
Package ‘WGCNA’
January 30, 2026

Version 1.74

Date 2026-01-27

Title Weighted Correlation Network Analysis

Maintainer Peter Langfelder <Peter.Langfelder@gmail.com>

Depends R (>= 3.0), dynamicTreeCut (>= 1.62), fastcluster

Imports stats, grDevices, utils, matrixStats (>= 0.8.1), Hmisc,
impute, splines, foreach, doParallel, preprocessCore, survival,
parallel, Rcpp (>= 0.11.0)

Suggests infotheo, entropy, minet

LinkingTo Rcpp

ZipData no

License GPL (>= 2)

Description Functions necessary to perform Weighted Correlation Network Analysis on high-
dimensional data as originally described in Horvath and Zhang (2005) <doi:10.2202/1544-
6115.1128> and Langfelder and Horvath (2008) <doi:10.1186/1471-2105-9-559>. In-
cludes functions for rudimentary data cleaning, construction of correlation networks, mod-
ule identification, summarization, and relating of variables and modules to sample traits. Also in-
cludes a number of utility functions for data manipulation and visualization.

NeedsCompilation yes

Author Peter Langfelder [aut, cre],
Steve Horvath [aut],
Chaochao Cai [aut],
Jun Dong [aut],
Jeremy Miller [aut],
Lin Song [aut],
Andy Yip [aut],
Bin Zhang [aut]

Repository CRAN

Date/Publication 2026-01-30 06:10:44 UTC

1

https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1186/1471-2105-9-559

2 Contents

Contents
accuracyMeasures . 7
addErrorBars . 9
addGrid . 10
addGuideLines . 11
addTraitToMEs . 12
adjacency . 13
adjacency.polyReg . 15
adjacency.splineReg . 16
AFcorMI . 18
alignExpr . 19
allocateJobs . 20
allowWGCNAThreads . 21
automaticNetworkScreening . 22
automaticNetworkScreeningGS . 23
BD.getData . 25
bicor . 26
bicorAndPvalue . 29
bicovWeights . 30
binarizeCategoricalColumns . 32
binarizeCategoricalVariable . 35
blockSize . 38
blockwiseConsensusModules . 39
blockwiseIndividualTOMs . 50
blockwiseModules . 55
BloodLists . 63
blueWhiteRed . 64
BrainLists . 65
BrainRegionMarkers . 66
branchEigengeneDissim . 67
branchSplit . 69
branchSplit.dissim . 70
branchSplitFromStabilityLabels . 71
checkAdjMat . 73
checkSets . 74
chooseOneHubInEachModule . 75
chooseTopHubInEachModule . 76
clusterCoef . 77
coClustering . 78
coClustering.permutationTest . 79
collapseRows . 81
collapseRowsUsingKME . 86
collectGarbage . 87
colQuantileC . 88
conformityBasedNetworkConcepts . 89
conformityDecomposition . 91
consensusCalculation . 93

Contents 3

consensusDissTOMandTree . 96
consensusKME . 98
consensusMEDissimilarity . 103
consensusOrderMEs . 104
consensusProjectiveKMeans . 105
consensusRepresentatives . 107
consensusTOM . 111
consensusTreeInputs . 118
convertNumericColumnsToNumeric . 119
cor . 120
corAndPvalue . 123
corPredictionSuccess . 124
corPvalueFisher . 125
corPvalueStudent . 126
correlationPreservation . 126
coxRegressionResiduals . 127
cutreeStatic . 129
cutreeStaticColor . 130
displayColors . 131
dynamicMergeCut . 132
empiricalBayesLM . 133
exportNetworkToCytoscape . 138
exportNetworkToVisANT . 139
factorizeNonNumericColumns . 140
fixDataStructure . 141
formatLabels . 142
fundamentalNetworkConcepts . 144
GOenrichmentAnalysis . 145
goodGenes . 146
goodGenesMS . 147
goodSamples . 149
goodSamplesGenes . 151
goodSamplesGenesMS . 152
goodSamplesMS . 154
greenBlackRed . 155
greenWhiteRed . 156
GTOMdist . 157
hierarchicalConsensusCalculation . 158
hierarchicalConsensusKME . 161
hierarchicalConsensusMEDissimilarity . 169
hierarchicalConsensusModules . 170
hierarchicalConsensusTOM . 178
hierarchicalMergeCloseModules . 182
hubGeneSignificance . 185
ImmunePathwayLists . 186
imputeByModule . 186
individualTOMs . 187
Inline display of progress . 190

4 Contents

intramodularConnectivity . 192
isMultiData . 193
keepCommonProbes . 194
kMEcomparisonScatterplot . 195
labeledBarplot . 197
labeledHeatmap . 198
labeledHeatmap.multiPage . 204
labelPoints . 206
labels2colors . 208
list2multiData . 209
lowerTri2matrix . 210
matchLabels . 211
matrixToNetwork . 212
mergeCloseModules . 214
metaAnalysis . 217
metaZfunction . 222
minWhichMin . 223
modifiedBisquareWeights . 224
moduleColor.getMEprefix . 226
moduleEigengenes . 227
moduleMergeUsingKME . 230
moduleNumber . 232
modulePreservation . 233
mtd.apply . 238
mtd.mapply . 241
mtd.rbindSelf . 243
mtd.setAttr . 244
mtd.setColnames . 244
mtd.simplify . 245
mtd.subset . 246
multiData . 248
multiData.eigengeneSignificance . 249
multiGSub . 250
multiSetMEs . 252
multiUnion . 255
mutualInfoAdjacency . 256
nearestCentroidPredictor . 259
nearestNeighborConnectivity . 263
nearestNeighborConnectivityMS . 264
networkConcepts . 265
networkScreening . 269
networkScreeningGS . 270
newBlockInformation . 271
newBlockwiseData . 272
newConsensusOptions . 274
newConsensusTree . 275
newCorrelationOptions . 276
newNetworkOptions . 278

Contents 5

normalizeLabels . 279
nPresent . 280
nSets . 281
numbers2colors . 281
orderBranchesUsingHubGenes . 283
orderMEs . 285
orderMEsByHierarchicalConsensus . 287
overlapTable . 288
overlapTableUsingKME . 289
pickHardThreshold . 291
pickSoftThreshold . 293
plotClusterTreeSamples . 295
plotColorUnderTree . 297
plotCor . 300
plotDendroAndColors . 301
plotEigengeneNetworks . 303
plotMat . 306
plotMEpairs . 307
plotModuleSignificance . 308
plotMultiHist . 309
plotNetworkHeatmap . 310
populationMeansInAdmixture . 312
pquantile . 314
prepComma . 316
prependZeros . 317
preservationNetworkConnectivity . 318
projectiveKMeans . 320
proportionsInAdmixture . 322
propVarExplained . 324
pruneAndMergeConsensusModules . 325
pruneConsensusModules . 328
PWLists . 330
qvalue . 330
qvalue.restricted . 332
randIndex . 333
rankPvalue . 333
recutBlockwiseTrees . 336
recutConsensusTrees . 340
redWhiteGreen . 344
relativeCorPredictionSuccess . 345
removeGreyME . 346
removePrincipalComponents . 346
replaceMissing . 347
returnGeneSetsAsList . 348
rgcolors.func . 350
sampledBlockwiseModules . 351
sampledHierarchicalConsensusModules . 353
scaleFreeFitIndex . 356

6 Contents

scaleFreePlot . 356
SCsLists . 358
selectFewestConsensusMissing . 358
setCorrelationPreservation . 360
shortenStrings . 361
sigmoidAdjacencyFunction . 362
signedKME . 363
signifNumeric . 364
signumAdjacencyFunction . 365
simpleConsensusCalculation . 366
simpleHierarchicalConsensusCalculation . 367
simulateDatExpr . 368
simulateDatExpr5Modules . 371
simulateEigengeneNetwork . 373
simulateModule . 374
simulateMultiExpr . 375
simulateSmallLayer . 378
sizeGrWindow . 380
sizeRestrictedClusterMerge . 380
softConnectivity . 382
spaste . 383
standardColors . 384
standardScreeningBinaryTrait . 385
standardScreeningCensoredTime . 387
standardScreeningNumericTrait . 390
stdErr . 391
stratifiedBarplot . 391
subsetTOM . 393
swapTwoBranches . 395
TOMplot . 397
TOMsimilarity . 398
TOMsimilarityFromExpr . 400
transposeBigData . 403
TrueTrait . 404
unsignedAdjacency . 407
userListEnrichment . 409
vectorizeMatrix . 416
vectorTOM . 416
verboseBarplot . 418
verboseBoxplot . 420
verboseIplot . 422
verboseScatterplot . 423
votingLinearPredictor . 425

Index 429

accuracyMeasures 7

accuracyMeasures Accuracy measures for a 2x2 confusion matrix or for vectors of pre-
dicted and observed values.

Description

The function calculates various prediction accuracy statistics for predictions of binary or quantita-
tive (continuous) responses. For binary classification, the function calculates the error rate, accu-
racy, sensitivity, specificity, positive predictive value, and other accuracy measures. For quantitative
prediction, the function calculates correlation, R-squared, error measures, and the C-index.

Usage

accuracyMeasures(
predicted,
observed = NULL,
type = c("auto", "binary", "quantitative"),
levels = if (isTRUE(all.equal(dim(predicted), c(2,2)))) colnames(predicted)

else if (is.factor(predicted))
sort(unique(c(as.character(predicted), as.character(observed))))

else sort(unique(c(observed, predicted))),
negativeLevel = levels[2],
positiveLevel = levels[1])

Arguments

predicted either a a 2x2 confusion matrix (table) whose entries contain non-negative inte-
gers, or a vector of predicted values. Predicted values can be binary or quanti-
tative (see type below). If a 2x2 matrix is given, it must have valid column and
row names that specify the levels of the predicted and observed variables whose
counts the matrix is giving (e.g., the function table sets the names appropri-
ately.) If it is a 2x2 table and the table contains non-negative real (non-integer)
numbers the function outputs a warning.

observed if predicted is a vector of predicted values, this (observed) must be a vector
of the same length giving the "gold standard" (or observed) values. Ignored if
predicted is a 2x2 table.

type character string specifying the type of the prediction problem (i.e., values in the
predicted and observed vectors). The default "auto" decides type automat-
ically: if predicted is a 2x2 table or if the number of unique values in the
concatenation of predicted and observed is 2, the prediction problem (type)
is assumed to be binary, otherwise it is assumed to be quantitative. Inconsis-
tent specification (for example, when predicted is a 2x2 matrix and type is
"quantitative") trigger errors.

levels a 2-element vector specifying the two levels of binary variables. Only used if
type is "binary" (or "auto" that results in the binary type). Defaults to either
the column names of the confusion matrix (if the matrix is specified) or to the
sorted unique values of observed and opredicted.

8 accuracyMeasures

negativeLevel the binary value (level) that corresponds to the negative outcome. Note that
the default is the second of the sorted levels (for example, if levels are 1,2, the
default negative level is 2). Only used if type is "binary" (or "auto" that
results in the binary type).

positiveLevel the binary value (level) that corresponds to the positive outcome. Note that the
default is the second of the sorted levels (for example, if levels are 1,2, the
default negative level is 2). Only used if type is "binary" (or "auto" that
results in the binary type).

Details

The rows of the 2x2 table tab must correspond to a test (or predicted) outcome and the columns to
a true outcome ("gold standard"). A table that relates a predicted outcome to a true test outcome
is also known as confusion matrix. Warning: To correctly calculate sensitivity and specificity, the
positive and negative outcome must be properly specified so they can be matched to the appropriate
rows and columns in the confusion table.

Interchanging the negative and positive levels swaps the estimates of the sensitivity and specificity
but has no effect on the error rate or accuracy. Specifically, denote by pos the index of the positive
level in the confusion table, and by neg th eindex of the negative level in the confusion table. The
function then defines number of true positives=TP=tab[pos, pos], no.false positives =FP=tab[pos,
neg], no.false negatives=FN=tab[neg, pos], no.true negatives=TN=tab[neg, neg]. Then Specificity=
TN/(FP+TN) Sensitivity= TP/(TP+FN) NegativePredictiveValue= TN/(FN + TN) PositivePredic-
tiveValue= TP/(TP + FP) FalsePositiveRate = 1-Specificity FalseNegativeRate = 1-Sensitivity Power
= Sensitivity LikelihoodRatioPositive = Sensitivity / (1-Specificity) LikelihoodRatioNegative = (1-
Sensitivity)/Specificity. The naive error rate is the error rate of a constant (naive) predictor that
assigns the same outcome to all samples. The prediction of the naive predictor equals the most
frequenly observed outcome. Example: Assume you want to predict disease status and 70 percent
of the observed samples have the disease. Then the naive predictor has an error rate of 30 percent
(since it only misclassifies 30 percent of the healthy individuals).

Value

Data frame with two columns:

Measure this column contais character strings that specify name of the accuracy measure.

Value this column contains the numeric estimates of the corresponding accuracy mea-
sures.

Author(s)

Steve Horvath and Peter Langfelder

References

http://en.wikipedia.org/wiki/Sensitivity_and_specificity

addErrorBars 9

Examples

m=100
trueOutcome=sample(c(1,2),m,replace=TRUE)
predictedOutcome=trueOutcome
now we noise half of the entries of the predicted outcome
predictedOutcome[1:(m/2)] =sample(predictedOutcome[1:(m/2)])
tab=table(predictedOutcome, trueOutcome)
accuracyMeasures(tab)

Same result:
accuracyMeasures(predictedOutcome, trueOutcome)

addErrorBars Add error bars to a barplot.

Description

This function adds error bars to an existing barplot.

Usage

addErrorBars(means, errors, two.side = FALSE)

Arguments

means vector of means plotted in the barplot

errors vector of standard errors (signle positive values) to be plotted.

two.side should the error bars be two-sided?

Value

None.

Author(s)

Steve Horvath and Peter Langfelder

10 addGrid

addGrid Add grid lines to an existing plot.

Description

This function adds horizontal and/or vertical grid lines to an existing plot. The grid lines are aligned
with tick marks.

Usage

addGrid(
linesPerTick = NULL,
linesPerTick.horiz = linesPerTick,
linesPerTick.vert = linesPerTick,
horiz = TRUE,
vert = FALSE,
col = "grey30",
lty = 3)

Arguments

linesPerTick Number of lines between successive tick marks (including the line on the tick-
marks themselves).

linesPerTick.horiz

Number of horizontal lines between successive tick marks (including the line on
the tickmarks themselves).

linesPerTick.vert

Number of vertical lines between successive tick marks (including the line on
the tickmarks themselves).

horiz Draw horizontal grid lines?

vert Draw vertical tick lines?

col Specifies color of the grid lines

lty Specifies line type of grid lines. See par.

Details

If linesPerTick is not specified, it is set to 5 if number of tick s is 5 or less, and it is set to 2 if
number of ticks is greater than 5.

Note

The function does not work whenever logarithmic scales are in use.

Author(s)

Peter Langfelder

addGuideLines 11

Examples

plot(c(1:10), c(1:10))
addGrid();

addGuideLines Add vertical “guide lines” to a dendrogram plot

Description

Adds vertical “guide lines” to a dendrogram plot.

Usage

addGuideLines(dendro,
all = FALSE,
count = 50,
positions = NULL,
col = "grey30",
lty = 3,
hang = 0)

Arguments

dendro The dendrogram (see hclust) to which the guide lines are to be added.

all Add a guide line to every object on the dendrogram? Useful if the number of
objects is relatively low.

count Number of guide lines to be plotted. The lines will be equidistantly spaced.

positions Horizontal positions of the added guide lines. If given, overrides count.

col Color of the guide lines

lty Line type of the guide lines. See par.

hang Fraction of the figure height that will separate top ends of guide lines and the
merge heights of the corresponding objects.

Author(s)

Peter Langfelder

12 addTraitToMEs

addTraitToMEs Add trait information to multi-set module eigengene structure

Description

Adds trait information to multi-set module eigengene structure.

Usage

addTraitToMEs(multiME, multiTraits)

Arguments

multiME Module eigengenes in multi-set format. A vector of lists, one list per set. Each
list must contain an element named data that is a data frame with module eigen-
genes.

multiTraits Microarray sample trait(s) in multi-set format. A vector of lists, one list per set.
Each list must contain an element named data that is a data frame in which each
column corresponds to a trait, and each row to an individual sample.

Details

The function simply cbind’s the module eigengenes and traits for each set. The number of sets and
numbers of samples in each set must be consistent between multiMEs and multiTraits.

Value

A multi-set structure analogous to the input: a vector of lists, one list per set. Each list will contain
a component data with the merged eigengenes and traits for the corresponding set.

Author(s)

Peter Langfelder

See Also

checkSets, moduleEigengenes

adjacency 13

adjacency Calculate network adjacency

Description

Calculates (correlation or distance) network adjacency from given expression data or from a simi-
larity.

Usage

adjacency(datExpr,
selectCols = NULL,
type = "unsigned",
power = if (type=="distance") 1 else 6,
corFnc = "cor", corOptions = list(use = "p"),
weights = NULL,
distFnc = "dist", distOptions = "method = 'euclidean'",
weightArgNames = c("weights.x", "weights.y"))

adjacency.fromSimilarity(similarity,
type = "unsigned",
power = if (type=="distance") 1 else 6)

Arguments

datExpr data frame containing expression data. Columns correspond to genes and rows
to samples.

similarity a (signed) similarity matrix: square, symmetric matrix with entries between -1
and 1.

selectCols for correlation networks only (see below); can be used to select genes whose
adjacencies will be calculated. Should be either a numeric vector giving the
indices of the genes to be used, or a boolean vector indicating which genes are
to be used.

type network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid", "distance".

power soft thresholding power.

corFnc character string specifying the function to be used to calculate co-expression
similarity for correlation networks. Defaults to Pearson correlation. Any func-
tion returning values between -1 and 1 can be used.

corOptions character string or a list specifying additional arguments to be passed to the
function given by corFnc. Use "use = 'p', method = 'spearman'" or, equiv-
alently, list(use = 'p', method = 'spearman') to obtain Spearman correla-
tion.

14 adjacency

weights optional observation weights for datExpr to be used in correlation calculation.
A matrix of the same dimensions as datExpr, containing non-negative weights.
Only used with Pearson correlation.

distFnc character string specifying the function to be used to calculate co-expression
similarity for distance networks. Defaults to the function dist. Any function
returning non-negative values can be used.

distOptions character string or a list specifying additional arguments to be passed to the
function given by distFnc. For example, when the function dist is used, the
argument method can be used to specify various ways of computing the distance.

weightArgNames character vector of length 2 giving the names of the arguments to corFnc that
represent weights for variable x and y. Only used if weights are non-NULL.

Details

The argument type determines whether a correlation (type one of "unsigned", "signed", "signed
hybrid"), or a distance network (type equal "distance") will be calculated. In correlation net-
works the adajcency is constructed from correlations (values between -1 and 1, with high numbers
meaning high similarity). In distance networks, the adjacency is constructed from distances (non-
negative values, high values mean low similarity).

The function calculates the similarity of columns (genes) in datExpr by calling the function given
in corFnc (for correlation networks) or distFnc (for distance networks), transforms the similar-
ity according to type and raises it to power, resulting in a weighted network adjacency matrix. If
selectCols is given, the corFnc function will be given arguments (datExpr, datExpr[selectCols],
...); hence the returned adjacency will have rows corresponding to all genes and columns corre-
sponding to genes selected by selectCols.

Correlation and distance are transformed as follows: for type = "unsigned", adjacency = |cor|^power;
for type = "signed", adjacency = (0.5 * (1+cor))^power; for type = "signed hybrid", adjacency
= cor^power if cor>0 and 0 otherwise; and for type = "distance", adjacency = (1-(dist/max(dist))^2)^power.

The function adjacency.fromSimilarity inputs a similarity matrix, that is it skips the correlation
calculation step but is otherwise identical.

Value

Adjacency matrix of dimensions ncol(datExpr) times ncol(datExpr) (or the same dimensions
as similarity). If selectCols was given, the number of columns will be the length (if numeric)
or sum (if boolean) of selectCols.

Note

When calculated from the datExpr, the network is always calculated among the columns of datExpr
irrespective of whether a correlation or a distance network is requested.

Author(s)

Peter Langfelder and Steve Horvath

adjacency.polyReg 15

References

Bin Zhang and Steve Horvath (2005) A General Framework for Weighted Gene Co-Expression
Network Analysis, Statistical Applications in Genetics and Molecular Biology, Vol. 4 No. 1, Article
17

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

adjacency.polyReg Adjacency matrix based on polynomial regression

Description

adjacency.polyReg calculates a network adjacency matrix by fitting polynomial regression mod-
els to pairs of variables (i.e. pairs of columns from datExpr). Each polynomial fit results in a
model fitting index R.squared. Thus, the n columns of datExpr result in an n x n dimensional
matrix whose entries contain R.squared measures. This matrix is typically non-symmetric. To
arrive at a (symmetric) adjacency matrix, one can specify different symmetrization methods with
symmetrizationMethod.

Usage

adjacency.polyReg(datExpr, degree=3, symmetrizationMethod = "mean")

Arguments

datExpr data frame containing numeric variables. Example: Columns may correspond
to genes and rows to observations (samples).

degree the degree of the polynomial. Must be less than the number of unique points.
symmetrizationMethod

character string (eg "none", "min","max","mean") that specifies the method used
to symmetrize the pairwise model fitting index matrix (see details).

Details

A network adjacency matrix is a symmetric matrix whose entries lie between 0 and 1. It is a special
case of a similarity matrix. Each variable (column of datExpr) is regressed on every other vari-
able, with each model fitting index recorded in a square matrix. Note that the model fitting index
of regressing variable x and variable y is usually different from that of regressing y on x. From
the polynomial regression model glm(y ~ poly(x,degree)) one can calculate the model fitting index
R.squared(y,x). R.squared(y,x) is a number between 0 and 1. The closer it is to 1, the better the
polynomial describes the relationship between x and y and the more significant is the pairwise rela-
tionship between the 2 variables. One can also reverse the roles of x and y to arrive at a model fitting
index R.squared(x,y). If degree>1 then R.squared(x,y) is typically different from R.squared(y,x).
Assume a set of n variables x1,...,xn (corresponding to the columns of datExpr then one can de-
fine R.squared(xi,xj). The model fitting indices for the elements of an n x n dimensional ma-
trix (R.squared(ij)). symmetrizationMethod implements the following symmetrization methods:
A.min(ij)=min(R.squared(ij),R.squared(ji)), A.ave(ij)=(R.squared(ij)+R.squared(ji))/2, A.max(ij)=max(R.squared(ij),R.squared(ji)).

16 adjacency.splineReg

Value

An adjacency matrix of dimensions ncol(datExpr) times ncol(datExpr).

Author(s)

Lin Song, Steve Horvath

References

Song L, Langfelder P, Horvath S Avoiding mutual information based co-expression measures (to
appear).

Horvath S (2011) Weighted Network Analysis. Applications in Genomics and Systems Biology.
Springer Book. ISBN: 978-1-4419-8818-8

See Also

For more information about polynomial regression, please refer to functions poly and glm

Examples

#Simulate a data frame datE which contains 5 columns and 50 observations
m=50
x1=rnorm(m)
r=.5; x2=r*x1+sqrt(1-r^2)*rnorm(m)
r=.3; x3=r*(x1-.5)^2+sqrt(1-r^2)*rnorm(m)
x4=rnorm(m)
r=.3; x5=r*x4+sqrt(1-r^2)*rnorm(m)
datE=data.frame(x1,x2,x3,x4,x5)
#calculate adjacency by symmetrizing using max
A.max=adjacency.polyReg(datE, symmetrizationMethod="max")
A.max
#calculate adjacency by symmetrizing using max
A.mean=adjacency.polyReg(datE, symmetrizationMethod="mean")
A.mean
output the unsymmetrized pairwise model fitting indices R.squared
R.squared=adjacency.polyReg(datE, symmetrizationMethod="none")
R.squared

adjacency.splineReg Calculate network adjacency based on natural cubic spline regression

Description

adjacency.splineReg calculates a network adjacency matrix by fitting spline regression models to
pairs of variables (i.e. pairs of columns from datExpr). Each spline regression model results in
a fitting index R.squared. Thus, the n columns of datExpr result in an n x n dimensional ma-
trix whose entries contain R.squared measures. This matrix is typically non-symmetric. To ar-
rive at a (symmetric) adjacency matrix, one can specify different symmetrization methods with
symmetrizationMethod.

adjacency.splineReg 17

Usage

adjacency.splineReg(
datExpr,
df = 6-(nrow(datExpr)<100)-(nrow(datExpr)<30),
symmetrizationMethod = "mean",
...)

Arguments

datExpr data frame containing numeric variables. Example: Columns may correspond
to genes and rows to observations (samples).

df degrees of freedom in generating natural cubic spline. The default is as follows:
if nrow(datExpr)>100 use 6, if nrow(datExpr)>30 use 4, otherwise use 5.

symmetrizationMethod

character string (eg "none", "min","max","mean") that specifies the method used
to symmetrize the pairwise model fitting index matrix (see details).

... other arguments from function ns

Details

A network adjacency matrix is a symmetric matrix whose entries lie between 0 and 1. It is a spe-
cial case of a similarity matrix. Each variable (column of datExpr) is regressed on every other
variable, with each model fitting index recorded in a square matrix. Note that the model fitting
index of regressing variable x and variable y is usually different from that of regressing y on x.
From the spline regression model glm(y ~ ns(x, df)) one can calculate the model fitting index
R.squared(y,x). R.squared(y,x) is a number between 0 and 1. The closer it is to 1, the better the
spline regression model describes the relationship between x and y and the more significant is the
pairwise relationship between the 2 variables. One can also reverse the roles of x and y to arrive
at a model fitting index R.squared(x,y). R.squared(x,y) is typically different from R.squared(y,x).
Assume a set of n variables x1,...,xn (corresponding to the columns of datExpr) then one can
define R.squared(xi,xj). The model fitting indices for the elements of an n x n dimensional ma-
trix (R.squared(ij)). symmetrizationMethod implements the following symmetrization methods:
A.min(ij)=min(R.squared(ij),R.squared(ji)), A.ave(ij)=(R.squared(ij)+R.squared(ji))/2, A.max(ij)=max(R.squared(ij),R.squared(ji)).
For more information about natural cubic spline regression, please refer to functions "ns" and "glm".

Value

An adjacency matrix of dimensions ncol(datExpr) times ncol(datExpr).

Author(s)

Lin Song, Steve Horvath

References

Song L, Langfelder P, Horvath S Avoiding mutual information based co-expression measures (to
appear).

Horvath S (2011) Weighted Network Analysis. Applications in Genomics and Systems Biology.
Springer Book. ISBN: 978-1-4419-8818-8

18 AFcorMI

See Also

ns, glm

Examples

#Simulate a data frame datE which contains 5 columns and 50 observations
m=50
x1=rnorm(m)
r=.5; x2=r*x1+sqrt(1-r^2)*rnorm(m)
r=.3; x3=r*(x1-.5)^2+sqrt(1-r^2)*rnorm(m)
x4=rnorm(m)
r=.3; x5=r*x4+sqrt(1-r^2)*rnorm(m)
datE=data.frame(x1,x2,x3,x4,x5)
#calculate adjacency by symmetrizing using max
A.max=adjacency.splineReg(datE, symmetrizationMethod="max")
A.max
#calculate adjacency by symmetrizing using max
A.mean=adjacency.splineReg(datE, symmetrizationMethod="mean")
A.mean
output the unsymmetrized pairwise model fitting indices R.squared
R.squared=adjacency.splineReg(datE, symmetrizationMethod="none")
R.squared

AFcorMI Prediction of Weighted Mutual Information Adjacency Matrix by Cor-
relation

Description

AFcorMI computes a predicted weighted mutual information adjacency matrix from a given corre-
lation matrix.

