Package ‘affiner’

January 28, 2026
Type Package

Title A Finer Way to Render 3D Illustrated Objects in 'grid' Using
Affine Transformations

Version 0.2.1

Description Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Sup-
ports parallel projections including oblique projections such as the cabinet projec-
tion as well as axonometric projections such as the isometric projec-
tion. Use 'grid's * " affine transformation" feature to render illustrated flat surfaces.

URL https://trevorldavis.com/R/affiner/

BugReports https://github.com/trevorld/affiner/issues
License MIT + file LICENSE

Depends R (>=3.6.0)

Imports graphics, grDevices, grid, R6, utils

Suggests aRtsy, ggplot2, gridpattern, gtable, knitr, ragg (>= 1.3.3),
rgl, rlang, rmarkdown, stats, testthat (>= 3.0.0), vdiffr,
withr

VignetteBuilder knitr, ragg, rmarkdown
Encoding UTF-8

RoxygenNote 7.3.3
Config/testthat/edition 3
NeedsCompilation no

Author Trevor L. Davis [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6341-4639>)

Maintainer Trevor L. Davis <trevor.l.davis@gmail.com>
Repository CRAN
Date/Publication 2026-01-28 17:40:09 UTC

https://trevorldavis.com/R/affiner/
https://github.com/trevorld/affiner/issues
https://orcid.org/0000-0001-6341-4639

2 Contents

Contents
affiner-package 3
abs.Coord1D e 4
affineGrob 5
affiner_options L 7
affine_settings L. e e e e 8
angle e e 10
angle-methods L 11
angular_unito L L e e 13
as_angle e e e e e 14
as_coordld . .. oL L. 15
as_coord2d e 16
as_coord3d e 18
as_line2d L e 19
as_plane3d e 21
as_pointld L e 22
as_transformld L 22
as_transform2d L 23
as_transform3d L e 24
bounding_rangeso 25
centroid L L L e e e e e 25
convex_hull2d e e e e 26
CoordlD e e e 27
Coord2D e e e e 29
Coord3D e e e 32
cross_product3d 35
distanceld L. e e e 36
distance2d e e e e e e 37
distance3d e e e e e e e 37
graphiCs e 38
has_intersection e e 39
INErseCtion e e e e e 40
inverse-trigonometric-functions Lo 41
isocubeGrob L e e e e e 43
isotoxal_2ngon_inner_radius L. 45
is_angle e e 47
IS_CONGIUENL v v vt v et e e e e e e e e e e e e e e e 47
is_coordld e 49
is_coord2d L e 49
1s_coord3d 50
is_equivalent e e 50
1s_line2d L e 52
is_parallel L e 52
is_plane3d e e 53
is_pointld e 54
is_transformld e 54

is_transform2d e 55

affiner-package 3

is_transform3d L e 55
Line2D e e e e e 56
normal2d e e e 57
normal3d e 58
Plane3D e 59
PointlD e e e e 60
rotate3d_to_ AA e 61
transformld e e e 62
transform2d L 63
transform3d L. e 65
trigonometric-functions Lo 68
Index 70
affiner-package affiner: A Finer Way to Render 3D Illustrated Objects in 'grid’ Using

Affine Transformations

Description

Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Supports parallel
projections including oblique projections such as the cabinet projection as well as axonometric
projections such as the isometric projection. Use ’grid’s "affine transformation" feature to render
illustrated flat surfaces.

Package options

The following affiner function arguments may be set globally via base: :options():

affiner_angular_unit The default for the unit argument used by angle() and as_angle(). The
default for this option is "degrees".

affiner_grid_unit The default for the unit argument used by affine_settings(). The default
for this option is "inches".

The following cli options may also be of interest:
cli.unicode Whether UTF-8 character support should be assumed. Along with 110n_info() used
to determine the default of the use_unicode argument of format.angle() and print.angle().
Author(s)

Maintainer: Trevor L. Davis <trevor.1.davis@gmail.com> (ORCID)

See Also
Useful links:

* https://trevorldavis.com/R/affiner/
* Report bugs at https://github.com/trevorld/affiner/issues

https://orcid.org/0000-0001-6341-4639
https://trevorldavis.com/R/affiner/
https://github.com/trevorld/affiner/issues

4 abs.Coord1D

abs.Coord1D Compute Euclidean norm

Description

abs () computes the Euclidean norm for Coord2D class objects and Coord3D class objects.

Usage

S3 method for class 'CoordiD'
abs(x)

S3 method for class 'Coord2D'
abs(x)

S3 method for class 'Coord3D'
abs(x)

Arguments

X A Coord2D class object or Coord2D class object.

Value

A numeric vector

Examples

z <- complex(real = 1:4, imaginary = 1:4)

p <- as_coord2d(z)

abs(p) # Euclidean norm

Less efficient ways to calculate same Euclidean norms
sqrt(p * p) # “*° dot product

distance2d(p, as_coord2d(@, @, 0))

In {base} R “abs()" calculates Euclidean norm of complex numbers
all.equal(abs(p), abs(z))
all.equal(Mod(p), Mod(z))

p3 <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
abs(p3)

affineGrob 5

affineGrob Affine transformation grob

Description

affineGrob() is a grid grob function to facilitate using the group affine transformation features
introduced in R 4.2.

Usage

affineGrob(
grob,
vp_define = NULL,
transform = NULL,
vp_use = NULL,

name = NULL,
gp = grid::gpar(),
vp = NULL

)

grid.affine(...)

Arguments
grob A grid grob to perform affine transformations on. Passed to grid: :defineGrob()
as its src argument.
vp_define grid::viewport() to define grid group in. Passed to grid::defineGrob()
as its vp argument. This will cumulative with the current viewport and the vp
argument (if any), if this cumulative viewport falls outside the graphics device
drawing area this grob may be clipped on certain graphics devices.
transform An affine transformation function. If NULL defaultto grid: : viewportTransform().
Passed to grid: :useGrob() as its transform argument.
vp_use grid: :viewport() passed to grid: :useGrob() as its vp argument.
name A character identifier (for grid).
gp A grid: :gpar() object.
vp A grid::viewport() object (or NULL).
Passed to affineGrob()
Details

Not all graphics devices provided by grDevices or other R packages support the affine transforma-
tion feature introduced in R 4.2. If isTRUE(getRversion() >= '4.2.0") then the active graphics
device should support this feature if iSTRUE(grDevices: :dev.capabilities()$transformations).
In particular the following graphics devices should support the affine transformation feature:

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html

6 affineGrob

e R’s grDevices: :pdf () device

* R’s’cairo’ devices e.g. grDevices: :cairo_pdf (), grDevices: :png(type = 'cairo’'), grDevices: :svg(),
grDevices: :x11(type = 'cairo'), etc. If isTRUE(capabilities('cairo')) then R was
compiled with support for the *cairo’ devices .

* R’s ’quartz’ devices (since R 4.3.0) e.g. grDevices::quartz(), grDevices: :png(type =
"quartz'), etc. If isTRUE(capabilities('aqua')) then R was compiled with support for
the ’quartz’ devices (generally only TRUE on macOS systems).

* ragg’s devices (since v1.3.0) e.g. ragg: :agg_png(), ragg: :agg_capture(), etc.

Value

A grid::gTree() (grob) object of class "affine”". As a side effect grid.affine() draws to the
active graphics device.

See Also

See affine_settings() for computing good transform and vp_use settings. See https://
www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html for more
information about the group affine transformation feature. See isocubeGrob() which wraps this
function to render isometric cubes.

Examples

if (require("grid")) {
grob <- grobTree(rectGrob(gp = gpar(fill = "blue"”, col = NA)),
circleGrob(gp=gpar(fill="yellow"”, col = NA)),
textGrob("RSTATS", gp=gpar(fontsize=32)))
grid.newpage()
pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
grid.draw(grob)
popViewport()
3

if (require(”grid") &&
getRversion() >= "4.2.0" &&
isTRUE(dev.capabilities()$transformations)) {
Only works if active graphics device supports affine transformations
such as “png(type="cairo")™ on R 4.2+
vp_define <- viewport(width=unit(2, "in"), height=unit(2, "in"))
affine <- affineGrob(grob, vp_define=vp_define)
grid.newpage()
pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
grid.draw(affine)
popViewport()
3
if (require(”grid") &&
getRversion() >= "4.2.0" &&
isTRUE(dev.capabilities()$transformations)) {
Only works if active graphics device supports affine transformations
such as “png(type="cairo")™ on R 4.2+
settings <- affine_settings(xy = list(x = c(3/3, 2/3, /3, 1/3),

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html

affiner_options 7

y = c(2/3, 1/3, 1/3, 2/3)),
unit = "snpc")
affine <- affineGrob(grob,
vp_define = vp_define,
transform = settings$transform,
vp_use = settings$vp)

grid.newpage()
grid.draw(affine)
3

affiner_options Get affiner options

Description

affiner_options() returns the affiner package’s global options.

Usage
affiner_options(..., default = FALSE)
Arguments
affiner package options using name = value. The return list will use any of
these instead of the current/default values.
default If TRUE return the default values instead of current values.
Value

A list of option values. Note this function does not set option values itself but this list can be passed
to options(),withr::local_options(), orwithr::with_options().

See Also

affiner for a high-level description of relevant global options.

Examples

affiner_options()
affiner_options(default = TRUE)

affiner_options(affiner_angular_unit = "pi-radians”)

8 affine_settings

affine_settings Compute grid affine transformation feature viewports and transfor-
mation functions

Description

affine_settings() computes grid group affine transformation feature viewport and transforma-
tion function settings given the (x,y) coordinates of the corners of the affine transformed "viewport"
one wishes to draw in.

Usage

affine_settings(
Xy = data.frame(x = c(0, 0, 1, 1), y =c(1, 0, 0, 1)),

unit = getOption("affiner_grid_unit”, "inches"”)
)
Arguments
Xy An R object with named elements x and y representing the (X,y) coordinates
of the affine transformed "viewport" one wishes to draw in. The (x,y) coordi-
nates of the "viewport" should be in "upper left", "lower left", "lower right", and
"upper right" order (this ordering should be from the perspective of before the
"affine transformation" of the "viewport").
unit Which grid: :unit() to assume the xy "x" and "y" coordinates are expressed
in.
Value

A named list with the following group affine transformation feature viewport and functions settings:

transform An affine transformation function to pass to affineGrob () or useGrob(). If getRversion()

is less than "4.2.0" will instead be NULL.
vp A grid::viewport() object to pass to affineGrob() or useGrob().
sX x-axis sx factor
flipX whether the affine transformed "viewport" is "flipped" horizontally
X x-coordinate for viewport
y y-coordinate for viewport
width Width of viewport
height Height of viewport
default.units Default grid: :unit() for viewport

angle angle for viewport

affine_settings 9

Usage in other packages

To avoid taking a dependency on affiner you may copy the source of affine_settings() into

your own package under the permissive Unlicense. Either use usethis: :use_standalone("trevorld/affiner”,
"standalone-affine-settings.r") or copy the file standalone-affine-settings.r into your

R directory and add grid to the Imports of your DESCRIPTION file.

See Also

Intended for use with affineGrob() and grid: :useGrob(). See https://www.stat.auckland.
ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html for more information about the
group affine transformation feature.

