Package ‘adbcdrivermanager’

January 21, 2026
Title 'Arrow' Database Connectivity (ADBC') Driver Manager
Version 0.22.0

Description Provides a developer-facing interface to 'Arrow' Database
Connectivity (ADBC") for the purposes of driver development, driver
testing, and building high-level database interfaces for users. 'ADBC'
<https://arrow.apache.org/adbc/> is an API standard for database access
libraries that uses 'Arrow' for result sets and query parameters.

License Apache License (>= 2)
Encoding UTF-8

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), withr
Config/testthat/edition 3
Config/build/bootstrap TRUE

URL https://arrow.apache.org/adbc/current/r/adbcdrivermanager/,

https://github.com/apache/arrow-adbc

BugReports https://github.com/apache/arrow-adbc/issues
Imports nanoarrow (>= 0.3.0)
NeedsCompilation yes

Author Dewey Dunnington [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9415-4582>),
Apache Arrow [aut, cph],
Apache Software Foundation [cph]

Maintainer Dewey Dunnington <dewey@dunnington.ca>
Repository CRAN
Date/Publication 2026-01-21 06:41:26 UTC

https://arrow.apache.org/adbc/
https://arrow.apache.org/adbc/current/r/adbcdrivermanager/
https://github.com/apache/arrow-adbc
https://github.com/apache/arrow-adbc/issues
https://orcid.org/0000-0002-9415-4582

2 adbc_connection_get_info

Contents
adbc_connection_get_info Lo 2
adbc_connection_init L L 4
adbc_connection_joino e e e e 5
adbc_database_init L. e e e e 6
adbc_driver_load 7
adbc_driver_log L e 8
adbc_driver_monkey L. e 9
adbc_driver_void e 9
adbc_error_from_array_stream L. 10
adbc_load_flags L. 11
adbc_statement_init e e e e e e e e e e e 11
adbc_statement_set_sql_query 12
adbC_XPIr_MmOVe o e e e e e e e e e 14
read_adbc e 15
with_adbc e 16

Index 18

adbc_connection_get_info
Connection methods
Description
Connection methods
Usage

adbc_connection_get_info(connection, info_codes = NULL)

adbc_connection_get_objects(
connection,
depth = oL,
catalog = NULL,
db_schema = NULL,
table_name = NULL,
table_type = NULL,
column_name = NULL

)
adbc_connection_get_table_schema(connection, catalog, db_schema, table_name)
adbc_connection_get_table_types(connection)

adbc_connection_read_partition(connection, serialized_partition)

adbc_connection_get_info 3

adbc_connection_commit(connection)

adbc_connection_rollback(connection)

adbc_connection_cancel (connection)

adbc_connection_get_statistic_names(connection)

adbc_connection_get_statistics(

connection,
catalog,
db_schema,
table_name,
approximate = FALSE
)
adbc_connection_quote_identifier(connection, value, ...)
adbc_connection_quote_string(connection, value, ...)
Arguments
connection An adbc_connection
info_codes A list of metadata codes to fetch, or NULL to fetch all. Valid values are docu-
mented in the adbc.h header.
depth The level of nesting to display. If 0, display all levels. If 1, display only catalogs
(i.e., catalog_schemas will be null). If 2, display only catalogs and schemas (i.e.,
db_schema_tables will be null). If 3, display only catalogs, schemas, and tables.
catalog Only show tables in the given catalog. If NULL, do not filter by catalog. If an
empty string, only show tables without a catalog. May be a search pattern.
db_schema Only show tables in the given database schema. If NULL, do not filter by
database schema. If an empty string, only show tables without a database schema.
May be a search pattern.
table_name Constrain an object or statistics query for a specific table. If NULL, do not filter
by name. May be a search pattern.
table_type Only show tables matching one of the given table types. If NULL, show tables

column_name

of any type. Valid table types can be fetched from GetTableTypes. Terminate
the list with a NULL entry.

Only show columns with the given name. If NULL, do not filter by name. May
be a search pattern.

serialized_partition

approximate

The partition descriptor.