Usage

AFcorMI(r, m)

Arguments

r a symmetric correlation matrix with values from -1 to 1.

m number of observations from which the correlation was calcuated.

Details

This function is a one-to-one prediction when we consider correlation as unsigned. The predic-
tion corresponds to the AdjacencyUniversalVersion2 discussed in the help file for the function
mutualInfoAdjacency. For more information about the generation and features of the predicted
mutual information adjacency, please refer to the function mutualInfoAdjacency.

alignExpr 19

Value

A matrix with the same size as the input correlation matrix, containing the predicted mutual infor-
mation of type AdjacencyUniversalVersion2.

Author(s)

Steve Horvath, Lin Song, Peter Langfelder

See Also

mutualInfoAdjacency

Examples

#Simulate a data frame datE which contains 5 columns and 50 observations
m=50
x1=rnorm(m)
r=.5; x2=r*x1+sqrt(1-r^2)*rnorm(m)
r=.3; x3=r*(x1-.5)^2+sqrt(1-r^2)*rnorm(m)
x4=rnorm(m)
r=.3; x5=r*x4+sqrt(1-r^2)*rnorm(m)
datE=data.frame(x1,x2,x3,x4,x5)
#calculate predicted AUV2
cor.data=cor(datE, use="p")
AUV2=AFcorMI(r=cor.data, m=nrow(datE))

alignExpr Align expression data with given vector

Description

Multiplies genes (columns) in given expression data such that their correlation with given reference
vector is non-negative.

Usage

alignExpr(datExpr, y = NULL)

Arguments

datExpr expression data to be aligned. A data frame with columns corresponding to
genes and rows to samples.

y reference vector of length equal the number of samples (rows) in datExpr

Details

The function basically multiplies each column in datExpr by the sign of its correlation with y. If y
is not given, the first column in datExpr will be used as the reference vector.

20 allocateJobs

Value

A data frame containing the aligned expression data, of the same dimensions as the input data frame.

Author(s)

Steve Horvath and Peter Langfelder

allocateJobs Divide tasks among workers

Description

This function calculates an even splitting of a given number of tasks among a given number of
workers (threads).

Usage

allocateJobs(nTasks, nWorkers)

Arguments

nTasks number of tasks to be divided

nWorkers number of workers

Details

Tasks are labeled consecutively 1,2,..., nTasks. The tasks are split in contiguous blocks as evenly
as possible.

Value

A list with one component per worker giving the task indices to be worked on by each worker. If
there are more workers than tasks, the tasks for the extra workers are 0-length numeric vectors.

Author(s)

Peter Langfelder

Examples

allocateJobs(10, 3);
allocateJobs(2,4);

allowWGCNAThreads 21

allowWGCNAThreads Allow and disable multi-threading for certain WGCNA calculations

Description

These functions allow and disable multi-threading for WGCNA calculations that can optionally be
multi-threaded, which includes all functions using cor or bicor functions.

Usage

allowWGCNAThreads(nThreads = NULL)

enableWGCNAThreads(nThreads = NULL)

disableWGCNAThreads()

WGCNAnThreads()

Arguments

nThreads Number of threads to allow. If not given, the number of processors online (as
reported by system configuration) will be used. There appear to be some cases
where the automatically-determined number is wrong; please check the output
to see that the number of threads makes sense. Except for testing and/or torturing
your system, the number of threads should be no more than the number of actual
processors/cores.

Details

allowWGCNAThreads enables parallel calculation within the compiled code in WGCNA, principally
for calculation of correlations in the presence of missing data. This function is now deprecated; use
enableWGCNAThreads instead.

enableWGCNAThreads enables parallel calculations within user-level R functions as well as within
the compiled code, and registers an appropriate parallel calculation back-end for the operating sys-
tem/platform.

disableWGCNAThreads disables parallel processing.

WGCNAnThreads returns the number of threads (parallel processes) that WGCNA is currently con-
figured to run with.

Value

allowWGCNAThreads, enableWGCNAThreads, and disableWGCNAThreads return the maximum num-
ber of threads WGCNA calculations will be allowed to use.

22 automaticNetworkScreening

Note

Multi-threading within compiled code is not available on Windows; R code parallelization works
on all platforms.

Author(s)

Peter Langfelder

automaticNetworkScreening

One-step automatic network gene screening

Description

This function performs gene screening based on a given trait and gene network properties

Usage

automaticNetworkScreening(
datExpr,
y,
power = 6,
networkType = "unsigned",
detectCutHeight = 0.995,
minModuleSize = min(20, ncol(as.matrix(datExpr))/2),
datME = NULL,
getQValues = TRUE,
...)

Arguments

datExpr data frame containing the expression data, columns corresponding to genes and
rows to samples

y vector containing trait values for all samples in datExpr

power soft thresholding power used in network construction

networkType character string specifying network type. Allowed values are (unique abbrevia-
tions of) "unsigned", "signed", "hybrid".

detectCutHeight

cut height of the gene hierarchical clustering dendrogram. See cutreeDynamic
for details.

minModuleSize minimum module size to be used in module detection procedure.

datME optional specification of module eigengenes. A data frame whose columns are
the module eigengenes. If given, module analysis will not be performed.

getQValues logical: should q-values (local FDR) be calculated?

... other arguments to the module identification function blockwiseModules

automaticNetworkScreeningGS 23

Details

Network screening is a method for identifying genes that have a high gene significance and are
members of important modules at the same time. If datME is given, the function calls networkScreening
with the default parameters. If datME is not given, module eigengenes are first calculated using net-
work analysis based on supplied parameters.

Value

A list with the following components:

networkScreening

a data frame containing results of the network screening procedure. See networkScreening
for more details.

datME calculated module eigengenes (or a copy of the input datME, if given).

hubGeneSignificance

hub gene significance for all calculated modules. See hubGeneSignificance.

Author(s)

Steve Horvath

See Also

networkScreening, hubGeneSignificance, networkScreening, cutreeDynamic

automaticNetworkScreeningGS

One-step automatic network gene screening with external gene signif-
icance

Description

This function performs gene screening based on external gene significance and their network prop-
erties.

Usage

automaticNetworkScreeningGS(
datExpr, GS,
power = 6, networkType = "unsigned",

detectCutHeight = 0.995, minModuleSize = min(20, ncol(as.matrix(datExpr))/2),
datME = NULL)

24 automaticNetworkScreeningGS

Arguments

datExpr data frame containing the expression data, columns corresponding to genes and
rows to samples

GS vector containing gene significance for all genes given in datExpr

power soft thresholding power used in network construction

networkType character string specifying network type. Allowed values are (unique abbrevia-
tions of) "unsigned", "signed", "hybrid".

detectCutHeight

cut height of the gene hierarchical clustering dendrogram. See cutreeDynamic
for details.

minModuleSize minimum module size to be used in module detection procedure.

datME optional specification of module eigengenes. A data frame whose columns are
the module eigengenes. If given, module analysis will not be performed.

Details

Network screening is a method for identifying genes that have a high gene significance and are
members of important modules at the same time. If datME is given, the function calls networkScreeningGS
with the default parameters. If datME is not given, module eigengenes are first calculated using net-
work analysis based on supplied parameters.

Value

A list with the following components:

networkScreening

a data frame containing results of the network screening procedure. See networkScreeningGS
for more details.

datME calculated module eigengenes (or a copy of the input datME, if given).

hubGeneSignificance

hub gene significance for all calculated modules. See hubGeneSignificance.

Author(s)

Steve Horvath

See Also

networkScreening, hubGeneSignificance, networkScreening, cutreeDynamic

BD.getData 25

BD.getData Various basic operations on BlockwiseData objects.

Description

These functions implement basic operations on BlockwiseData objects. Blockwise here means
that the data is too large to be loaded or processed in one piece and is therefore split into blocks that
can be handled one by one in a divide-and-conquer manner.

Usage

BD.actualFileNames(bwData)
BD.nBlocks(bwData)
BD.blockLengths(bwData)
BD.getMetaData(bwData, blocks = NULL, simplify = TRUE)
BD.getData(bwData, blocks = NULL, simplify = TRUE)
BD.checkAndDeleteFiles(bwData)

Arguments

bwData A BlockwiseData object.

blocks Optional vector of integers specifying the blocks on which to execute the oper-
ation.

simplify Logical: if the blocks argument above is of length 1, should the returned list be
simplified by removing the redundant outer list structure?

Details

Several functions in this package use the concept of blockwise, or "divide-and-conquer", analysis.
The BlockwiseData class is meant to hold the blockwise data, or all necessary information about
blockwise data that is saved in disk files.

Value
BD.actualFileNames

returns a vector of character strings giving the file names in which the files are
saved, or NULL if the data are held in-memory.

BD.nBlocks returns the number of blocks in the input object.
BD.blockLengths

returns the block lengths (results of applying length to the data in each block).

BD.getMetaData returns a list with one component per block. Each component is in turn a list
containing the stored meta-data for the corresponding block. If blocks is of
length 1 and simplify is TRUE, the outer (redundant) list is removed.

BD.getData returns a list with one component per block. Each component is in turn a list
containing the stored data for the corresponding block. If blocks is of length 1
and simplify is TRUE, the outer (redundant) list is removed.

26 bicor

BD.checkAndDeleteFiles

deletes the files referenced in the input bwData if they exist.

Warning

The definition of BlockwiseData and the functions here should be considered experimental and
may change in the future.

Author(s)

Peter Langfelder

See Also

Definition of and other functions on BlockwiseData:

newBlockwiseData for creating new BlockwiseData objects;

mergeBlockwiseData for merging blockwise data structure;

addBlockToBlockwiseData for adding a new block to existing blockwise data;

bicor Biweight Midcorrelation

Description

Calculate biweight midcorrelation efficiently for matrices.

Usage

bicor(x, y = NULL,
robustX = TRUE, robustY = TRUE,
use = "all.obs",
maxPOutliers = 1,
quick = 0,
pearsonFallback = "individual",
cosine = FALSE,
cosineX = cosine,
cosineY = cosine,
nThreads = 0,
verbose = 0, indent = 0)

Arguments

x a vector or matrix-like numeric object

y a vector or matrix-like numeric object

robustX use robust calculation for x?

robustY use robust calculation for y?

bicor 27

use specifies handling of NAs. One of (unique abbreviations of) "all.obs", "pair-
wise.complete.obs".

maxPOutliers specifies the maximum percentile of data that can be considered outliers on
either side of the median separately. For each side of the median, if higher
percentile than maxPOutliers is considered an outlier by the weight function
based on 9*mad(x), the width of the weight function is increased such that the
percentile of outliers on that side of the median equals maxPOutliers. Using
maxPOutliers=1 will effectively disable all weight function broadening; using
maxPOutliers=0 will give results that are quite similar (but not equal to) Pear-
son correlation.

quick real number between 0 and 1 that controls the handling of missing data in the
calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation should revert to Pearson when median
absolute deviation (mad) is zero. Recongnized values are (abbreviations of)
"none", "individual", "all". If set to "none", zero mad will result in NA for
the corresponding correlation. If set to "individual", Pearson calculation will
be used only for columns that have zero mad. If set to "all", the presence of a
single zero mad will cause the whole variable to be treated in Pearson correlation
manner (as if the corresponding robust option was set to FALSE).

cosine logical: calculate cosine biweight midcorrelation? Cosine bicorrelation is simi-
lar to standard bicorrelation but the median subtraction is not performed.

cosineX logical: use the cosine calculation for x? This setting does not affect y and can
be used to give a hybrid cosine-standard bicorrelation.

cosineY logical: use the cosine calculation for y? This setting does not affect x and can
be used to give a hybrid cosine-standard bicorrelation.

nThreads non-negative integer specifying the number of parallel threads to be used by cer-
tain parts of correlation calculations. This option only has an effect on systems
on which a POSIX thread library is available (which currently includes Linux
and Mac OSX, but excludes Windows). If zero, the number of online processors
will be used if it can be determined dynamically, otherwise correlation calcula-
tions will use 2 threads. Note that this option does not affect what is usually the
most expensive part of the calculation, namely the matrix multiplication. The
matrix multiplication is carried out by BLAS routines provided by R; these can
be sped up by installing a fast BLAS and making R use it.

verbose if non-zero, the underlying C function will print some diagnostics.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

This function implements biweight midcorrelation calculation (see references). If y is not supplied,
midcorrelation of columns of x will be calculated; otherwise, the midcorrelation between columns
of x and y will be calculated. Thus, bicor(x) is equivalent to bicor(x,x) but is more efficient.

The options robustX, robustY allow the user to revert the calculation to standard correlation calcu-
lation. This is important, for example, if any of the variables is binary (or, more generally, discrete)

28 bicor

as in such cases the robust methods produce meaningless results. If both robustX, robustY are set
to FALSE, the function calculates the standard Pearson correlation (but is slower than the function
cor).

The argument quick specifies the precision of handling of missing data in the correlation calcula-
tions. Value quick = 0 will cause all calculations to be executed accurately, which may be signifi-
cantly slower than calculations without missing data. Progressively higher values will speed up the
calculations but introduce progressively larger errors. Without missing data, all column meadians
and median absolute deviations (MADs) can be pre-calculated before the covariances are calcu-
lated. When missing data are present, exact calculations require the column medians and MADs
to be calculated for each covariance. The approximate calculation uses the pre-calculated median
and MAD and simply ignores missing data in the covariance calculation. If the number of missing
data is high, the pre-calculated medians and MADs may be very different from the actual ones,
thus potentially introducing large errors. The quick value times the number of rows specifies the
maximum difference in the number of missing entries for median and MAD calculations on the one
hand and covariance on the other hand that will be tolerated before a recalculation is triggered. The
hope is that if only a few missing data are treated approximately, the error introduced will be small
but the potential speedup can be significant.

The choice "all" for pearsonFallback is not fully implemented in the sense that there are rare
but possible cases in which the calculation is equivalent to "individual". This may happen if the
use option is set to "pairwise.complete.obs" and the missing data are arranged such that each
individual mad is non-zero, but when two columns are analyzed together, the missing data from
both columns may make a mad zero. In such a case, the calculation is treated as Pearson, but other
columns will be treated as bicor.

Value

A matrix of biweight midcorrelations. Dimnames on the result are set appropriately.

Author(s)

Peter Langfelder

References

Peter Langfelder, Steve Horvath (2012) Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. https://www.jstatsoft.org/v46/
i11/

"Introduction to Robust Estimation and Hypothesis Testing", Rand Wilcox, Academic Press, 1997.

"Data Analysis and Regression: A Second Course in Statistics", Mosteller and Tukey, Addison-
Wesley, 1977, pp. 203-209.

https://www.jstatsoft.org/v46/i11/
https://www.jstatsoft.org/v46/i11/

bicorAndPvalue 29

bicorAndPvalue Calculation of biweight midcorrelations and associated p-values

Description

A faster, one-step calculation of Student correlation p-values for multiple biweight midcorrelations,
properly taking into account the actual number of observations.

Usage

bicorAndPvalue(x, y = NULL,
use = "pairwise.complete.obs",
alternative = c("two.sided", "less", "greater"),
...)

Arguments

x a vector or a matrix

y a vector or a matrix. If NULL, the correlation of columns of x will be calculated.

use determines handling of missing data. See bicor for details.

alternative specifies the alternative hypothesis and must be (a unique abbreviation of) one of
"two.sided", "greater" or "less". the initial letter. "greater" corresponds
to positive association, "less" to negative association.

... other arguments to the function bicor.

Details

The function calculates the biweight midcorrelations of a matrix or of two matrices and the cor-
responding Student p-values. The output is not as full-featured as cor.test, but can work with
matrices as input.

Value

A list with the following components, each a marix:

bicor the calculated correlations

p the Student p-values corresponding to the calculated correlations

Z Fisher transform of the calculated correlations

t Student t statistics of the calculated correlations

nObs Numbers of observations for the correlation, p-values etc.

Author(s)

Peter Langfelder and Steve Horvath

30 bicovWeights

References

Peter Langfelder, Steve Horvath (2012) Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. https://www.jstatsoft.org/v46/
i11/

See Also

bicor for calculation of correlations only;

cor.test for another function for significance test of correlations

Examples

generate random data with non-zero correlation
set.seed(1);
a = rnorm(100);
b = rnorm(100) + a;
x = cbind(a, b);
Call the function and display all results
bicorAndPvalue(x)
Set some components to NA
x[c(1:4), 1] = NA
corAndPvalue(x)
Note that changed number of observations.

bicovWeights Weights used in biweight midcovariance

Description

Calculation of weights and the intermediate weight factors used in the calculation of biweight mid-
covariance and midcorrelation. The weights are designed such that outliers get smaller weights; the
weights become zero for data points more than 9 median absolute deviations from the median.

Usage

bicovWeights(
x,
pearsonFallback = TRUE,
maxPOutliers = 1,
outlierReferenceWeight = 0.5625,
defaultWeight = 0)

bicovWeightFactors(
x,
pearsonFallback = TRUE,
maxPOutliers = 1,
outlierReferenceWeight = 0.5625,

https://www.jstatsoft.org/v46/i11/
https://www.jstatsoft.org/v46/i11/

bicovWeights 31

defaultFactor = NA)

bicovWeightsFromFactors(
u,
defaultWeight = 0)

Arguments

x A vector or a two-dimensional array (matrix or data frame). If two-dimensional,
the weights will be calculated separately on each column.

u A vector or matrix of weight factors, usually calculated by bicovWeightFactors.
pearsonFallback

Logical: if the median absolute deviation is zero, should standard deviation be
substituted?

maxPOutliers Optional specification of the maximum proportion of outliers, i.e., data with
weights equal to outlierReferenceWeight below.

outlierReferenceWeight

A number between 0 and 1 specifying what is to be considered an outlier when
calculating the proportion of outliers.

defaultWeight Value used for weights that correspond to a finite x but the weights themselves
would not be finite, for example, when a column in x is constant.

defaultFactor Value used for factors that correspond to a finite x but the weights themselves
would not be finite, for example, when a column in x is constant.

Details

These functions are based on Equations (1) and (3) in Langfelder and Horvath (2012). The weight
factor is denoted u in that article.

Langfelder and Horvath (2012) also describe the Pearson fallback and maximum proportion of out-
liers in detail. For a full discussion of the biweight midcovariance and midcorrelation, see Wilcox
(2005).

Value

A vector or matrix of the same dimensions as the input x giving the bisquare weights (bicovWeights
and bicovWeightsFromFactors) or the bisquare factors (bicovWeightFactors).

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2012) Fast R Functions for Robust Correlations and Hierarchical Clus-
tering Journal of Statistical Software 46(11) 1-17 PMID: 23050260 PMCID: PMC3465711 Wilcox
RR (2005). Introduction to Robust Estimation and Hypothesis Testing. 2nd edition. Academic
Press, Section 9.3.8, page 399 as well as Section 3.12.1, page 83.

32 binarizeCategoricalColumns

See Also

bicor

Examples

x = rnorm(100);
x[1] = 10;
plot(x, bicovWeights(x));

binarizeCategoricalColumns

Turn categorical columns into sets of binary indicators

Description

Given a data frame with (some) categorical columns, this function creates a set of indicator variables
for the various possible sets of levels.

Usage

binarizeCategoricalColumns(
data,
convertColumns = NULL,
considerColumns = NULL,
maxOrdinalLevels = 3,
levelOrder = NULL,
minCount = 3,
val1 = 0, val2 = 1,
includePairwise = FALSE,
includeLevelVsAll = TRUE,
dropFirstLevelVsAll = TRUE,
dropUninformative = TRUE,
includePrefix = TRUE,
prefixSep = ".",
nameForAll = "all",
levelSep = NULL,
levelSep.pairwise = if (length(levelSep)==0) ".vs." else levelSep,
levelSep.vsAll = if (length(levelSep)==0)

(if (nameForAll=="") "" else ".vs.") else levelSep,
checkNames = FALSE,
includeLevelInformation = FALSE)

binarizeCategoricalColumns.pairwise(
data,
maxOrdinalLevels = 3,
convertColumns = NULL,
considerColumns = NULL,

binarizeCategoricalColumns 33

levelOrder = NULL,
val1 = 0, val2 = 1,
includePrefix = TRUE,
prefixSep = ".",
levelSep = ".vs.",
checkNames = FALSE)

binarizeCategoricalColumns.forRegression(
data,
maxOrdinalLevels = 3,
convertColumns = NULL,
considerColumns = NULL,
levelOrder = NULL,
val1 = 0, val2 = 1,
includePrefix = TRUE,
prefixSep = ".",
checkNames = TRUE)

binarizeCategoricalColumns.forPlots(
data,
maxOrdinalLevels = 3,
convertColumns = NULL,
considerColumns = NULL,
levelOrder = NULL,
val1 = 0, val2 = 1,
includePrefix = TRUE,
prefixSep = ".",
checkNames = TRUE)

Arguments

data A data frame.

convertColumns Optional character vector giving the column names of the columns to be con-
verted. See maxOrdinalLevels below.

considerColumns

Optional character vector giving the column names of columns that should be
looked at and possibly converted. If not given, all columns will be considered.
See maxOrdinalLevels below.

maxOrdinalLevels

When convertColumns above is NULL, the function looks at all columns in
considerColumns and converts all non-numeric columns and those numeric
columns that have at most maxOrdinalLevels unique values. A column is con-
sidered numeric if its storage mode is numeric or if it is character and all entries
with the expception of "NA", "NULL" and "NO DATA" represent valid num-
bers.

levelOrder Optional list giving the ordering of levels (unique values) in each of the con-
verted columns. Best used in conjunction with convertColumns.

minCount Levels of x for which there are fewer than minCount elements will be ignored.

34 binarizeCategoricalColumns

val1 Value for the lower level in binary comparisons.

val2 Value for the higher level in binary comparisons.
includePairwise

Logical: should pairwise binary indicators be included? For each pair of levels,
the indicator is val1 for the lower level (earlier in levelOrder), val2 for the
higher level and NA otherwise.

includeLevelVsAll

Logical: should binary indicators for each level be included? The indicator is
val2 where x equals the level and val1 otherwise.

dropFirstLevelVsAll

Logical: should the column representing first level vs. all be dropped? This
makes the resulting matrix of indicators usable for regression models.

dropUninformative

Logical: should uninformative (constant) columns be dropped?

includePrefix Logical: should the column name of the binarized column be included in column
names of the output? See details.

prefixSep Separator of column names and level names in column names of the output. See
details.

nameForAll Character string that represents "all others" in the column names of indicators
of level vs. all others.

levelSep Separator for levels to be used in column names of the output. If NULL, pairwise
and level vs. all indicators will use different level separators set by levelSep.pairwise
and levelSep.vsAll.

levelSep.pairwise

Separator for levels to be used in column names for pairwise indicators in the
output.

levelSep.vsAll Separator for levels to be used in column names for level vs. all indicators in the
output.

checkNames Logical: should the names of the output be made into syntactically correct R
language names?

includeLevelInformation

Logical: should information about which levels are represented by which columns
be included in the attributes of the output?

Details

binarizeCategoricalColumns is the most general function, the rest are convenience wrappers
that set some of the options to achieve the following:

binarizeCategoricalColumns.pairwise returns only pairwise (level vs. level) binary indicators.

binarizeCategoricalColumns.forRegression returns only level vs. all others binary indicators,
with the first (according to levelOrder) level vs. all removed. This is essentially the same as would
be returned by model.matrix except for the column representing intercept.

binarizeCategoricalColumns.forPlots returns only level vs. all others binary indicators and
keeps them all.

binarizeCategoricalVariable 35

The columns to be converted are identified as follows. If considerColumns is given, columns not
contained in it will not be converted, even if they are included in convertColumns.

If convertColumns is given, those columns will be converted (except any not contained in non-
empty considerColumns). If convertColumns is NULL, the function converts columns that are not
numeric (as reported by is.numeric) and those numeric columns that have at most maxOrdinalValues
unique non-missing values.

The function creates two types of indicators. The first is one level (unique value) of x vs. all
others, i.e., for a given level, the indicator is val2 (usually 1) for all elements of x that equal the
level, and val1 (usually 0) otherwise. Column names for these indicators are the concatenation of
namePrefix, the level, nameSep and nameForAll. The level vs. all indicators are created for all
levels that have at least minCounts samples, are present in levelOrder (if it is non-NULL) and are
not included in ignore.

The second type of indicator encodes binary comparisons. For each pair of levels (both with at
least minCount samples), the indicator is val2 (usually 1) for the higher level and val1 (usually
0) for the lower level. The level order is given by levelOrder (which defaults to the sorted levels
of x), assumed to be sorted in increasing order. All levels with at least minCount samples that are
included in levelOrder and not included in ignore are included.

Internally, the function calls binarizeCategoricalVariable for each column that is converted.

Value

A data frame in which the converted columns have been replaced by sets of binarized indicators.
When includeLevelInformation is TRUE, the attribute includedLevels is a table with one col-
umn per output column and two rows, giving the two levels (unique values of x) represented by the
column.

Author(s)

Peter Langfelder

Examples

set.seed(2);
x = data.frame(a = sample(c("A", "B", "C"), 15, replace = TRUE),

b = sample(c(1:3), 15, replace = TRUE));
out = binarizeCategoricalColumns(x, includePairwise = TRUE, includeLevelVsAll = TRUE,

includeLevelInformation = TRUE);
data.frame(x, out);
attr(out, "includedLevels")

binarizeCategoricalVariable

Turn a categorical variable into a set of binary indicators

36 binarizeCategoricalVariable

Description

Given a categorical variable, this function creates a set of indicator variables for the various possible
sets of levels.

Usage

binarizeCategoricalVariable(
x,
levelOrder = NULL,
ignore = NULL,
minCount = 3,
val1 = 0, val2 = 1,
includePairwise = TRUE,
includeLevelVsAll = FALSE,
dropFirstLevelVsAll = FALSE,
dropUninformative = TRUE,
namePrefix = "",
levelSep = NULL,
nameForAll = "all",
levelSep.pairwise = if (length(levelSep)==0) ".vs." else levelSep,
levelSep.vsAll = if (length(levelSep)==0)

(if (nameForAll=="") "" else ".vs.") else levelSep,
checkNames = FALSE,
includeLevelInformation = TRUE)

Arguments

x A vector with categorical values.

levelOrder Optional specification of the levels (unique values) of x. Defaults to sorted
unique values of x, but can be used to only include a subset of the existing
levels as well as to specify the order of the levels in the output variables.

ignore Optional specification of levels of x that are to be ignored. Note that the levels
are ignored only when deciding which variables to include in the output; the
samples with these values of x will be included in "all" in indicators of level vs.
all others.

minCount Levels of x for which there are fewer than minCount elements will be ignored.

val1 Value for the lower level in binary comparisons.

val2 Value for the higher level in binary comparisons.
includePairwise

Logical: should pairwise binary indicators be included? For each pair of levels,
the indicator is val1 for the lower level (earlier in levelOrder), val2 for the
higher level and NA otherwise.

includeLevelVsAll

Logical: should binary indicators for each level be included? The indicator is
val2 where x equals the level and val1 otherwise.

binarizeCategoricalVariable 37

dropFirstLevelVsAll

Logical: should the column representing first level vs. all be dropped? This
makes the resulting matrix of indicators usable for regression models.

dropUninformative

Logical: should uninformative (constant) columns be dropped?

namePrefix Prefix to be used in column names of the output.

nameForAll When naming columns that represent a level vs. all others, nameForAll will be
used to represent all others.

levelSep Separator for levels to be used in column names of the output. If NULL, pairwise
and level vs. all indicators will use different level separators set by levelSep.pairwise
and levelSep.vsAll.

levelSep.pairwise

Separator for levels to be used in column names for pairwise indicators in the
output.

levelSep.vsAll Separator for levels to be used in column names for level vs. all indicators in the
output.

checkNames Logical: should the names of the output be made into syntactically correct R
language names?

includeLevelInformation

Logical: should information about which levels are represented by which columns
be included in the attributes of the output?