Examples

if (require("grid")) {
grob <- grobTree(rectGrob(gp = gpar(fill = "blue"”, col = NA)),
circleGrob(gp=gpar(fill="yellow"”, col = NA)),
textGrob("RSTATS", gp=gpar(fontsize=32)))
grid.newpage()
pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
grid.draw(grob)
popViewport()
3
if (require("grid") &&
getRversion() >= "4.2.0" &&
isTRUE(dev.capabilities()$transformations)) {
Only works if active graphics device supports affine transformations
such as “png(type="cairo”)™ on R 4.2+
vp_define <- viewport(width=unit(2, "in"), height=unit(2, "in"))
settings <- affine_settings(xy = list(x = c(1/3, /3, 2/3, 3/3),
y = c(2/3, 1/3, 1/3, 2/3)),
unit = "snpc")
affine <- affineGrob(grob,
vp_define=vp_define,
transform = settings$transform,
vp_use = settings$vp)
grid.newpage()
grid.draw(affine)
3
if (require(”grid") &&
getRversion() >= "4.2.0" &&
isTRUE(dev.capabilities()$transformations)) {
Only works if active graphics device supports affine transformations
such as “png(type="cairo")™ on R 4.2+
settings <- affine_settings(xy = list(x = c(3/3, 2/3, /3, 1/3),
y = c(2/3, 1/3, 1/3, 2/3)),
unit = "snpc")
affine <- affineGrob(grob,
vp_define=vp_define,
transform = settings$transform,
vp_use = settings$vp)

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html

10 angle

grid.newpage()
grid.draw(affine)
3

angle Angle vectors

Description

angle () creates angle vectors with user specified angular unit. around as_angle() for those angu-
lar units.

Usage

angle(x = numeric(), unit = getOption("affiner_angular_unit”, "degrees"))
degrees(x)
gradians(x)

pi_radians(x)

radians(x)
turns(x)
Arguments
X An angle vector or an object to convert to it (such as a numeric vector)
unit A string of the desired angular unit. Supports the following strings (note we
ignore any punctuation and space characters as well as any trailing s’s e.g. "half
turns" will be treated as equivalent to "halfturn"):
* "deg" or "degree"
* "half-revolution", "half-turn", or "pi-radian”
e "gon", "grad", "grade", or "gradian"
* "rad" or "radian"
e "rev", "revolution", "tr", or "turn"
Value

A numeric vector of class "angle". Its "unit" attribute is a standardized string of the specified angular
unit.

See Also

as_angle(), angular_unit(), and angle-methods. https://en.wikipedia.org/wiki/Angle#
Units for more information about angular units.

https://en.wikipedia.org/wiki/Angle#Units
https://en.wikipedia.org/wiki/Angle#Units

angle-methods 11

Examples

Different representations of the "same” angle
angle (180, "degrees"”)

angle(pi, "radians")

angle(0.5, "turns")

angle(200, "gradians")

pi_radians(1)

al <- angle(180, "degrees")
angular_unit(al)
is_angle(al)

as.numeric(al, "radians")
cos(al)

a2 <- as_angle(al, "radians")
angular_unit(a2)
is_congruent(al, a2)

angle-methods Implemented base methods for angle vectors

Description

We implemented methods for several base generics for the angle () vectors.

Usage

S3 method for class 'angle'
as.double(x, unit = angular_unit(x), ...)

S3 method for class 'angle'
as.complex(x, modulus =1, ...)

S3 method for class 'angle'
format(x, unit = angular_unit(x), ..., use_unicode = is_utf8_output())

S3 method for class 'angle'
print(x, unit = angular_unit(x), ..., use_unicode = is_utf8_output())

S3 method for class 'angle'

abs(x)
Arguments
X angle() vector
unit A string of the desired angular unit. Supports the following strings (note we

ignore any punctuation and space characters as well as any trailing s’s e.g. "half
turns" will be treated as equivalent to "halfturn"):

12

angle-methods

e "deg" or "degree"

* "half-revolution", "half-turn", or "pi-radian”
e "gon", "grad", "grade", or "gradian"

¢ "rad" or "radian"

" non "non

e "rev", "revolution", "tr", or "turn"

Passed to print.default()

modulus Numeric vector representing the complex numbers’ modulus

use_unicode If TRUE use Unicode symbols as appropriate.

Details

Value

* Mathematical Ops (in particular + and -) for two angle vectors will (if necessary) set the
second vector’s angular_unit () to match the first.

e as.numeric() takes a unit argument which can be used to convert angles into other angu-
lar units e.g. angle(x, "degrees”) |>as.numeric("radians™) to cast a numeric vector x
from degrees to radians.

¢ abs() will calculate the angle modulo full turns.
* Use is_congruent() to test if two angles are congruent instead of == or all.equal().

* Not all implemented methods are documented here and since angle() is a numeric() class
many other S3 generics besides the explicitly implemented ones should also work with it.

Typical values as usually returned by these base generics.

Examples

Two "congruent” angles
al <- angle(180, "degrees")
a2 <- angle(pi, "radians")

print(al)
print(al, unit = "radians”)
print(al, unit = "pi-radians”)

cos(al)
sin(al)
tan(al)

mathematical operations will coerce second “angle()” object to
same “angular_unit()~ as the first one

al + a2

al - a2

as.numeric(al)
as.numeric(al, "radians")
as.numeric(al, "turns")

angular_unit 13

Use “is_congruent()” to check if two angles are "congruent”

al == a2

isTRUE(all.equal(al, a2))

is_congruent(al, a2)

is_congruent(al, a2, mod_turns = FALSE)

a3 <- angle(-180, "degrees") # Only congruent modulus full turns
al == a3

isTRUE(all.equal(al, a2))

is_congruent(al, a3)

is_congruent(al, a3, mod_turns = FALSE)

angular_unit Get/set angular unit of angle vectors

Description

angular_unit() gets/sets the angular unit of angle () vectors.

Usage

angular_unit(x)

angular_unit(x) <- value

Arguments

X An angle() vector

value A string of the desired angular unit. See angle() for supported strings.
Value

angular_unit () returns a string of x’s angular unit.

Examples

a <- angle(seq(@, 360, by = 90), "degrees")
angular_unit(a)

print(a)

angular_unit(a) <- "turns”

angular_unit(a)

print(a)

14

as_angle

as_angle Cast to angle vector

Description

as_angle() casts to an angle() vector
Usage
as_angle(x, unit = getOption("affiner_angular_unit”,

S3 method for class 'angle'
as_angle(x, unit = getOption("affiner_angular_unit"”,

S3 method for class 'character'
as_angle(x, unit = getOption("affiner_angular_unit”,

S3 method for class 'complex'
as_angle(x, unit = getOption("affiner_angular_unit"”,

S3 method for class 'Coord2D'
as_angle(x, unit = getOption("affiner_angular_unit”,

S3 method for class 'Coord3D'

"degrees"),

"degrees"),

"degrees"),

"degrees"),

"degrees"),

as_angle(
X’
unit = getOption("affiner_angular_unit"”, "degrees"),
type = c("azimuth”, "inclination"”),

)

S3 method for class 'Line2D'
as_angle(x, unit = getOption("affiner_angular_unit”,

S3 method for class 'Plane3D’

"degrees"),

as_angle(
X’
unit = getOption("affiner_angular_unit"”, "degrees"),
type = c("azimuth”, "inclination"”),

)

S3 method for class 'numeric'
as_angle(x, unit = getOption("affiner_angular_unit”,

Arguments

X An R object to convert to a angle() vector

"degrees"),

as_coordld 15

unit A string of the desired angular unit. Supports the following strings (note we
ignore any punctuation and space characters as well as any trailing s’s e.g. "half
turns" will be treated as equivalent to "halfturn"):
e "deg" or "degree"
* "half-revolution", "half-turn", or "pi-radian"
* "gon", "grad", "grade", or "gradian"
e "rad" or "radian"

" non "non

e "rev", "revolution", "tr", or "turn"
Further arguments passed to or from other methods

type Use "azimuth" to calculate the azimuthal angle and "inclination" to calculate the
inclination angle aka polar angle.

Value

An angle() vector

Examples

as_angle(angle(pi, "radians"), "pi-radians”)
as_angle(complex(real = @, imaginary = 1), "degrees")
as_angle(as_coord2d(x = @, y = 1), "turns")

as_angle (200, "gradians")

as_coordld Cast to coordld object

Description

as_coord1d() casts to a Coord1D class object

Usage

as_coordld(x, ...)

S3 method for class 'character'
as_coordld(x, ...)

S3 method for class 'Coord2D'
as_coord1ld(
X,
permutation = c("xy", "yx"),
line = as_line2d("x-axis"),
scale = @

16 as_coord2d

S3 method for class 'data.frame'
as_coordld(x, ...)

S3 method for class 'list'
as_coordld(x, ...)

S3 method for class 'matrix'
as_coordld(x, ...)

S3 method for class 'numeric'
as_coordld(x, ...)

S3 method for class 'CoordiD'
as_coordld(x, ...)

S3 method for class 'Pointi1D'

as_coordld(x, ...)
Arguments
X An object that can be cast to a Coord1D class object such as a numeric vector of

x-coordinates.

Further arguments passed to or from other methods

permutation Either "xy" (no permutation) or "yx" (permute X and y axes)
line A Line2D object of length one representing the line you with to reflect across
or project to or an object coercible to one by as_line2d(line, ...) such as
"x-axis" or "y-axis".
scale Oblique projection scale factor. A degenerate @ value indicates an orthogonal
projection.
Value

A Coordl1D class object

Examples

as_coordld(x = rnorm(10))

as_coord2d Cast to coord2d object

Description

as_coord2d() casts to a Coord2D class object

as_coord2d 17

Usage

as_coord2d(x, ...)

S3 method for class 'angle'
as_coord2d(x, radius =1, ...)

S3 method for class 'character'
as_coord2d(x, ...)

S3 method for class 'complex'
as_coord2d(x, ...)

S3 method for class 'Coord3D'
as_coord2d(
X,
permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"),
plane = as_plane3d("xy-plane”),
scale = 0,
alpha = angle(45, "degrees")
)

S3 method for class 'data.frame'
as_coord2d(x, ...)

S3 method for class 'list'
as_coord2d(x, ...)

S3 method for class 'matrix'
as_coord2d(x, ...)

S3 method for class 'numeric'
as_coord2d(x, y = rep_len(0@, length(x)), ...)

S3 method for class 'Coord2D'

as_coord2d(x, ...)
Arguments
X An object that can be cast to a Coord2D class object such as a matrix or data

frame of coordinates.
Further arguments passed to or from other methods
radius A numeric vector of radial distances.

permutation Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x
and y axes), "yzx" (x becomes z, y becomes X, z becomes y), "zxy" (x becomes
y, y becomes z, z becomes x), "zyx" (permute x and z axes). This permutation
is applied before the (oblique) projection.

18

plane

scale

alpha

Value

as_coord3d

A Plane3D class object representing the plane you wish to project to or an ob-

ject coercible to one using as_plane3d(plane, ...) such as "xy-plane", "xz-
plane", or "yz-plane".

Oblique projection foreshortening scale factor. A (degenerate) @ value indicates
an orthographic projection. A value of 0.5 is used by a “cabinet projection”
while a value of 1.0 is used by a “cavalier projection”.

Oblique projection angle (the angle the third axis is projected going off at). An
angle() object or one coercible to one with as_angle(alpha, ...). Popular
angles are 45 degrees, 60 degrees, and arctangent(2) degrees.

Numeric vector of y-coordinates to be used.

