads) are limited to China only. How-
ever, with command am.item(‘TileLayer’), one can use any Leaflet provider for worldwide
coverage.

* AMap built-in map layers are GCJ-02 coded and coordinates collected on them will display
incorrectly in Leaflet or other WGS-84 based maps, and vice-versa. They need to be converted.
Conversion is available through function convertFrom.

* the supported AMap plugins are: ControlBar, Scale, ToolBar, MoveAnimation, MouseTool,
HeatMap, GeoJSON, ElasticMarker.

* AMap ecosystem is vast, unsupported features and plugins include: ‘BesizerCurve’, ‘Mark-
erCluster’, ‘HawkEye’, IndoorMap, CustomLayer, ‘GLCustomLayer’, ‘DistrictLayer’, ‘Lay-
erGroup’, all editors like ‘PolygonEditor’,“Webservice’, ‘Search(AMap.Autocomplete, AMap.PlaceSearch)’,
‘Geocoding(AMap.Geocoder)’, Route planning, other services(weather, districts, etc.), posi-
tioning, utilities.

* most Loca elements are supported, but not all have been tested. Latest AmbientLight, Direc-
tionalLight and PointLight objects are not supported, but parameters ambLight, dirLight and
pointLight accomplish the same.

* Loca events are not supported yet.

Tips
* all named objects created in JS are global variables (window.name). Good practice is to use a
name prefix (m$) to avoid overwriting accidentally external variables.

» API attributes could be set to a JS function instead of a value. Function is defined as a string
starting with word “function”.

* usually WMS/WMTS tiles come from external servers and may present a CORS problem -
browser refusal to load. One can install a small extension in Chrome or Firefox to fix this
problem manually inside the browser.

* AMap has several predefined Map styles. Could be set in map options with mapStyle.

https://a.amap.com/jsapi/static/doc/index.html#controladdto
https://leaflet-extras.github.io/leaflet-providers/preview/
https://lbs.amap.com/api/jsapi-v2/guide/layers/official-layers
https://en.wikipedia.org/wiki/Restrictions_on_geographic_data_in_China
https://lbs.amap.com/api/jsapi-v2/guide/transform/convertfrom
https://lbs.amap.com/api/jsapi-v2/documentation#convertfrom
https://lbs.amap.com/demo/javascript-api/example/indoormap/indoormap/
https://lbs.amap.com/demo/javascript-api/example/selflayer/cus-svg
https://developer.mozilla.org/en-US/docs/Glossary/Global_object
https://chromewebstore.google.com/detail/allow-cors-access-control/lhobafahddgcelffkeicbaginigeejlf
https://addons.mozilla.org/en-US/firefox/addon/access-control-allow-origin/
https://lbs.amap.com/api/jsapi-v2/guide/map/map-style/

am.cmd 5

* amapro silent errors are collected in the browser Console. Press key F12 to open the dev.environment,
then open tab “Console” to view them.

* am.init has a debug (boolean) parameter, results are displayed in the browser Console

» Chrome/Firefox extensions may interfere with map presentation (like ‘uBlock’)

am.cmd Run a command

Description

Execute a command on a target element

Usage
am.cmd(id, cmd = NULL, trgt = NULL, ...)
Arguments
id A map widget from am.init or a proxy from am.proxy
cmd AMap command name string, like ’setFitView’, ’setMapStyle’, etc.
trgt A target’s name string, or ‘'map’ for the map itself.
command attributes from AMap APL
For AMap commands starting with ’get’ there are two amapro attributes ’f” and
T,
’f” is an optional JS function to manipulate the data received,
’r’ is the name of the Shiny variable receiving the data
Details

am.cmd provides interaction with the map.

Commands are sent to the map itself, or to objects inside or outside it.

AMap built-in objects have predefined set of commands listed in the API. Commands can modify
an object (setZoom), but also get data from it (getCenter).

amapro introduces its own commands like set, addTo or code, described in the Introduction.

Value

A map or a map proxy

See Also

am.init code example and Introduction

6 am.control

Examples

if (interactive()) {
'position' and 'content' are InfoWindow parameters from AMap API
am.init() |>
am.cmd('set', 'InfoWindow', position=c(116.6, 40), content='Beijing')

am.proxy("plot") [>
am.cmd('getLayers', 'map',
f= "function(yy) { return yy.map(x => { return x.CLASS_NAME;}); 1}',
r= 'resultl')

am.control Add Control

Description

Add a Control to a map.