Details

The function creates two types of indicators. The first is one level (unique value) of x vs. all
others, i.e., for a given level, the indicator is val2 (usually 1) for all elements of x that equal the
level, and val1 (usually 0) otherwise. Column names for these indicators are the concatenation of
namePrefix, the level, nameSep and nameForAll. The level vs. all indicators are created for all
levels that have at least minCounts samples, are present in levelOrder (if it is non-NULL) and are
not included in ignore.

The second type of indicator encodes binary comparisons. For each pair of levels (both with at
least minCount samples), the indicator is val2 (usually 1) for the higher level and val1 (usually
0) for the lower level. The level order is given by levelOrder (which defaults to the sorted levels
of x), assumed to be sorted in increasing order. All levels with at least minCount samples that are
included in levelOrder and not included in ignore are included.

Value

A matrix containing the indicators variabels, one in each column. When includeLevelInformation
is TRUE, the attribute includedLevels is a table with one column per output column and two rows,
giving the two levels (unique values of x) represented by the column.

Author(s)

Peter Langfelder

38 blockSize

See Also

Variations and wrappers for this function: binarizeCategoricalColumns for binarizing several
columns of a matrix or data frame

Examples

set.seed(2);
x = sample(c("A", "B", "C"), 15, replace = TRUE);
out = binarizeCategoricalVariable(x, includePairwise = TRUE, includeLevelVsAll = TRUE);
data.frame(x, out);
attr(out, "includedLevels")
A different naming for level vs. all columns
binarizeCategoricalVariable(x, includeLevelVsAll = TRUE, nameForAll = "");

blockSize Attempt to calculate an appropriate block size to maximize efficiency
of block-wise calcualtions.

Description

The function uses a rather primitive way to estimate available memory and use it to suggest a block
size appropriate for the many block-by-block calculations in this package.

Usage

blockSize(
matrixSize,
rectangularBlocks = TRUE,
maxMemoryAllocation = NULL,
overheadFactor = 3);

Arguments

matrixSize the relevant dimension (usually the number of columns) of the matrix that is to
be operated on block-by-block.

rectangularBlocks

logical indicating whether the bocks of data are rectangular (of size blockSize
times matrixSize) or square (of size blockSize times blockSize).

maxMemoryAllocation

maximum desired memory allocation, in bytes. Should not exceed 2GB or total
installed RAM (whichever is greater) on 32-bit systems, while on 64-bit sys-
tems it should not exceed the total installed RAM. If not supplied, the available
memory will be estimated internally.

overheadFactor overhead factor for the memory use by R. Recommended values are between
2 (for simple calculations) and 4 or more for complicated calculations where
intermediate results (for which R must also allocate memory) take up a lot of
space.

blockwiseConsensusModules 39

Details

Multiple functions within the WGCNA package use a divide-and-conquer (also known as block-
by-block, or block-wise) approach to handling large data sets. This function is meant to assist in
choosing a suitable block size, given the size of the data and the available memory.

If the entire expected result fits into the allowed memory (after taking into account the expected
overhead), the returned block size will equal the input matrixSize.

The internal estimation of available memory works by returning the size of largest successfully
allocated block of memory. It is hoped that this will lead to reasonable results but some operating
systems may actually allocate more than is available. It is therefore preferable that the user specifies
the available memory by hand.

Value

A single integer giving the suggested block size, or matrixSize if the entire calculation is expected
to fit into memory in one piece.

Author(s)

Peter Langfelder

Examples

Suitable blocks for handling 30,000 genes within 2GB (=2^31 bytes) of memory
blockSize(30000, rectangularBlocks = TRUE, maxMemoryAllocation = 2^31)

blockwiseConsensusModules

Find consensus modules across several datasets.

Description

Perform network construction and consensus module detection across several datasets.

Usage

blockwiseConsensusModules(
multiExpr,

Data checking options

checkMissingData = TRUE,

Blocking options

blocks = NULL,
maxBlockSize = 5000,
blockSizePenaltyPower = 5,

40 blockwiseConsensusModules

nPreclusteringCenters = NULL,
randomSeed = 54321,

TOM precalculation arguments, if available

individualTOMInfo = NULL,
useIndivTOMSubset = NULL,

Network construction arguments: correlation options

corType = "pearson",
maxPOutliers = 1,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,

Adjacency function options

power = 6,
networkType = "unsigned",
checkPower = TRUE,
replaceMissingAdjacencies = FALSE,

Topological overlap options

TOMType = "unsigned",
TOMDenom = "min",
suppressNegativeTOM = FALSE,

Save individual TOMs?

saveIndividualTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

Consensus calculation options: network calibration

networkCalibration = c("single quantile", "full quantile", "none"),

Simple quantile calibration options

calibrationQuantile = 0.95,
sampleForCalibration = TRUE, sampleForCalibrationFactor = 1000,
getNetworkCalibrationSamples = FALSE,

Consensus definition

consensusQuantile = 0,
useMean = FALSE,

blockwiseConsensusModules 41

setWeights = NULL,

Saving the consensus TOM

saveConsensusTOMs = FALSE,
consensusTOMFilePattern = "consensusTOM-block.%b.RData",

Internal handling of TOMs

useDiskCache = TRUE, chunkSize = NULL,
cacheBase = ".blockConsModsCache",
cacheDir = ".",

Alternative consensus TOM input from a previous calculation

consensusTOMInfo = NULL,

Basic tree cut options

Basic tree cut options

deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = 20,
checkMinModuleSize = TRUE,

Advanced tree cut opyions

maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,
useBranchEigennodeDissim = FALSE,
minBranchEigennodeDissim = mergeCutHeight,
stabilityLabels = NULL,
minStabilityDissim = NULL,

pamStage = TRUE, pamRespectsDendro = TRUE,

Gene reassignment and trimming from a module, and module "significance" criteria

reassignThresholdPS = 1e-4,
trimmingConsensusQuantile = consensusQuantile,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.2,

Module eigengene calculation options

impute = TRUE,
trapErrors = FALSE,

42 blockwiseConsensusModules

#Module merging options

equalizeQuantilesForModuleMerging = FALSE,
quantileSummaryForModuleMerging = "mean",
mergeCutHeight = 0.15,
mergeConsensusQuantile = consensusQuantile,

Output options

numericLabels = FALSE,

General options

nThreads = 0,
verbose = 2, indent = 0, ...)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

checkMissingData

logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per gene of multiExpr giving the number of the block to which the correspond-
ing gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

blockSizePenaltyPower

number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a lrge number or Inf if not exceeding maximum block
size is very important.

nPreclusteringCenters

number of centers to be used in the preclustering. Defaults to smaller of nGenes/20
and 100*nGenes/maxBlockSize, where nGenes is the nunber of genes (vari-
ables) in multiExpr.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given,
the function will not save and restore the seed.

individualTOMInfo

Optional data for TOM matrices in individual data sets. This object is returned
by the function blockwiseIndividualTOMs. If not given, appropriate topolog-
ical overlaps will be calculated using the network contruction options below.

blockwiseConsensusModules 43

useIndivTOMSubset

If individualTOMInfo is given, this argument allows to only select a subset of
the individual set networks contained in individualTOMInfo. It should be a
numeric vector giving the indices of the individual sets to be used. Note that this
argument is NOT applied to multiExpr.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pariwise.complete.obs
option.

maxPOutliers only used for corType=="bicor". Specifies the maximum percentile of data
that can be considered outliers on either side of the median separately. For each
side of the median, if higher percentile than maxPOutliers is considered an out-
lier by the weight function based on 9*mad(x), the width of the weight function
is increased such that the percentile of outliers on that side of the median equals
maxPOutliers. Using maxPOutliers=1 will effectively disable all weight func-
tion broadening; using maxPOutliers=0 will give results that are quite similar
(but not equal to) Pearson correlation.

quickCor real number between 0 and 1 that controls the handling of missing data in the
calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation, if used, should revert to Pearson when
median absolute deviation (mad) is zero. Recongnized values are (abbreviations
of) "none", "individual", "all". If set to "none", zero mad will result in NA
for the corresponding correlation. If set to "individual", Pearson calculation
will be used only for columns that have zero mad. If set to "all", the presence
of a single zero mad will cause the whole variable to be treated in Pearson cor-
relation manner (as if the corresponding robust option was set to FALSE). Has
no effect for Pearson correlation. See bicor.

cosineCorrelation

logical: should the cosine version of the correlation calculation be used? The
cosine calculation differs from the standard one in that it does not subtract the
mean.

power soft-thresholding power for network construction. Either a single number or a
vector of the same length as the number of sets, with one power for each set.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

checkPower logical: should basic sanity check be performed on the supplied power? If you
would like to experiment with unusual powers, set the argument to FALSE and
proceed with caution.

replaceMissingAdjacencies

logical: should missing values in the calculation of adjacency be replaced by 0?

TOMType one of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See TOMsimilarityFromExpr for details.

TOMDenom a character string specifying the TOM variant to be used. Recognized values
are "min" giving the standard TOM described in Zhang and Horvath (2005),

44 blockwiseConsensusModules

and "mean" in which the min function in the denominator is replaced by mean.
The "mean" may produce better results but at this time should be considered
experimental.

suppressNegativeTOM

Logical: should the result be set to zero when negative? Negative TOM values
can occur when TOMType is "signed Nowick".

saveIndividualTOMs

logical: should individual TOMs be saved to disk for later use?
individualTOMFileNames

character string giving the file names to save individual TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

networkCalibration

network calibration method. One of "single quantile", "full quantile", "none"
(or a unique abbreviation of one of them).

calibrationQuantile

if networkCalibration is "single quantile", topological overlaps (or adja-
cencies if TOMs are not computed) will be scaled such that their calibrationQuantile
quantiles will agree.

sampleForCalibration

if TRUE, calibration quantiles will be determined from a sample of network simi-
larities. Note that using all data can double the memory footprint of the function
and the function may fail.

sampleForCalibrationFactor

determines the number of samples for calibration: the number is 1/calibrationQuantile
* sampleForCalibrationFactor. Should be set well above 1 to ensure accu-
racy of the sampled quantile.

getNetworkCalibrationSamples

logical: should samples used for TOM calibration be saved for future analysis?
This option is only available when sampleForCalibration is TRUE.

consensusQuantile

quantile at which consensus is to be defined. See details.

useMean logical: should the consensus be determined from a (possibly weighted) mean
across the data sets rather than a quantile?

setWeights Optional vector (one component per input set) of weights to be used for weighted
mean consensus. Only used when useMean above is TRUE.

saveConsensusTOMs

logical: should the consensus topological overlap matrices for each block be
saved and returned?

consensusTOMFilePattern

character string containing the file namefiles containing the consensus topolog-
ical overlaps. The tag %b will be replaced by the block number. If the resulting

blockwiseConsensusModules 45

file names are non-unique (for example, because the user gives a file name with-
out a %b tag), an error will be generated. These files are standard R data files and
can be loaded using the load function.

useDiskCache should calculated network similarities in individual sets be temporarilly saved
to disk? Saving to disk is somewhat slower than keeping all data in memory, but
for large blocks and/or many sets the memory footprint may be too big.

chunkSize network similarities are saved in smaller chunks of size chunkSize.

cacheBase character string containing the desired name for the cache files. The actual file
names will consists of cacheBase and a suffix to make the file names unique.

cacheDir character string containing the desired path for the cache files.
consensusTOMInfo

optional list summarizing consensus TOM, output of consensusTOM. It contains
information about pre-calculated consensus TOM. Supplying this argument re-
places TOM calculation, so none of the individual or consensus TOM calcula-
tion arguments are taken into account.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight

dendrogram cut height for module detection. See cutreeDynamic for more de-
tails.

minModuleSize minimum module size for module detection. See cutreeDynamic for more de-
tails.

checkMinModuleSize

logical: should sanity checks be performed on minModuleSize?

maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more details.

maxAbsCoreScatter

maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for more
details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

minSplitHeight Minimum split height given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. Branches merging below this height
will automatically be merged. Defaults to zero but is used only if minAbsSplitHeight
below is NULL.

minAbsSplitHeight

Minimum split height given as an absolute height. Branches merging below this
height will automatically be merged. If not given (default), will be determined
from minSplitHeight above.

46 blockwiseConsensusModules

useBranchEigennodeDissim

Logical: should branch eigennode (eigengene) dissimilarity be considered when
merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim

Minimum consensus branch eigennode (eigengene) dissimilarity for branches to
be considerd separate. The branch eigennode dissimilarity in individual sets is
simly 1-correlation of the eigennodes; the consensus is defined as quantile with
probability consensusQuantile.

stabilityLabels

Optional matrix of cluster labels that are to be used for calculating branch dis-
similarity based on split stability. The number of rows must equal the number
of genes in multiExpr; the number of columns (clusterings) is arbitrary. See
branchSplitFromStabilityLabels for details.

minStabilityDissim

Minimum stability dissimilarity criterion for two branches to be considered sep-
arate. Should be a number between 0 (essentially no dissimilarity required) and
1 (perfect dissimilarity or distinguishability based on stabilityLabels). See
branchSplitFromStabilityLabels for details.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

pamRespectsDendro

Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect
the dendrogram in the sense an object can be PAM-assigned only to clusters that
lie below it on the branch that the object is merged into. See cutreeDynamic
for more details.

reassignThresholdPS

per-set p-value ratio threshold for reassigning genes between modules. See De-
tails.

trimmingConsensusQuantile

a number between 0 and 1 specifying the consensus quantile used for kME cal-
culation that determines module trimming according to the arguments below.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is disbanded
(its genes are unlabeled and returned to the pool of genes waiting for mofule de-
tection).

minCoreKMESize see minCoreKME above.
minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than

minKMEtoStay are removed from the module.
impute logical: should imputation be used for module eigengene calculation? See

moduleEigengenes for more details.
trapErrors logical: should errors in calculations be trapped?
equalizeQuantilesForModuleMerging

Logical: equalize quantiles of the module eigengene networks before module
merging? If TRUE, the quantiles of the eigengene correlation matrices (inter-
preted as a single vectors of non-redundant components) will be equalized across
the input data sets. Note that although this seems like a reasonable option, it
should be considered experimental and not necessarily recommended.

blockwiseConsensusModules 47

quantileSummaryForModuleMerging

One of "mean" or "median". If quantile equalization of the module eigengene
networks is performed, the resulting "normal" quantiles will be given by this
function of the corresponding quantiles across the input data sets.

mergeCutHeight dendrogram cut height for module merging.
mergeConsensusQuantile

consensus quantile for module merging. See mergeCloseModules for details.

numericLabels logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

nThreads non-negative integer specifying the number of parallel threads to be used by cer-
tain parts of correlation calculations. This option only has an effect on systems
on which a POSIX thread library is available (which currently includes Linux
and Mac OSX, but excludes Windows). If zero, the number of online processors
will be used if it can be determined dynamically, otherwise correlation calcula-
tions will use 2 threads.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

... Other arguments. At present these can include reproduceBranchEigennodeQuantileError
that instructs the function to reproduce a bug in branch eigennode dissimilarity
calculations for purposes if reproducing old reults.

Details

The function starts by optionally filtering out samples that have too many missing entries and genes
that have either too many missing entries or zero variance in at least one set. Genes that are filtered
out are left unassigned by the module detection. Returned eigengenes will contain NA in entries
corresponding to filtered-out samples.

If blocks is not given and the number of genes exceeds maxBlockSize, genes are pre-clustered
into blocks using the function consensusProjectiveKMeans; otherwise all genes are treated in a
single block.

For each block of genes, the network is constructed and (if requested) topological overlap is cal-
culated in each set. To minimize memory usage, calculated topological overlaps are optionally
saved to disk in chunks until they are needed again for the calculation of the consensus network
topological overlap.

Before calculation of the consensus Topological Overlap, individual TOMs are optionally cali-
brated. Calibration methods include single quantile scaling and full quantile normalization.

Single quantile scaling raises individual TOM in sets 2,3,... to a power such that the quantiles given
by calibrationQuantile agree with the quantile in set 1. Since the high TOMs are usually the
most important for module identification, the value of calibrationQuantile is close to (but not
equal) 1. To speed up quantile calculation, the quantiles can be determined on a randomly-chosen
component subset of the TOM matrices.

Full quantile normalization, implemented in normalize.quantiles, adjusts the TOM matrices
such that all quantiles equal each other (and equal to the quantiles of the component-wise average
of the individual TOM matrices).

48 blockwiseConsensusModules

Note that network calibration is performed separately in each block, i.e., the normalizing transfor-
mation may differ between blocks. This is necessary to avoid manipulating a full TOM in memory.

The consensus TOM is calculated as the component-wise consensusQuantile quantile of the in-
dividual (set) TOMs; that is, for each gene pair (TOM entry), the consensusQuantile quantile
across all input sets. Alternatively, one can also use (weighted) component-wise mean across all
imput data sets. If requested, the consensus topological overlaps are saved to disk for later use.

Genes are then clustered using average linkage hierarchical clustering and modules are identified
in the resulting dendrogram by the Dynamic Hybrid tree cut. Found modules are trimmed of genes
whose consensus module membership kME (that is, correlation with module eigengene) is less than
minKMEtoStay. Modules in which fewer than minCoreKMESize genes have consensus KME higher
than minCoreKME are disbanded, i.e., their constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS (in every set), the
gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

The argument quick specifies the precision of handling of missing data in the correlation calcula-
tions. Zero will cause all calculations to be executed precisely, which may be significantly slower
than calculations without missing data. Progressively higher values will speed up the calculations
but introduce progressively larger errors. Without missing data, all column means and variances
can be pre-calculated before the covariances are calculated. When missing data are present, exact
calculations require the column means and variances to be calculated for each covariance. The ap-
proximate calculation uses the pre-calculated mean and variance and simply ignores missing data
in the covariance calculation. If the number of missing data is high, the pre-calculated means and
variances may be very different from the actual ones, thus potentially introducing large errors. The
quick value times the number of rows specifies the maximum difference in the number of miss-
ing entries for mean and variance calculations on the one hand and covariance on the other hand
that will be tolerated before a recalculation is triggered. The hope is that if only a few missing
data are treated approximately, the error introduced will be small but the potential speedup can be
significant.

Value

A list with the following components:

colors module assignment of all input genes. A vector containing either character
strings with module colors (if input numericLabels was unset) or numeric mod-
ule labels (if numericLabels was set to TRUE). The color "grey" and the numeric
label 0 are reserved for unassigned genes.

unmergedColors module colors or numeric labels before the module merging step.

multiMEs module eigengenes corresponding to the modules returned in colors, in multi-
set format. A vector of lists, one per set, containing eigengenes, proportion

blockwiseConsensusModules 49

of variance explained and other information. See multiSetMEs for a detailed
description.

goodSamples a list, with one component per input set. Each component is a logical vector with
one entry per sample from the corresponding set. The entry indicates whether
the sample in the set passed basic quality control criteria.

goodGenes a logical vector with one entry per input gene indicating whether the gene passed
basic quality control criteria in all sets.

dendrograms a list with one component for each block of genes. Each component is the
hierarchical clustering dendrogram obtained by clustering the consensus gene
dissimilarity in the corresponding block.

TOMFiles if saveConsensusTOMs==TRUE, a vector of character strings, one string per block,
giving the file names of files (relative to current directory) in which blockwise
topological overlaps were saved.

blockGenes a list with one component for each block of genes. Each component is a vector
giving the indices (relative to the input multiExpr) of genes in the correspond-
ing block.

blocks if input blocks was given, its copy; otherwise a vector of length equal number
of genes giving the block label for each gene. Note that block labels are not
necessarilly sorted in the order in which the blocks were processed (since we do
not require this for the input blocks). See blockOrder below.

blockOrder a vector giving the order in which blocks were processed and in which blockGenes
above is returned. For example, blockOrder[1] contains the label of the first-
processed block.

originCount A vector of length nSets that contains, for each set, the number of (calibrated)
elements that were less than or equal the consensus for that element.

networkCalibrationSamples

if the input getNetworkCalibrationSamples is TRUE, this component is a list
with one component per block. Each component is again a list with two compo-
nents: sampleIndex contains indices of the distance structure in which TOM is
stored that were sampled, and TOMSamples is a matrix whose rows correspond to
TOM samples and columns to individual set. Hence, networkCalibrationSamples[[blockNo]]$TOMSamples[index,
setNo] contains the TOM entry that corresponds to element networkCalibrationSamples[[blockNo]]$sampleIndex[index]
of the TOM distance structure in block blockNo and set setNo. (For details on
the distance structure, see dist.)

Note

If the input datasets have large numbers of genes, consider carefully the maxBlockSize as it signif-
icantly affects the memory footprint (and whether the function will fail with a memory allocation
error). From a theoretical point of view it is advantageous to use blocks as large as possible; on the
other hand, using smaller blocks is substantially faster and often the only way to work with large
numbers of genes. As a rough guide, it is unlikely a standard desktop computer with 4GB memory
or less will be able to work with blocks larger than 7000 genes.

Author(s)

Peter Langfelder

50 blockwiseIndividualTOMs

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

goodSamplesGenesMS for basic quality control and filtering;

adjacency, TOMsimilarity for network construction;

hclust for hierarchical clustering;

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

blockwiseIndividualTOMs

Calculation of block-wise topological overlaps

Description

Calculates topological overlaps in the given (expression) data. If the number of variables (columns)
in the input data is too large, the data is first split using pre-clustering, then topological overlaps are
calculated in each block.

Usage

blockwiseIndividualTOMs(
multiExpr,
multiWeights = NULL,

Data checking options

checkMissingData = TRUE,

Blocking options

blocks = NULL,
maxBlockSize = 5000,
blockSizePenaltyPower = 5,
nPreclusteringCenters = NULL,
randomSeed = 54321,

Network construction arguments: correlation options

corType = "pearson",
maxPOutliers = 1,
quickCor = 0,

blockwiseIndividualTOMs 51

pearsonFallback = "individual",
cosineCorrelation = FALSE,

Adjacency function options

power = 6,
networkType = "unsigned",
checkPower = TRUE,
replaceMissingAdjacencies = FALSE,

Topological overlap options

TOMType = "unsigned",
TOMDenom = "min",
suppressTOMForZeroAdjacencies = FALSE,
suppressNegativeTOM = FALSE,

Save individual TOMs? If not, they will be returned in the session.

saveTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

General options

nThreads = 0,
useInternalMatrixAlgebra = FALSE,
verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
These weights are used in correlation calculation.

checkMissingData

logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per gene of multiExpr giving the number of the block to which the correspond-
ing gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

blockSizePenaltyPower

number specifying how strongly blocks should be penalized for exceeding the

52 blockwiseIndividualTOMs

maximum size. Set to a lrge number or Inf if not exceeding maximum block
size is very important.

nPreclusteringCenters

number of centers for pre-clustering. Larger numbers typically results in better
but slower pre-clustering. The default is as.integer(min(nGenes/20, 100*nGenes/preferredSize))
and is an attempt to arrive at a reasonable number given the resources available.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given,
the function will not save and restore the seed.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pariwise.complete.obs
option.

maxPOutliers only used for corType=="bicor". Specifies the maximum percentile of data
that can be considered outliers on either side of the median separately. For each
side of the median, if higher percentile than maxPOutliers is considered an out-
lier by the weight function based on 9*mad(x), the width of the weight function
is increased such that the percentile of outliers on that side of the median equals
maxPOutliers. Using maxPOutliers=1 will effectively disable all weight func-
tion broadening; using maxPOutliers=0 will give results that are quite similar
(but not equal to) Pearson correlation.

quickCor real number between 0 and 1 that controls the handling of missing data in the
calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation, if used, should revert to Pearson when
median absolute deviation (mad) is zero. Recongnized values are (abbreviations
of) "none", "individual", "all". If set to "none", zero mad will result in NA
for the corresponding correlation. If set to "individual", Pearson calculation
will be used only for columns that have zero mad. If set to "all", the presence
of a single zero mad will cause the whole variable to be treated in Pearson cor-
relation manner (as if the corresponding robust option was set to FALSE). Has
no effect for Pearson correlation. See bicor.

cosineCorrelation

logical: should the cosine version of the correlation calculation be used? The
cosine calculation differs from the standard one in that it does not subtract the
mean.

power soft-thresholding power for network construction. Either a single number or a
vector of the same length as the number of sets, with one power for each set.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

checkPower logical: should basic sanity check be performed on the supplied power? If you
would like to experiment with unusual powers, set the argument to FALSE and
proceed with caution.

replaceMissingAdjacencies

logical: should missing values in calculated adjacency be replaced by 0?

blockwiseIndividualTOMs 53

TOMType one of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See TOMsimilarityFromExpr for details.

TOMDenom a character string specifying the TOM variant to be used. Recognized values are
"min" giving the standard TOM described in Zhang and Horvath (2005), and
"mean" in which the min function in the denominator is replaced by mean. The
"mean" may produce better results in certain special situations but at this time
should be considered experimental.

suppressTOMForZeroAdjacencies

Logical: should TOM be set to zero for zero adjacencies?
suppressNegativeTOM

Logical: should the result be set to zero when negative? Negative TOM values
can occur when TOMType is "signed Nowick".

saveTOMs logical: should calculated TOMs be saved to disk (TRUE) or returned in the re-
turn value (FALSE)? Returning calculated TOMs via the return value ay be more
convenient bt not always feasible if the matrices are too big to fit all in memory
at the same time.

individualTOMFileNames

character string giving the file names to save individual TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

nThreads non-negative integer specifying the number of parallel threads to be used by cer-
tain parts of correlation calculations. This option only has an effect on systems
on which a POSIX thread library is available (which currently includes Linux
and Mac OSX, but excludes Windows). If zero, the number of online processors
will be used if it can be determined dynamically, otherwise correlation calcula-
tions will use 2 threads.

useInternalMatrixAlgebra

Logical: should WGCNA’s own, slow, matrix multiplication be used instead of
R-wide BLAS? Only useful for debugging.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The function starts by optionally filtering out samples that have too many missing entries and genes
that have either too many missing entries or zero variance in at least one set. Genes that are filtered
out are excluded from the TOM calculations.

If blocks is not given and the number of genes exceeds maxBlockSize, genes are pre-clustered
into blocks using the function consensusProjectiveKMeans; otherwise all genes are treated in a
single block.

54 blockwiseIndividualTOMs

For each block of genes, the network is constructed and (if requested) topological overlap is calcu-
lated in each set. The topological overlaps can be saved to disk as RData files, or returned directly
within the return value (see below). Note that the matrices can be big and returning them within the
return value can quickly exhaust the system’s memory. In particular, if the block-wise calculation
is necessary, it is nearly certain that returning all matrices via the return value will be impossible.

Value

A list with the following components:

actualTOMFileNames

Only returned if input saveTOMs is TRUE. A matrix of character strings giving
the file names in which each block TOM is saved. Rows correspond to data sets
and columns to blocks.