A Coord2D class object

Examples

df <- data.frame(x = sample.int(10, 3),

as_coord2d(df)

y = sample.int(10, 3))

as_coord2d(complex(real = 3, imaginary = 2))
as_coord2d(angle(90, "degrees"), radius = 2)
as_coord2d(as_coord3d(1, 2, 2), alpha = degrees(90), scale = 0.5)

as_coord3d

Cast to coord3d object

Description

as_coord3d() casts to a Coord3D class object

Usage

as_coord3d(x,

.2

S3 method for class 'angle'
as_coord3d(x, radius = 1, inclination = NULL, z = NULL, ...)

S3 method for class 'character'

as_coord3d(x,

)

S3 method for class 'data.frame'

as_coord3d(x,

., z = NULL)

S3 method for class 'list'

as_coord3d(x,

., z = NULL)

as_line2d 19

S3 method for class 'matrix'
as_coord3d(x, ...)

S3 method for class 'numeric'
as_coord3d(x, y = rep_len(@, length(x)), z = rep_len(@, length(x)), ...)

S3 method for class 'Coord3D'
as_coord3d(x, ...)

S3 method for class 'Coord2D'

as_coord3d(x, z = rep_len(0@, length(x)), ...)
Arguments
X An object that can be cast to a Coord3D class object such as a matrix or data

frame of coordinates.
Further arguments passed to or from other methods

radius A numeric vector. If inclination is not NULL represents spherical distances of
spherical coordinates and if z is not NULL represents radial distances of cylindri-
cal coordinates.

inclination Spherical coordinates inclination angle aka polar angle. x represents the azimuth
aka azimuthal angle.
z Numeric vector of z-coordinates to be used
y Numeric vector of y-coordinates to be used if hasName(x, "z") is FALSE.
Value

A Coord3D class object

Examples

as_coord3d(x =1, y =2, z = 3)

df <- data.frame(x = sample.int(10, 3),
y = sample.int(10, 3),
z = sample.int(10, 3))

as_coord3d(df)

Cylindrical coordinates

as_coord3d(degrees(90), z = 1, radius = 1)

Spherical coordinates

as_coord3d(degrees(90), inclination = degrees(90), radius = 1)

as_line2d Cast to Line2D object

Description

as_line2d() casts to a Line2D object.

20

Usage

as_line2d(...)

S3 method for class 'numeric'
as_line2d(a, b, c, ...)

S3 method for class 'angle'
as_line2d(theta, p1 = as_coord2d("origin"),

S3 method for class 'character'
as_line2d(x, ...)

S3 method for class 'Coord2D'

as_line2d(normal, p1 = as_coord3d("origin"), p2,

S3 method for class 'Line2D'
as_line2d(line, ...)

S3 method for class 'Pointi1D'
as_line2d(point, b =0, ...)

Arguments

as_line2d

L)

Passed to other function such as as_coord2d().

a, b, c Numeric vectors that parameterize the line via the equation a * x +b *y + c =
0. Noteify=m*xx+bthenm*x+1*xy+-b=0.

Examples

theta Angle of the line represented by an angle() vector.

p1 Point on the line represented by a Coord2D class object.

X A (character) vector to be cast to a Line2D object

normal Normal vector to the line represented by a Coord2D class object. p2 should be
missing.

p2 Another point on the line represented by a Coord2D class object.

line A Line2D object

point A Point1D object

pl <- as_coord2d(x = 5, y = 10)

p2 <- as_coord2d(x =7, y = 12)

theta <- degrees(45)
as_line2d(theta, p1)
as_line2d(p1, p2)

as_plane3d 21

as_plane3d Cast to Plane3D object

Description

as_plane3d() casts to a Plane3D object.
Usage
as_plane3d(...)

S3 method for class 'numeric'
as_plane3d(a, b, c, d, ...)

S3 method for class 'character'
as_plane3d(x, ...)

S3 method for class 'Coord3D'
as_plane3d(normal, p1 = as_coord3d("origin"), p2, p3, ...)

S3 method for class 'Plane3D'
as_plane3d(plane, ...)

S3 method for class 'Pointi1D'
as_plane3d(point, b =9, c =0, ...)

S3 method for class 'Line2D'
as_plane3d(line, c =0, ...)

Arguments

Passed to other function such as as_coord2d().

a,b,cd Numeric vectors that parameterize the plane via the equationa * x +b xy + ¢ *
z+d=0.

X A (character) vector to be cast to a Plane3D object

normal Normal vector to the plane represented by a Coord3D class object. p2 and p3
should be missing.

p1 Point on the plane represented by a Coord3D class object.

p2, p3 Points on the plane represented by Coord3D class objects. normal should be
missing.

plane A Plane3D object

point A Point1D object

line A Line2D object

22 as_transformld

as_pointid Cast to PointlD object

Description

as_point1d() casts to a Point1D object.

Usage

as_point1d(...)

S3 method for class 'numeric'
as_pointld(a, b, ...)

S3 method for class 'character'
as_point1ld(x, ...)

S3 method for class 'CoordiD'
as_pointld(normal, ...)

S3 method for class 'Pointi1D'
as_pointld(point, ...)

Arguments

Passed to other function such as as_coord2d().

a, b Numeric vectors that parameterize the point via the equation a * x + b = @. Note
this means that x = -b / a.
X A (character) vector to be cast to a Point1D object
normal Coord1D class object.
point A Point1D object
Examples

pl <- as_pointld(a =1, b = 0)

as_transformid Cast to 1D affine transformation matrix

Description

as_transform1d() casts to a transformid() affine transformation matrix

as_transform2d 23
Usage
as_transformld(x, ...)

S3 method for class 'transformid'
as_transformld(x, ...)

Default S3 method:

as_transformld(x, ...)
Arguments
X An object that can be cast to a

Further arguments passed to or from other methods

Value

A transform1d() object

Examples

m <- diag(2L)
as_transformid(m)

as_transform2d Cast to 2D affine transformation matrix

Description

as_transform2d() casts to a transform2d() affine transformation matrix

Usage

as_transform2d(x, ...)

S3 method for class 'transform2d'
as_transform2d(x, ...)

Default S3 method:

as_transform2d(x, ...)
Arguments
X An object that can be cast to a

Further arguments passed to or from other methods

Value

A transform2d() object

24

Examples

m <- diag(3L)
as_transform2d(m)

as_transform3d

as_transform3d Cast to 3D affine transformation matrix

Description

as_transform3d() casts to a transform3d() affine transformation matrix

Usage
as_transform3d(x, ...)

S3 method for class 'transform3d'
as_transform3d(x, ...)

Default S3 method:

as_transform3d(x, ...)
Arguments
X An object that can be cast to a

Further arguments passed to or from other methods

Value

A transform3d() object

Examples

m <- diag(4L)
as_transform3d(m)

bounding_ranges 25

bounding_ranges Compute axis-aligned ranges

Description

range () computes axis-aligned ranges for Coord1D, Coord2D, and Coord3D class objects.

Usage

S3 method for class 'CoordiD'
range(..., na.rm = FALSE)

S3 method for class 'Coord2D'
range(..., na.rm = FALSE)

S3 method for class 'Coord3D'
range(..., na.rm = FALSE)

Arguments

Coord1D, Coord2D, or Coord3D object(s)

na.rm logical, indicating if NA’s should be omitted

Value

Either a Coord1D, Coord2D, or Coord3D object of length two. The first element will have the
minimum X/y(/z) coordinates and the second element will have the maximum x/y(/z) coordinates of
the axis-aligned ranges.

Examples

range (as_coord2d(rnorm(5), rnorm(5)))
range (as_coord3d(rnorm(5), rnorm(5), rnorm(5)))

centroid Compute centroids of coordinates

Description

mean () computes centroids for Coord1D, Coord2D, and Coord3D class objects

26 convex_hull2d

Usage

S3 method for class 'CoordilD'
mean(x, ...)

S3 method for class 'Coord2D'
mean(x, ...)

S3 method for class 'Coord3D'

mean(x, ...)
Arguments
X A Coord1D, Coord2D, or Coord3D object
Passed to base: :mean()
Value

A Coord1D, Coord2D, or Coord3D class object of length one

Examples

p <- as_coord2d(x = 1:4, y = 1:4)
print(mean(p))
print(sum(p) / length(p)) # less efficient alternative

p <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
print(mean(p))

convex_hull2d Compute 2D convex hulls

Description

convex_hull2d() is a S3 generic for computing the convex hull of an object. There is an im-
plemented method supporting Coord2D class objects using grDevices: :chull() to compute the
convex hull.

Usage
convex_hull2d(x, ...)

S3 method for class 'Coord2D'

convex_hull2d(x, ...)
Arguments
X An object representing object to compute convex hull of such as a Coord2D

class object.
Further arguments passed to or from other methods.

Coord1D 27

Value

An object of same class as x representing just the subset of points on the convex hull. The method
for Coord2D class objects returns these points in counter-clockwise order.

Examples

p <- as_coord2d(x = rnorm(25), y = rnorm(25))
print(convex_hull2d(p))

Equivalent to following caculation using ~grDevices::chull()"
all.equal(convex_hull2d(p),
pLrev(grDevices::chull(as.list(p)))1)

Coordi1D 1D coordinate vector R6 Class

Description

Coord1DisanR6: :R6Class() object representing two-dimensional points represented by Cartesian
Coordinates.

Active bindings

xw A two-column matrix representing the homogeneous coordinates. The first column is the "x"
coordinates and the second column is all ones.

X A numeric vector of x-coordinates.

Methods

Public methods:
e Coord1D$new()
e Coord1D$print()
* Coord1D$project()
e CoordiD$reflect()
e Coord1D$scale()
* CoordiD$translate()
e CoordiD$transform()
e Coord1D$clone()

Method new():
Usage:
Coord1D$new(xw)
Arguments:

xw A matrix with three columns representing (homogeneous) coordinates. The first column
represents x coordinates and the last column is all ones. Column names should be "x" and

”W .

28 Coord1D

Method print():
Usage:
Coord1D$print(n = NULL, ...)

Arguments:
n Number of coordinates to print. If NULL print all of them.

. Passed to format.default().

Method project():
Usage:
Coord1D$project(point = as_point1d("origin”),

Arguments:
point A PointlD object of length one representing the point you with to reflect across or project

to or an object coercible to one by as_pointid(point, ...) such as "origin".

. Passed to project1d().

Method reflect():

Usage:
Coord1D$reflect(point = as_pointl1d("origin"),

Arguments:
point A Point1D object of length one representing the point you with to reflect across or project
to or an object coercible to one by as_pointid(point, ...) such as "origin".

. Passed to reflect1d().

Method scale():

Usage:
CoordiD$scale(x_scale = 1)

Arguments:
x_scale Scaling factor to apply to x coordinates

Method translate():

Usage:
Coord1D$translate(x = as_coord1d(@), ...)

Arguments:
x A Coord1D object of length one or an object coercible to one by as_coord1d(x, ...).
. Passed to as_coordl1d(x, ...) if x is not a Coord1D object

Method transform():

Usage:

Coord1D$transform(mat = transformid())

Arguments:

mat A 2x2 matrix representing a post-multiplied affine transformation matrix. The last column
must be equal to c(@, 1). If the last row is c(@, 1) you may need to transpose it to convert
it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 1x1
matrix we’ll quietly add a final column/row equal to c (@, 1).

Coord2D 29

Method clone(): The objects of this class are cloneable with this method.

Usage:
Coord1D$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

p <- as_coordld(x = rnorm(100, 2))
print(p, n = 10L)
pc <- mean(p) # Centroid
method chained affine transformation matrices are auto-pre-multiplied
p$
translate(-pc)$
reflect("origin”)$
print(n = 10L)

Coord2D 2D coordinate vector R6 Class

Description

Coord2Dis anR6: :R6Class() object representing two-dimensional points represented by Cartesian
Coordinates.