If FALSE, request exact values of statistics, else allow for best-effort, approxi-
mate, or cached values. The database may return approximate values regardless,
as indicated in the result. Requesting exact values may be expensive or unsup-
ported.

4 adbc_connection_init

value A string or identifier.

Driver-specific options. For the default method, these are named values that are
converted to strings.

Value

* adbc_connection_get_info(), adbc_connection_get_objects(), adbc_connection_get_table_types(),
and adbc_connection_read_partition() return a nanoarrow_array_stream.

e adbc_connection_get_table_schema() returns a nanoarrow_schena

e adbc_connection_commit () and adbc_connection_rollback() return connection, invis-
ibly.

Examples

db <- adbc_database_init(adbc_driver_void())
con <- adbc_connection_init(db)

(not implemented by the void driver)
try(adbc_connection_get_info(con, 0))

adbc_connection_init Connections

Description

Connections

Usage

adbc_connection_init(database, ...)

adbc_connection_init_default(database, options = NULL, subclass = character())
adbc_connection_release(connection)

adbc_connection_set_options(connection, options)
adbc_connection_get_option(connection, option)
adbc_connection_get_option_bytes(connection, option)
adbc_connection_get_option_int(connection, option)

adbc_connection_get_option_double(connection, option)

adbc_connection_join 5

Arguments
database An adbc_database.
Driver-specific options. For the default method, these are named values that are
converted to strings.
options A named character() or list() whose values are converted to strings.
subclass An extended class for an object so that drivers can specify finer-grained control
over behaviour at the R level.
connection An adbc_connection
option A specific option name
Value

An object of class *adbc_connection’

Examples

db <- adbc_database_init(adbc_driver_void())
adbc_connection_init(db)

adbc_connection_join Join the lifecycle of a unique parent to its child

Description

It is occasionally useful to return a connection, statement, or stream from a function that was created
from a unique parent. These helpers tie the lifecycle of a unique parent object to its child such that
the parent object is released predictably and immediately after the child. These functions will
invalidate all references to the previous R object.

Usage

adbc_connection_join(connection, database)

adbc_statement_join(statement, connection)

Arguments
connection A connection created with adbc_connection_init()
database A database created with adbc_database_init()
statement A statement created with adbc_statement_init()
Value

The input, invisibly.

6 adbc_database_init

Examples

Use local_adbc to ensure prompt cleanup on error;
use join functions to return a single object that manages
the lifecycle of all three.
stmt <- local({
db <- local_adbc(adbc_database_init(adbc_driver_log()))

con <- local_adbc(adbc_connection_init(db))
adbc_connection_join(con, db)

stmt <- local_adbc(adbc_statement_init(con))
adbc_statement_join(stmt, con)

adbc_xptr_move(stmt)

b

Everything is released immediately when the last object is released
adbc_statement_release(stmt)

adbc_database_init Databases
Description
Databases
Usage
adbc_database_init(driver, ...)

adbc_database_init_default(driver, options = NULL, subclass = character())
adbc_database_release(database)

adbc_database_set_options(database, options)
adbc_database_get_option(database, option)
adbc_database_get_option_bytes(database, option)
adbc_database_get_option_int(database, option)

adbc_database_get_option_double(database, option)

adbc_driver load 7

Arguments
driver An adbc_driver().
Driver-specific options. For the default method, these are named values that are
converted to strings.
options A named character() or 1ist() whose values are converted to strings.
subclass An extended class for an object so that drivers can specify finer-grained control
over behaviour at the R level.
database An adbc_database.
option A specific option name
Value

An object of class adbc_database

Examples

adbc_database_init(adbc_driver_void())

adbc_driver_load Low-level driver loader

Description

Most users should use adbc_driver(); however, this function may be used to allow other libraries
(e.g., GDAL) to access the driver loader.