TOMSimilarities

Only returned if input saveTOMs is FALSE. A list in which each component cor-
responds to one block. Each component is a matrix of dimensions (N times
(number of sets)), where N is the length of a distance structure corresponding
to the block. That is, if the block contains n genes, N=n*(n-1)/2. Each column
of the matrix contains the topological overlap of variables in the corresponding
set (and the corresponding block), arranged as a distance structure. Do note
however that the topological overlap is a similarity (not a distance).

blocks if input blocks was given, its copy; otherwise a vector of length equal number
of genes giving the block label for each gene. Note that block labels are not
necessarilly sorted in the order in which the blocks were processed (since we do
not require this for the input blocks). See blockOrder below.

blockGenes a list with one component for each block of genes. Each component is a vector
giving the indices (relative to the input multiExpr) of genes in the correspond-
ing block.

goodSamplesAndGenes

if input checkMissingData is TRUE, the output of the function goodSamplesGenesMS.
A list with components goodGenes (logical vector indicating which genes passed
the missing data filters), goodSamples (a list of logical vectors indicating which
samples passed the missing data filters in each set), and allOK (a logical indicat-
ing whether all genes and all samples passed the filters). See goodSamplesGenesMS
for more details. If checkMissingData is FALSE, goodSamplesAndGenes con-
tains a list of the same type but indicating that all genes and all samples passed
the missing data filters.

The following components are present mostly to streamline the interaction of this function with
blockwiseConsensusModules.

nGGenes Number of genes that passed missing data filters (if input checkMissingData is
TRUE), or the number of all genes (if checkMissingData is FALSE).

gBlocks the vector blocks (above), restricted to good genes only.

nThreads number of threads used to calculate correlation and TOM matrices.

saveTOMs logical: were calculated matrices saved in files (TRUE) or returned in the return
value (FALSE)?

blockwiseModules 55

intNetworkType, intCorType
integer codes for network and correlation type.

nSets number of sets in input data.

setNames the names attribute of input multiExpr.

Author(s)

Peter Langfelder

References

For a general discussion of the weighted network formalism, see

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

The blockwise approach is briefly described in the article describing this package,

Langfelder P, Horvath S (2008) "WGCNA: an R package for weighted correlation network analy-
sis". BMC Bioinformatics 2008, 9:559

See Also

blockwiseConsensusModules

blockwiseModules Automatic network construction and module detection

Description

This function performs automatic network construction and module detection on large expression
datasets in a block-wise manner.

Usage

blockwiseModules(
Input data

datExpr,
weights = NULL,

Data checking options

checkMissingData = TRUE,

Options for splitting data into blocks

blocks = NULL,

56 blockwiseModules

maxBlockSize = 5000,
blockSizePenaltyPower = 5,
nPreclusteringCenters = as.integer(min(ncol(datExpr)/20,

100*ncol(datExpr)/maxBlockSize)),
randomSeed = 54321,

load TOM from previously saved file?

loadTOM = FALSE,

Network construction arguments: correlation options

corType = "pearson",
maxPOutliers = 1,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,

Adjacency function options

power = 6,
networkType = "unsigned",
replaceMissingAdjacencies = FALSE,

Topological overlap options

TOMType = "signed",
TOMDenom = "min",
suppressTOMForZeroAdjacencies = FALSE,
suppressNegativeTOM = FALSE,

Saving or returning TOM

getTOMs = NULL,
saveTOMs = FALSE,
saveTOMFileBase = "blockwiseTOM",

Basic tree cut options

deepSplit = 2,
detectCutHeight = 0.995,
minModuleSize = min(20, ncol(datExpr)/2),

Advanced tree cut options

maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,

blockwiseModules 57

useBranchEigennodeDissim = FALSE,
minBranchEigennodeDissim = mergeCutHeight,

stabilityLabels = NULL,
stabilityCriterion = c("Individual fraction", "Common fraction"),
minStabilityDissim = NULL,

pamStage = TRUE, pamRespectsDendro = TRUE,

Gene reassignment, module trimming, and module "significance" criteria

reassignThreshold = 1e-6,
minCoreKME = 0.5,
minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.3,

Module merging options

mergeCutHeight = 0.15,
impute = TRUE,
trapErrors = FALSE,

Output options

numericLabels = FALSE,

Options controlling behaviour

nThreads = 0,
useInternalMatrixAlgebra = FALSE,
useCorOptionsThroughout = TRUE,
verbose = 0, indent = 0,
...)

Arguments

datExpr Expression data. A matrix (preferred) or data frame in which columns are genes
and rows ar samples. NAs are allowed, but not too many. See checkMissingData
below and details.

weights optional observation weights in the same format (and dimensions) as datExpr.
These weights are used in correlation calculation.

checkMissingData

logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry

58 blockwiseModules

per column (gene) of exprData giving the number of the block to which the
corresponding gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

blockSizePenaltyPower

number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a lrge number or Inf if not exceeding maximum block
size is very important.

nPreclusteringCenters

number of centers for pre-clustering. Larger numbers typically results in better
but slower pre-clustering.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given,
the function will not save and restore the seed.

loadTOM logical: should Topological Overlap Matrices be loaded from previously saved
files (TRUE) or calculated (FALSE)? It may be useful to load previously saved
TOM matrices if these have been calculated previously, since TOM calculation
is often the most computationally expensive part of network construction and
module identification. See saveTOMs and saveTOMFileBase below for when
and how TOM files are saved, and what the file names are. If loadTOM is TRUE
but the files cannot be found, or do not contain the correct TOM data, TOM will
be recalculated.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs
option.

maxPOutliers only used for corType=="bicor". Specifies the maximum percentile of data
that can be considered outliers on either side of the median separately. For each
side of the median, if higher percentile than maxPOutliers is considered an out-
lier by the weight function based on 9*mad(x), the width of the weight function
is increased such that the percentile of outliers on that side of the median equals
maxPOutliers. Using maxPOutliers=1 will effectively disable all weight func-
tion broadening; using maxPOutliers=0 will give results that are quite similar
(but not equal to) Pearson correlation.

quickCor real number between 0 and 1 that controls the handling of missing data in the
calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation, if used, should revert to Pearson when
median absolute deviation (mad) is zero. Recongnized values are (abbreviations
of) "none", "individual", "all". If set to "none", zero mad will result in NA
for the corresponding correlation. If set to "individual", Pearson calculation
will be used only for columns that have zero mad. If set to "all", the presence
of a single zero mad will cause the whole variable to be treated in Pearson cor-
relation manner (as if the corresponding robust option was set to FALSE). Has
no effect for Pearson correlation. See bicor.

blockwiseModules 59

cosineCorrelation

logical: should the cosine version of the correlation calculation be used? The
cosine calculation differs from the standard one in that it does not subtract the
mean.

power soft-thresholding power for network construction.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

replaceMissingAdjacencies

logical: should missing values in the calculation of adjacency be replaced by 0?

TOMType one of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See TOMsimilarityFromExpr for details.

TOMDenom a character string specifying the TOM variant to be used. Recognized values
are "min" giving the standard TOM described in Zhang and Horvath (2005),
and "mean" in which the min function in the denominator is replaced by mean.
The "mean" may produce better results but at this time should be considered
experimental.

suppressTOMForZeroAdjacencies

Logical: should TOM be set to zero for zero adjacencies?

suppressNegativeTOM

Logical: should the result be set to zero when negative? Negative TOM values
can occur when TOMType is "signed Nowick".

getTOMs deprecated, please use saveTOMs below.

saveTOMs logical: should the consensus topological overlap matrices for each block be
saved and returned?

saveTOMFileBase

character string containing the file name base for files containing the consensus
topological overlaps. The full file names have "block.1.RData", "block.2.RData"
etc. appended. These files are standard R data files and can be loaded using the
load function.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight

dendrogram cut height for module detection. See cutreeDynamic for more de-
tails.

minModuleSize minimum module size for module detection. See cutreeDynamic for more de-
tails.

maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more details.

60 blockwiseModules

maxAbsCoreScatter

maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for more
details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

minSplitHeight Minimum split height given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. Branches merging below this height
will automatically be merged. Defaults to zero but is used only if minAbsSplitHeight
below is NULL.

minAbsSplitHeight

Minimum split height given as an absolute height. Branches merging below this
height will automatically be merged. If not given (default), will be determined
from minSplitHeight above.

useBranchEigennodeDissim

Logical: should branch eigennode (eigengene) dissimilarity be considered when
merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim

Minimum consensus branch eigennode (eigengene) dissimilarity for branches to
be considerd separate. The branch eigennode dissimilarity in individual sets is
simly 1-correlation of the eigennodes; the consensus is defined as quantile with
probability consensusQuantile.

stabilityLabels

Optional matrix of cluster labels that are to be used for calculating branch dis-
similarity based on split stability. The number of rows must equal the number
of genes in multiExpr; the number of columns (clusterings) is arbitrary. See
branchSplitFromStabilityLabels for details.

stabilityCriterion

One of c("Individual fraction", "Common fraction"), indicating which method
for assessing stability similarity of two branches should be used. We recom-
mend "Individual fraction" which appears to perform better; the "Common
fraction" method is provided for backward compatibility since it was the
(only) method available prior to WGCNA version 1.60.

minStabilityDissim

Minimum stability dissimilarity criterion for two branches to be considered sep-
arate. Should be a number between 0 (essentially no dissimilarity required) and
1 (perfect dissimilarity or distinguishability based on stabilityLabels). See
branchSplitFromStabilityLabels for details.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

pamRespectsDendro

Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect
the dendrogram in the sense an object can be PAM-assigned only to clusters that
lie below it on the branch that the object is merged into. See cutreeDynamic
for more details.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is disbanded

blockwiseModules 61

(its genes are unlabeled and returned to the pool of genes waiting for mofule de-
tection).

minCoreKMESize see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

reassignThreshold

p-value ratio threshold for reassigning genes between modules. See Details.

mergeCutHeight dendrogram cut height for module merging.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?

numericLabels logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

nThreads non-negative integer specifying the number of parallel threads to be used by cer-
tain parts of correlation calculations. This option only has an effect on systems
on which a POSIX thread library is available (which currently includes Linux
and Mac OSX, but excludes Windows). If zero, the number of online processors
will be used if it can be determined dynamically, otherwise correlation calcula-
tions will use 2 threads.

useInternalMatrixAlgebra

Logical: should WGCNA’s own, slow, matrix multiplication be used instead of
R-wide BLAS? Only useful for debugging.

useCorOptionsThroughout

Logical: should correlation options passed to network analysis also be used in
calculation of kME? Set to FALSE to reproduce results obtained with WGCNA
1.62 and older.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

... Other arguments.

Details

Before module detection starts, genes and samples are optionally checked for the presence of NAs.
Genes and/or samples that have too many NAs are flagged as bad and removed from the analysis;
bad genes will be automatically labeled as unassigned, while the returned eigengenes will have NA
entries for all bad samples.

If blocks is not given and the number of genes exceeds maxBlockSize, genes are pre-clustered into
blocks using the function projectiveKMeans; otherwise all genes are treated in a single block.

For each block of genes, the network is constructed and (if requested) topological overlap is cal-
culated. If requested, the topological overlaps are returned as part of the return value list. Genes
are then clustered using average linkage hierarchical clustering and modules are identified in the
resulting dendrogram by the Dynamic Hybrid tree cut. Found modules are trimmed of genes whose
correlation with module eigengene (KME) is less than minKMEtoStay. Modules in which fewer

62 blockwiseModules

than minCoreKMESize genes have KME higher than minCoreKME are disbanded, i.e., their con-
stituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS, the gene is re-
assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

The argument quick specifies the precision of handling of missing data in the correlation calcula-
tions. Zero will cause all calculations to be executed precisely, which may be significantly slower
than calculations without missing data. Progressively higher values will speed up the calculations
but introduce progressively larger errors. Without missing data, all column means and variances
can be pre-calculated before the covariances are calculated. When missing data are present, exact
calculations require the column means and variances to be calculated for each covariance. The ap-
proximate calculation uses the pre-calculated mean and variance and simply ignores missing data
in the covariance calculation. If the number of missing data is high, the pre-calculated means and
variances may be very different from the actual ones, thus potentially introducing large errors. The
quick value times the number of rows specifies the maximum difference in the number of miss-
ing entries for mean and variance calculations on the one hand and covariance on the other hand
that will be tolerated before a recalculation is triggered. The hope is that if only a few missing
data are treated approximately, the error introduced will be small but the potential speedup can be
significant.

Value

A list with the following components:

colors a vector of color or numeric module labels for all genes.

unmergedColors a vector of color or numeric module labels for all genes before module merging.

MEs a data frame containing module eigengenes of the found modules (given by
colors).

goodSamples numeric vector giving indices of good samples, that is samples that do not have
too many missing entries.

goodGenes numeric vector giving indices of good genes, that is genes that do not have too
many missing entries.

dendrograms a list whose components conatain hierarchical clustering dendrograms of genes
in each block.

TOMFiles if saveTOMs==TRUE, a vector of character strings, one string per block, giving the
file names of files (relative to current directory) in which blockwise topological
overlaps were saved.

blockGenes a list whose components give the indices of genes in each block.

BloodLists 63

blocks if input blocks was given, its copy; otherwise a vector of length equal number
of genes giving the block label for each gene. Note that block labels are not
necessarilly sorted in the order in which the blocks were processed (since we do
not require this for the input blocks). See blockOrder below.

blockOrder a vector giving the order in which blocks were processed and in which blockGenes
above is returned. For example, blockOrder[1] contains the label of the first-
processed block.

MEsOK logical indicating whether the module eigengenes were calculated without er-
rors.

Note

significantly affects the memory footprint (and whether the function will fail with a memory allo-
cation error). From a theoretical point of view it is advantageous to use blocks as large as possible;
on the other hand, using smaller blocks is substantially faster and often the only way to work with
large numbers of genes. As a rough guide, it is unlikely a standard desktop computer with 4GB
memory or less will be able to work with blocks larger than 8000 genes.

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

goodSamplesGenes for basic quality control and filtering;

adjacency, TOMsimilarity for network construction;

hclust for hierarchical clustering;

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

BloodLists Blood Cell Types with Corresponding Gene Markers

Description

This matrix gives a predefined set of marker genes for many blood cell types, as reported in several
previously-published studies. It is used with userListEnrichment to search user-defined gene lists
for enrichment.

64 blueWhiteRed

Usage

data(BloodLists)

Format

A 2048 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists
genes corresponding to a given category (second column). Each Category entry is of the form
<Blood cell type>__<reference>, where the references can be found at userListEnrichment. Note
that the matrix is sorted first by Category and then by Gene, such that all genes related to the same
category are listed sequentially.

Source

For references used in this variable, please see userListEnrichment

Examples

data(BloodLists)
head(BloodLists)

blueWhiteRed Blue-white-red color sequence

Description

Generate a blue-white-red color sequence of a given length.

Usage

blueWhiteRed(
n,
gamma = 1,
endSaturation = 1,

blueEnd = c(0.05 + (1-endSaturation) * 0.45 , 0.55 + (1-endSaturation) * 0.25, 1.00),
redEnd = c(1.0, 0.2 + (1-endSaturation) * 0.6, 0.6*(1-endSaturation)),
middle = c(1,1,1))

Arguments

n number of colors to be returned.

gamma color change power.

endSaturation a number between 0 and 1 giving the saturation of the colors that will represent
the ends of the scale. Lower numbers mean less saturation (lighter colors).

blueEnd vector of length 3 giving the RGB relative values (between 0 and 1) for the blue
or negative end color.

BrainLists 65

redEnd vector of length 3 giving the RGB relative values (between 0 and 1) for the red
or positive end color.

middle vector of length 3 giving the RGB relative values (between 0 and 1) for the
middle of the scale.

Details

The function returns a color vector that starts with blue, gradually turns into white and then to
red. The power gamma can be used to control the behaviour of the quarter- and three quarter-values
(between blue and white, and white and red, respectively). Higher powers will make the mid-colors
more white, while lower powers will make the colors more saturated, respectively.

Value

A vector of colors of length n.

Author(s)

Peter Langfelder

See Also

numbers2colors for a function that produces a color representation for continuous numbers.

Examples

par(mfrow = c(3, 1))
displayColors(blueWhiteRed(50));
title("gamma = 1")
displayColors(blueWhiteRed(50, 3));
title("gamma = 3")
displayColors(blueWhiteRed(50, 0.5));
title("gamma = 0.5")

BrainLists Brain-Related Categories with Corresponding Gene Markers

Description

This matrix gives a predefined set of marker genes for many brain-related categories (ie., cell type,
organelle, changes with disease, etc.), as reported in several previously-published studies. It is used
with userListEnrichment to search user-defined gene lists for enrichment.

Usage

data(BrainLists)

66 BrainRegionMarkers

Format

A 48319 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists
genes corresponding to a given category (second column). Each Category entry is of the form
<Brain descriptor>__<reference>, where the references can be found at userListEnrichment.
Note that the matrix is sorted first by Category and then by Gene, such that all genes related to
the same category are listed sequentially.

Source

For references used in this variable, please see userListEnrichment

Examples

data(BrainLists)
head(BrainLists)

BrainRegionMarkers Gene Markers for Regions of the Human Brain

Description

This matrix gives a predefined set of marker genes for many regions of the human brain, using
data from the Allen Human Brain Atlas (https://human.brain-map.org/) as reported in: Hawrylycz
MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. (2012) An Anatomically
Comprehensive Atlas of the Adult Human Brain Transcriptome. Nature (in press). It is used with
userListEnrichment to search user-defined gene lists for enrichment.

Usage

data(BrainRegionMarkers)

Format

A 28477 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists
genes corresponding to a given category (second column). Each Category entry is of the form
<Brain Region>_<Marker Type>__HBA. Note that the matrix is sorted first by Category and then
by Gene, such that all genes related to the same category are listed sequentially.

Source

For references used in this variable, or other information, please see userListEnrichment

Examples

data(BrainRegionMarkers)
head(BrainRegionMarkers)

branchEigengeneDissim 67

branchEigengeneDissim Branch dissimilarity based on eigennodes (eigengenes).

Description

Calculation of branch dissimilarity based on eigennodes (eigengenes) in single set and multi-data
situations. This function is used as a plugin for the dynamicTreeCut package and the user should
not call this function directly. This function is experimental and subject to change.

Usage

branchEigengeneDissim(
expr,
branch1, branch2,
corFnc = cor, corOptions = list(use = "p"),
signed = TRUE, ...)

branchEigengeneSimilarity(
expr,
branch1,
branch2,
networkOptions,
returnDissim = TRUE, ...)

mtd.branchEigengeneDissim(
multiExpr,
branch1, branch2,
corFnc = cor, corOptions = list(use = 'p'),
consensusQuantile = 0,
signed = TRUE, reproduceQuantileError = FALSE, ...)

hierarchicalBranchEigengeneDissim(
multiExpr,
branch1, branch2,
networkOptions,
consensusTree, ...)

Arguments

expr Expression data.

multiExpr Expression data in multi-set format.

branch1 Branch 1.

branch2 Branch 2.

corFnc Correlation function.

corOptions Other arguments to the correlation function.

68 branchEigengeneDissim

consensusQuantile

Consensus quantile.

signed Should the network be considered signed?

reproduceQuantileError

Logical: should an error in the calculation from previous versions, which caused
the true consensus quantile to be 1-consensusQuantile rather than consensusQuantile,
be reproduced? Use this only to reproduce old calculations.

networkOptions An object of class NetworkOptions giving the network construction options to
be used in the calculation of the similarity.

returnDissim Logical: if TRUE, dissimarity, rather than similarity, will be returned.

consensusTree A list of class ConsensusTree specifying the consensus calculation. Note that
calibration options within the consensus specifications are ignored: since the
consensus is calulated from entries representing a single value, calibration would
not make sense.

... Other arguments for compatibility; currently unused.

Details

These functions calculate the similarity or dissimilarity of two groups of genes (variables) in expr
or multiExpr using correlations of the first singular vectors ("eigengenes"). For a single data set
(branchEigengeneDissim and branchEigengeneSimilarity), the similarity is the correlation,
and dissimilarity 1-correlation of the first signular vectors.

Functions mtd.branchEigengeneDissim and hierarchicalBranchEigengeneDissim calculate
consensus eigengene dissimilarity. Function mtd.branchEigengeneDissim calculates a simple
("flat") consensus of branch eigengene similarities across the given data set, at the given consensus
quantile. Function hierarchicalBranchEigengeneDissim can calculate a hierarchical consensus
in which consensus calculations are hierarchically nested.

Value

A single number, the dissimilarity for branchEigengeneDissim, mtd.branchEigengeneDissim,
and hierarchicalBranchEigengeneDissim.

branchEigengeneSimilarity returns similarity or dissimilarity, depending on imput.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusCalculation

branchSplit 69

branchSplit Branch split.

Description

Calculation of branch split based on expression data. This function is used as a plugin for the
dynamicTreeCut package and the user should not call this function directly.

Usage

branchSplit(
expr,
branch1, branch2,
discardProp = 0.05, minCentralProp = 0.75,
nConsideredPCs = 3,
signed = FALSE,
getDetails = TRUE, ...)

Arguments

expr Expression data.

branch1 Branch 1,

branch2 Branch 2.

discardProp Proportion of data to be discarded as outliers.

minCentralProp Minimum central proportion

nConsideredPCs Number of principal components to consider.

signed Should the network be considered signed?

getDetails Should details of the calculation be returned?

... Other arguments. Present for compatibility; currently unusued.

Value

A single number or a list containing detils of the calculation.

Author(s)

Peter Langfelder

70 branchSplit.dissim

branchSplit.dissim Branch split based on dissimilarity.

Description

Calculation of branch split based on a dissimilarity matrix. This function is used as a plugin for
the dynamicTreeCut package and the user should not call this function directly. This function is
experimental and subject to change.

Usage

branchSplit.dissim(
dissimMat,
branch1, branch2,
upperP,
minNumberInSplit = 5,
getDetails = FALSE, ...)

Arguments

dissimMat Dissimilarity matrix.

branch1 Branch 1.

branch2 Branch 2.

upperP Percentile of (closest) objects to be considered.

minNumberInSplit

Minimum number of objects to be considered.

getDetails Should details of the calculation be returned?

... Other arguments for compatibility; currently unused.

Value

A single number or a list containing details of the calculation.

Author(s)

Peter Langfelder

branchSplitFromStabilityLabels 71

branchSplitFromStabilityLabels

Branch split (dissimilarity) statistics derived from labels determined
from a stability study

Description

These functions evaluate how different two branches are based on a series of cluster labels that are
usually obtained in a stability study but can in principle be arbitrary. The idea is to quantify how
well membership on the two tested branches can be predicted from clusters in the given stability
labels.

Usage

branchSplitFromStabilityLabels(
branch1, branch2,
stabilityLabels,
ignoreLabels = 0,
...)

branchSplitFromStabilityLabels.prediction(
branch1, branch2,
stabilityLabels, ignoreLabels = 0, ...)

branchSplitFromStabilityLabels.individualFraction(
branch1, branch2,
stabilityLabels, ignoreLabels = 0,
verbose = 1, indent = 0,...)

Arguments

branch1 A vector of indices giving members of branch 1.

branch2 A vector of indices giving members of branch 1.
stabilityLabels

A matrix of cluster labels. Each column corresponds to one clustering and each
row to one object (whose indices branch1 and branch2 refer to).

ignoreLabels Label or labels that do not constitute proper clusters in stabilityLabels, for
example because they label unassigned objects.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

... Ignored.

72 branchSplitFromStabilityLabels

Details

The idea is to measure how well clusters in stabilityLabels can distinguish the two given
branches. For example, if a cluster C intersects with branch1 but not branch2, it can distinguish
branches 1 and 2 perfectly. On the other hand, if there is a cluster C that contains both branch 1 and
branch 2, the two branches are indistinguishable (based on the test clustering). The three functions
differ in the details of the similarity calculation.

branchSplitFromStabilityLabels.individualFraction: Currently the recommended branch
split calculation method, and default for hierarchicalConsensusModules. For each branch and
all clusters that overlap with the branch (not necessarily with the other branch), calculate the fraction
of the cluster objects (restricted to the two branches) that belongs to the branch. For each branch,
sum these fractions over all clusters. If this number is relatively low, around 0.5, it means most
elements are in non-discriminative clusters.

branchSplitFromStabilityLabels: This was the original branch split measure and for backward
compatibility it still is the default method in blockwiseModules and blockwiseConsensusModules.
For each cluster C in each clustering in stabilityLabels, its contribution to the branch similarity
is min(r1, r2), where r1 = |intersect(C, branch1)|/|branch1| and r2 = |intersect(C, branch2)|/|branch2|.
The statistics for clusters in each clustering are added; the sums are then averaged across the clus-
terings.

branchSplitFromStabilityLabels.prediction: Use only for experiments, not recommended
for actual analyses because it is not stable under small changes in the branch membership. For each
cluster that overlaps with both branches, count the objects in the branch with which the cluster has a
smaller overlap and add it to the score for that branch. The final counts divided by number of genes
on branch give a "indistinctness" score; take the larger of the two indistinctness scores and call this
the similarity.

Since the result of the last two calculations is a similarity statistic, the final dissimilarity is defined
as 1-similarity. The dissimilarity ranges between 0 (branch1 and branch2 are indistinguishable) and
1 (branch1 and branch2 are perfectly distinguishable).

These statistics are quite simple and do not correct for similarity that would be expected by chance.
On the other hand, all 3 statistics are fairly (though not perfectly) stable under splitting and joining
of clusters in stabilityLabels.

Value

Branch dissimilarity (a single number between 0 and 1).

Author(s)

Peter Langfelder

See Also

These function are utilized in blockwiseModules, blockwiseConsensusModules and hierarchicalConsensusModules.

checkAdjMat 73

checkAdjMat Check adjacency matrix

Description

Checks a given matrix for properties that an adjacency matrix must satisfy.

Usage

checkAdjMat(adjMat, min = 0, max = 1)
checkSimilarity(similarity, min = -1, max = 1)

Arguments

adjMat matrix to be checked

similarity matrix to be checked

min minimum allowed value for entries of the input

max maximum allowed value for entries of the input

Details

The function checks whether the given matrix really is a 2-dimensional numeric matrix, whether it
is square, symmetric, and all finite entries are between min and max. If any of the conditions is not
met, the function issues an error.

Value

None. The function returns normally if all conditions are met.

Author(s)

Peter Langfelder

See Also

adjacency

74 checkSets

checkSets Check structure and retrieve sizes of a group of datasets.

Description

Checks whether given sets have the correct format and retrieves dimensions.

Usage

checkSets(data, checkStructure = FALSE, useSets = NULL)

Arguments

data A vector of lists; in each list there must be a component named data whose
content is a matrix or dataframe or array of dimension 2.

checkStructure If FALSE, incorrect structure of data will trigger an error. If TRUE, an appropriate
flag (see output) will be set to indicate whether data has correct structure.

useSets Optional specification of entries of the vector data that are to be checked. De-
faults to all components. This may be useful when data only contains informa-
tion for some of the sets.

Details

For multiset calculations, many quantities (such as expression data, traits, module eigengenes etc)
are presented by a common structure, a vector of lists (one list for each set) where each list has a
component data that contains the actual (expression, trait, eigengene) data for the corresponding
set in the form of a dataframe. This funtion checks whether data conforms to this convention and
retrieves some basic dimension information (see output).

Value

A list with components

nSets Number of sets (length of the vector data).

nGenes Number of columns in the data components in the lists. This number must be
the same for all sets.

nSamples A vector of length nSets giving the number of rows in the data components.

structureOK Only set if the argument checkStructure equals TRUE. The value is TRUE if
the paramter data passes a few tests of its structure, and FALSE otherwise. The
tests are not exhaustive and are meant to catch obvious user errors rather than be
bulletproof.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

chooseOneHubInEachModule 75

chooseOneHubInEachModule

Chooses a single hub gene in each module

Description

chooseOneHubInEachModule returns one gene in each module with high connectivity, given a
number of randomly selected genes to test.