Active bindings

xyw A three-column matrix representing the homogeneous coordinates. The first two columns are

non

"x" and "y" coordinates and the third column is all ones.
X A numeric vector of x-coordinates.

y A numeric vector of y-coordinates.

Methods

Public methods:

e Coord2D$new()

* Coord2D$permute()

* Coord2D$print()

e Coord2D$project()

e Coord2D$reflect()

* Coord2D$rotate()

* Coord2D$scale()

e Coord2D$shear()

e Coord2D$translate()
* Coord2D$transform()

30 Coord2D

e Coord2D$clone()

Method new():
Usage:
Coord2D$new(xyw)

Arguments:

xyw A matrix with three columns representing (homogeneous) coordinates. The first two columns
represent x and y coordinates and the last column is all ones. Column names should be "x",

Hy”, and ”W"'
Method permute():

Usage:
Coord2D$permute(permutation = c("xy", "yx"))

Arguments:
permutation Either "xy" (no permutation) or "yx" (permute x and y axes)

Method print():

Usage:
Coord2D$print(n = NULL, ...)

Arguments:
n Number of coordinates to print. If NULL print all of them.
. Passed to format.default().

Method project():

Usage:

Coord2D$project(line = as_line2d("x-axis"), ..., scale = @)

Arguments:

line A Line2D object of length one representing the line you with to reflect across or project
to or an object coercible to one by as_line2d(line, ...) such as "x-axis" or "y-axis".

. Passed to project2d()
scale Oblique projection scale factor. A degenerate @ value indicates an orthogonal projection.

Method reflect():

Usage:

Coord2D$reflect(line = as_line2d("x-axis"), ...)

Arguments:

line A Line2D object of length one representing the line you with to reflect across or project
to or an object coercible to one by as_line2d(line, ...) such as "x-axis" or "y-axis".

. Passed to reflect2d().

Method rotate():

Usage:
Coord2D$rotate(theta = angle(@), ...)

Coord2D 31

Arguments:

theta An angle() object of length one or an object coercible to one by as_angle(theta,
2.

. Passed to as_angle().

Method scale():
Usage:
Coord2D$scale(x_scale = 1, y_scale = x_scale)
Arguments:

x_scale Scaling factor to apply to x coordinates

y_scale Scaling factor to apply to y coordinates

Method shear():
Usage:
Coord2D$shear(xy_shear = @, yx_shear = 0)
Arguments:
xy_shear Horizontal shear factor: x = x + xy_shear *y

yx_shear Vertical shear factor: y = yx_shear * x +y

Method translate():
Usage:
Coord2D$translate(x = as_coord2d(@, @), ...)
Arguments:

x A Coord2D object of length one or an object coercible to one by as_coord2d(x, ...).
. Passed to as_coord2d(x, ...) if x is not a Coord2D object

Method transform():
Usage:
Coord2D$transform(mat = transform2d())
Arguments:

mat A 3x3 matrix representing a post-multiplied affine transformation matrix. The last column
must be equal to c(0, @, 1). If the last row is c(@, @, 1) you may need to transpose it
to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If
a 2x2 matrix (such as a 2x2 post-multiplied 2D rotation matrix) we’ll quietly add a final
column/row equal to c(@, @, 1).

Method clone(): The objects of this class are cloneable with this method.
Usage:
Coord2D$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

32

Examples

p <-

as_coord2d(x = rnorm(10@, 2), y = rnorm(100, 2))

print(p, n = 10)
pc <- mean(p) # Centroid

method chained affine transformation matrices are auto-pre-multiplied

p$

translate(-pc)$
shear(x =1, y = 0)$
reflect("x-axis")$
rotate(90, "degrees")$
print(n = 10)

Coord3D

Coord3D

3D coordinate vector R6 Class

Description

Coord3D is an R6: :R6Class() object representing three-dimensional points represented by Carte-
sian Coordinates.

Active bindings

xyzw A four-column matrix representing the homogeneous coordinates. The first three columns

x A numeric vector of x-coordinates.
y A numeric vector of y-coordinates.

z A numeric vector of z-coordinates.

Methods

nynonon

are "x", "y", and "z" coordinates and the fourth column is all ones.

Public methods:

Coord3D$new()
Coord3D$permute()
Coord3D$print()
Coord3D$project()
Coord3D$reflect()
Coord3D$rotate()
Coord3D$scale()
Coord3D$shear()
Coord3D$translate()
Coord3D$transform()
Coord3D$clone()

Method new():
Usage:

Coord3D 33

Coord3D$new(xyzw)

Arguments:

xyzw A matrix with four columns representing (homogeneous) coordinates. The first three
columns represent X, y, and z coordinates and the last column is all ones. Column names
shOu]d be “X"’ ||yH’ llZH’ and ”W”‘

Method permute():
Usage:
Coord3D$permute(permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"))
Arguments:

permutation Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute X
and y axes), "yzx" (x becomes z, y becomes x, z becomes y), "zxy" (x becomes y, y becomes
z, Z becomes x), "zyx" (permute X and z axes)

Method print():
Usage:
Coord3D$print(n = NULL, ...)
Arguments:
n Number of coordinates to print. If NULL print all of them.
. Passed to format.default().

Method project():
Usage:

Coord3D$project(
plane = as_plane3d("xy-plane”),

L

scale = 0,
alpha = angle(45, "degrees")
)
Arguments:
plane A Plane3D object of length one representing the plane you wish to reflect across or

project to or an object coercible to one using as_plane3d(plane, ...) such as "xy-plane",
"xz-plane", or "yz-plane".
. Passed to project3d().

scale Oblique projection foreshortening scale factor. A (degenerate) @ value indicates an or-
thographic projection. A value of @.5 is used by a “cabinet projection” while a value of 1.0
is used by a “cavalier projection”.

alpha Oblique projection angle (the angle the third axis is projected going off at). An angle()
object or one coercible to one with as_angle(alpha, ...). Popular angles are 45 degrees,
60 degrees, and arctangent(2) degrees.

Method reflect():

Usage:
Coord3D$reflect(plane = as_plane3d("xy-plane”), ...)

34

Coord3D

Arguments:

plane A Plane3D object of length one representing the plane you wish to reflect across or
project to or an object coercible to one using as_plane3d(plane, ...) suchas "xy-plane",
"xz-plane", or "yz-plane".
. Passed to reflect3d().

Method rotate():

Usage:

Coord3D$rotate(axis = as_coord3d("”z-axis"), theta = angle(@), ...)

Arguments:

axis A Coord3D class object or one that can coerced to one by as_coord3d(axis, ...). The

axis represents the axis to be rotated around.
theta An angle() object of length one or an object coercible to one by as_angle(theta,
2.
. Passed to rotate3d().

Method scale():

Usage:
Coord3D$scale(x_scale = 1, y_scale = x_scale, z_scale = x_scale)

Arguments:

x_scale Scaling factor to apply to X coordinates
y_scale Scaling factor to apply to y coordinates
z_scale Scaling factor to apply to z coordinates

Method shear():

Usage:
Coord3D$shear(
xy_shear =
xz_shear =
yx_shear =
yz_shear =
zx_shear =
zy_shear =

)

Arguments:

’

[SEESIE RN SIS

xy_shear Shear factor: x = x + xy_shear xy + xz_shear * z
xz_shear Shear factor: x = x + xy_shear xy + xz_shear * z
yx_shear Shear factor: y = yx_shear * x +y + yz_shear * z
yz_shear Shear factor: y = yx_shear * x + y + yz_shear * z
zx_shear Shear factor: z = zx_shear * x + zy_shear xy + z
zy_shear Shear factor: z = zx_shear * x + zy_shear xy + z

Method translate():
Usage:

cross_product3d 35

Coord3D$translate(x = as_coord3d(e, @, @), ...)

Arguments:
x A Coord3D object of length one or an object coercible to one by as_coord3d(x, ...).
. Passed to as_coord3d(x, ...) if x is not a Coord3D object

Method transform():

Usage:
Coord3D$transform(mat = transform3d())

Arguments:

mat A 4x4 matrix representing a post-multiplied affine transformation matrix. The last column
must be equal to c(@, @, 0, 1). If the last row is c(@, @, @, 1) you may need to transpose
it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one.
If a 3x3 matrix (such as a 3x3 post-multiplied 3D rotation matrix) we’ll quietly add a final
column/row equal to c(@, 0, @, 1).

Method clone(): The objects of this class are cloneable with this method.

Usage:
Coord3D$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

p <- as_coord3d(x = rnorm(100, 2), y = rnorm(100, 2), z = rnorm(100, 2))
print(p, n = 10)
pc <- mean(p) # Centroid
method chained affine transformation matrices are auto-pre-multiplied
p$

translate(-pc)$

reflect(”"xy-plane”")$

rotate("z-axis"”, degrees(90))$

print(n = 10)

cross_product3d Compute 3D vector cross product

Description

cross_product3d() computes the cross product of two Coord3D class vectors.

Usage

cross_product3d(x, y)

36
Arguments
X A Coord3D class vector.
y A Coord3D class vector.
Value

A Coord3D class vector

Examples

X <- as_coord3d(2, 3, 4)

y <- as_coord3d(5, 6, 7)

cross_product3d(x, y)

if (getRversion() >= "4.4.0") {
crossprod(x, y)

3

distanceld

distanceld 1D Euclidean distances

Description

distanceld() computes 1D Euclidean distances.

Usage

distanceld(x, y)

Arguments
X Either a Coord1D or Point1D class object
y Either a Coord1D or Point1D class object
Examples

p <- as_coordld(x = 1:4)
distanceld(p, as_coord1d(®))

distance2d

37

distance2d 2D Euclidean distances

Description

distance2d() computes 2D Euclidean distances.

Usage

distance2d(x, y)

Arguments
X Either a Coord2D or Line2D class object
y Either a Coord2D or Line2D class object
Examples

p <- as_coord2d(x = 1:4, y = 1:4)
distance2d(p, as_coord2d(@, 0))

distance3d 3D Euclidean distances

Description

distance3d() computes 3D Euclidean distances.

Usage

distance3d(x, y)

Arguments
X Either a Coord3D or Plane3D class object
y Either a Coord3D or Plane3D class object
Examples

p <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
distance3d(p, as_coord3d("origin"))

38 graphics

graphics Plot coordinates, points, lines, and planes

Description

plot() plots Coord1D and Coord2D class objects while points() draws Coord1D and Coord2D
class objects and lines() draws Point1D and Line2D class objects to an existing plot. If the sug-
gested ggplot2 and rgl packages are available we also register ggplot2: :autolayer () methods for
Coord1D, Coord2D, Point1D, and Line2D class objects and a rgl: : plot3d() method for Coord3D
class objects.

Usage

S3 method for class 'CoordiD'
plot(x, ...)

S3 method for class 'CoordiD'
points(x, ...)

S3 method for class 'Point1D'
lines(x, ...)

S3 method for class 'Coord2D'
plot(x, ...)

S3 method for class 'Coord2D'
points(x, ...)

S3 method for class 'Line2D'

lines(x, ...)
Arguments
X A supported object to plot.
Passed to the underlying plot method.
Value

Used for its side effect of drawing to the graphics device.