Usage

adbc_driver_load(
X,
entrypoint,
version,
driver,
error,
load_flags = adbc_load_flags(),
additional_search_path_list = NULL

Arguments

X, entrypoint An ADBC driver may be defined either as an init function or as an identifier
with an entrypoint name. A driver init func must be an external pointer to a
DL_FUNC with the type AdbcDriverInitFunc specified in the adbc.h header.

version The version number corresponding to the driver supplied

8 adbc_driver_log

driver An external pointer to an AdbcDriver
error An external pointer to an AdbcError or NULL
load_flags Integer flags generated by adbc_load_flags()

additional_search_path_list
A path list of additional locations to search for driver manifests

Value

An integer ADBC status code

adbc_driver_log Log calls to another driver

Description

Useful for debugging or ensuring that certain calls occur during initialization and/or cleanup. The
current logging output should not be considered stable and may change in future releases.

Usage

adbc_driver_log()

Value

An object of class adbc_driver_log’

Examples

drv <- adbc_driver_log()

db <- adbc_database_init(drv, key = "value")
con <- adbc_connection_init(db, key = "value")
stmt <- adbc_statement_init(con, key = "value")
try(adbc_statement_execute_query(stmt))
adbc_statement_release(stmt)
adbc_connection_release(con)
adbc_database_release(db)

adbc_driver_monkey 9

adbc_driver_monkey Monkey see, monkey do!

Description

A driver whose query results are set in advance.

Usage

adbc_driver_monkey()

Value

An object of class *adbc_driver_monkey’

Examples

db <- adbc_database_init(adbc_driver_monkey())

con <- adbc_connection_init(db)

stmt <- adbc_statement_init(con, mtcars)

stream <- nanoarrow::nanoarrow_allocate_array_stream()
adbc_statement_execute_query(stmt, stream)
as.data.frame(stream$get_next())

adbc_driver_void Create ADBC drivers

Description

Creates the R object representation of an ADBC driver, which consists of a name and an initializer
function with an optional subclass to control finer-grained behaviour at the R level.

Usage
adbc_driver_void()
adbc_driver(

X,
entrypoint

NULL,

load_flags = adbc_load_flags(),
subclass = character()

10

Arguments

X, entrypoint

load_flags
subclass

Value

adbc_error_from_array_stream

An ADBC driver may be defined either as an init function or as an identifier
with an entrypoint name. A driver init func must be an external pointer to a
DL_FUNC with the type AdbcDriverInitFunc specified in the adbc.h header.

Further key/value parameters to store with the (R-level) driver object.
Integer flags generated by adbc_load_flags()
An optional subclass for finer-grained control of behaviour at the R level.

An object of class *adbc_driver’

Examples

adbc_driver_void()

adbc_error_from_array_stream

Get extended error information from an array stream

Description

Get extended error information from an array stream

Usage

adbc_error_from_array_stream(stream)

Arguments

stream

Value

A nanoarrow_array_stream

NULL if stream was not created by a driver that supports extended error information or a list whose
first element is the status code and second element is the adbc_error object. The acbc_error must
not be accessed if stream is explicitly released.

Examples

db <- adbc_database_init(adbc_driver_monkey())

con <- adbc_connection_init(db)

stmt <- adbc_statement_init(con, mtcars)

stream <- nanoarrow::nanoarrow_allocate_array_stream()
adbc_statement_execute_query(stmt, stream)
adbc_error_from_array_stream(stream)

adbc_load_flags 11

adbc_load_flags Driver search/load options

Description

Options that indicate where to look for driver manifests. Manifests (.toml files) can be installed at
the system level, the user level, in location(s) specified by the ADBC_DRIVER_PATH environment
variable, and/or in a conda environment. See the ADBC documentation for details regarding the
locations of the user and system paths on various platforms.

Usage

adbc_load_flags(
search_env = TRUE,
search_user = TRUE,
search_system = TRUE,
allow_relative_paths = TRUE

)
Arguments
search_env Search for manifest files in the directories specified in the ADBC_DRIVER_PATH
environment variable and (when installed with conda) in the conda environment.
search_user Search for manifest files in the designated directory for user ADBC driver in-

stalls.

search_system Search for manifest files in the designtaed directory for system ADBC driver
installs.

allow_relative_paths
Allow shared objects to be specified relative to the current working directory.