Usage

chooseOneHubInEachModule(
datExpr,
colorh,
numGenes = 100,
omitColors = "grey",
power = 2,
type = "signed",
...)

Arguments

datExpr Gene expression data with rows as samples and columns as genes.

colorh The module assignments (color vectors) corresponding to the columns in dat-
Expr.

numGenes Th number of random genes to select per module. Higher number of genes
increases the accuracy of hub selection but slows down the function.

omitColors All colors in this character vector (default is "grey") are ignored by this function.

power Power to use for the adjacency network (default = 2).

type What type of network is being entered. Common choices are "signed" (default)
and "unsigned". With "signed" negative correlations count against, whereas with
"unsigned" negative correlations are treated identically as positive correlations.

... Any other parameters accepted by the *adjacency* function

Value

Both functions output a character vector of genes, where the genes are the hub gene picked for each
module, and the names correspond to the module in which each gene is a hub.

Author(s)

Jeremy Miller

76 chooseTopHubInEachModule

Examples

Example: first simulate some data.

MEturquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = c(MEyellow[1:30], sample(1:100,20))
MEred = c(MEbrown [1:20], sample(1:100,30))
MEblack = c(MEblue [1:25], sample(1:100,25))
ME = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen, MEred, MEblack)
dat1 = simulateDatExpr(ME,300,c(0.2,0.1,0.08,0.051,0.05,0.042,0.041,0.3),

signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 <- tree2 <- fastcluster::hclust(as.dist(1-TOM1),method="average")
colorh = labels2colors(dat1$allLabels)
hubs = chooseOneHubInEachModule(dat1$datExpr, colorh)
hubs

chooseTopHubInEachModule

Chooses the top hub gene in each module

Description

chooseTopHubInEachModule returns the gene in each module with the highest connectivity, look-
ing at all genes in the expression file.

Usage

chooseTopHubInEachModule(
datExpr,
colorh,
omitColors = "grey",
power = 2,
type = "signed",
...)

Arguments

datExpr Gene expression data with rows as samples and columns as genes.

colorh The module assignments (color vectors) corresponding to the columns in dat-
Expr.

omitColors All colors in this character vector (default is "grey") are ignored by this function.

power Power to use for the adjacency network (default = 2).

clusterCoef 77

type What type of network is being entered. Common choices are "signed" (default)
and "unsigned". With "signed" negative correlations count against, whereas with
"unsigned" negative correlations are treated identically as positive correlations.

... Any other parameters accepted by the *adjacency* function

Value

Both functions output a character vector of genes, where the genes are the hub gene picked for each
module, and the names correspond to the module in which each gene is a hub.

Author(s)

Jeremy Miller

Examples

Example: first simulate some data.

MEturquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = c(MEyellow[1:30], sample(1:100,20))
MEred = c(MEbrown [1:20], sample(1:100,30))
MEblack = c(MEblue [1:25], sample(1:100,25))
ME = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen, MEred, MEblack)
dat1 = simulateDatExpr(ME,300,c(0.2,0.1,0.08,0.051,0.05,0.042,0.041,0.3), signed=TRUE)
colorh = labels2colors(dat1$allLabels)
hubs = chooseTopHubInEachModule(dat1$datExpr, colorh)
hubs

clusterCoef Clustering coefficient calculation

Description

This function calculates the clustering coefficients for all nodes in the network given by the input
adjacency matrix.

Usage

clusterCoef(adjMat)

Arguments

adjMat adjacency matrix

78 coClustering

Value

A vector of clustering coefficients for each node.

Author(s)

Steve Horvath

coClustering Co-clustering measure of cluster preservation between two clusterings

Description

The function calculates the co-clustering statistics for each module in the reference clustering.

Usage

coClustering(clusters.ref, clusters.test, tupletSize = 2, unassignedLabel = 0)

Arguments

clusters.ref Reference input clustering. A vector in which each element gives the cluster
label of an object.

clusters.test Test input clustering. Must be a vector of the same size as cluster.ref.

tupletSize Co-clutering tuplet size.
unassignedLabel

Optional specification of a clustering label that denotes unassigned objects. Ob-
jects with this label are excluded from the calculation.

Details

Co-clustering of cluster q in the reference clustering and cluster q’ in the test clustering measures
the overlap of clusters q and q’ by the number of tuplets that can be chosen from the overlap of
clusters q and q’ relative to the number of tuplets in cluster q. To arrive at a co-clustering measure
for cluster q, we sum the co-clustering of q and q’ over all clusters q’ in the test clustering. A value
close to 1 indicates high preservation of the reference cluster in the test clustering, while a value
close to zero indicates a low preservation.

Value

A vector in which each component corresponds to a cluster in the reference clustering. Entries give
the co-clustering measure of cluster preservation.

Author(s)

Peter Langfelder

coClustering.permutationTest 79

References

For example, see Langfelder P, Luo R, Oldham MC, Horvath S (2011) Is My Network Module
Preserved and Reproducible? PLoS Comput Biol 7(1): e1001057. Co-clustering is discussed in the
Methods Supplement (Supplementary text 1) of that article.

See Also

modulePreservation for a large suite of module preservation statistics coClustering.permutationTest
for a permutation test for co-clustering significance

Examples

An example with random (unrelated) clusters:

set.seed(1);
nModules = 10;
nGenes = 1000;
cl1 = sample(c(1:nModules), nGenes, replace = TRUE);
cl2 = sample(c(1:nModules), nGenes, replace = TRUE);
coClustering(cl1, cl2)

For the same reference and test clustering:

coClustering(cl1, cl1)

coClustering.permutationTest

Permutation test for co-clustering

Description

This function calculates permutation Z statistics that measure how different the co-clustering of
modules in a reference and test clusterings is from random.

Usage

coClustering.permutationTest(
clusters.ref, clusters.test,
tupletSize = 2,
nPermutations = 100,
unassignedLabel = 0,
randomSeed = 12345, verbose = 0, indent = 0)

80 coClustering.permutationTest

Arguments

clusters.ref Reference input clustering. A vector in which each element gives the cluster
label of an object.

clusters.test Test input clustering. Must be a vector of the same size as cluster.ref.

tupletSize Co-clutering tuplet size.

nPermutations Number of permutations to execute. Since the function calculates parametric
p-values, a relatively small number of permutations (at least 50) should be suf-
ficient.

unassignedLabel

Optional specification of a clustering label that denotes unassigned objects. Ob-
jects with this label are excluded from the calculation.

randomSeed Random seed for initializing the random number generator. If NULL, the gener-
ator is not initialized (useful for calling the function sequentially). The default
assures reproducibility.

verbose If non-zero, function will print out progress messages.

indent Indentation for progress messages. Each unit adds two spaces.

Details

This function performs a permutation test to determine whether observed co-clustering statistics
are significantly different from those expected by chance. It returns the observed co-clustering as
well as the permutation Z statistic, calculated as (observed - mean)/sd, where mean and sd are the
mean and standard deviation of the co-clustering when the test clustering is repeatedly randomly
permuted.

Value

observed the observed co-clustering measures for clusters in clusters.ref

Z permutation Z statics

permuted.mean means of the co-clustering measures when the test clustering is permuted

permuted.sd standard deviations of the co-clustering measures when the test clustering is
permuted

permuted.cc values of the co-clustering measure for each permutation of the test clustering. A
matrix of dimensions (number of permutations)x(number of clusters in reference
clustering).

Author(s)

Peter Langfelder

References

For example, see Langfelder P, Luo R, Oldham MC, Horvath S (2011) Is My Network Module
Preserved and Reproducible? PLoS Comput Biol 7(1): e1001057. Co-clustering is discussed in the
Methods Supplement (Supplementary text 1) of that article.

collapseRows 81

See Also

coClustering for calculation of the "observed" co-clustering measure modulePreservation for a
large suite of module preservation statistics

Examples

set.seed(1);
nModules = 5;
nGenes = 100;
cl1 = sample(c(1:nModules), nGenes, replace = TRUE);
cl2 = sample(c(1:nModules), nGenes, replace = TRUE);

cc = coClustering(cl1, cl2)

Choose a low number of permutations to make the example fast
ccPerm = coClustering.permutationTest(cl1, cl2, nPermutations = 20, verbose = 1);

ccPerm$observed
ccPerm$Z

Combine cl1 and cl2 to obtain clustering that is somewhat similar to cl1:

cl3 = cl2;
from1 = sample(c(TRUE, FALSE), nGenes, replace = TRUE);
cl3[from1] = cl1[from1];

ccPerm = coClustering.permutationTest(cl1, cl3, nPermutations = 20, verbose = 1);

observed co-clustering is higher than before:
ccPerm$observed

Note the high preservation Z statistics:
ccPerm$Z

collapseRows Select one representative row per group

Description

Abstractly speaking, the function allows one to collapse the rows of a numeric matrix, e.g. by form-
ing an average or selecting one representative row for each group of rows specified by a grouping
variable (referred to as rowGroup). The word "collapse" reflects the fact that the method yields a
new matrix whose rows correspond to other rows of the original input data. The function imple-
ments several network-based and biostatistical methods for finding a representative row for each
group specified in rowGroup. Optionally, the function identifies the representative row according to
the least number of missing data, the highest sample mean, the highest sample variance, the highest
connectivity. One of the advantages of this function is that it implements default settings which have
worked well in numerous applications. Below, we describe these default settings in more detail.

82 collapseRows

Usage

collapseRows(datET, rowGroup, rowID,
method="MaxMean", connectivityBasedCollapsing=FALSE,
methodFunction=NULL, connectivityPower=1,
selectFewestMissing=TRUE, thresholdCombine=NA)

Arguments

datET matrix or data frame containing numeric values where rows correspond to vari-
ables (e.g. microarray probes) and columns correspond to observations (e.g.
microarrays). Each row of datET must have a unique row identifier (speci-
fied in the vector rowID). The group label of each row is encoded in the vector
rowGroup. While rowID should have non-missing, unique values (identifiers),
the values of the vector rowGroup will typically not be unique since the function
aims to pick a representative row for each group.

rowGroup character vector whose components contain the group label (e.g. a character
string) for each row of datET. This vector needs to have the same length as the
vector rowID. In gene expression applications, this vector could contain the gene
symbol (or a co-expression module label).

rowID character vector of row identifiers. This should include all the rows from row-
names(datET), but can include other rows. Its entries should be unique (no
duplicates) and no missing values are permitted. If the row identifier is missing
for a given row, we suggest you remove this row from datET before applying
the function.

method character string for determining which method is used to choose a probe among
exactly 2 corresponding rows or when connectivityBasedCollapsing=FALSE.
These are the options: "MaxMean" (default) or "MinMean" = choose the row
with the highest or lowest mean value, respectively. "maxRowVariance" = choose
the row with the highest variance (across the columns of datET). "absMaxMean"
or "absMinMean" = choose the row with the highest or lowest mean absolute
value. "ME" = choose the eigenrow (first principal component of the rows in
each group). Note that with this method option, connectivityBasedCollapsing
is automatically set to FALSE. "Average" = for each column, take the aver-
age value of the rows in each group "function" = use this method for a user-
input function (see the description of the argument "methodFunction"). Note:
if method="ME", "Average" or "function", the output parameters "group2row"
and "selectedRow" are not informative.

connectivityBasedCollapsing

logical value. If TRUE, groups with 3 or more corresponding rows will be repre-
sented by the row with the highest connectivity according to a signed weighted
correlation network adjacency matrix among the corresponding rows. Recall
that the connectivity is defined as the rows sum of the adjacency matrix. The
signed weighted adjacency matrix is defined as A=(0.5+0.5*COR)^power where
power is determined by the argument connectivityPower and COR denotes
the matrix of pairwise Pearson correlation coefficients among the corresponding
rows.

collapseRows 83

methodFunction character string. It only needs to be specified if method="function" otherwise
its input is ignored. Must be a function that takes a Nr x Nc matrix of numbers
as input and outputs a vector with the length Nc (e.g., colMeans). This will then
be the method used for collapsing values for multiple rows into a single value
for the row.

connectivityPower

Positive number (typically integer) for specifying the threshold (power) used to
construct the signed weighted adjacency matrix, see the description of connectivityBasedCollapsing.
This option is only used if connectivityBasedCollapsing=TRUE.

selectFewestMissing

logical values. If TRUE (default), the input expression matrix is trimmed such
that for each group only the rows with the fewest number of missing values are
retained. In situations where an equal number of values are missing (or where
there is no missing data), all rows for a given group are retained. Whether this
value is set to TRUE or FALSE, all rows with >90% missing data are omitted
from the analysis.

thresholdCombine

Number between -1 and 1, or NA. If NA (default), this input is ignored. If a num-
ber between -1 and 1 is input, this value is taken as a threshold value, and col-
lapseRows proceeds following the "maxMean" method, but ONLY for ids with
correlations of R>thresholdCombine. Specifically: ...1) If there is one id/group,
keep the id ...2) If there are 2 ids/group, take the maximum mean expression
if their correlation is > thresholdCombine ...3) If there are 3+ ids/group, itera-
tively repeat (2) for the 2 ids with the highest correlation until all ids remaining
have correlation < thresholdCombine for each group Note that this option usu-
ally results in more than one id per group; therefore, one must use care when
implementing this option for use in comparisons between multiple matrices /
data frames.

Details

The function is robust to missing data. Also, if rowIDs are missing, they are inferred according
to the rownames of datET when possible. When a group corresponds to only 1 row then it is
represented by this row since there is no other choice. Having said this, the row may be removed
if it contains an excessive amount of missing data (90 percent or more missing values), see the
description of the argument selectFewestMissing for more details.

A group is represented by a corresponding row with the fewest number of missing data if selectFewestMissing
has been set to TRUE. Often several rows have the same minimum number of missing values (or
no missing values) and a representative must be chosen among those rows. In this case we distin-
guish 2 situations: (1) If a group corresponds to exactly 2 rows then the corresponding row with
the highest average is selected if method="maxMean". Alternative methods can be chosen as de-
scribed in method. (2) If a group corresponds to more than 2 rows, then the function calculates
a signed weighted correlation network (with power specified in connectivityPower) among the
corresponding rows if connectivityBasedCollapsing=TRUE. Next the function calculates the net-
work connectivity of each row (closely related to the sum or correlations with the other matching
rows). Next it chooses the most highly connected row as representative. If connectivityBasedCol-
lapsing=FALSE, then method is used. For both situations, if more than one row has the same value,
the first such row is chosen.

84 collapseRows

Setting thresholdCombine is a special case of this function, as not all ids for a single group are
necessarily collapsed–only those with similar expression patterns are collapsed. We suggest using
this option when the goal is to decrease the number of ids for computational reasons, but when ALL
ids for a single group should not be combined (for example, if two probes could represent different
splice variants for the same gene for many genes on a microarray).

Example application: when dealing with microarray gene expression data then the rows of datET
may correspond to unique probe identifiers and rowGroup may contain corresponding gene sym-
bols. Recall that multiple probes (specified using rowID=ProbeID) may correspond to the same
gene symbol (specified using rowGroup=GeneSymbol). In this case, datET contains the input ex-
pression data with rows as rowIDs and output expression data with rows as gene symbols, collapsing
all probes for a given gene symbol into one representative.

Value

The output is a list with the following components.

datETcollapsed is a numeric matrix with the same columns as the input matrix datET, but with
rows corresponding to the different row groups rather than individual row iden-
tifiers. (If thresholdCombine is set, then rows still correspond to individual row
identifiers.)

group2row is a matrix whose rows correspond to the unique group labels and whose 2
columns report which group label (first column called group) is represented
by what row label (second column called selectedRowID). Set to NULL if
method="ME" or "function".

.

selectedRow is a logical vector whose components are TRUE for probes selected as represen-
tatives and FALSE otherwise. It has the same length as the vector probeID. Set
to NULL if method="ME" or "function".

Author(s)

Jeremy A. Miller, Steve Horvath, Peter Langfelder, Chaochao Cai

References

Miller JA, Langfelder P, Cai C, Horvath S (2010) Strategies for optimally aggregating gene expres-
sion data: The collapseRows R function. Technical Report.

Examples

##
EXAMPLE 1:
The code simulates a data frame (called dat1) of correlated rows.
You can skip this part and start at the line called Typical Input Data
The first column of the data frame will contain row identifiers
number of columns (e.g. observations or microarrays)
m=60
number of rows (e.g. variables or probes on a microarray)

collapseRows 85

n=500
seed module eigenvector for the simulateModule function
MEtrue=rnorm(m)
numeric data frame of n rows and m columns
datNumeric=data.frame(t(simulateModule(MEtrue,n)))
RowIdentifier=paste("Probe", 1:n, sep="")
ColumnName=paste("Sample",1:m, sep="")
dimnames(datNumeric)[[2]]=ColumnName
Let us now generate a data frame whose first column contains the rowID
dat1=data.frame(RowIdentifier, datNumeric)
#we simulate a vector with n/5 group labels, i.e. each row group corresponds to 5 rows
rowGroup=rep(paste("Group",1:(n/5), sep=""), 5)

Typical Input Data
Since the first column of dat1 contains the RowIdentifier, we use the following code
datET=dat1[,-1]
rowID=dat1[,1]

assign row names according to the RowIdentifier
dimnames(datET)[[1]]=rowID
run the function and save it in an object

collapse.object=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID)

this creates the collapsed data where
the first column contains the group name
the second column reports the corresponding selected row name (the representative)
and the remaining columns report the values of the representative row
dat1Collapsed=data.frame(collapse.object$group2row, collapse.object$datETcollapsed)
dat1Collapsed[1:5,1:5]

##
EXAMPLE 2:
Using the same data frame as above, run collapseRows with a user-inputted function.
In this case we will use the mean. Note that since we are choosing some combination
of the probe values for each gene, the group2row and selectedRow output
parameters are not meaningful.

collapse.object.mean=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID,
method="function", methodFunction=colMeans)[[1]]

Note that in this situation, running the following code produces the identical results:

collapse.object.mean.2=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID,
method="Average")[[1]]

##
EXAMPLE 3:
Using collapseRows to calculate the module eigengene.
First we create some sample data as in example 1 (or use your own!)
m=60
n=500
MEtrue=rnorm(m)

86 collapseRowsUsingKME

datNumeric=data.frame(t(simulateModule(MEtrue,n)))

In this example, rows are genes, and groups are modules.
RowIdentifier=paste("Gene", 1:n, sep="")
ColumnName=paste("Sample",1:m, sep="")
dimnames(datNumeric)[[2]]=ColumnName
dat1=data.frame(RowIdentifier, datNumeric)
We simulate a vector with n/100 modules, i.e. each row group corresponds to 100 rows
rowGroup=rep(paste("Module",1:(n/100), sep=""), 100)
datET=dat1[,-1]
rowID=dat1[,1]
dimnames(datET)[[1]]=rowID

run the function and save it in an object
collapse.object.ME=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID, method="ME")[[1]]

Note that in this situation, running the following code produces the identical results:
collapse.object.ME.2 = t(moduleEigengenes(expr=t(datET),colors=rowGroup)$eigengene)
colnames(collapse.object.ME.2) = ColumnName
rownames(collapse.object.ME.2) = sort(unique(rowGroup))

collapseRowsUsingKME Selects one representative row per group based on kME

Description

This function selects only the most informative probe for each gene in a kME table, only keeping
the probe which has the highest kME with respect to any module in the module membership matrix.
This function is a special case of the function collapseRows.

Usage

collapseRowsUsingKME(MM, Gin, Pin = NULL, kMEcols = 1:dim(MM)[2])

Arguments

MM A module membership (kME) table with at least a subset of the columns corre-
sponding to kME values.

Gin Genes labels in a 1 to 1 correspondence with the rows of MM.

Pin If NULL (default), rownames of MM are assumed to be probe IDs. If entered,
Pin must be the same length as Gin and correspond to probe IDs for MM.

kMEcols A numeric vector showing which columns in MM correspond to kME values.
The default is all of them.

collectGarbage 87

Value

datETcollapsed A numeric matrix with the same columns as the input matrix MM, but with rows
corresponding to the genes rather than the probes.

group2row A matrix whose rows correspond to the unique gene labels and whose 2 columns
report which gene label (first column called group) is represented by what probe
(second column called selectedRowID)

selectedRow A logical vector whose components are TRUE for probes selected as represen-
tatives and FALSE otherwise. It has the same length as the vector Pin.

Author(s)

Jeremy Miller

See Also

collapseRows

Examples

Example: first simulate some data
set.seed(100)
ME.A = sample(1:100,50); ME.B = sample(1:100,50)
ME.C = sample(1:100,50); ME.D = sample(1:100,50)
ME1 = data.frame(ME.A, ME.B, ME.C, ME.D)
simDatA = simulateDatExpr(ME1,1000,c(0.2,0.1,0.08,0.05,0.3), signed=TRUE)
simDatB = simulateDatExpr(ME1,1000,c(0.2,0.1,0.08,0.05,0.3), signed=TRUE)
Gin = c(colnames(simDatA$datExpr),colnames(simDatB$datExpr))
Pin = paste("Probe",1:length(Gin),sep=".")
datExpr = cbind(simDatA$datExpr, simDatB$datExpr)
MM = corAndPvalue(datExpr,ME1)$cor

Now run the function and see some example output
results = collapseRowsUsingKME(MM, Gin, Pin)
head(results$MMcollapsed)
head(results$group2Row)
head(results$selectedRow)

collectGarbage Iterative garbage collection.

Description

Performs garbage collection until free memory idicators show no change.

Usage

collectGarbage()

88 colQuantileC

Value

None.

Author(s)

Steve Horvath

colQuantileC Fast colunm- and row-wise quantile of a matrix.

Description

Fast calculation of column- and row-wise quantiles of a matrix at a single probability. Implemented
via compiled code, it is much faster than the equivalent apply(data, 2, quantile, prob = p).

Usage

colQuantileC(data, p)
rowQuantileC(data, p)

Arguments

data a numerical matrix column-wise quantiles are desired. Missing values are re-
moved.

p a single probability at which the quantile is to be calculated.

Details

At present, only one quantile type is implemented, namely the default type 7 used by R.

Value

A vector of length equal the number of columns (for colQuantileC) or rows (for rowQuantileC)
in data containing the column- or row-wise quantiles.

Author(s)

Peter Langfelder

See Also

quantile; pquantile for another way of calculating quantiles across structured data.

conformityBasedNetworkConcepts 89

conformityBasedNetworkConcepts

Calculation of conformity-based network concepts.

Description

This function computes 3 types of network concepts (also known as network indices or statistics)
based on an adjacency matrix and optionally a node significance measure.

Usage

conformityBasedNetworkConcepts(adj, GS = NULL)

Arguments

adj adjacency matrix. A symmetric matrix with components between 0 and 1.

GS optional node significance measure. A vector with length equal the dimension
of adj.

Details

This function computes 3 types of network concepts (also known as network indices or statistics)
based on an adjacency matrix and optionally a node significance measure. Specifically, it computes
I) fundamental network concepts, II) conformity based network concepts, and III) approximate
conformity based network concepts. These network concepts are defined for any symmetric adja-
cency matrix (weighted and unweighted). The network concepts are described in Dong and Horvath
(2007) and Horvath and Dong (2008). In the following, we use the term gene and node interchange-
ably since these methods were originally developed for gene networks. In the following, we briefly
describe the 3 types of network concepts:

Type I: fundamental network concepts are defined as a function of the off-diagonal elements of
an adjacency matrix A and/or a node significance measure GS. Type II: conformity-based net-
work concepts are functions of the off-diagonal elements of the conformity based adjacency matrix
A.CF=CF*t(CF) and/or the node significance measure. These network concepts are defined for any
network for which a conformity vector can be defined. Details: For any adjacency matrix A, the
conformity vector CF is calculated by requiring that A[i,j] is approximately equal to CF[i]*CF[j].
Using the conformity one can define the matrix A.CF=CF*t(CF) which is the outer product of the
conformity vector with itself. In general, A.CF is not an adjacency matrix since its diagonal ele-
ments are different from 1. If the off-diagonal elements of A.CF are similar to those of A according
to the Frobenius matrix norm, then A is approximately factorizable. To measure the factorizability
of a network, one can calculate the Factorizability, which is a number between 0 and 1 (Dong and
Horvath 2007). The conformity is defined using a monotonic, iterative algorithm that maximizes
the factorizability measure. Type III: approximate conformity based network concepts are functions
of all elements of the conformity based adjacency matrix A.CF (including the diagonal) and/or the
node significance measure GS. These network concepts are very useful for deriving relationships
between network concepts in networks that are approximately factorizable.

90 conformityBasedNetworkConcepts

Value

A list with the following components:

Factorizability

number between 0 and 1 giving the factorizability of the matrix. The closer to
1 the higher the evidence of factorizability, that is, A-I is close to outer(CF,CF)-
diag(CF^2).

fundamentalNCs fundamental network concepts, that is network concepts calculated directly from
the given adjacency matrix adj. A list with components ScaledConnectivity
(giving the scaled connectivity of each node), Connectivity (connectivity of
each node), ClusterCoef (the clustering coefficient of each node), MAR (max-
imum adjacency ratio of each node), Density (the mean density of the net-
work), Centralization (the centralization of the network), Heterogeneity
(the heterogeneity of the network). If the input node significance GS is speci-
fied, the following additional components are included: NetworkSignificance
(network significance, the mean node significance), and HubNodeSignificance
(hub node significance given by the linear regression of node significance on
connectivity).

conformityBasedNCs

network concepts based on an approximate adjacency matrix given by the outer
product of the conformity vector but with unit diagonal. A list with components
Conformity (the conformity vector) and Connectivity.CF, ClusterCoef.CF,
MAR.CF, Density.CF, Centralization.CF,Heterogeneity.CF giving the conformity-
based analogs of the above network concepts.

approximateConformityBasedNCs

network concepts based on an approximate adjacency matrix given by the outer
product of the conformity vector. A list with components Conformity (the con-
formity vector) and Connectivity.CF.App, ClusterCoef.CF.App, MAR.CF.App,
Density.CF.App,Centralization.CF.App,Heterogeneity.CF.App giving the
conformity-based analogs of the above network concepts.

Author(s)

Steve Horvath

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24 Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network
Analysis. PLoS Comput Biol 4(8): e1000117

See Also

networkConcepts for calculation of eigennode based network concepts for a correlation network;

fundamentalNetworkConcepts for calculation of fundamental network concepts only.

conformityDecomposition 91

conformityDecomposition

Conformity and module based decomposition of a network adjacency
matrix.

Description

The function calculates the conformity based approximation A.CF of an adjacency matrix and a
factorizability measure Factorizability. If a module assignment Cl is provided, it also estimates
a corresponding intermodular adjacency matrix. In this case, function automatically carries out the
module- and conformity based decomposition of the adjacency matrix described in chapter 2 of
(Horvath 2011).

Usage

conformityDecomposition(adj, Cl = NULL)

Arguments

adj a symmetric numeric matrix (or data frame) whose entries lie between 0 and 1.

Cl a vector (or factor variable) of length equal to the number of rows of adj. The
variable assigns each network node (row of adj) to a module. The entries of Cl
could be integers or character strings.