Examples

cl <- as_coord2d(x = 0, y = 1:10)

1 <- as_line2d(a =1, b=-1, c =0) #y = x

c2 <- cl1%clone()$reflect(l)

plot(cl, xlim = c(-1, 11), ylim = c(-1, 11),
main = "2D reflection across a line")

lines(l)

has_intersection

points(c2, col = "red")

cl <- as_coord2d(x = 1:10, y = 1:10)
1 <- as_line2d(a = -1, b =0, c=0) # x =0
c2 <- cl1%$clone()$project(l)
if (require("ggplot2”, quietly = TRUE,
include.only = c("ggplot"”, "autolayer”, "labs"))) {
ggplot() +
autolayer(cl) +
autolayer(l) +
autolayer(c2, color = "red") +
labs(title = "2D projection onto a line")

}

cl <- as_coordld(x = seq.int(-4, -1))

pt <- as_pointld(a =1, b =0) # x =0

c2 <- cl1%clone()$reflect(pt)

plot(cl, xlim = c(-5, 5), main = "1D reflection across a point")
lines(pt)

points(c2, col = "red")

3D reflection across a plane
cl <- as_coord3d(x = 1:10, y = 1:10, z =
pl <- as_plane3d(a =0, b=0, c=-1, d
c2 <- c1%clone()$reflect(pl)
if (require("rgl”, quietly = TRUE,
include.only = c("plot3d”, "planes3d”, "points3d"))) {
plot3d(cl, size = 8)
planes3d(as.data.frame(pl), d = pl$d, color = "grey”, alpha = 0.6)

1:10)
=) #z=2

points3d(as.data.frame(c2), col = "red”, size = 8)
3
has_intersection Whether two objects intersect
Description

has_intersection() is an S3 method that returns whether two objects intersect.
Usage
has_intersection(x, vy, ...)

Default S3 method:
has_intersection(x, y, ...)

S3 method for class 'Pointi1D'
has_intersection(x, y, ..., tolerance = sqgrt(.Machine$double.eps))

40 intersection

S3 method for class 'Line2D'
has_intersection(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Plane3D’

has_intersection(x, y, ..., tolerance = sqrt(.Machine$double.eps))
Arguments
Y The two objects to check if they intersect.
Passed to other methods (or ignored).
tolerance Numerics with differences smaller than tolerance will be considered “equiva-
lent”.
Details

affiner::has_intersection() has the same S3 signature and default method as euclid: :has_intersection()
(so it shouldn’t matter if one masks the other).

Value

A logical vector.

Examples

linel <- as_line2d("x-axis")

line2 <- as_line2d("y-axis")

line3 <- as_line2d(a =0, b=1, c=2) # y +2 =20
has_intersection(linel, linel)
has_intersection(linel, line2)
has_intersection(linel, line3)

intersection The intersection of two objects.

Description

intersection() is an S3 method that returns the intersection of two objects.
Usage
intersection(x, y, ...)

S3 method for class 'Pointi1D'
intersection(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Line2D'
intersection(x, y, ..., tolerance = sqrt(.Machine$double.eps))

inverse-trigonometric-functions 41

S3 method for class 'Plane3D'
intersection(x, y, ..., tolerance = sqgrt(.Machine$double.eps))

S3 method for class 'CoordiD'
intersection(x, v, tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Coord2D'
intersection(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Coord3D'

intersection(x, y, ..., tolerance = sqrt(.Machine$double.eps))
Arguments
Y The two objects to compute intersection for.

Passed to other methods (or ignored).

tolerance Numerics with differences smaller than tolerance will be considered “equiva-
lent”.

Details

affiner::intersection() hasthe same S3 signature as euclid: : intersection() (soit shouldn’t
matter if one masks the other).

Value

A list of the object intersections (or NULL if no intersection).

Examples

linel <- as_line2d("x-axis")

line2 <- as_line2d("y-axis")

line3 <- as_line2d(a =0, b=1, c=2) # y +2 =20
intersection(linel, linel)

intersection(linel, line2)

intersection(linel, line3)

inverse-trigonometric-functions
Angle vector aware inverse trigonometric functions

Description

arcsine(), arccosine(), arctangent(), arcsecant(), arccosecant(), and arccotangent()
are inverse trigonometric functions that return angle () vectors with a user chosen angular unit.

42

Usage

arcsine(
X,
unit = getOption(
tolerance = sqrt(

arccosine(
X,
unit = getOption(
tolerance = sqrt(

)

inverse-trigonometric-functions

"affiner_angular_unit”, "degrees"”),

.Machine$double.eps)

"affiner_angular_unit"”, "degrees"”),

.Machine$double.eps)

arctangent(x, unit = getOption("affiner_angular_unit"”, "degrees"”), y = NULL)

arcsecant(x, unit =

arccosecant(x, unit

getOption("affiner_angular_unit”, "degrees"))

= getOption("affiner_angular_unit"”, "degrees"))

arccotangent(x, unit = getOption("affiner_angular_unit"”, "degrees"”))
Arguments
X A numeric vector
unit A string of the desired angular unit. Supports the following strings (note we

ignore any punctuation and space characters as well as any trailing s’s e.g. "half
turns" will be treated as equivalent to "halfturn"):

"deg" or "degree"
"half-revolution", "half-turn", or "pi-radian"

gon", "grad", "grade", or "gradian"
"rad" or "radian"

" non non

rev", "revolution", "tr", or "turn"

tolerance If x greater than 1 (or less than -1) but is within a tolerance of 1 (or -1) then it
will be treated as 1 (or -1)

y A numeric vector or NULL. If NULL (default) we compute the 1-argument arc-
tangent else we compute the 2-argument arctangent. For positive coordinates

(x,

Value

An angle() vector

Examples

y) then arctangent(x =y/x) == arctangent(x=x, y =y).

arccosine(-1, "degrees")

arcsine(@, "turns")

arctangent (0, "gradians"”)

isocubeGrob 43

arccosecant(-1, "degrees")
arcsecant(1, "degrees")
arccotangent (1, "half-turns”)

“base::atan2(y, x)° computes the angle of the vector from origin to (x, y)
as_angle(as_coord2d(x = 1, y = 1), "degrees")

isocubeGrob Isometric cube grob

Description

isometricCube() is a grid grob function to render isometric cube faces by automatically wrapping
around affineGrob().

Usage

isocubeGrob(
top,
right,
left,
gp_border = grid::gpar(col = "black”, lwd = 12),
name = NULL,
gp = grid::gpar(),
vp = NULL
)

grid.isocube(...)

Arguments

top A grid grob object to use as the top side of the cube. ggplot2 objects will be
coerced by ggplot2::ggplotGrob().

right A grid grob object to use as the right side of the cube. ggplot2 objects will be
coerced by ggplot2::ggplotGrob().

left A grid grob object to use as the left side of the cube. ggplot2 objects will be
coerced by ggplot2::ggplotGrob().

gp_border A grid::gpar() object for the polygonGrob() used to draw borders around
the cube faces.

name A character identifier (for grid).

gp A grid: :gpar() object.

vp A grid::viewport() object (or NULL).

Passed to isocubeGrob()

44 isocubeGrob

Details

Any ggplot2 objects are coerced to grobs by ggplot2::ggplotGrob(). Depending on what
you’d like to do you may want to instead manually convert a ggplot2 object gg to a grob with
gtable::gtable_filter(ggplot2::ggplotGrob(gg), "panel”).

Not all graphics devices provided by grDevices or other R packages support the affine transforma-
tion feature introduced in R 4.2. If isTRUE(getRversion() >= '4.2.0") then the active graphics
device should support this feature if iSTRUE(grDevices: :dev.capabilities()$transformations).
In particular the following graphics devices should support the affine transformation feature:

e R’s grDevices: :pdf () device

* R’s’cairo’ devices e.g. grDevices: :cairo_pdf(), grDevices: :png(type = 'cairo'), grDevices

grDevices: :x11(type = 'cairo'), etc. If isTRUE(capabilities('cairo')) then R was
compiled with support for the ’cairo’ devices .

* R’s 'quartz’ devices (since R 4.3.0) e.g. grDevices::quartz(), grDevices: :png(type =
"quartz'), etc. If isTRUE(capabilities('aqua')) then R was compiled with support for
the quartz’ devices (generally only TRUE on macOS systems).

* ragg’s devices (since v1.3.0) e.g. ragg: :agg_png(), ragg: :agg_capture(), etc.

Value

A grid::gTree() (grob) object of class "isocube". As a side effect grid.isocube() draws to the
active graphics device.

Examples

Only works if active graphics device supports affine transformations
such as “png(type="cairo”)" on R 4.2+
can_run_grid_example <- require("grid”, quietly = TRUE) &&

getRversion() >= "4.2.0" &&

isTRUE (dev.capabilities()$transformations)
if (can_run_grid_example) {

grid.newpage()

gp_text <- gpar(fontsize = 72)

grid.isocube(top = textGrob("top”, gp = gp_text),

right = textGrob("right", gp = gp_text),
left = textGrob("left”, gp = gp_text))

3
if (can_run_grid_example) {

colors <- c("#D55EQ0", "#@Q9E73", "#56B4E9")

spacings <- c(0.25, 0.2, 0.25)

texts <- c("pkgname”, "left\nface”, "right\nface")

rots <- c(45, 0, 0)

fontsizes <- c(52, 80, 80)

sides <- c("top"”, "left", "right")

types <- gridpattern::names_polygon_tiling[c(5, 7, 9)]

1_grobs <- list()

grid.newpage()

for (i in 1:3) {

if (requireNamespace("gridpattern”, quietly = TRUE)) {
bg <- gridpattern::grid.pattern_polygon_tiling(

::svg (),

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html

isotoxal_2ngon_inner_radius 45

colour = "grey80",
fill = c(colors[i], "white"),
type = types[i],
spacing = spacings[i],
draw = FALSE)
} else {
bg <- rectGrob(gp = gpar(col = NA, fill = colors[i]))
}
text <- textGrob(texts[i], rot = rots[il],
gp = gpar(fontsize = fontsizes[i]))
1_grobs[[sides[i]]] <- grobTree(bg, text)
}
grid.newpage()
grid.isocube(top = 1_grobs$top,
right = 1_grobs$right,
left = 1_grobs$left)
3
May take more than 5 seconds on CRAN machines
can_run_artsy_example <- can_run_grid_example &&
require(”aRtsy"”, quietly = TRUE) &&
require("ggplot2”, quietly = TRUE) &&
requireNamespace("gtable”, quietly = TRUE)
if (can_run_artsy_example) {
gg <- canvas_planet(colorPalette(”lava”), threshold = 3) +
scale_x_continuous(expand = c(@, 0)) +
scale_y_continuous(expand = c(@, 0))
grob <- ggplotGrob(gg)
grob <- gtable::gtable_filter(grob, "panel”) # grab just the panel
grid.newpage()
grid.isocube(top = grob, left = grob, right = grob,
gp_border = grid::gpar(col = "darkorange”, lwd = 12))

isotoxal_2ngon_inner_radius
Isotoxal 2n-gon inner radius

Description
isotoxal_2ngon_inner_radius() computes the inner radius of an isotoxal 2n-gon polygon. star_inner_radius()
is an alias.

Usage

isotoxal_2ngon_inner_radius(
n’
outer_radius = 1,

alpha = NULL,

46 isotoxal_2ngon_inner_radius

beta_ext = NULL,
d = NULL
)
star_inner_radius(
n’

outer_radius = 1,

alpha = NULL,

beta_ext = NULL,
d = NULL
)
Arguments
n The number of outer vertices.

outer_radius The outer radius of the isotoxal 2n-gon.

Ignored.
alpha The interior angle of an outer vertex. Will be coerced by degrees().
beta_ext The exterior angle of an inner vertex. Will be coerced by degrees().
d The density aka winding number of the regular star polygon (outline) in which

case this star is represented by |n/d|.