Value

An integer flag value for use in adbc_driver()

adbc_statement_init Statements

Description

Statements

12

Usage

adbc_statement_set_sql_query

adbc_statement_init(connection, ...)

adbc_statement_init_default(connection, options = NULL, subclass = character())

adbc_statement_release(statement)

adbc_statement_set_options(statement, options)

adbc_statement_get_option(statement, option)

adbc_statement_get_option_bytes(statement, option)

adbc_statement_get_option_int(statement, option)

adbc_statement_get_option_double(statement, option)

Arguments

connection

options

subclass

statement

option

Value

An adbc_connection

Driver-specific options. For the default method, these are named values that are
converted to strings.

A named character() or list () whose values are converted to strings.

An extended class for an object so that drivers can specify finer-grained control
over behaviour at the R level.

An adbc_statement

A specific option name

An object of class *adbc_statement’

Examples

db <- adbc_database_init(adbc_driver_void())
con <- adbc_connection_init(db)
adbc_statement_init(con)

adbc_statement_set_sqgl_query

Statement methods

Description

Statement methods

adbc_statement_set_sql_query 13
Usage
adbc_statement_set_sql_query(statement, query)
adbc_statement_set_substrait_plan(statement, plan)
adbc_statement_prepare(statement)
adbc_statement_get_parameter_schema(statement)
adbc_statement_bind(statement, values, schema = NULL)
adbc_statement_bind_stream(statement, stream, schema = NULL)
adbc_statement_execute_query(
statement,

stream = NULL,
stream_join_parent = FALSE

)

adbc_statement_execute_schema(statement)

adbc_statement_cancel(statement)

Arguments
statement An adbc_statement
query An SQL query as a string
plan A raw vector representation of a serialized Substrait plan.
values A nanoarrow_array or object that can be coerced to one.
schema A nanoarrow_schema or object that can be coerced to one.
stream A nanoarrow_array_stream or object that can be coerced to one.

stream_join_parent
Use TRUE to invalidate statement and tie its lifecycle to stream.

Value

e adbc_statement_set_sql_query(), adbc_statement_set_substrait_plan(), adbc_statement_prepare(),
adbc_statement_bind(), adbc_statement_bind_stream(), and adbc_statement_execute_query()
return statement, invisibly.

e adbc_statement_get_parameter_schema() returns a nanoarrow_schema.

Examples

db <- adbc_database_init(adbc_driver_void())
con <- adbc_connection_init(db)

stmt <- adbc_statement_init(con)

(not implemented by the void driver)

14 adbc_xptr_move

try(adbc_statement_set_sql_query(stmt, "some query"))

adbc_xptr_move Low-level pointer details

Description

* adbc_xptr_move() allocates a fresh R object and moves all values pointed to by x into it.
The original R object is invalidated by zeroing its content. This is useful when returning from
a function where lifecycle helpers were used to manage the original object.

* adbc_xptr_is_valid() provides a means by which to test for an invalidated pointer.

Usage

adbc_xptr_move(x, check_child_count = TRUE)

adbc_xptr_is_valid(x)

Arguments

X An’adbc_database’, ’adbc_connection’, *adbc_statement’, or *nanoarrow_array_stream’

check_child_count
Ensures that x has a zero child count before performing the move. This should
almost always be TRUE.

Value

* adbc_xptr_move(): A freshly-allocated R object identical to x

* adbc_xptr_is_valid(): Returns FALSE if the ADBC object pointed to by x has been inval-
idated.

Examples

db <- adbc_database_init(adbc_driver_void())
adbc_xptr_is_valid(db)

db_new <- adbc_xptr_move(db)
adbc_xptr_is_valid(db)
adbc_xptr_is_valid(db_new)

read_adbc

15

read_adbc

Read, write, and execute on ADBC connections

Description

These are convenience methods useful for testing connections. Note that S3 dispatch is always on
db_or_con (i.e., drivers may provide their own implementations).