Details

We distinguish two situation depending on whether or not Cl equals NULL. 1) Let us start out assum-
ing that Cl = NULL. In this case, the function calculates the conformity vector for a general, possibly
non-factorizable network adj by minimizing a quadratic (sums of squares) loss function. The con-
formity and factorizability for an adjacency matrix is defined in (Dong and Horvath 2007, Horvath
and Dong 2008) but we briefly describe it in the following. A network is called exactly factorizable
if the pairwise connection strength (adjacency) between 2 network nodes can be factored into node
specific contributions, named node ’conformity’, i.e. if adj[i,j]=Conformity[i]*Conformity[j].
The conformity turns out to be highly related to the network connectivity (aka degree). If adj is not
exactly factorizable, then the function conformityDecomposition calculates a conformity vec-
tor of the exactly factorizable network that best approximates adj. The factorizability measure
Factorizability is a number between 0 and 1. The higher Factorizability, the more factoriz-
able is adj. Warning: the algorithm may only converge to a local optimum and it may not converge
at all. Also see the notes below.

2) Let us now assume that Cl is not NULL, i.e. it specifies the module assignment of each node.
Then the function calculates a module- and CF-based approximation of adj (explained in chapter 2
in Horvath 2011). In this case, the function calculates a conformity vector Conformity and a matrix
IntermodularAdjacency such that adj[i,j] is approximately equal to Conformity[i]*Conformity[j]*IntermodularAdjacency[module.index[i],module.index[j]]
where module.index[i] is the row of the matrix IntermodularAdjacency that corresponds to the
module assigned to node i. To estimate Conformity and a matrix IntermodularAdjacency, the
function attempts to minimize a quadratic loss function (sums of squares). Currently, the function
only implements a heuristic algorithm for optimizing the objective function (chapter 2 of Horvath

92 conformityDecomposition

2011). Another, more accurate Majorization Minorization (MM) algorithm for the decomposition
is implemented in the function propensityDecomposition by Ranola et al (2011).

Value

A.CF a symmetric matrix that approximates the input matrix adj. Roughly speaking,
the i,j-the element of the matrix equals Conformity[i]*Conformity[j]*IntermodularAdjacency[module.index[i],module.index[j]]
where module.index[i] is the row of the matrix IntermodularAdjacency that
corresponds to the module assigned to node i.

Conformity a numeric vector whose entries correspond to the rows of adj. If Cl=NULL then
Conformity[i] is the conformity. If Cl is not NULL then Conformity[i] is
the intramodular conformity with respect to the module that node i belongs to.

IntermodularAdjacency

a symmetric matrix (data frame) whose rows and columns correspond to the
number of modules specified in Cl. Interpretation: it measures the similar-
ity (adjacency) between the modules. In this case, the rows (and columns) of
IntermodularAdjacency correspond to the entries of Cl.level.

Factorizability

is a number between 0 and 1. If Cl=NULL then it equals 1, if (and only if) adj
is exactly factorizable. If Cl is a vector, then it measures how well the module-
and CF based decomposition approximates adj.

Cl.level is a vector of character strings which correspond to the factor levels of the mod-
ule assignment Cl. Incidentally, the function automatically turns Cl into a factor
variable. The components of Conformity and IntramodularFactorizability
correspond to the entries of Cl.level.

IntramodularFactorizability

is a numeric vector of length equal to the number of modules specified by Cl.
Its entries report the factorizability measure for each module. The components
correspond to the entries of Cl.level.

listConformity

Note

Regarding the situation when Cl=NULL. One can easily show that the conformity vector is not unique
if adj contains only 2 nodes. However, for more than 2 nodes the conformity is uniquely defined
when dealing with an exactly factorizable weighted network whose entries adj[i,j] are larger than
0. In this case, one can get explicit formulas for the conformity (Dong and Horvath 2007).

Author(s)

Steve Horvath

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules. BMC Systems Biology
2007, June 1:24 Horvath S, Dong J (2008) Geometric Interpretation of Gene Co-Expression Net-
work Analysis. PloS Computational Biology. 4(8): e1000117. PMID: 18704157 Horvath S (2011)
Weighted Network Analysis. Applications in Genomics and Systems Biology. Springer Book.

consensusCalculation 93

ISBN: 978-1-4419-8818-8 Ranola JMO, Langfelder P, Song L, Horvath S, Lange K (2011) An MM
algorithm for the module- and propensity based decomposition of a network. Currently a draft.

See Also

conformityBasedNetworkConcepts

Examples

assume the number of nodes can be divided by 2 and by 3
n=6
here is a perfectly factorizable matrix
A=matrix(1,nrow=n,ncol=n)
this provides the conformity vector and factorizability measure
conformityDecomposition(adj=A)
now assume we have a class assignment
Cl=rep(c(1,2),c(n/2,n/2))
conformityDecomposition(adj=A,Cl=Cl)
here is a block diagonal matrix
blockdiag.A=A
blockdiag.A[1:(n/3),(n/3+1):n]=0
blockdiag.A[(n/3+1):n , 1:(n/3)]=0
block.Cl=rep(c(1,2),c(n/3,2*n/3))
conformityDecomposition(adj= blockdiag.A,Cl=block.Cl)

another block diagonal matrix
blockdiag.A=A
blockdiag.A[1:(n/3),(n/3+1):n]=0.3
blockdiag.A[(n/3+1):n , 1:(n/3)]=0.3
block.Cl=rep(c(1,2),c(n/3,2*n/3))
conformityDecomposition(adj= blockdiag.A,Cl=block.Cl)

consensusCalculation Calculation of a (single) consenus with optional data calibration.

Description

This function calculates a single consensus from given individual data, optionally first calibrating
the individual data to make them comparable.

Usage

consensusCalculation(
individualData,
consensusOptions,

useBlocks = NULL,
randomSeed = NULL,

94 consensusCalculation

saveCalibratedIndividualData = FALSE,
calibratedIndividualDataFilePattern = "calibratedIndividualData-%a-Set%s-Block%b.RData",

Return options: the data can be either saved or returned but not both.
saveConsensusData = NULL,
consensusDataFileNames = "consensusData-%a-Block%b.RData",
getCalibrationSamples= FALSE,

Internal handling of data
useDiskCache = NULL, chunkSize = NULL,
cacheDir = ".",
cacheBase = ".blockConsModsCache",

Behaviour
collectGarbage = FALSE,
verbose = 1, indent = 0)

Arguments

individualData Individual data from which the consensus is to be calculated. It can be either a
list or a multiData structure. Each element in individulData can in turn either
be a numeric obeject (vector, matrix or array) or a BlockwiseData structure.

consensusOptions

A list of class ConsensusOptions that contains options for the consensus calcu-
lation. A suitable list can be obtained by calling function newConsensusOptions.

useBlocks When individualData contains BlockwiseData, this argument can be an inte-
ger vector with indices of blocks for which the calculation should be performed.

randomSeed If non-NULL, the function will save the current state of the random generator, set
the given seed, and restore the random seed to its original state upon exit. If
NULL, the seed is not set nor is it restored on exit.

saveCalibratedIndividualData

Logical: should calibrated individual data be saved?
calibratedIndividualDataFilePattern

Pattern from which file names for saving calibrated individual data are deter-
mined. The conversions %a, %s and %b will be replaced by analysis name, set
number and block number, respectively.

saveConsensusData

Logical: should final consensus be saved (TRUE) or returned in the return value
(FALSE)? If NULL, data will be saved only if input data were blockwise data saved
on disk rather than held in memory

consensusDataFileNames

Pattern from which file names for saving the final consensus are determined.
The conversions %a and %b will be replaced by analysis name and block number,
respectively.

getCalibrationSamples

When calibration method in the consensusOptions component of ConsensusTree

consensusCalculation 95

is "single quantile", this logical argument determines whether the calibration
samples should be retuned within the return value.

useDiskCache Logical: should disk cache be used for consensus calculations? The disk cache
can be used to sture chunks of calibrated data that are small enough to fit one
chunk from each set into memory (blocks may be small enough to fit one block
of one set into memory, but not small enogh to fit one block from all sets in
a consensus calculation into memory at the same time). Using disk cache is
slower but lessens the memry footprint of the calculation. As a general guide,
if individual data are split into blocks, we recommend setting this argument to
TRUE. If this argument is NULL, the function will decide whether to use disk cache
based on the number of sets and block sizes.

chunkSize Integer giving the chunk size. If left NULL, a suitable size will be chosen auto-
matically.

cacheDir Directory in which to save cache files. The files are deleted on normal exit but
persist if the function terminates abnormally.

cacheBase Base for the file names of cache files.

collectGarbage Logical: should garbage collection be forced after each major calculation?

verbose Integer level of verbosity of diagnostic messages. Zero means silent, higher
values make the output progressively more and more verbose.

indent Indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Consensus is defined as the element-wise (also known as "parallel") quantile of the individual data
at probability given by the consensusQuantile element of consensusOptions. Depending on the
value of component calibration of consensusOptions, the individual data are first calibrated.
For consensusOptions$calibration="full quantile", the individual data are quantile normal-
ized using normalize.quantiles. For consensusOptions$calibration="single quantile",
the individual data are raised to a power such that the quantiles at probability consensusOptions$calibrationQuantile
are the same. For consensusOptions$calibration="none", the individual data are not calibrated.

Value

A list with the following components:

consensusData A BlockwiseData list containing the consensus.

nSets Number of input data sets.

saveCalibratedIndividualData

Copy of the input saveCalibratedIndividualData.

calibratedIndividualData

If input saveCalibratedIndividualData is TRUE, a list in which each compo-
nent is a BlockwiseData structure containing the calibrated individual data for
the corresponding input individual data set.

96 consensusDissTOMandTree

calibrationSamples

If consensusOptions$calibration is "single quantile" and getCalibrationSamples
is TRUE, a list in which each component contains the calibration samples for the
corresponding input individual data set.

originCount A vector of length nSets that contains, for each set, the number of (calibrated)
elements that were less than or equal the consensus for that element.

Author(s)

Peter Langfelder

References

Consensus network analysis was originally described in Langfelder P, Horvath S. Eigengene net-
works for studying the relationships between co-expression modules. BMC Systems Biology 2007,
1:54 https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-1-54

See Also

normalize.quantiles for quantile normalization.

consensusDissTOMandTree

Consensus clustering based on topological overlap and hierarchical
clustering

Description

This function makes a consensus network using all of the default values in the WGCNA library. De-
tails regarding how consensus modules are formed can be found here: http://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/Consensus-
NetworkConstruction-man.pdf

Usage

consensusDissTOMandTree(multiExpr, softPower, TOM = NULL)

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data. Rows correspond to samples and columns to genes or probes. Two or
more sets of data must be included and adjacencies cannot be used.

softPower Soft thresholding power used to make each of the networks in multiExpr.

TOM A LIST of matrices holding the topological overlap corresponding to the sets
in multiExpr, if they have already been calculated. Otherwise, keep TOM set
as NULL (default), and TOM similarities will be calculated using the WGCNA
defaults. If inputted, this variable must be a list with each entree a TOM corre-
sponding to the same entries in multiExpr.

consensusDissTOMandTree 97

Value

consensusTOM The TOM difference matrix (1-TOM similarity) corresponding to the consensus
network.

consTree Returned value is the same as that of hclust: An object of class hclust which
describes the tree produced by the clustering process. This tree corresponds to
the dissimilarity matrix consensusTOM.

Author(s)

Peter Langfelder, Steve Horvath, Jeremy Miller

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

blockwiseConsensusModules

Examples

Example consensus network using two simulated data sets

set.seed = 100
MEturquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = sample(1:100,50)

ME = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen)
system.time({
dat1 = simulateDatExpr(ME,300,c(0.2, 0.10, 0.10, 0.10, 0.10, 0.2), signed=TRUE)})
system.time({
dat2 = simulateDatExpr(ME,300,c(0.18, 0.11, 0.11, 0.09, 0.11, 0.23),signed=TRUE)})
multiExpr = list(S1=list(data=dat1$datExpr),S2=list(data=dat2$datExpr))
softPower=8

system.time({
consensusNetwork = consensusDissTOMandTree(multiExpr, softPower)})
system.time({
plotDendroAndColors(consensusNetwork$consTree, cbind(labels2colors(dat1$allLabels),

labels2colors(dat2$allLabels)),c("S1","S2"), dendroLabels=FALSE)})

98 consensusKME

consensusKME Calculate consensus kME (eigengene-based connectivities) across
multiple data sets.

Description

Calculate consensus kME (eigengene-based connectivities) across multiple data sets, typically fol-
lowing a consensus module analysis.

Usage

consensusKME(
multiExpr,
moduleLabels,
multiEigengenes = NULL,
consensusQuantile = 0,
signed = TRUE,
useModules = NULL,
metaAnalysisWeights = NULL,
corAndPvalueFnc = corAndPvalue, corOptions = list(), corComponent = "cor",
getQvalues = FALSE,
useRankPvalue = TRUE,
rankPvalueOptions = list(calculateQvalue = getQvalues, pValueMethod = "scale"),
setNames = NULL,
excludeGrey = TRUE,
greyLabel = if (is.numeric(moduleLabels)) 0 else "grey")

Arguments

multiExpr Expression (or other numeric) data in a multi-set format. A vector of lists; in
each list there must be a component named ‘data’ whose content is a matrix or
dataframe or array of dimension 2.

moduleLabels Module labels: one label for each gene in multiExpr.
multiEigengenes

Optional eigengenes of modules specified in moduleLabels. If not given, will
be calculated from multiExpr.

signed logical: should the network be considered signed? In signed networks (TRUE),
negative kME values are not considered significant and the corresponding p-
values will be one-sided. In unsigned networks (FALSE), negative kME values
are considered significant and the corresponding p-values will be two-sided.

useModules Optional specification of module labels to which the analysis should be re-
stricted. This could be useful if there are many modules, most of which are
not interesting. Note that the "grey" module cannot be used with useModules.

consensusQuantile

Quantile for the consensus calculation. Should be a number between 0 (mini-
mum) and 1.

consensusKME 99

metaAnalysisWeights

Optional specification of meta-analysis weights for each input set. If given,
must be a numeric vector of length equal the number of input data sets (i.e.,
length(multiExpr)). These weights will be used in addition to constant weights
and weights proportional to number of samples (observations) in each set.

corAndPvalueFnc

Function that calculates associations between expression profiles and eigen-
genes. See details.

corOptions List giving additional arguments to function corAndPvalueFnc. See details.

corComponent Name of the component of output of corAndPvalueFnc that contains the actual
correlation.

getQvalues logical: should q-values (estimates of FDR) be calculated?

useRankPvalue Logical: should the rankPvalue function be used to obtain alternative meta-
analysis statistics?

rankPvalueOptions

Additional options for function rankPvalue. These include na.last (default
"keep"), ties.method (default "average"), calculateQvalue (default copied
from input getQvalues), and pValueMethod (default "scale"). See the help
file for rankPvalue for full details.

setNames names for the input sets. If not given, will be taken from names(multiExpr). If
those are NULL as well, the names will be "Set_1", "Set_2",

excludeGrey logical: should the grey module be excluded from the kME tables? Since the
grey module is typically not a real module, it makes little sense to report kME
values for it.

greyLabel label that labels the grey module.

Details

The function corAndPvalueFnc is currently is expected to accept arguments x (gene expression
profiles), y (eigengene expression profiles), and alternative with possibilities at least "greater",
"two.sided". Any additional arguments can be passed via corOptions.

The function corAndPvalueFnc should return a list which at the least contains (1) a matrix of asso-
ciations of genes and eigengenes (this component should have the name given by corComponent),
and (2) a matrix of the corresponding p-values, named "p" or "p.value". Other components are
optional but for full functionality should include (3) nObs giving the number of observations for
each association (which is the number of samples less number of missing data - this can in principle
vary from association to association), and (4) Z giving a Z static for each observation. If these are
missing, nObs is calculated in the main function, and calculations using the Z statistic are skipped.

Value

Data frame with the following components (for easier readability the order here is not the same as
in the actual output):

ID Gene ID, taken from the column names of the first input data set

100 consensusKME

consensus.kME.1, consensus.kME.2, ...
Consensus kME (that is, the requested quantile of the kMEs in the individual
data sets)in each module for each gene across the input data sets. The module
labels (here 1, 2, etc.) correspond to those in moduleLabels.

weightedAverage.equalWeights.kME1, weightedAverage.equalWeights.kME2,
...

Average kME in each module for each gene across the input data sets.
weightedAverage.RootDoFWeights.kME1, weightedAverage.RootDoFWeights.kME2,
...

Weighted average kME in each module for each gene across the input data sets.
The weight of each data set is proportional to the square root of the number of
samples in the set.

weightedAverage.DoFWeights.kME1, weightedAverage.DoFWeights.kME2,
...

Weighted average kME in each module for each gene across the input data sets.
The weight of each data set is proportional to number of samples in the set.

weightedAverage.userWeights.kME1, weightedAverage.userWeights.kME2,
...

(Only present if input metaAnalysisWeights is non-NULL.) Weighted average
kME in each module for each gene across the input data sets. The weight of
each data set is given in metaAnalysisWeights.

meta.Z.equalWeights.kME1, meta.Z.equalWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the
Z scores in each set equally. Only returned if the function corAndPvalueFnc
returns the Z statistics corresponding to the correlations.

meta.Z.RootDoFWeights.kME1, meta.Z.RootDoFWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the Z
scores in each set by the square root of the number of samples. Only returned
if the function corAndPvalueFnc returns the Z statistics corresponding to the
correlations.

meta.Z.DoFWeights.kME1, meta.Z.DoFWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the
Z scores in each set by the number of samples. Only returned if the function
corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.Z.userWeights.kME1, meta.Z.userWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the Z
scores in each set by metaAnalysisWeights. Only returned if metaAnalysisWeights
is non-NULL and the function corAndPvalueFnc returns the Z statistics corre-
sponding to the correlations.

meta.p.equalWeights.kME1, meta.p.equalWeights.kME2, ...
p-values obtained from the equal-weight meta-analysis Z statistics. Only re-
turned if the function corAndPvalueFnc returns the Z statistics corresponding
to the correlations.

meta.p.RootDoFWeights.kME1, meta.p.RootDoFWeights.kME2, ...
p-values obtained from the meta-analysis Z statistics with weights proportional
to the square root of the number of samples. Only returned if the function
corAndPvalueFnc returns the Z statistics corresponding to the correlations.

consensusKME 101

meta.p.DoFWeights.kME1, meta.p.DoFWeights.kME2, ...
p-values obtained from the degree-of-freedom weight meta-analysis Z statistics.
Only returned if the function corAndPvalueFnc returns the Z statistics corre-
sponding to the correlations.

meta.p.userWeights.kME1, meta.p.userWeights.kME2, ...
p-values obtained from the user-supplied weight meta-analysis Z statistics. Only
returned if metaAnalysisWeights is non-NULL and the function corAndPvalueFnc
returns the Z statistics corresponding to the correlations.

meta.q.equalWeights.kME1, meta.q.equalWeights.kME2, ...
q-values obtained from the equal-weight meta-analysis p-values. Only present if
getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics
corresponding to the kME values.

meta.q.RootDoFWeights.kME1, meta.q.RootDoFWeights.kME2, ...
q-values obtained from the meta-analysis p-values with weights proportional to
the square root of the number of samples. Only present if getQvalues is TRUE
and the function corAndPvalueFnc returns the Z statistics corresponding to the
kME values.

meta.q.DoFWeights.kME1, meta.q.DoFWeights.kME2, ...
q-values obtained from the degree-of-freedom weight meta-analysis p-values.
Only present if getQvalues is TRUE and the function corAndPvalueFnc returns
the Z statistics corresponding to the kME values.

meta.q.userWeights.kME1, meta.q.userWeights.kME2, ...
q-values obtained from the user-specified weight meta-analysis p-values. Only
present if metaAnalysisWeights is non-NULL, getQvalues is TRUE and the
function corAndPvalueFnc returns the Z statistics corresponding to the kME
values.

The next set of columns contain the results of function rankPvalue and are only present if input
useRankPvalue is TRUE. Some columns may be missing depending on the options specified in
rankPvalueOptions. We explicitly list columns that are based on weighing each set equally; names
of these columns carry the suffix .equalWeights

pValueExtremeRank.ME1.equalWeights, pValueExtremeRank.ME2.equalWeights,
...

This is the minimum between pValueLowRank and pValueHighRank, i.e. min(pValueLow,
pValueHigh)

pValueLowRank.ME1.equalWeights, pValueLowRank.ME2.equalWeights, ...
Asymptotic p-value for observing a consistently low value across the columns
of datS based on the rank method.

pValueHighRank.ME1.equalWeights, pValueHighRank.ME2.equalWeights,
...

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the rank method.

pValueExtremeScale.ME1.equalWeights, pValueExtremeScale.ME2.equalWeights,
...

This is the minimum between pValueLowScale and pValueHighScale, i.e. min(pValueLow,
pValueHigh)

102 consensusKME

pValueLowScale.ME1.equalWeights, pValueLowScale.ME2.equalWeights,
...

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

pValueHighScale.ME1.equalWeights, pValueHighScale.ME2.equalWeights,
...

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

qValueExtremeRank.ME1.equalWeights, qValueExtremeRank.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueExtremeR-
ank

qValueLowRank.ME1.equalWeights, qValueLowRank.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueLowRank

qValueHighRank.ME1.equalWeights, lueHighRank.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueHigh-
Rank

qValueExtremeScale.ME1.equalWeights, qValueExtremeScale.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueExtremeScale
qValueLowScale.ME1.equalWeights, qValueLowScale.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueLowS-
cale

qValueHighScale.ME1.equalWeights, qValueHighScale.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueHigh-
Scale

... Analogous columns corresponding to weighing individual sets by the square
root of the number of samples, by number of samples, and by user weights
(if given). The corresponding column name suffixes are .RootDoFWeights,
.DoFWeights, and .userWeights.

The following set of columns summarize kME in individual input data sets.

kME1.Set_1, kME1.Set_2, ..., kME2.Set_1, kME2.Set_2, ...
kME values for each gene in each module in each given data set.

p.kME1.Set_1, p.kME1.Set_2, ..., p.kME2.Set_1, p.kME2.Set_2, ...
p-values corresponding to kME values for each gene in each module in each
given data set.

q.kME1.Set_1, q.kME1.Set_2, ..., q.kME2.Set_1, q.kME2.Set_2, ...
q-values corresponding to kME values for each gene in each module in each
given data set. Only returned if getQvalues is TRUE.

Z.kME1.Set_1, Z.kME1.Set_2, ..., Z.kME2.Set_1, Z.kME2.Set_2, ...
Z statistics corresponding to kME values for each gene in each module in each
given data set. Only present if the function corAndPvalueFnc returns the Z
statistics corresponding to the kME values.

consensusMEDissimilarity 103

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S., WGCNA: an R package for weighted correlation network analysis. BMC
Bioinformatics. 2008 Dec 29; 9:559.

See Also

signedKME for eigengene based connectivity in a single data set. corAndPvalue, bicorAndPvalue
for two alternatives for calculating correlations and the corresponding p-values and Z scores. Both
can be used with this function.

consensusMEDissimilarity

Consensus dissimilarity of module eigengenes.

Description

Calculates consensus dissimilarity (1-cor) of given module eigengenes realized in several sets.

Usage

consensusMEDissimilarity(MEs, useAbs = FALSE, useSets = NULL, method = "consensus")

Arguments

MEs Module eigengenes of the same modules in several sets.

useAbs Controls whether absolute value of correlation should be used instead of corre-
lation in the calculation of dissimilarity.

useSets If the consensus is to include only a selection of the given sets, this vector (or
scalar in the case of a single set) can be used to specify the selection. If NULL,
all sets will be used.

method A character string giving the method to use. Allowed values are (abbreviations
of) "consensus" and "majority". The consensus dissimilarity is calculated as
the minimum of given set dissimilarities for "consensus" and as the average
for "majority".

Details

This function calculates the individual set dissimilarities of the given eigengenes in each set, then
takes the (parallel) maximum or average over all sets. For details on the structure of imput data, see
checkSets.

104 consensusOrderMEs

Value

A dataframe containing the matrix of dissimilarities, with names and rownames set appropriately.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

checkSets

consensusOrderMEs Put close eigenvectors next to each other in several sets.

Description

Reorder given (eigen-)vectors such that similar ones (as measured by correlation) are next to each
other. This is a multi-set version of orderMEs; the dissimilarity used can be of consensus type (for
each pair of eigenvectors the consensus dissimilarity is the maximum of individual set dissimilarities
over all sets) or of majority type (for each pair of eigenvectors the consensus dissimilarity is the
average of individual set dissimilarities over all sets).

Usage

consensusOrderMEs(MEs, useAbs = FALSE, useSets = NULL,
greyLast = TRUE,
greyName = paste(moduleColor.getMEprefix(), "grey", sep=""),
method = "consensus")

Arguments

MEs Module eigengenes of several sets in a multi-set format (see checkSets). A
vector of lists, with each list corresponding to one dataset and the module eigen-
genes in the component data, that is MEs[[set]]$data[sample, module] is
the expression of the eigengene of module module in sample sample in dataset
set. The number of samples can be different between the sets, but the modules
must be the same.

useAbs Controls whether vector similarity should be given by absolute value of correla-
tion or plain correlation.

useSets Allows the user to specify for which sets the eigengene ordering is to be per-
formed.

greyLast Normally the color grey is reserved for unassigned genes; hence the grey module
is not a proper module and it is conventional to put it last. If this is not desired,
set the parameter to FALSE.

greyName Name of the grey module eigengene.

consensusProjectiveKMeans 105

method A character string giving the method to be used calculating the consensus dis-
similarity. Allowed values are (abbreviations of) "consensus" and "majority".
The consensus dissimilarity is calculated as the maximum of given set dissimi-
larities for "consensus" and as the average for "majority".

Details

Ordering module eigengenes is useful for plotting purposes. This function calculates the consensus
or majority dissimilarity of given eigengenes over the sets specified by useSets (defaults to all
sets). A hierarchical dendrogram is calculated using the dissimilarity and the order given by the
dendrogram is used for the eigengenes in all other sets.

Value

A vector of lists of the same type as MEs containing the re-ordered eigengenes.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

moduleEigengenes, multiSetMEs, orderMEs

consensusProjectiveKMeans

Consensus projective K-means (pre-)clustering of expression data

Description

Implementation of a consensus variant of K-means clustering for expression data across multiple
data sets.

Usage

consensusProjectiveKMeans(
multiExpr,
preferredSize = 5000,
nCenters = NULL,
sizePenaltyPower = 4,
networkType = "unsigned",
randomSeed = 54321,
checkData = TRUE,
imputeMissing = TRUE,
useMean = (length(multiExpr) > 3),
maxIterations = 1000,
verbose = 0, indent = 0)

106 consensusProjectiveKMeans

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

preferredSize preferred maximum size of clusters.

nCenters number of initial clusters. Empirical evidence suggests that more centers will
give a better preclustering; the default is as.integer(min(nGenes/20, 100*nGenes/preferredSize))
and is an attempt to arrive at a reasonable number given the resources available.

sizePenaltyPower

parameter specifying how severe is the penalty for clusters that exceed preferredSize.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit.

checkData logical: should data be checked for genes with zero variance and genes and
samples with excessive numbers of missing samples? Bad samples are ignored;
returned cluster assignment for bad genes will be NA.

imputeMissing logical: should missing values in datExpr be imputed before the calculations
start? If the missing data are not imputed, they will be replaced by 0 which can
be problematic.

useMean logical: should mean distance across sets be used instead of maximum? See
details.

maxIterations maximum iterations to be attempted.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The principal aim of this function within WGCNA is to pre-cluster a large number of genes into
smaller blocks that can be handled using standard WGCNA techniques.