Details
Isotoxal 2n-gon polygons are polygons with:

* 2n vertices alternating between n "outer" vertices evenly spaced on one circle and n "inner"
vertices evenly spaced on smaller circle with the same center.

* Each edge of the polygon is of the same length.

* The outer vertices all have the same interior angle alpha and the inner vertices all have the
same interior angle beta.

» They are a generalization of (the outlines of) concave simple "star" polygons that also includes
convex polygons with an even number of vertices.

Value

A numeric vector

See Also

https://en.wikipedia.org/wiki/Isotoxal_figure#Isotoxal_polygonsandhttps://en.wikipedia.
org/wiki/Star_polygon#Isotoxal_star_simple_polygons for more information on isotoxal
polygons.

https://en.wikipedia.org/wiki/Isotoxal_figure#Isotoxal_polygons
https://en.wikipedia.org/wiki/Star_polygon#Isotoxal_star_simple_polygons
https://en.wikipedia.org/wiki/Star_polygon#Isotoxal_star_simple_polygons

is_angle

Examples

|8/3| star has outer vertex internal angle 45 degrees

and inner vertex external angle 90 degrees
isotoxal_2ngon_inner_radius(8, d = 3)
isotoxal_2ngon_inner_radius(8, alpha = 45)
isotoxal_2ngon_inner_radius(8, beta_ext = 90)

47

is_angle Test whether an object is an angle vector

Description

is_angle() tests whether an object is an angle vector

Usage

is_angle(x)

Arguments

X An object

Value

A logical value

Examples

a <- angle(180, "degrees")
is_angle(a)
is_angle(pi)

is_congruent Test whether two objects are congruent

Description

is_congruent() is a S3 generic that tests whether two different objects are “congruent”. The

is_congruent () method for angle () classes tests whether two angles are congruent.

48

Usage

is_congruent

is_congruent(x, vy, ...)

S3 method for class 'numeric'
is_congruent(x, y, ..., tolerance = sgrt(.Machine$double.eps))

S3 method for class 'angle'
is_congruent(

X,
’

’

mod_turns = TRUE,
tolerance = sqrt(.Machine$double.eps)

)
Arguments
X,y Two objects to test whether they are “"congruent"”.
Further arguments passed to or from other methods.
tolerance Angles (coerced to half-turns) or numerics with differences smaller than tolerance
will be considered “congruent”.
mod_turns If TRUE angles that are congruent modulo full turns will be considered “congru-
ent”.
Value

A logical vector

Examples

Use
al <-
a2 <-
a3 <-
al ==

“is_congruent()” to check if two angles are "congruent”
angle (180, "degrees")

angle(pi, "radians™)

angle(-180, "degrees") # Only congruent modulus full turns
a2

isTRUE(all.equal(al, a2))
is_congruent(al, a2)
is_congruent(al, a2, mod_turns = FALSE)

al ==

a3

isTRUE(all.equal(al, a3))
is_congruent(al, a3)
is_congruent(al, a3, mod_turns = FALSE)

is_coordld

49

is_coordild Test whether an object has a CoordlD class

Description

is_coord1d() tests whether an object has a "Coord1D" class

Usage

is_coordld(x)

Arguments

X An object

Value

A logical value

Examples

p <- as_coordld(x = sample.int(10, 3))
is_coord1ld(p)

is_coord2d Test whether an object has a Coord2D class

Description

is_coord2d() tests whether an object has a "Coord2D" class

Usage

is_coord2d(x)

Arguments

X An object

Value

A logical value

Examples

p <- as_coord2d(x = sample.int(10, 3), y = sample.int(10, 3))
is_coord2d(p)

50 is_equivalent

is_coord3d Test whether an object has a Coord3D class

Description

is_coord3d() tests whether an object has a "Coord3D" class

Usage

is_coord3d(x)

Arguments

X An object

Value

A logical value

Examples

p <- as_coord3d(x = sample.int(10, 3),
y = sample.int(10, 3),
z = sample.int(10, 3))

is_coord3d(p)

is_equivalent Test whether two objects are equivalent

Description

is_equivalent() is a S3 generic that tests whether two different objects are “equivalent”. The
is_equivalent () method for angle () classes tests whether two angles are congruent. The is_equivalent()
method for Point1D, Line2D, Plane3D classes tests whether they are the same point/line/plane after
standardization.

Usage

is_equivalent(x, y, ...)

S3 method for class 'angle'
is_equivalent(

X!

Y,

’

mod_turns = TRUE,

is_equivalent 51

tolerance = sqgrt(.Machine$double.eps)

)

S3 method for class 'numeric'
is_equivalent(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'CoordiD'
is_equivalent(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Coord2D'
is_equivalent(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Coord3D'
is_equivalent(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Pointi1D’'
is_equivalent(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Line2D'
is_equivalent(x, y, ..., tolerance = sqrt(.Machine$double.eps))

S3 method for class 'Plane3D'

is_equivalent(x, y, ..., tolerance = sqrt(.Machine$double.eps))
Arguments
X,y Two objects to test whether they are “"equivalent"”.

Further arguments passed to or from other methods.

mod_turns If TRUE angles that are congruent modulo full turns will be considered “congru-
ent”.
tolerance Numerics with differences smaller than tolerance will be considered “equiva-
lent”.
Value

A logical vector

See Also

is_congruent(), all.equal()

Examples
linel <- as_line2d(a =1, b = 2, =3)#1*xx+2*y+3=20
line2 <- as_line2d(a = 2, b = 4, =6)#2*xx+4xy+6=20

is_equivalent(linel, line2)

52

is_parallel

is_line2d Test whether an object has a Line2D class

Description

is_line2d() tests whether an object has a "Line2D" class

Usage
is_line2d(x)

Arguments

X An object

Value

A logical value

Examples

1 <- as_line2d(a =1, b =2, c = 3)
is_line2d(1l)

is_parallel Whether two objects are parallel

Description

is_parallel() is a S3 method that tests whether two objects are parallel.

Usage
is_parallel(x, vy, ...)

S3 method for class 'Line2D'

is_parallel(x, y, ..., tolerance = sqgrt(.Machine$double.eps))

S3 method for class 'Plane3D’

is_parallel(x, y, ..., tolerance = sqgrt(.Machine$double.eps))
Arguments
X, Y The two objects to compute if they are parallel.

Passed to other methods (or ignored).

tolerance Numerics with differences smaller than tolerance will be considered “equiva-

lent”.

is_plane3d

Value

A logical vector.

Examples

linel <- as_line2d("x-axis")

line2 <- as_line2d("y-axis")

line3 <- as_line2d(a =0, b=1, c=2) #y +2 =20
is_parallel(linel, linel)

is_parallel(linel, line2)

is_parallel(linel, line3)

53

is_plane3d Test whether an object has a Plane3D class

Description

is_plane3d() tests whether an object has a "Plane3D" class

Usage

is_plane3d(x)

Arguments

X An object

Value

A logical value

Examples

p <- as_plane3d(a =1, b =2, c = 3, 4)
is_plane3d(p)

54

is_transform1d

is_point1id Test whether an object has a PointlD class

Description

is_point1d() tests whether an object has a "Point1D" class

Usage
is_point1d(x)

Arguments

X An object

Value

A logical value

Examples

p <- as_pointid(a =1, b = 5)
is_point1d(p)

is_transformid Test if 1D affine transformation matrix

Description

is_transformid() tests if object is a transform1d() affine transformation matrix

Usage

is_transformld(x)

Arguments

X An object

Value

A logical value

Examples

m <- transformid(diag(2L))
is_transformid(m)
is_transformid(diag(2L))

is_transform2d 55

is_transform2d Test if 2D affine transformation matrix

Description

is_transform2d() tests if object is a transform2d() affine transformation matrix

Usage

is_transform2d(x)

Arguments

X An object

Value

A logical value

Examples

m <- transform2d(diag(3L))
is_transform2d(m)
is_transform2d(diag(3L))

is_transform3d Test if 3D affine transformation matrix

Description

is_transform3d() tests if object is a transform3d() affine transformation matrix

Usage

is_transform3d(x)

Arguments

X An object

Value

A logical value

Examples

m <- transform3d(diag(4L))
is_transform3d(m)
is_transform3d(diag(4L))

56 Line2D
Line2D 2D lines R6 Class
Description
Line2D is an R6: :R6Class() object representing two-dimensional lines.
Public fields
a Numeric vector that parameterizes the line via the equationa * x +b * y + c = 0.
b Numeric vector that parameterizes the line via the equationa * x +b xy + ¢ = 0.
¢ Numeric vector that parameterizes the line via the equationa* x +b *y + c = 0.
Methods

Public methods:
* Line2D$new()
e Line2D$print()
e Line2D$%$clone()

Method new():
Usage:
Line2D$new(a, b, c)
Arguments:
a Numeric vector that parameterizes the line via the equationa * x +b * y + ¢ = 0.
b Numeric vector that parameterizes the line via the equationa * x +bxy + c = 0.
¢ Numeric vector that parameterizes the line via the equationa* x +b *y + c = @.

Method print():
Usage:
Line2D$print(n = NULL, ...)
Arguments:
n Number of lines to print. If NULL print all of them.
. Passed to format.default().

Method clone(): The objects of this class are cloneable with this method.

Usage:
Line2D$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

normal2d 57

Examples

10)
12)

pl <- as_coord2d(x =5, y
p2 <- as_coord2d(x =7, y
theta <- degrees(45)
as_line2d(theta, p1)
as_line2d(p1, p2)

normal2d 2D normal vectors

Description

normal2d() is an S3 generic that computes a 2D normal vector.

Usage

normal2d(x, ...)

S3 method for class 'Coord2D'
normal2d(x, ..., normalize = TRUE)

S3 method for class 'Line2D'

normal2d(x, ..., normalize = TRUE)
Arguments
X Object to compute a 2D normal vector for such as a Line2D object.

Passed to or from other methods.

normalize If TRUE coerce to a normalize vector

Value

A Coord2D (normal) vector

Examples

p <- as_coord2d(x = 2, y = 3)
normal2d(p)
normal2d(p, normalize = FALSE)

58 normal3d

normal3d 3D normal vectors

Description

normal3d() is an S3 generic that computes a 3D normal vector.

Usage
normal3d(x, ...)

S3 method for class 'Coord3D'
normal3d(x, cross, ..., normalize = TRUE)

S3 method for class 'character'
normal3d(x, ..., normalize = TRUE)

S3 method for class 'Plane3D’

normal3d(x, ..., normalize = TRUE)
Arguments
X Object to compute a 3D normal vector for such as a Plane3D object

Passed to other methods such as as_coord3d().

cross A Coord3D vector. We’ll compute the normal of x and cross by taking their
cross product.

normalize If TRUE normalize to a unit vector

Value

A Coord3D (normal) vector

Examples

normal3d("”xy-plane”)
normal3d(as_coord3d(2, @, @), cross = as_coord3d(@, 2, 0))

Plane3D 59

Plane3D 3D planes R6 Class

Description

Plane3Dis an R6: :R6Class() object representing three-dimensional planes.

Public fields

a Numeric vector that parameterizes the plane via the equationa * x +bxy+cxz+d=0.
b Numeric vector that parameterizes the plane via the equationa* x+b*xy+c*xz+d=0.
¢ Numeric vector that parameterizes the plane via the equationa * x +bxy+cxz+d=0.

d Numeric vector that parameterizes the plane via the equationax x +b*y+cxz+d=0.