Usage
am.control(id, ctype = NULL, ...)
Arguments
id amapro id or widget from am.init
ctype A string for name of control, like *Scale’,ControlBar’,’ ToolBar’.
A named list of parameters for the chosen control
Details

controls are ControlBar, ToolBar and Scale.
Parameters could be position or offset.

Value

A map widget to plot, or to save and expand with more features.

See Also

am.init code example

Examples

if (interactive()) {
am.init() |> am.control(”Scale")

}

https://a.amap.com/jsapi/static/doc/20210906/index.html?v=2#control

am.init 7

am.init Map Initialization

Description

First command to build a map

Usage

am.init(..., width = NULL, height = NULL)

Arguments

attributes of map, see here.
Additional attribute loca(boolean) is to add a Loca.Container to the map.

width, height A valid CSS unit (like '100%")

Details

Command am.init creates a widget with createWidget, then adds features to it.
On first use, am.init prompts for AMap API key. There is a temporary demo mode when key is
unavailable.

Value

A widget to plot, or to store and expand with more features

Examples

if (interactive()) {
ctr <- ¢(22.430151, 37.073011)
tu <- paste@('http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/',
"MapServer/tile/[z]/[y]/[x]1")
am.init(center= ctr, zoom= 10, pitch= 60, viewMode= '3D') |>
am.control(ctype= 'ControlBar', position= 'RT') |>
am.item('TileLayer', tileUrl= tu) |>
am.item('Marker', position= ctr,
icon= 'https://upload.wikimedia.org/wikipedia/commons/9/9d/Ancient_Greek_helmet.png'

) 1>
am.cmd('set', 'InfoWindow', name='iwin', content='This is Sparta') |>
am.cmd('open', 'iwin', 'm$jmap', ctr) # m$jmap is the map name in JavaScript

https://lbs.amap.com/api/jsapi-v2/documentation#map

8 am.item

am.inspect Map to JSON

Description

Convert map elements to JSON string

Usage
am.inspect(wt, json = TRUE, ...)
Arguments
wt An amapro widget as returned by am.init
json Boolean whether to return a JSON, or a 1ist, default TRUE
Additional arguments to pass to toJSON
Details

Must be invoked or chained as last command.

Value

A JSON string if json is TRUE and a 1list otherwise.

Examples

if (interactive()) {
am.init(viewMode= '3D', zoom= 10, pitch= 60) |>
am.control(ctype= 'ControlBar', position= 'RT') [|>
am.inspect()

am.item Add Item

Description

Add an item to a map

Usage

am.item(id, itype, ...)

am.output 9

Arguments
id A valid widget from am.init
itype A string for item type name, like ’Marker’
attributes of item
Details

To add an item like Marker, Text or Polyline to the map

Value

A map widget to plot, or to save and expand with more features

See Also

am.init code example

Examples

if (interactive()) {
am.init() |> am.item('Marker', position=c(116.6, 40))
3

am.output Shiny: map Ul

Description

Placeholder for a map in Shiny UI

Usage
am.output (outputId, width = "100%", height = "400px")

Arguments

outputId Name of output UI element.
width, height Must be a valid CSS unit (like '100%', '400px', ’auto’) or a number, which

will be coerced to a string and have ’px’ appended.
Value
An output or render function that enables the use of the widget within Shiny applications. See
shinyWidgetOutput.
See Also

Shiny demo in demo(am.shiny)

10 am.render

am.proxy Shiny: create a map proxy

Description

Create a proxy for an existing map in Shiny. It allows to add, merge, delete elements to a map
without reloading it.

Usage

am.proxy(id)

Arguments

id Map id from the Shiny UI

Value

A proxy object to update the map

Examples

if (interactive()) {
demo(am. shiny)

}

am.render Shiny: render a map

Description

This is the initial rendering of a map in the UL

Usage

am.render(wt, env = parent.frame())

Arguments
wt An amapro widget to generate the chart.
env The environment in which to evaluate expr.
Value

An output or render function that enables the use of the widget within Shiny applications.

am.render

See Also

am.proxy for example, shinyRenderWidget for return value.

11

Index

- Introduction -, 2

am.cmd, 5
am.control, 6
am.init, 5, 6,7,8, 9
am. inspect, 8
am.item, 8
am.output, 9
am.proxy, 5, 10, 11
am.render, 10

createWidget, 7
Introduction, 5

shinyRenderWidget, 71
shinyWidgetOutput, 9

toJSON, 8

	– Introduction –
	am.cmd
	am.control
	am.init
	am.inspect
	am.item
	am.output
	am.proxy
	am.render
	Index