This function implements a variant of K-means clustering that is suitable for co-expression analysis.
Cluster centers are defined by the first principal component, and distances by correlation. Consensus
distance across several sets is defined as the maximum of the corresponding distances in individual
sets; however, if useMean is set, the mean distance will be used instead of the maximum. The dis-
tance between a gene and a center of a cluster is multiplied by a factor of max(clusterSize/preferredSize, 1)sizePenaltyPower,
thus penalizing clusters whose size exceeds preferredSize. The function starts with randomly
generated cluster assignment (hence the need to set the random seed for repeatability) and executes
interations of calculating new centers and reassigning genes to nearest (in the consensus sense) cen-
ter until the clustering becomes stable. Before returning, nearby clusters are iteratively combined if
their combined size is below preferredSize.

Consensus distance defined as maximum of distances in all sets is consistent with the approach
taken in blockwiseConsensusModules, but the procedure may not converge. Hence it is advisable

consensusRepresentatives 107

to use the mean as consensus in cases where there are multiple data sets (4 or more, say) and/or if
the input data sets are very different.

The standard principal component calculation via the function svd fails from time to time (likely a
convergence problem of the underlying lapack functions). Such errors are trapped and the principal
component is approximated by a weighted average of expression profiles in the cluster. If verbose
is set above 2, an informational message is printed whenever this approximation is used.

Value

A list with the following components:

clusters a numerical vector with one component per input gene, giving the cluster num-
ber in which the gene is assigned.

centers a vector of lists, one list per set. Each list contains a component data that
contains a matrix whose columns are the cluster centers in the corresponding
set.

unmergedClusters

a numerical vector with one component per input gene, giving the cluster num-
ber in which the gene was assigned before the final merging step.

unmergedCenters

a vector of lists, one list per set. Each list contains a component data that
contains a matrix whose columns are the cluster centers before merging in the
corresponding set.

Author(s)

Peter Langfelder

See Also

projectiveKMeans

consensusRepresentatives

Consensus selection of group representatives

Description

Given multiple data sets corresponding to the same variables and a grouping of variables into
groups, the function selects a representative variable for each group using a variety of possible
selection approaches. Typical uses include selecting a representative probe for each gene in mi-
croarray data.

108 consensusRepresentatives

Usage

consensusRepresentatives(
mdx,
group,
colID,
consensusQuantile = 0,
method = "MaxMean",
useGroupHubs = TRUE,
calibration = c("none", "full quantile"),
selectionStatisticFnc = NULL,
connectivityPower = 1,
minProportionPresent = 1,
getRepresentativeData = TRUE,
statisticFncArguments = list(),
adjacencyArguments = list(),
verbose = 2, indent = 0)

Arguments

mdx A multiData structure. All sets must have the same columns.

group Character vector whose components contain the group label (e.g. a character
string) for each entry of colID. This vector must be of the same length as the
vector colID. In gene expression applications, this vector could contain the gene
symbol (or a co-expression module label).

colID Character vector of column identifiers. This must include all the column names
from mdx, but can include other values as well. Its entries must be unique (no
duplicates) and no missing values are permitted.

consensusQuantile

A number between 0 and 1 giving the quantile probability for consensus calcu-
lation. 0 means the minimum value (true consensus) will be used.

method character string for determining which method is used to choose the repre-
sentative (when useGroupHubs is TRUE, this method is only used for groups
with 2 variables). The following values can be used: "MaxMean" (default) or
"MinMean" return the variable with the highest or lowest mean value, respec-
tively; "maxRowVariance" return the variable with the highest variance; "ab-
sMaxMean" or "absMinMean" return the variable with the highest or lowest
mean absolute value; and "function" will call a user-input function (see the de-
scription of the argument selectionStatisticFnc). The built-in functions can
be instructed to use robust analogs (median and median absolute deviation) by
also specifying statisticFncArguments=list(robust = TRUE).

useGroupHubs Logical: if TRUE, groups with 3 or more variables will be represented by the
variable with the highest connectivity according to a signed weighted correla-
tion network adjacency matrix among the corresponding rows. The connectiv-
ity is defined as the row sum of the adjacency matrix. The signed weighted
adjacency matrix is defined as A=(0.5+0.5*COR)^power where power is de-
termined by the argument connectivityPower and COR denotes the matrix
of pairwise correlation coefficients among the corresponding rows. Additional

consensusRepresentatives 109

arguments to the underlying function adjacency can be specified using the ar-
gument adjacencyArguments below.

calibration Character string describing the method of calibration of the selection statistic
among the data sets. Recognized values are "none" (no calibration) and "full
quantile" (quantile normalization).

selectionStatisticFnc

User-supplied function used to calculate the selection statistic when method
above equals "function". The function must take argumens x (a matrix) and
possibly other arguments that can be specified using statisticFncArguments
below. The return value must be a vector with one component per column of x
giving the selection statistic for each column.

connectivityPower

Positive number (typically integer) for specifying the soft-thresholding power
used to construct the signed weighted adjacency matrix, see the description of
useGroupHubs. This option is only used if useGroupHubs is TRUE.

minProportionPresent

A number between 0 and 1 specifying a filter of candidate probes. Specifically,
for each group, the variable with the maximum consensus proportion of present
data is found. Only variables whose consensus proportion of present data is
at least minProportionPresent times the maximum consensus proportion are
retained as candidates for being a representative.

getRepresentativeData

Logical: should the representative data, i.e., mdx restricted to the representative
variables, be returned?

statisticFncArguments

A list giving further arguments to the selection statistic function. Can be used
to supply additional arguments to the user-specified selectionStatisticFnc;
the value list(robust = TRUE) can be used with the built-in functions to use
their robust variants.

adjacencyArguments

Further arguments to the function adjacency, e.g. adjacencyArguments=list(corFnc
= "bicor", corOptions = "use = 'p', maxPOutliers = 0.05") will select the
robust correlation bicor with a good set of options. Note that the adjacency
arguments type and power cannot be changed.

verbose Level of verbosity; 0 means silent, larger values will cause progress messages
to be printed.

indent Indent for the diagnostic messages; each unit equals two spaces.

Details

This function was inspired by collapseRows, but there are also important differences. This func-
tion focuses on selecting representatives; when summarization is more important, collapseRows
provides more flexibility since it does not require that a single representative be selected.

This function and collapseRows use different input and ouput conventions; user-specified functions
need to be tailored differently for collapseRows than for consensusRepresentatives.

Missing data are allowed and are treated as missing at random. If rowID is NULL, it is replaced by
the variable names in mdx.

110 consensusRepresentatives

All groups with a single variable are represented by that variable, unless the consensus proportion
of present data in the variable is lower than minProportionPresent, in which case the variable
and the group are excluded from the output.

For all variables belonging to groups with 2 variables (when useGroupHubs=TRUE) or with at least
2 variables (when useGroupHubs=FALSE), selection statistics are calculated in each set (e.g., the
selection statistic may be the mean, variance, etc). This results in a matrix of selection statistics
(one entry per variable per data set). The selection statistics are next optionally calibrated (normal-
ized) between sets to make them comparable; currently the only implemented calibration method is
quantile normalization.

For each variable, the consensus selection statistic is defined as the consensus of the (calibrated)
selection statistics across the data sets is calculated. The ’consensus’ of a vector (say ’x’) is simply
defined as the quantile with probability consensusQuantile of the vector x. Important excep-
tion: for the "MinMean" and "absMinMean" methods, the consensus is the quantile with probability
1-consensusQuantile, since the idea of the consensus is to select the worst (or close to worst)
value across the data sets.

For each group, the representative is selected as the variable with the best (typically highest, but for
"MinMean" and "absMinMean" methods the lowest) consensus selection statistic.

If useGroupHubs=TRUE, the intra-group connectivity is calculated for all variables in each set. The
intra-group connectivities are optionally calibrated (normalized) between sets, and consensus intra-
group connectivity is calculated similarly to the consensus selection statistic above. In each group,
the variable with the highest consensus intra-group connectivity is chosen as the representative.

Value
representatives

A named vector giving, for each group, the selected representative (input rowID
or the variable (column) name in mdx). Names correspond to groups.

varSelected A logical vector with one entry per variable (column) in input mdx (possibly after
restriction to variables occurring in colID), TRUE if the column was selected as
a representative.

representativeData

Only present if getRepresentativeData is TRUE; the input mdx restricted to
the representative variables, with column names changed to the corresponding
groups.

Author(s)

Peter Langfelder, based on code by Jeremy Miller

See Also

multiData for a description of the multiData structures; collapseRows that solves a related but
different problem. Please note the differences in input and output!

consensusTOM 111

consensusTOM Consensus network (topological overlap).

Description

Calculation of a consensus network (topological overlap).

Usage

consensusTOM(
Supply either ...
... information needed to calculate individual TOMs
multiExpr,

Data checking options
checkMissingData = TRUE,

Blocking options
blocks = NULL,
maxBlockSize = 5000,
blockSizePenaltyPower = 5,
nPreclusteringCenters = NULL,
randomSeed = 54321,

Network construction arguments: correlation options

corType = "pearson",
maxPOutliers = 1,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,
replaceMissingAdjacencies = FALSE,

Adjacency function options

power = 6,
networkType = "unsigned",
checkPower = TRUE,

Topological overlap options

TOMType = "unsigned",
TOMDenom = "min",
suppressNegativeTOM = FALSE,

Save individual TOMs?

112 consensusTOM

saveIndividualTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

... or individual TOM information

individualTOMInfo = NULL,
useIndivTOMSubset = NULL,

Consensus calculation options

useBlocks = NULL,

networkCalibration = c("single quantile", "full quantile", "none"),

Save calibrated TOMs?
saveCalibratedIndividualTOMs = FALSE,

calibratedIndividualTOMFilePattern = "calibratedIndividualTOM-Set%s-Block%b.RData",

Simple quantile calibration options
calibrationQuantile = 0.95,
sampleForCalibration = TRUE, sampleForCalibrationFactor = 1000,
getNetworkCalibrationSamples = FALSE,

Consensus definition
consensusQuantile = 0,
useMean = FALSE,
setWeights = NULL,

Return options
saveConsensusTOMs = TRUE,
consensusTOMFilePattern = "consensusTOM-Block%b.RData",
returnTOMs = FALSE,

Internal handling of TOMs
useDiskCache = NULL, chunkSize = NULL,
cacheDir = ".",
cacheBase = ".blockConsModsCache",

nThreads = 1,

Diagnostic messages
verbose = 1,
indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

consensusTOM 113

checkMissingData

logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per gene of multiExpr giving the number of the block to which the correspond-
ing gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

blockSizePenaltyPower

number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a lrge number or Inf if not exceeding maximum block
size is very important.

nPreclusteringCenters

number of centers for pre-clustering. Larger numbers typically results in better
but slower pre-clustering. The default is as.integer(min(nGenes/20, 100*nGenes/preferredSize))
and is an attempt to arrive at a reasonable number given the resources available.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given,
the function will not save and restore the seed.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pariwise.complete.obs
option.

maxPOutliers only used for corType=="bicor". Specifies the maximum percentile of data
that can be considered outliers on either side of the median separately. For each
side of the median, if higher percentile than maxPOutliers is considered an out-
lier by the weight function based on 9*mad(x), the width of the weight function
is increased such that the percentile of outliers on that side of the median equals
maxPOutliers. Using maxPOutliers=1 will effectively disable all weight func-
tion broadening; using maxPOutliers=0 will give results that are quite similar
(but not equal to) Pearson correlation.

quickCor real number between 0 and 1 that controls the handling of missing data in the
calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation, if used, should revert to Pearson when
median absolute deviation (mad) is zero. Recongnized values are (abbreviations
of) "none", "individual", "all". If set to "none", zero mad will result in NA
for the corresponding correlation. If set to "individual", Pearson calculation
will be used only for columns that have zero mad. If set to "all", the presence
of a single zero mad will cause the whole variable to be treated in Pearson cor-
relation manner (as if the corresponding robust option was set to FALSE). Has
no effect for Pearson correlation. See bicor.

114 consensusTOM

cosineCorrelation

logical: should the cosine version of the correlation calculation be used? The
cosine calculation differs from the standard one in that it does not subtract the
mean.

power soft-thresholding power for network construction.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

checkPower logical: should basic sanity check be performed on the supplied power? If you
would like to experiment with unusual powers, set the argument to FALSE and
proceed with caution.

replaceMissingAdjacencies

logical: should missing values in the calculation of adjacency be replaced by 0?

TOMType one of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See TOMsimilarityFromExpr for details.

TOMDenom a character string specifying the TOM variant to be used. Recognized values
are "min" giving the standard TOM described in Zhang and Horvath (2005),
and "mean" in which the min function in the denominator is replaced by mean.
The "mean" may produce better results but at this time should be considered
experimental.

suppressNegativeTOM

Logical: should the result be set to zero when negative? Negative TOM values
can occur when TOMType is "signed Nowick".

saveIndividualTOMs

logical: should individual TOMs be saved to disk for later use?
individualTOMFileNames

character string giving the file names to save individual TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

individualTOMInfo

Optional data for TOM matrices in individual data sets. This object is returned
by the function blockwiseIndividualTOMs. If not given, appropriate topolog-
ical overlaps will be calculated using the network contruction options below.

useIndivTOMSubset

If individualTOMInfo is given, this argument allows to only select a subset of
the individual set networks contained in individualTOMInfo. It should be a
numeric vector giving the indices of the individual sets to be used. Note that this
argument is NOT applied to multiExpr.

useBlocks optional specification of blocks that should be used for the calcualtions. The
default is to use all blocks.

networkCalibration

network calibration method. One of "single quantile", "full quantile", "none"
(or a unique abbreviation of one of them).

consensusTOM 115

saveCalibratedIndividualTOMs

logical: should the calibrated individual TOMs be saved?
calibratedIndividualTOMFilePattern

pattern of file names for saving calibrated individual TOMs.
calibrationQuantile

if networkCalibration is "single quantile", topological overlaps (or adja-
cencies if TOMs are not computed) will be scaled such that their calibrationQuantile
quantiles will agree.

sampleForCalibration

if TRUE, calibration quantiles will be determined from a sample of network simi-
larities. Note that using all data can double the memory footprint of the function
and the function may fail.

sampleForCalibrationFactor

determines the number of samples for calibration: the number is 1/calibrationQuantile
* sampleForCalibrationFactor. Should be set well above 1 to ensure accu-
racy of the sampled quantile.

getNetworkCalibrationSamples

logical: should the sampled values used for network calibration be returned?
consensusQuantile

quantile at which consensus is to be defined. See details.

useMean logical: should the consensus be determined from a (possibly weighted) mean
across the data sets rather than a quantile?

setWeights Optional vector (one component per input set) of weights to be used for weighted
mean consensus. Only used when useMean above is TRUE.

saveConsensusTOMs

logical: should the consensus topological overlap matrices for each block be
saved and returned?

consensusTOMFilePattern

character string containing the file namefiles containing the consensus topolog-
ical overlaps. The tag %b will be replaced by the block number. If the resulting
file names are non-unique (for example, because the user gives a file name with-
out a %b tag), an error will be generated. These files are standard R data files and
can be loaded using the load function.

returnTOMs logical: should calculated consensus TOM(s) be returned?

useDiskCache should calculated network similarities in individual sets be temporarilly saved
to disk? Saving to disk is somewhat slower than keeping all data in memory, but
for large blocks and/or many sets the memory footprint may be too big. If not
given (the default), the function will determine the need of caching based on the
size of the data. See chunkSize below for additional information.

chunkSize network similarities are saved in smaller chunks of size chunkSize. If NULL, an
appropriate chunk size will be determined from an estimate of available mem-
ory. Note that if the chunk size is greater than the memory required for storing
intemediate results, disk cache use will automatically be disabled.

cacheDir character string containing the directory into which cache files should be written.
The user should make sure that the filesystem has enough free space to hold the
cache files which can get quite large.

116 consensusTOM

cacheBase character string containing the desired name for the cache files. The actual file
names will consists of cacheBase and a suffix to make the file names unique.

nThreads non-negative integer specifying the number of parallel threads to be used by cer-
tain parts of correlation calculations. This option only has an effect on systems
on which a POSIX thread library is available (which currently includes Linux
and Mac OSX, but excludes Windows). If zero, the number of online processors
will be used if it can be determined dynamically, otherwise correlation calcula-
tions will use 2 threads.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The function starts by optionally filtering out samples that have too many missing entries and genes
that have either too many missing entries or zero variance in at least one set. Genes that are filtered
out are left unassigned by the module detection. Returned eigengenes will contain NA in entries
corresponding to filtered-out samples.

If blocks is not given and the number of genes exceeds maxBlockSize, genes are pre-clustered
into blocks using the function consensusProjectiveKMeans; otherwise all genes are treated in a
single block.

For each block of genes, the network is constructed and (if requested) topological overlap is cal-
culated in each set. To minimize memory usage, calculated topological overlaps are optionally
saved to disk in chunks until they are needed again for the calculation of the consensus network
topological overlap.

Before calculation of the consensus Topological Overlap, individual TOMs are optionally cali-
brated. Calibration methods include single quantile scaling and full quantile normalization.

Single quantile scaling raises individual TOM in sets 2,3,... to a power such that the quantiles given
by calibrationQuantile agree with the quantile in set 1. Since the high TOMs are usually the
most important for module identification, the value of calibrationQuantile is close to (but not
equal) 1. To speed up quantile calculation, the quantiles can be determined on a randomly-chosen
component subset of the TOM matrices.

Full quantile normalization, implemented in normalize.quantiles, adjusts the TOM matrices
such that all quantiles equal each other (and equal to the quantiles of the component-wise average
of the individual TOM matrices).

Note that network calibration is performed separately in each block, i.e., the normalizing transfor-
mation may differ between blocks. This is necessary to avoid manipulating a full TOM in memory.

The consensus TOM is calculated as the component-wise consensusQuantile quantile of the in-
dividual (set) TOMs; that is, for each gene pair (TOM entry), the consensusQuantile quantile
across all input sets. Alternatively, one can also use (weighted) component-wise mean across all
imput data sets. If requested, the consensus topological overlaps are saved to disk for later use.

Value

List with the following components:

consensusTOM 117

consensusTOM only present if input returnTOMs is TRUE. A list containing consensus TOM for
each block, stored as a distance structure.

TOMFiles only present if input saveConsensusTOMs is TRUE. A vector of file names, one
for each block, in which the TOM for the corresponding block is stored. TOM
is saved as a distance structure to save space.

saveConsensusTOMs

a copy of the input saveConsensusTOMs.

individualTOMInfo

information about individual set TOMs. A copy of the input individualTOMInfo
if given; otherwise the result of calling blockwiseIndividualTOMs. See blockwiseIndividualTOMs
for details.

Further components are retained for debugging and/or convenience.

useIndivTOMSubset

a copy of the input useIndivTOMSubset.

goodSamplesAndGenes

a list containing information about which samples and genes are "good" in the
sense that they do not contain more than a certain fraction of missing data and
(for genes) have non-zero variance. See goodSamplesGenesMS for details.

nGGenes number of "good" genes in goodSamplesGenes above.

nSets number of input sets.

saveCalibratedIndividualTOMs

a copy of the input saveCalibratedIndividualTOMs.

calibratedIndividualTOMFileNames

if input saveCalibratedIndividualTOMs is TRUE, this component will contain
the file names of calibrated individual networks. The file names are arranged
in a character matrix with each row corresponding to one input set and each
column to one block.

networkCalibrationSamples

if input getNetworkCalibrationSamples is TRUE, a list with one component
per block. Each component is in turn a list with two components: sampleIndex
is a vector contain the indices of the TOM samples (the indices refer to a flat-
tened distance structure), and TOMSamples is a matrix of TOM samples with
each row corresponding to a sample in sampleIndex, and each column to one
input set.

consensusQuantile

a copy of the input consensusQuantile.

originCount A vector of length nSets that contains, for each set, the number of (calibrated)
elements that were less than or equal the consensus for that element.

Author(s)

Peter Langfelder

118 consensusTreeInputs

References

WGCNA methodology has been described in

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17 PMID: 16646834

The original reference for the WGCNA package is

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559 PMID: 19114008

For consensus modules, see

Langfelder P, Horvath S (2007) "Eigengene networks for studying the relationships between co-
expression modules", BMC Systems Biology 2007, 1:54

This function uses quantile normalization described, for example, in

Bolstad BM1, Irizarry RA, Astrand M, Speed TP (2003) "A comparison of normalization methods
for high density oligonucleotide array data based on variance and bias", Bioinformatics. 2003 Jan
22;19(2):1

See Also

blockwiseIndividualTOMs for calculation of topological overlaps across multiple sets.

consensusTreeInputs Get all elementary inputs in a consensus tree

Description

This function returns a flat vector or a structured list of elementary inputs to a given consensus tree,
that is, inputs that are not consensus trees themselves.

Usage

consensusTreeInputs(consensusTree, flatten = TRUE)

Arguments

consensusTree A consensus tree of class ConsensusTree.

flatten Logical; if TRUE, the function returns a flat character vector of inputs; otherwise,
a list whose structure reflects the structure of consensusTree.

Value

A character vector of inputs or a list of inputs whose structure reflects the structure of consensusTree.

Author(s)

Peter Langfelder

convertNumericColumnsToNumeric 119

See Also

newConsensusTree for creating consensus trees.

convertNumericColumnsToNumeric

Convert character columns that represent numbers to numeric

Description

This function converts to numeric those character columns in the input that can be converted to
numeric without generating missing values except for the allowed NA representations.

Usage

convertNumericColumnsToNumeric(
data,
naStrings = c("NA", "NULL", "NO DATA"),
unFactor = TRUE)

Arguments

data A data frame.

naStrings Character vector of values that are allowd to convert to NA (a missing numeric
value).

unFactor Logical: should the function first convert all factor columns to character?

Value

A data frame with convertible columns converted to numeric.

Author(s)

Peter Langfelder

120 cor

cor Fast calculations of Pearson correlation.

Description

These functions implements a faster calculation of (weighted) Pearson correlation.

The speedup against the R’s standard cor function will be substantial particularly if the input matrix
only contains a small number of missing data. If there are no missing data, or the missing data are
numerous, the speedup will be smaller.

Usage

cor(x, y = NULL,
use = "all.obs",
method = c("pearson", "kendall", "spearman"),
weights.x = NULL,
weights.y = NULL,
quick = 0,
cosine = FALSE,
cosineX = cosine,
cosineY = cosine,
drop = FALSE,
nThreads = 0,
verbose = 0, indent = 0)

corFast(x, y = NULL,
use = "all.obs",
quick = 0, nThreads = 0,
verbose = 0, indent = 0)

cor1(x, use = "all.obs", verbose = 0, indent = 0)

Arguments

x a numeric vector or a matrix. If y is null, x must be a matrix.

y a numeric vector or a matrix. If not given, correlations of columns of x will be
calculated.

use a character string specifying the handling of missing data. The fast calcula-
tions currently support "all.obs" and "pairwise.complete.obs"; for other
options, see R’s standard correlation function cor. Abbreviations are allowed.

method a character string specifying the method to be used. Fast calculations are cur-
rently available only for "pearson".

weights.x optional observation weights for x. A matrix of the same dimensions as x, con-
taining non-negative weights. Only used in fast calculations: methods must be
"pearson" and use must be one of "all.obs", "pairwise.complete.obs".

cor 121

weights.y optional observation weights for y. A matrix of the same dimensions as y, con-
taining non-negative weights. Only used in fast calculations: methods must be
"pearson" and use must be one of "all.obs", "pairwise.complete.obs".

quick real number between 0 and 1 that controls the precision of handling of missing
data in the calculation of correlations. See details.

cosine logical: calculate cosine correlation? Only valid for method="pearson". Co-
sine correlation is similar to Pearson correlation but the mean subtraction is not
performed. The result is the cosine of the angle(s) between (the columns of) x
and y.

cosineX logical: use the cosine calculation for x? This setting does not affect y and can
be used to give a hybrid cosine-standard correlation.

cosineY logical: use the cosine calculation for y? This setting does not affect x and can
be used to give a hybrid cosine-standard correlation.

drop logical: should the result be turned into a vector if it is effectively one-dimensional?
nThreads non-negative integer specifying the number of parallel threads to be used by cer-

tain parts of correlation calculations. This option only has an effect on systems
on which a POSIX thread library is available (which currently includes Linux
and Mac OSX, but excludes Windows). If zero, the number of online processors
will be used if it can be determined dynamically, otherwise correlation calcula-
tions will use 2 threads. Note that this option does not affect what is usually the
most expensive part of the calculation, namely the matrix multiplication. The
matrix multiplication is carried out by BLAS routines provided by R; these can
be sped up by installing a fast BLAS and making R use it.

verbose Controls the level of verbosity. Values above zero will cause a small amount of
diagnostic messages to be printed.

indent Indentation of printed diagnostic messages. Each unit above zero adds two
spaces.

Details

The fast calculations are currently implemented only for method="pearson" and use either "all.obs"
or "pairwise.complete.obs". The corFast function is a wrapper that calls the function cor. If
the combination of method and use is implemented by the fast calculations, the fast code is exe-
cuted; otherwise, R’s own correlation cor is executed.

The argument quick specifies the precision of handling of missing data. Zero will cause all calcula-
tions to be executed precisely, which may be significantly slower than calculations without missing
data. Progressively higher values will speed up the calculations but introduce progressively larger
errors. Without missing data, all column means and variances can be pre-calculated before the
covariances are calculated. When missing data are present, exact calculations require the column
means and variances to be calculated for each covariance. The approximate calculation uses the
pre-calculated mean and variance and simply ignores missing data in the covariance calculation. If
the number of missing data is high, the pre-calculated means and variances may be very different
from the actual ones, thus potentially introducing large errors. The quick value times the number
of rows specifies the maximum difference in the number of missing entries for mean and variance
calculations on the one hand and covariance on the other hand that will be tolerated before a recal-
culation is triggered. The hope is that if only a few missing data are treated approximately, the error
introduced will be small but the potential speedup can be significant.

122 cor

Value

The matrix of the Pearson correlations of the columns of x with columns of y if y is given, and the
correlations of the columns of x if y is not given.

Note

The implementation uses the BLAS library matrix multiplication function for the most expensive
step of the calculation. Using a tuned, architecture-specific BLAS may significantly improve the
performance of this function.

The values returned by the corFast function may differ from the values returned by R’s function cor
by rounding errors on the order of 1e-15.

Author(s)

Peter Langfelder

References

Peter Langfelder, Steve Horvath (2012) Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. https://www.jstatsoft.org/v46/
i11/

See Also

R’s standard Pearson correlation function cor.

Examples

Test the speedup compared to standard function cor

Generate a random matrix with 200 rows and 1000 columns

set.seed(10)
nrow = 100;
ncol = 500;
data = matrix(rnorm(nrow*ncol), nrow, ncol);

First test: no missing data

system.time({corStd = stats::cor(data)});

system.time({corFast = cor(data)});

all.equal(corStd, corFast)

Here R's standard correlation performs very well.

We now add a few missing entries.

data[sample(nrow, 10), 1] = NA;

https://www.jstatsoft.org/v46/i11/
https://www.jstatsoft.org/v46/i11/

corAndPvalue 123

And test the correlations again...

system.time({corStd = stats::cor(data, use ='p')});

system.time({corFast = cor(data, use = 'p')});

all.equal(corStd, corFast)

Here the R's standard correlation slows down considerably
while corFast still retains it speed. Choosing
higher ncol above will make the difference more pronounced.

corAndPvalue Calculation of correlations and associated p-values

Description

A faster, one-step calculation of Student correlation p-values for multiple correlations, properly
taking into account the actual number of observations.