Usage
read_adbc(db_or_con, query, ..., bind = NULL)
execute_adbc(db_or_con, query, ..., bind = NULL)

write_adbc(
tbl,
db_or_con,

target_table,

L

mode = c("default”, "create”, "append”, "replace"”, "create_append”),
temporary = FALSE,

catalog_name

= NULL,

db_schema_name = NULL

Arguments

db_or_con

query

bind

tbl
target_table

mode

temporary
catalog_name

db_schema_name

An adbc_database or adbc_connection. If a database, a connection will be
opened. For read_adbc(), this connection will be closed when the resulting
stream has been released.

An SQL query
Passed to S3 methods.

A data.frame, nanoarrow_array, or nanoarrow_array_stream of bind parameters
or NULL to skip the bind/prepare step.

A data.frame, nanoarrow_array, or nanoarrow_array_stream.
A target table name to which tb1l should be written.

non n on

One of "create”, "append”, "replace”, "create_append” (error if the schema
is not compatible or append otherwise), or "default” (use the adbc. ingest.mode
argument of adbc_statement_init()). The defaultis "default”.

Use TRUE to create a table as a temporary table.
If not NULL, the catalog to create/locate the table in.

If not NULL, the schema to create/locate the table in.

16 with_adbc

Value

* read_adbc(): A nanoarrow_array_stream
* execute_adbc(): db_or_con, invisibly.

e write_adbc(): tbl, invisibly.

Examples

On a database, connections are opened and closed
db <- adbc_database_init(adbc_driver_log())
try(read_adbc(db, "some sql”))
try(execute_adbc(db, "some sql"))
try(write_adbc(mtcars, db, "some_table"))

Also works on a connection

con <- adbc_connection_init(db)
try(read_adbc(con, "some sql”))
try(execute_adbc(con, "some sql”))
try(write_adbc(mtcars, con, "some_table"))

with_adbc Cleanup helpers

Description

Managing the lifecycle of databases, connections, and statements can be complex and error-prone.
The R objects that wrap the underlying ADBC pointers will perform cleanup in the correct order if
you rely on garbage collection (i.e., do nothing and let the objects go out of scope); however it is
good practice to explicitly clean up these objects. These helpers are designed to make explicit and
predictable cleanup easy to accomplish.

Usage

with_adbc(x, code)

local_adbc(x, .local_envir = parent.frame())

Arguments
X An ADBC database, ADBC connection, ADBC statement, or nanoarrow_array_stream
returned from calls to an ADBC function.
code Code to execute before cleaning up the input.

.local_envir The execution environment whose scope should be tied to the input.

with_adbc 17

Details

Note that you can use adbc_connection_join() and adbc_statement_join() to tie the lifecycle
of the parent object to that of the child object. These functions mark any previous references to
the parent object as released so you can still use local and with helpers to manage the parent object
before it is joined. Use stream_join_parent = TRUE in adbc_statement_execute_query() to
tie the lifecycle of a statement to the output stream.

Value

e with_adbc() returns the result of code

* local_adbc() returns the input, invisibly.

Examples

Using with_adbc():
with_adbc(db <- adbc_database_init(adbc_driver_void()), {
with_adbc(con <- adbc_connection_init(db), {
with_adbc(stmt <- adbc_statement_init(con), {
adbc_statement_set_sql_query(stmt, "SELECT x* FROM foofy")
adbc_statement_execute_query(stmt)
"some result”
»
D)
»

Using local_adbc_x() (works best within a function, test, or local())
local({

db <- local_adbc(adbc_database_init(adbc_driver_void()))

con <- local_adbc(adbc_connection_init(db))

stmt <- local_adbc(adbc_statement_init(con))

adbc_statement_set_sql_query(stmt, "SELECT x FROM foofy")

adbc_statement_execute_query(stmt)