Methods

Public methods:
* Plane3D$new()
* Plane3D$print()
* Plane3D$clone()

Method new():
Usage:
Plane3D$new(a, b, c, d)
Arguments:
a Numeric vector that parameterizes the plane via the equationa * x +bxy+cxz+d=0.
b Numeric vector that parameterizes the plane via the equationa*x+b*y+c*xz+d=0.
¢ Numeric vector that parameterizes the plane via the equationax x +b*y+cxz+d=0.
d Numeric vector that parameterizes the plane via the equationax x +b*y+cxz+d=0.

Method print():
Usage:
Plane3D$print(n = NULL, ...)

Arguments:
n Number of lines to print. If NULL print all of them.
. Passed to format.default().

Method clone(): The objects of this class are cloneable with this method.
Usage:
Plane3D$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

60

Point1D 1D points R6 Class

Description

Point1Dis an R6: :R6Class() object representing one-dimensional points.

Public fields

a Numeric vector that parameterizes the point via the equation a * x + b = 0.

b Numeric vector that parameterizes the point via the equation a * x + b = 0.

Methods

Public methods:

* Point1D$new()
* Point1D$print()
e Point1D$clone()

Method new():

Usage:
Point1D$new(a, b)

Arguments:
a Numeric vector that parameterizes the line via the equation a * x + b = 0.
b Numeric vector that parameterizes the line via the equation a * x + b = 0.

Method print():

Usage:
Point1D$print(n = NULL, ...)
Arguments:

n Number of lines to print. If NULL print all of them.
. Passed to format.default().

Method clone(): The objects of this class are cloneable with this method.

Usage:
Point1D$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

pl <- as_pointld(a =1, b =5)

rotate3d_to_AA 61

rotate3d_to_AA Convert from 3D rotation matrix to axis-angle representation.

Description

rotate3d_to_AA() converts from (post-multiplied) rotation matrix to an axis-angle representation
of 3D rotations.

Usage

rotate3d_to_AA(
mat = diag(4),

unit = getOption("affiner_angular_unit”, "degrees")
)
Arguments
mat 3D rotation matrix (post-multiplied). If you have a pre-multiplied rotation ma-

trix simply transpose it with t() to get a post-multiplied rotation matrix.

unit A string of the desired angular unit. Supports the following strings (note we
ignore any punctuation and space characters as well as any trailing s’s e.g. "half
turns" will be treated as equivalent to "halfturn"):
* "deg" or "degree"
* "half-revolution", "half-turn", or "pi-radian"
e "gon", "grad", "grade", or "gradian"
* "rad" or "radian"

" non non

e "rev", "revolution"”, "tr", or "turn"

See Also

https://en.wikipedia.org/wiki/Axis-angle_representation for more details about the Axis-
angle representation of 3D rotations. rotate3d() can be used to convert from an axis-angle repre-
sentation to a rotation matrix.

Examples

axis-angle representation of 90 degree rotation about the x-axis
rotate3d_to_AA(rotate3d("x-axis"”, 90, unit = "degrees"”))

find Axis-Angle representation of first rotating about x-axis 180 degrees
and then rotating about z-axis 45 degrees
R <- rotate3d("x-axis"”, 180, unit = "degrees") %*%
rotate3d("z-axis"”, 45, unit = "degrees")
AA <- rotate3d_to_AA(R)

Can use “rotate3d()” to convert back to rotation matrix representation
all.equal(R, do.call(rotate3d, AA))

https://en.wikipedia.org/wiki/Axis-angle_representation

62 transforml1d

transformid 1D affine transformation matrices

Description

transformid(), reflect1d(), scale2d(), and translateld() create 1D affine transformation
matrix objects.

Usage
transformid(mat = diag(2L))
projectld(point = as_pointld("origin”), ...)
reflectid(point = as_pointld("origin"), ...)
scaleld(x_scale = 1)
translateld(x = as_coord1d(@), ...)
Arguments
mat A 2x2 matrix representing a post-multiplied affine transformation matrix. The
last column must be equal to c(@, 1). If the last row is c(@, 1) you may need
to transpose it to convert it from a pre-multiplied affine transformation matrix
to a post-multiplied one. If a 1x1 matrix we’ll quietly add a final column/row
equal to c(Q, 1).
point A Point1D object of length one representing the point you with to reflect across
or project to or an object coercible to one by as_pointl1d(point, ...) such as
"origin".
Passed to as_coord1d().
x_scale Scaling factor to apply to x coordinates
X A Coord1D object of length one or an object coercible to one by as_coord1d(x,
).
Details

transform1d() User supplied (post-multiplied) affine transformation matrix.
reflect1d() Reflections across a point.

scaleld() Scale the x-coordinates by multiplicative scale factors.
translateld() Translate the coordinates by a Coord1D class object parameter.

transform1d() 1D affine transformation matrix objects are meant to be post-multiplied and there-
fore should not be multiplied in reverse order. Note the Coord1D class object methods auto-pre-
multiply affine transformations when "method chaining" so pre-multiplying affine transformation

transform2d 63

matrices to do a single cumulative transformation instead of a method chain of multiple transfor-
mations will not improve performance as much as as it does in other R packages.

To convert a pre-multiplied 1D affine transformation matrix to a post-multiplied one simply com-
pute its transpose using t(). To get an inverse transformation matrix from an existing transforma-
tion matrix that does the opposite transformations simply compute its inverse using solve().

Value

A 2x2 post-multiplied affine transformation matrix with classes "transform1d" and "at_matrix"

Examples

p <- as_coordld(x = sample(1:10, 3))

{affiner} affine transformation matrices are post-multiplied
and therefore should **not** go in reverse order
mat <- transformld(diag(2)) %*%
scaleld(2) %*%
translateld(x = -1)
pl <- p$
clone()$
transform(mat)

The equivalent result appyling affine transformations via method chaining

p2 <- p$
clone()$
transform(diag(2))$
scale(2)$
translate(x = -1)

all.equal(pl, p2)

transform2d 2D affine transformation matrices

Description

transform2d(), project2d(), reflect2d(), rotate2d(), scale2d(), shear2d(), and translate2d()
create 2D affine transformation matrix objects.

Usage
transform2d(mat = diag(3L))

permute2d(permutation = c("xy", "yx"))

project2d(line = as_line2d("x-axis"), ..., scale = @)

reflect2d(line = as_line2d("x-axis"), ...)

64

transform2d

rotate2d(theta = angle(@), ...)
scale2d(x_scale = 1, y_scale = x_scale)

shear2d(xy_shear = @, yx_shear = 0)

translate2d(x = as_coord2d(@, 0), ...)
Arguments
mat A 3x3 matrix representing a post-multiplied affine transformation matrix. The

last column must be equal to c(@, @, 1). If the last row is c(@, @, 1) you may
need to transpose it to convert it from a pre-multiplied affine transformation
matrix to a post-multiplied one. If a 2x2 matrix (such as a 2x2 post-multiplied
2D rotation matrix) we’ll quietly add a final column/row equal to c(@, @, 1).

permutation Either "xy" (no permutation) or "yx" (permute x and y axes)
line A Line2D object of length one representing the line you with to reflect across
or project to or an object coercible to one by as_line2d(line, ...) such as

"x-axis" or "y-axis".

Passed to as_angle() or as_coord2d().

scale Oblique projection scale factor. A degenerate @ value indicates an orthogonal
projection.

theta An angle() object of length one or an object coercible to one by as_angle(theta,
2.

x_scale Scaling factor to apply to x coordinates

y_scale Scaling factor to apply to y coordinates

xy_shear Horizontal shear factor: x = x + xy_shear * y

yx_shear Vertical shear factor: y = yx_shear x x +y

X A Coord2D object of length one or an object coercible to one by as_coord2d(x,
2.

Details

transform2d() User supplied (post-multiplied) affine transformation matrix.

project2d() Oblique vector projections onto a line parameterized by an oblique projection scale
factor. A (degenerate) scale factor of zero results in an orthogonal projection.

reflect2d() Reflections across aline. To "flip" across both the x-axis and the y-axis use scale2d(-1).
rotate2d() Rotations around the origin parameterized by an angle().

scale2d() Scale the x-coordinates and/or the y-coordinates by multiplicative scale factors.
shear2d() Shear the x-coordinates and/or the y-coordinates using shear factors.

translate2d() Translate the coordinates by a Coord2D class object parameter.

transform2d() 2D affine transformation matrix objects are meant to be post-multiplied and there-
fore should not be multiplied in reverse order. Note the Coord2D class object methods auto-pre-
multiply affine transformations when "method chaining" so pre-multiplying affine transformation

transform3d 65

matrices to do a single cumulative transformation instead of a method chain of multiple transfor-
mations will not improve performance as much as as it does in other R packages.

To convert a pre-multiplied 2D affine transformation matrix to a post-multiplied one simply com-
pute its transpose using t(). To get an inverse transformation matrix from an existing transforma-
tion matrix that does the opposite transformations simply compute its inverse using solve().

Value

A 3x3 post-multiplied affine transformation matrix with classes "transform2d" and "at_matrix"

Examples
p <- as_coord2d(x = sample(1:10, 3), y = sample(1:10, 3))

{affiner} affine transformation matrices are post-multiplied
and therefore should **not** go in reverse order
mat <- transform2d(diag(3)) %x%
reflect2d(as_coord2d(-1, 1)) %*%
rotate2d(90, "degrees") %*%
scale2d(1, 2) %*%
shear2d(0.5, 0.5) %*%
translate2d(x = -1, y = -1)
pl <- p$
clone()$
transform(mat)

The equivalent result appyling affine transformations via method chaining
p2 <- p$

clone()$

transform(diag(3L))$

reflect(as_coord2d(-1, 1))$

rotate(90, "degrees")$

scale(1, 2)$

shear (0.5, 0.5)%

translate(x = -1, y = -1)

all.equal(pl, p2)

transform3d 3D affine transformation matrices

Description

transform3d(), project3d(), reflect3d(), rotate3d(), scale3d(), shear3d(), and translate3d()
create 3D affine transformation matrix objects.

66 transform3d
Usage
transform3d(mat = diag(4L))
permute3d(permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"))
project3d(
plane = as_plane3d("xy-plane”),
scale = 0,
alpha = angle(45, "degrees")
)
reflect3d(plane = as_plane3d(”"xy-plane”), ...)
rotate3d(axis = as_coord3d("z-axis"), theta = angle(@), ...)
scale3dd(x_scale = 1, y_scale = x_scale, z_scale = x_scale)
shear3d(
xy_shear = 0,
xz_shear = 0,
yx_shear = 0,
yz_shear = 0,
zx_shear = 0,
zy_shear = 0
)
translate3d(x = as_coord3d(@, o, @), ...)
Arguments
mat A 4x4 matrix representing a post-multiplied affine transformation matrix. The
last column must be equal to c(@, 0, @, 1). If the lastrowis c(@, @, @, 1) you
may need to transpose it to convert it from a pre-multiplied affine transformation
matrix to a post-multiplied one. If a 3x3 matrix (such as a 3x3 post-multiplied
3D rotation matrix) we’ll quietly add a final column/row equal to c(@, 9, @,
1.
permutation Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x
and y axes), "yzx" (x becomes z, y becomes X, z becomes y), "zxy" (x becomes
y, y becomes z, z becomes x), "zyx" (permute x and z axes)
plane A Plane3D object of length one representing the plane you wish to reflect across
or project to or an object coercible to one using as_plane3d(plane, ...) such
as "xy-plane", "xz-plane", or "yz-plane".
Passed to as_angle() or as_coord3d().
scale Oblique projection foreshortening scale factor. A (degenerate) @ value indicates

an orthographic projection. A value of 0.5 is used by a “cabinet projection”
while a value of 1.0 is used by a “cavalier projection”.

transform3d 67

alpha Oblique projection angle (the angle the third axis is projected going off at). An
angle() object or one coercible to one with as_angle(alpha, ...). Popular
angles are 45 degrees, 60 degrees, and arctangent(2) degrees.

axis A Coord3D class object or one that can coerced to one by as_coord3d(axis,
...). The axis represents the axis to be rotated around.

theta An angle() object of length one or an object coercible to one by as_angle(theta,
).

x_scale Scaling factor to apply to x coordinates

y_scale Scaling factor to apply to y coordinates

z_scale Scaling factor to apply to z coordinates

xy_shear Shear factor: x = x + xy_shear xy + xz_shear * z

xz_shear Shear factor: x = x + xy_shear xy + xz_shear * z

yx_shear Shear factor: y = yx_shear x x +y + yz_shear * z

yz_shear Shear factor: y = yx_shear x x +y + yz_shear * z

zx_shear Shear factor: z = zx_shear * x + zy_shear *y + z

zy_shear Shear factor: z = zx_shear * x + zy_shear xy +z

X A Coord3D object of length one or an object coercible to one by as_coord3d(x,
).