"some result”

b

Index

adbc_connection, 3, 5, 12
adbc_connection_cancel
(adbc_connection_get_info), 2
adbc_connection_commit
(adbc_connection_get_info), 2
adbc_connection_get_info, 2
adbc_connection_get_objects
(adbc_connection_get_info), 2
adbc_connection_get_option
(adbc_connection_init), 4
adbc_connection_get_option_bytes
(adbc_connection_init), 4
adbc_connection_get_option_double
(adbc_connection_init), 4
adbc_connection_get_option_int
(adbc_connection_init), 4
adbc_connection_get_statistic_names
(adbc_connection_get_info), 2
adbc_connection_get_statistics
(adbc_connection_get_info), 2
adbc_connection_get_table_schema
(adbc_connection_get_info), 2
adbc_connection_get_table_types
(adbc_connection_get_info), 2
adbc_connection_init, 4
adbc_connection_init(), 5
adbc_connection_init_default
(adbc_connection_init), 4
adbc_connection_join, 5
adbc_connection_join(), 17
adbc_connection_quote_identifier
(adbc_connection_get_info), 2
adbc_connection_quote_string
(adbc_connection_get_info), 2
adbc_connection_read_partition
(adbc_connection_get_info), 2
adbc_connection_release
(adbc_connection_init), 4
adbc_connection_rollback

18

(adbc_connection_get_info), 2
adbc_connection_set_options
(adbc_connection_init), 4
adbc_database, 5, 7
adbc_database_get_option
(adbc_database_init), 6
adbc_database_get_option_bytes
(adbc_database_init), 6
adbc_database_get_option_double
(adbc_database_init), 6
adbc_database_get_option_int
(adbc_database_init), 6
adbc_database_init, 6
adbc_database_init(), 5
adbc_database_init_default
(adbc_database_init), 6
adbc_database_release
(adbc_database_init), 6
adbc_database_set_options
(adbc_database_init), 6
adbc_driver (adbc_driver_void), 9
adbc_driver(), 7
adbc_driver_load, 7
adbc_driver_log, 8
adbc_driver_monkey, 9
adbc_driver_void, 9
adbc_error_from_array_stream, 10
adbc_load_flags, 11
adbc_load_flags(), 8, 10
adbc_statement, /2, /13
adbc_statement_bind
(adbc_statement_set_sql_query),
12
adbc_statement_bind_stream
(adbc_statement_set_sql_query),
12
adbc_statement_cancel
(adbc_statement_set_sqgl_query),
12

INDEX

adbc_statement_execute_query
(adbc_statement_set_sqgl_query),
12
adbc_statement_execute_query(), 17
adbc_statement_execute_schema
(adbc_statement_set_sql_query),
12
adbc_statement_get_option
(adbc_statement_init), 11
adbc_statement_get_option_bytes
(adbc_statement_init), 11
adbc_statement_get_option_double
(adbc_statement_init), 11
adbc_statement_get_option_int
(adbc_statement_init), 11
adbc_statement_get_parameter_schema
(adbc_statement_set_sql_query),
12
adbc_statement_init, 11
adbc_statement_init(), 5, 15
adbc_statement_init_default
(adbc_statement_init), 11
adbc_statement_join
(adbc_connection_join), 5
adbc_statement_join(), 17
adbc_statement_prepare
(adbc_statement_set_sql_query),
12
adbc_statement_release
(adbc_statement_init), 11
adbc_statement_set_options
(adbc_statement_init), 11
adbc_statement_set_sql_query, 12
adbc_statement_set_substrait_plan
(adbc_statement_set_sql_query),
12
adbc_xptr_is_valid (adbc_xptr_move), 14
adbc_xptr_move, 14

execute_adbc (read_adbc), 15

lifecycle helpers, 14
local_adbc (with_adbc), 16

nanoarrow_array, 13, 15
nanoarrow_array_stream, 4, 10, 13, 15, 16
nanoarrow_schema, /3
nanoarrow_schena, 4

read_adbc, 15

with_adbc, 16
write_adbc (read_adbc), 15

19

	adbc_connection_get_info
	adbc_connection_init
	adbc_connection_join
	adbc_database_init
	adbc_driver_load
	adbc_driver_log
	adbc_driver_monkey
	adbc_driver_void
	adbc_error_from_array_stream
	adbc_load_flags
	adbc_statement_init
	adbc_statement_set_sql_query
	adbc_xptr_move
	read_adbc
	with_adbc
	Index