Details

transform3d() User supplied (post-multiplied) affine transformation matrix.

scale3d() Scale the x-coordinates and/or the y-coordinates and/or the z-coordinates by multi-
plicative scale factors.

shear3d() Shear the x-coordinates and/or the y-coordinates and/or the z-coordinates using shear
factors.

translate3d() Translate the coordinates by a Coord3D class object parameter.

transform3d() 3D affine transformation matrix objects are meant to be post-multiplied and there-
fore should not be multiplied in reverse order. Note the Coord3D class object methods auto-pre-
multiply affine transformations when "method chaining" so pre-multiplying affine transformation
matrices to do a single cumulative transformation instead of a method chain of multiple transfor-
mations will not improve performance as much as as it does in other R packages.

To convert a pre-multiplied 3D affine transformation matrix to a post-multiplied one simply com-
pute its transpose using t(). To get an inverse transformation matrix from an existing transforma-
tion matrix that does the opposite transformations simply compute its inverse using solve().

Value

A 4x4 post-multiplied affine transformation matrix with classes "transform3d" and "at_matrix"

68 trigonometric-functions

Examples

p <- as_coord3d(x = sample(1:10, 3), y = sample(1:10, 3), z = sample(1:10, 3))

{affiner} affine transformation matrices are post-multiplied
and therefore should **not** go in reverse order
mat <- transform3d(diag(4L)) %*%
rotate3d(”z-axis", degrees(90)) %*%
scale3d(1, 2, 1) %*%
translate3d(x = -1, y = -1, z = -1)
p1 <- p$
clone()$
transform(mat)

The equivalent result appyling affine transformations via method chaining
p2 <- p$

clone()$

transform(diag(4L))$

rotate("z-axis", degrees(90))$

scale(1, 2, 1)$

translate(x = -1, y = -1, z = -1)

all.equal(pl, p2)

trigonometric-functions
Angle vector aware trigonometric functions

Description

sine(), cosine(), tangent(), secant(), cosecant(), and cotangent() are angle() aware
trigonometric functions that allow for a user chosen angular unit.

Usage
sine(x, unit = getOption("affiner_angular_unit", "degrees"))
cosine(x, unit = getOption("affiner_angular_unit”, "degrees"))
tangent(x, unit = getOption("affiner_angular_unit”, "degrees"))
secant(x, unit = getOption("affiner_angular_unit”, "degrees"))
cosecant(x, unit = getOption("affiner_angular_unit”, "degrees"))

cotangent(x, unit = getOption("affiner_angular_unit"”, "degrees"))

trigonometric-functions 69

Arguments

X An angle vector or an object to convert to it (such as a numeric vector)

unit A string of the desired angular unit. Supports the following strings (note we
ignore any punctuation and space characters as well as any trailing s’s e.g. "half
turns" will be treated as equivalent to "halfturn"):

e "deg" or "degree"
* "half-revolution", "half-turn", or "pi-radian”

e "gon", "grad", "grade", or "gradian"
* "rad" or "radian"

" non "non

e "rev", "revolution", "tr", or "turn"

Value

A numeric vector

Examples

sine(pi, "radians”)
cosine(180, "degrees")
tangent (0.5, "turns")

a <- angle(0.5, "turns")
secant(a)

cosecant(a)

cotangent(a)

Index

abs(), 12

abs.angle (angle-methods), 11

abs.Coord1D, 4

abs.Coord2D (abs.Coord1D), 4

abs.Coord3D (abs.Coord1D), 4

affine_settings, 8

affine_settings(), 3,6

affineGrob, 5

affineGrob(), 8, 9

affiner, 7

affiner (affiner-package), 3

affiner-package, 3

affiner_options, 7

all.equal(), 51

angle, 10

angle(), 3, 11-15, 18, 20, 31, 33, 34, 41, 42,
47, 50, 64, 67, 68

angle-methods, 10, 11

angular_unit, 13

angular_unit(), 10, 12

angular_unit<- (angular_unit), 13

arccosecant

(inverse-trigonometric-functions),

41
arccosine

(inverse-trigonometric-functions),

41
arccotangent

(inverse-trigonometric-functions),

41
arcsecant

(inverse-trigonometric-functions),

41
arcsine

(inverse-trigonometric-functions),

41
arctangent

(inverse-trigonometric-functions),

41

70

as.complex.angle (angle-methods), 11
as.double.angle (angle-methods), 11
as.numeric(), 12

as_angle, 14
as_angle(), 3, 10, 31, 64, 66
as_coord1d, 15

as_coord1d(), 62

as_coord2d, 16

as_coord2d(), 64

as_coord3d, 18

as_coord3d(), 58, 66

as_line2d, 19

as_plane3d, 21

as_pointid, 22

as_transformid, 22
as_transform2d, 23
as_transform3d, 24

base: :mean(), 26
base::options(), 3
bounding_ranges, 25

centroid, 25

convex_hull2d, 26

Coord1D, 15, 16, 22, 25, 26, 27, 28, 36, 38, 62

Coord2D, 4, 1618, 20, 25-27,29, 31, 37, 38,
57,64

Coord3D, 4, 18, 19, 21, 25, 26, 32, 34-38, 58,
67

cosecant (trigonometric-functions), 68

cosine (trigonometric-functions), 68

cotangent (trigonometric-functions), 68

cross_product3d, 35

degrees (angle), 10
degrees(), 46
distanceld, 36
distance2d, 37
distance3d, 37

format.angle (angle-methods), 11

INDEX

format.angle(), 3
format.default(), 28, 30, 33, 56, 59, 60

ggplot2, 38
ggplot2::autolayer(), 38
ggplot2: :ggplotGrob(), 43, 44
gradians (angle), 10
graphics, 38

grDevices: :cairo_pdf (), 6, 44
grDevices: :chull(), 26
grDevices: :pdf(), 6,44
grDevices::quartz(), 6, 44
grDevices: :svg(), 6, 44
grid.affine (affineGrob), 5
grid.isocube (isocubeGrob), 43
grid::defineGrob(), 5

grid: :gpar(), 5,43

grid: :gTree(), 6, 44
grid::unit(), 8

grid: :useGrob(), 5, 9
grid::viewport(), 5, 8, 43
grid::viewportTransform(), 5

has_intersection, 39

intersection, 40
inverse-trigonometric-functions, 41
is_angle, 47

is_congruent, 47
is_congruent(), 12, 51
is_coordld, 49

is_coord2d, 49

is_coord3d, 50

is_equivalent, 50

is_line2d, 52

is_parallel, 52

is_plane3d, 53

is_pointid, 54
is_transformld, 54
is_transform2d, 55
is_transform3d, 55
isocubeGrob, 43

isocubeGrob(), 6
isotoxal_2ngon_inner_radius, 45

110n_info(), 3

Line2D, 16, 19-21, 30, 37, 38, 50, 56, 57, 64

lines(), 38
lines.Line2D (graphics), 38

lines.Point1D (graphics), 38

mean.Coord1D (centroid), 25
mean.Coord2D (centroid), 25
mean.Coord3D (centroid), 25

normal2d, 57
normal3d, 58
numeric(), 12

Ops, 12
options(), 7

permute2d (transform2d), 63
permute3d (transform3d), 65
pi_radians (angle), 10

Plane3D, 18, 21, 33, 34, 37, 50, 58, 59, 66
plot(), 38

plot.Coord1D (graphics), 38
plot.Coord2D (graphics), 38
Point1D, 20-22, 28, 36, 38, 50, 60, 62
points(), 38

points.Coord1D (graphics), 38
points.Coord2D (graphics), 38
polygonGrob(), 43

print.angle (angle-methods), 11
print.angle(), 3
print.default(), /2

projectld (transformid), 62
project1d(), 28

project2d (transform2d), 63
project2d(), 30

project3d (transform3d), 65
project3d(), 33

R6::R6Class(), 27, 29, 32, 56, 59, 60
radians (angle), 10

ragg: :agg_capture(), 6, 44
ragg::agg_png(), 6, 44
range.Coord1D (bounding_ranges), 25
range.Coord2D (bounding_ranges), 25
range.Coord3D (bounding_ranges), 25
reflectld (transformld), 62
reflect1d(), 28

reflect2d (transform2d), 63
reflect2d(), 30

reflect3d (transform3d), 65
reflect3d(), 34

rgl, 38

71

72

rgl::plot3d(), 38
rotate2d (transform2d), 63
rotate3d (transform3d), 65
rotate3d(), 34, 61
rotate3d_to_AA, 61

scaleld (transformid), 62

scale2d (transform2d), 63

scale3d (transform3d), 65

secant (trigonometric-functions), 68

shear2d (transform2d), 63

shear3d (transform3d), 65

sine (trigonometric-functions), 68

solve(), 63, 65, 67

star_inner_radius
(isotoxal_2ngon_inner_radius),
45

t(), 61,63, 65, 67

tangent (trigonometric-functions), 68
transformid, 62
transform1d(), 22, 23, 54
transform2d, 63
transform2d(), 23, 55
transform3d, 65
transform3d(), 24, 55
translateld (transformld), 62
translate2d (transform2d), 63
translate3d (transform3d), 65
trigonometric-functions, 68
turns (angle), 10

useGrob(), 8

withr::local_options(), 7
withr::with_options(), 7

INDEX

	affiner-package
	abs.Coord1D
	affineGrob
	affiner_options
	affine_settings
	angle
	angle-methods
	angular_unit
	as_angle
	as_coord1d
	as_coord2d
	as_coord3d
	as_line2d
	as_plane3d
	as_point1d
	as_transform1d
	as_transform2d
	as_transform3d
	bounding_ranges
	centroid
	convex_hull2d
	Coord1D
	Coord2D
	Coord3D
	cross_product3d
	distance1d
	distance2d
	distance3d
	graphics
	has_intersection
	intersection
	inverse-trigonometric-functions
	isocubeGrob
	isotoxal_2ngon_inner_radius
	is_angle
	is_congruent
	is_coord1d
	is_coord2d
	is_coord3d
	is_equivalent
	is_line2d
	is_parallel
	is_plane3d
	is_point1d
	is_transform1d
	is_transform2d
	is_transform3d
	Line2D
	normal2d
	normal3d
	Plane3D
	Point1D
	rotate3d_to_AA
	transform1d
	transform2d
	transform3d
	trigonometric-functions
	Index