Usage

corAndPvalue(x, y = NULL,
use = "pairwise.complete.obs",
alternative = c("two.sided", "less", "greater"),
...)

Arguments

x a vector or a matrix

y a vector or a matrix. If NULL, the correlation of columns of x will be calculated.

use determines handling of missing data. See cor for details.

alternative specifies the alternative hypothesis and must be (a unique abbreviation of) one of
"two.sided", "greater" or "less". the initial letter. "greater" corresponds
to positive association, "less" to negative association.

... other arguments to the function cor.

Details

The function calculates correlations of a matrix or of two matrices and the corresponding Student
p-values. The output is not as full-featured as cor.test, but can work with matrices as input.

124 corPredictionSuccess

Value

A list with the following components, each a matrix:

cor the calculated correlations

p the Student p-values corresponding to the calculated correlations

Z Fisher transforms of the calculated correlations

t Student t statistics of the calculated correlations

nObs Numbers of observations for the correlation, p-values etc.

Author(s)

Peter Langfelder and Steve Horvath

References

Peter Langfelder, Steve Horvath (2012) Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. https://www.jstatsoft.org/v46/
i11/

See Also

cor for calculation of correlations only;

cor.test for another function for significance test of correlations

Examples

generate random data with non-zero correlation
set.seed(1);
a = rnorm(100);
b = rnorm(100) + a;
x = cbind(a, b);
Call the function and display all results
corAndPvalue(x)
Set some components to NA
x[c(1:4), 1] = NA
corAndPvalue(x)
Note that changed number of observations.

corPredictionSuccess Qunatification of success of gene screening

Description

This function calculates the success of gene screening.

Usage

corPredictionSuccess(corPrediction, corTestSet, topNumber = 100)

https://www.jstatsoft.org/v46/i11/
https://www.jstatsoft.org/v46/i11/

corPvalueFisher 125

Arguments

corPrediction a vector or a matrix of prediction statistics

corTestSet correlation or other statistics on test set

topNumber a vector of the number of top genes to consider

Details

For each column in corPrediction, the function evaluates the mean corTestSet for the number
of top genes (ranked by the column in corPrediction) given in topNumber. The higher the mean
corTestSet (for positive corPrediction) or negative (for negative corPrediction), the more
successful the prediction.

Value
meancorTestSetOverall

difference of meancorTestSetPositive and meancorTestSetNegative below
meancorTestSetPositive

mean corTestSet on top genes with positive corPrediction

meancorTestSetNegative

mean corTestSet on top genes with negative corPrediction

...

Author(s)

Steve Horvath

See Also

relativeCorPredictionSuccess

corPvalueFisher Fisher’s asymptotic p-value for correlation

Description

Calculates Fisher’s asymptotic p-value for given correlations.

Usage

corPvalueFisher(cor, nSamples, twoSided = TRUE)

Arguments

cor A vector of correlation values whose corresponding p-values are to be calculated

nSamples Number of samples from which the correlations were calculated

twoSided logical: should the calculated p-values be two sided?

126 correlationPreservation

Value

A vector of p-values of the same length as the input correlations.

Author(s)

Steve Horvath and Peter Langfelder

corPvalueStudent Student asymptotic p-value for correlation

Description

Calculates Student asymptotic p-value for given correlations.

Usage

corPvalueStudent(cor, nSamples)

Arguments

cor A vector of correlation values whose corresponding p-values are to be calculated

nSamples Number of samples from which the correlations were calculated

Value

A vector of p-values of the same length as the input correlations.

Author(s)

Steve Horvath and Peter Langfelder

correlationPreservation

Preservation of eigengene correlations

Description

Calculates a summary measure of preservation of eigengene correlations across data sets

Usage

correlationPreservation(multiME, setLabels, excludeGrey = TRUE, greyLabel = "grey")

coxRegressionResiduals 127

Arguments

multiME consensus module eigengenes in a multi-set format. A vector of lists with one
list corresponding to each set. Each list must contain a component data that is
a data frame whose columns are consensus module eigengenes.

setLabels names to be used for the sets represented in multiME.

excludeGrey logical: exclude the ’grey’ eigengene from preservation measure?

greyLabel module label corresponding to the ’grey’ module. Usually this will be the char-
acter string "grey" if the labels are colors, and the number 0 if the labels are
numeric.

Details

The function calculates the preservation of correlation of each eigengene with all other eigengenes
(optionally except the ’grey’ eigengene) in all pairs of sets.

Value

A data frame whose rows correspond to consensus module eigengenes given in the input multiME,
and columns correspond to all possible set comparisons. The two sets compared in each column are
indicated in the column name.

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

multiSetMEs and modulecheckSets in package moduleColor for more on eigengenes and the
multi-set format

coxRegressionResiduals

Deviance- and martingale residuals from a Cox regression model

Description

The function inputs a censored time variable which is specified by two input variables time and
event. It outputs i) the martingale residual and ii) deviance residual corresponding to a Cox regres-
sion model. By default, the Cox regression model is an intercept only Cox regression model. But
optionally, the user can input covariates using the argument datCovariates. The function makes
use of the coxph function in the survival library. See help(residuals.coxph) to learn more.

128 coxRegressionResiduals

Usage

coxRegressionResiduals(time, event, datCovariates = NULL)

Arguments

time is a numeric variable that contains follow up time or time to event.

event is a binary variable that takes on values 1 and 0. 1 means that the event took
place (e.g. person died, or tumor recurred). 0 means censored, i.e. event has not
yet been observed or loss to follow up.

datCovariates a data frame whose columns correspond to covariates that should be used in the
Cox regression model. By default, the only covariate the intercept term 1.

Details

Residuals are often used to investigate the lack of fit of a model. For Cox regression, there is no
easy analog to the usual "observed minus predicted" residual of linear regression. Instead, several
specialized residuals have been proposed for Cox regression analysis. The function calculates resid-
uals that are well defined for an intercept only Cox regression model: the martingale and deviance
residuals (Therneau et al 1990). The martingale residual of a subject (person) specifies excess fail-
ures beyond the expected baseline hazard. For example, a subject who was censored at 3 years,
and whose predicted cumulative hazard at 3 years was 30 Another subject who had an event at 10
years, and whose predicted cumulative hazard at 10 years was 60 Since martingale residuals are
not symmetrically distributed, even when the fitted model is correct, it is often advantageous to
transform them into more symmetrically distributed residuals: deviance residuals. Thus, deviance
residuals are defined as transformations of the martingale residual and the event variable. Deviance
residuals are often symmetrically distributed around zero Deviance Residuals are similar to resid-
uals from ordinary linear regression in that they are symmetrically distributed around 0 and have
standard deviation of 1.0. . A subjects with a large deviance residual is poorly predicted by the
model, i.e. is different from the baseline cumulative hazard. A negative value indicates a longer
than expected survival time. When covariates are specified in datCovariates, then one can plot
deviance (or martingale) residuals against the covariates. Unusual patterns may indicate poor fit
of the Cox model. Cryptic comments: Deviance (or martingale) residuals can sometimes be used
as (uncensored) quantitative variables instead of the original time censored variable. For example,
they could be used as outcome in a regression tree or regression forest predictor.

Value

It outputs a data frame with 2 columns. The first and second column correspond to martingale and
deviance residuals respectively.

Note

This function can be considered a wrapper of the coxph function.

Author(s)

Steve Horvath

cutreeStatic 129

References

Thereneau TM, Grambsch PM, Fleming TR (1990) Martingale-based residuals for survival models.
Biometrika (1990), 77, 1, pp. 147-60

Examples

library(survival)
simulate time and event data
time1=sample(1:100)
event1=sample(c(1,0), 100,replace=TRUE)

event1[1:5]=NA
time1[1:5]=NA
no covariates
datResiduals= coxRegressionResiduals(time=time1,event=event1)

now we simulate a covariate
z= rnorm(100)
cor(datResiduals,use="p")
datResiduals=coxRegressionResiduals(time=time1,event=event1,datCovariates=data.frame(z))
cor(datResiduals,use="p")

cutreeStatic Constant-height tree cut

Description

Module detection in hierarchical dendrograms using a constant-height tree cut. Only branches
whose size is at least minSize are retained.

Usage

cutreeStatic(dendro, cutHeight = 0.9, minSize = 50)

Arguments

dendro a hierarchical clustering dendrogram such as returned by hclust.

cutHeight height at which branches are to be cut.

minSize minimum number of object on a branch to be considered a cluster.

Details

This function performs a straightforward constant-height cut as implemented by cutree, then cal-
culates the number of objects on each branch and only keeps branches that have at least minSize
objects on them.

130 cutreeStaticColor

Value

A numeric vector giving labels of objects, with 0 meaning unassigned. The largest cluster is con-
ventionally labeled 1, the next largest 2, etc.

Author(s)

Peter Langfelder

See Also

hclust for hierarchical clustering, cutree and cutreeStatic for other constant-height branch
cuts, standardColors to convert the retuned numerical lables into colors for easier visualization.

cutreeStaticColor Constant height tree cut using color labels

Description

Cluster detection by a constant height cut of a hierarchical clustering dendrogram.

Usage

cutreeStaticColor(dendro, cutHeight = 0.9, minSize = 50)

Arguments

dendro a hierarchical clustering dendrogram such as returned by hclust.

cutHeight height at which branches are to be cut.

minSize minimum number of object on a branch to be considered a cluster.

Details

This function performs a straightforward constant-height cut as implemented by cutree, then cal-
culates the number of objects on each branch and only keeps branches that have at least minSize
objects on them.

Value

A character vector giving color labels of objects, with "grey" meaning unassigned. The largest
cluster is conventionally labeled "turquoise", next "blue" etc. Run standardColors() to see the
sequence of standard color labels.

Author(s)

Peter Langfelder

displayColors 131

See Also

hclust for hierarchical clustering, cutree and cutreeStatic for other constant-height branch
cuts, standardColors to see the sequence of color labels that can be assigned.

displayColors Show colors used to label modules

Description

The function plots a barplot using colors that label modules.

Usage

displayColors(colors = NULL)

Arguments

colors colors to be displayed. Defaults to all colors available for module labeling.

Details

To see the first n colors, use argument colors = standardColors(n).

Value

None.

Author(s)

Peter Langfelder

See Also

standardColors

Examples

displayColors(standardColors(10))

132 dynamicMergeCut

dynamicMergeCut Threshold for module merging

Description

Calculate a suitable threshold for module merging based on the number of samples and a desired Z
quantile.

Usage

dynamicMergeCut(n, mergeCor = 0.9, Zquantile = 2.35)

Arguments

n number of samples

mergeCor theoretical correlation threshold for module merging

Zquantile Z quantile for module merging

Details

This function calculates the threshold for module merging. The threshold is calculated as the lower
boundary of the interval around the theoretical correlation mergeCor whose width is given by the Z
value Zquantile.

Value

The correlation threshold for module merging; a single number.

Author(s)

Steve Horvath

See Also

moduleEigengenes, mergeCloseModules

Examples

dynamicMergeCut(20)
dynamicMergeCut(50)
dynamicMergeCut(100)

empiricalBayesLM 133

empiricalBayesLM Empirical Bayes-moderated adjustment for unwanted covariates

Description

This functions removes variation in high-dimensional data due to unwanted covariates while pre-
serving variation due to retained covariates. To prevent numerical instability, it uses Empirical
bayes-moderated linear regression, optionally in a robust (outlier-resistant) form.

Usage

empiricalBayesLM(
data,
removedCovariates,
retainedCovariates = NULL,

initialFitFunction = NULL,
initialFitOptions = NULL,
initialFitRequiresFormula = NULL,
initialFit.returnWeightName = NULL,

fitToSamples = NULL,

weights = NULL,
automaticWeights = c("none", "bicov"),
aw.maxPOutliers = 0.1,
weightType = c("apriori", "empirical"),
stopOnSmallWeights = TRUE,

minDesignDeviation = 1e-10,
robustPriors = FALSE,
tol = 1e-4, maxIterations = 1000,
garbageCollectInterval = 50000,

scaleMeanToSamples = fitToSamples,
scaleMeanOfSamples = NULL,
getOLSAdjustedData = TRUE,
getResiduals = TRUE,
getFittedValues = TRUE,
getWeights = TRUE,
getEBadjustedData = TRUE,

verbose = 0, indent = 0)

134 empiricalBayesLM

Arguments

data A 2-dimensional matrix or data frame of numeric data to be adjusted. Variables
(for example, genes or methylation profiles) should be in columns and observa-
tions (samples) should be in rows.

removedCovariates

A vector or two-dimensional object (matrix or data frame) giving the covariates
whose effect on the data is to be removed. At least one such covariate must be
given.

retainedCovariates

A vector or two-dimensional object (matrix or data frame) giving the covariates
whose effect on the data is to be retained. May be NULL if there are no such
"retained" covariates.

initialFitFunction

Function name to perform the initial fit. The default is to use the internal imple-
mentation of linear model fitting. The function must take arguments formula
and data or x and y, plus possibly additional arguments. The return value
must be a list with component coefficients, either scale or residuals, and
weights must be returned in component specified by initialFit.returnWeightName.
See lm, rlm and other standard fit functions for examples of suitable functions.

initialFitOptions

Optional specifications of extra arguments for initialFitFunction, apart from
formula and data or x and y. Defaults are provided for function rlm, i.e., if this
function is used as initialFitFunction, suitable initial fit options will be cho-
sen automatically.

initialFitRequiresFormula

Logical: does the initial fit function need formula and data arguments? If
TRUE, initialFitFunction will be called with arguments formula and data,
otherwise with arguments x and y.

initialFit.returnWeightName

Name of the component of the return value of initialFitFunction that con-
tains the weights used in the fit. Suitable default value will be chosen automati-
cally for rlm.

fitToSamples Optional index of samples from which the linear model fits should be calculated.
Defaults to all samples. If given, the models will be only fit to the specified
samples but all samples will be transformed using the calculated coefficients.

weights Optional 2-dimensional matrix or data frame of the same dimensions as data
giving weights for each entry in data. These weights will be used in the initial
fit and are are separate from the ones returned by initialFitFunction if it is
specified.

automaticWeights

One of (unique abrreviations of) "none" or "bicov", instructing the function
to calculate weights from the given data. Value "none" will result in trivial
weights; value "bicov" will result in biweight midcovariance weights being
used.

empiricalBayesLM 135

aw.maxPOutliers

If automaticWeights above is "bicov", this argument gets passed to the func-
tion bicovWeights and determines the maximum proportion of outliers in cal-
culating the weights. See bicovWeights for more details.

weightType One of (unique abbreviations of) "apriori" or "empirical". Determines whether
a standard ("apriori") or a modified ("empirical") weighted regression is
used. The "apriori" choice is suitable for weights that have been determined
without knowledge of the actual data, while "empirical" is appropriate for
situations where one wants to down-weigh cartain entries of data because they
may be outliers. In either case, the weights should be determined in a way that
is independent of the covariates (both retained and removed).

stopOnSmallWeights

Logical: should presence of small "apriori" weights trigger an error? Because
standard weighted regression assumes that all weights are non-zero (otherwise
estimates of standard errors will be biased), this function will by default com-
plain about the presence of too small "apriori" weights.

minDesignDeviation

Minimum standard deviation for columns of the design matrix to be retained.
Columns with standard deviations below this number will be removed (effec-
tively removing the corresponding terms from the design).

robustPriors Logical: should robust priors be used? This essentially means replacing mean
by median and covariance by biweight mid-covariance.

tol Convergence criterion used in the numerical equation solver. When the relative
change in coefficients falls below this threshold, the system will be considered
to have converged.

maxIterations Maximum number of iterations to use.
garbageCollectInterval

Number of variables after which to call garbage collection.
scaleMeanToSamples

Optional specification of samples (given as a vector of indices) to whose means
the resulting adjusted data should be scaled (more precisely, shifted).

scaleMeanOfSamples

Optional specification of samples (given as a vector of indices) that will be used
in calculating the shift. Specifically, the shift is such that the mean of sam-
ples given in scaleMeanOfSamples will equal the mean of samples given in
scaleMeanToSamples. Defaults to all samples.

getOLSAdjustedData

Logical: should data adjusted by ordinary least squares or by initialFitFunction,
if specified, be returned?

getResiduals Logical: should the residuals (adjusted values without the means) be returned?
getFittedValues

Logical: should fitted values be returned?
getWeights Logical: should the final weights be returned?
getEBadjustedData

Logical: should the EB step be performed and the adjusted data returned? If this
is FALSE, the function acts as a rather slow but still potentially useful adjustment
using standard fit functions.

136 empiricalBayesLM

verbose Level of verbosity. Zero means silent, higher values result in more diagnostic
messages being printed.

indent Indentation of diagnostic messages. Each unit adds two spaces.

Details

This function uses Empirical Bayes-moderated (EB) linear regression to remove variation in data
due to the variables in removedCovariates while retaining variation due to variables in retainedCovariates,
if any are given. The EB step uses simple normal priors on the regression coefficients and inverse
gamma priors on the variances. The procedure starts with multivariate ordinary linear regression
of individual columns in data on retainedCovariates and removedCovariates. Alternatively,
the user may specify an intial fit function (e.g., robust linear regression). To make the coefficients
comparable, columns of data are scaled to (weighted if weights are given) mean 0 and variance
1. The resulting regression coefficients are used to determine the parameters of the normal prior
(mean, covariance, and inverse gamma or median and biweight mid-covariance if robust priors are
used), and the variances are used to determine the parameters of the inverse gamma prior. The
EB step then essentially shrinks the coefficients toward their means, with the amount of shrinkage
determined by the prior covariance.

Using appropriate weights can make the data adjustment robust to outliers. This can be achieved
automatically by using the argument automaticWeights = "bicov". When bicov weights are used,
we also recommend setting the argument maxPOutliers to a maximum proportion of samples that
could be outliers. This is especially important if some of the design variables are binary and can be
expected to have a strong effect on some of the columns in data, since standard biweight midcor-
relation (and its weights) do not work well on bimodal data.

The automatic bicov weights are determined from data only. It is implicitly assumed that there
are no outliers in the retained and removed covariates. Outliers in the covariates are more difficult
to work with since, even if the regression is made robust to them, they can influence the adjusted
values for the sample in which they appear. Unless the the covariate outliers can be attributed to
a relevant variation in experimental conditions, samples with covariate outliers are best removed
entirely before calling this function.

Value

A list with the following components (some of which may be missing depending on input options):

adjustedData A matrix of the same dimensions as the input data, giving the adjusted data. If
input data has non-NULL dimnames, these are copied.

residuals A matrix of the same dimensions as the input data, giving the residuals, that is,
adjusted data with zero means.

coefficients A matrix of regression coefficients. Rows correspond to the design matrix vari-
ables (mean, retained and removed covariates) and columns correspond to the
variables (columns) in data.

coefficiens.scaled

A matrix of regression coefficients corresponding to columns in data scaled to
mean 0 and variance 1.

sigmaSq Estimated error variances (one for each column of input data.

empiricalBayesLM 137

sigmaSq.scaled Estimated error variances corresponding to columns in data scaled to mean 0
and variance 1.

fittedValues Fitted values calculated from the means and coefficients corresponding to the
removed covariates, i.e., roughly the values that are subtracted out of the data.

adjustedData.OLS

A matrix of the same dimensions as the input data, giving the data adjusted
by ordinary least squares. This component should only be used for diagnostic
purposes, not as input for further downstream analyses, as the OLS adjustment
is inferior to EB adjustment.

residuals.OLS A matrix of the same dimensions as the input data, giving the residuals ob-
tained from ordinary least squares regression, that is, OLS-adjusted data with
zero means.

coefficients.OLS

A matrix of ordinary least squares regression coefficients. Rows correspond
to the design matrix variables (mean, retained and removed covariates) and
columns correspond to the variables (columns) in data.

coefficiens.OLS.scaled

A matrix of ordinary least squares regression coefficients corresponding to columns
in data scaled to mean 0 and variance 1. These coefficients are used to calculate
priors for the EB step.

sigmaSq.OLS Estimated OLS error variances (one for each column of input data.
sigmaSq.OLS.scaled

Estimated OLS error variances corresponding to columns in data scaled to mean
0 and variance 1. These are used to calculate variance priors for the EB step.

fittedValues.OLS

OLS fitted values calculated from the means and coefficients corresponding to
the removed covariates.

weights A matrix of weights used in the regression models. The matrix has the same
dimension as the input data.

dataColumnValid

Logical vector with one element per column of input data, indicating whether
the column was adjusted. Columns with zero variance or too many missing data
cannot be adjusted.

dataColumnWithZeroVariance

Logical vector with one element per column of input data, indicating whether
the column had zero variance.

coefficientValid

Logical matrix of the dimension (number of covariates +1) times (number of
variables in data), indicating whether the corresponding regression coefficient
is valid. Invalid regression coefficients may be returned as missing values or as
zeroes.

Author(s)

Peter Langfelder

138 exportNetworkToCytoscape

See Also

bicovWeights for suitable weights that make the adjustment robust to outliers.

exportNetworkToCytoscape

Export network to Cytoscape

Description

This function exports a network in edge and node list files in a format suitable for importing to
Cytoscape.

Usage

exportNetworkToCytoscape(
adjMat,
edgeFile = NULL,
nodeFile = NULL,
weighted = TRUE,
threshold = 0.5,
nodeNames = NULL,
altNodeNames = NULL,
nodeAttr = NULL,
includeColNames = TRUE)

Arguments

adjMat adjacency matrix giving connection strengths among the nodes in the network.

edgeFile file name of the file to contain the edge information.

nodeFile file name of the file to contain the node information.

weighted logical: should the exported network be weighted?

threshold adjacency threshold for including edges in the output.

nodeNames names of the nodes. If not given, dimnames of adjMat will be used.

altNodeNames optional alternate names for the nodes, for example gene names if nodes are
labeled by probe IDs.

nodeAttr optional node attribute, for example module color. Can be a vector or a data
frame.

includeColNames

logical: should column names be included in the output files? Note that Cy-
toscape can read files both with and without column names.

Details

If the corresponding file names are supplied, the edge and node data is written to the appropriate
files. The edge and node data is also returned as return value (see below).

exportNetworkToVisANT 139

Value

A list with the following componens:

egdeData a data frame containing the edge data, with one row per edge

nodeData a data frame containing the node data, with one row per node

Author(s)

Peter Langfelder

See Also

exportNetworkToVisANT

exportNetworkToVisANT Export network data in format readable by VisANT

Description

Exports network data in a format readable and displayable by the VisANT software.

Usage

exportNetworkToVisANT(
adjMat,
file = NULL,
weighted = TRUE,
threshold = 0.5,
maxNConnections = NULL,
probeToGene = NULL)

Arguments

adjMat adjacency matrix of the network to be exported.

file character string specifying the file name of the file in which the data should be
written. If not given, no file will be created. The file is in a plain text format.

weighted logical: should the exported network by weighted?

threshold adjacency threshold for including edges in the output.
maxNConnections

maximum number of exported adjacency edges. This can be used as another
filter on the exported edges.

probeToGene optional specification of a conversion between probe names (that label columns
and rows of adjacency) and gene names (that should label nodes in the output).

140 factorizeNonNumericColumns

Details

The adjacency matrix is checked for validity. The entries can be negative, however. The adjacency
matrix is expected to also have valid names or dimnames[[2]] that represent the probe names of
the corresponding edges.

Whether the output is a weighted network or not, only edges whose (absolute value of) adja-
cency are above threshold will be included in the output. If maxNConnections is given, at most
maxNConnections will be included in the output.

If probeToGene is given, it is expected to have two columns, the first one corresponding to the
probe names, the second to their corresponding gene names that will be used in the output.

Value

A data frame containing the network information suitable as input to VisANT. The same data frame
is also written into a file specified by file, if given.

Author(s)

Peter Langfelder

References

VisANT software is available from http://www.visantnet.org/visantnet.html/.

factorizeNonNumericColumns

Turn non-numeric columns into factors

Description

Given a data frame, this function turns non-numeric columns into factors.

Usage

factorizeNonNumericColumns(data)

Arguments

data A data frame. Non-data frame inputs (e.g., a matrix) are coerced to a data frame.

Details

A column is considered numeric if its storage mode is numeric or if it is a character vector, it
only contains character representations of numbers and possibly missing values encoded as "NA",
"NULL", "NO DATA".

Value

The input data frame with non-numeric columns turned into factors.

fixDataStructure 141

Author(s)

Peter Langfelder

fixDataStructure Put single-set data into a form useful for multiset calculations.

Description

Encapsulates single-set data in a wrapper that makes the data suitable for functions working on
multiset data collections.

Usage

fixDataStructure(data, verbose = 0, indent = 0)

Arguments

data A dataframe, matrix or array with two dimensions to be encapsulated.

verbose Controls verbosity. 0 is silent.

indent Controls indentation of printed progress messages. 0 means no indentation,
every unit adds two spaces.

Details

For multiset calculations, many quantities (such as expression data, traits, module eigengenes etc)
are presented by a common structure, a vector of lists (one list for each set) where each list has a
component data that contains the actual (expression, trait, eigengene) data for the corresponding set
in the form of a dataframe. This funtion creates a vector of lists of length 1 and fills the component
data with the content of parameter data.

Value

As described above, input data in a format suitable for functions operating on multiset data collec-
tions.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

checkSets

142 formatLabels

Examples

singleSetData = matrix(rnorm(100), 10,10);
encapsData = fixDataStructure(singleSetData);
length(encapsData)
names(encapsData[[1]])
dim(encapsData[[1]]$data)
all.equal(encapsData[[1]]$data, singleSetData);

formatLabels Break long character strings into multiple lines

Description

This function attempts to break lomg character strings into multiple lines by replacing a given
pattern by a newline character.

Usage

formatLabels(
labels,
maxCharPerLine = 14,
minCharPerLine = 1,
maxWidth = NULL,
maxLines = Inf,
cex = 1,
font = 1,
split = " ",
fixed = TRUE,
newsplit = split,
keepSplitAtEOL = TRUE,
capitalMultiplier = 1.4,
eol = "\n",
ellipsis = "...")

Arguments

labels Character strings to be formatted.

maxCharPerLine Integer giving the maximum number of characters per line.

minCharPerLine Integer giving the minimum number of characters per line. Each line will con-
tain at least this many characters even if the characters exceed the maximum
width given in maxWidth (if supplied).

maxWidth Maximum width in user coordinates. If given, overrides maxCharPerLine above
and usually gives a much more efficient formatting.

maxLines Maximum lines to retain. If a label extends past the maximum number of lines,
ellipsis is added at the end of the last line.

formatLabels 143

cex Character expansion factor that the user intends to use when adding labels to
the current figure. Only used when maxWidth is specified.

font Integer specifying the font. See par for details.

split Pattern to be replaced by newline (’\n’) characters.

fixed Logical: Should the pattern be interpreted literally (TRUE) or as a regular expres-
sion (FALSE)? See strsplit and its argument fixed.

newsplit Character string to replace the occurrences of split above with.

keepSplitAtEOL When replacing an occurrence of split with a newline character, should the
newsplit be added before the newline as well?

capitalMultiplier

A multiplier for capital letters which typically occupy more space than lower-
case letters.

eol Character string to separate lines in the output.

ellipsis Chararcter string to add to the last line if the input label is longer than fits on
maxLines lines.

Details

Each given element of labels is processed independently. The character string is split using
strsplit, with split as the splitting pattern. The resulting shorter character strings are then con-
catenated together with newsplit as the separator. Whenever the length (adjusted using the capital
letter multiplier) of the combined result from the start or the previous newline character exceeds
maxCharPerLine, or strwidth exceeds maxWidth, the character specified by eol is inserted (at the
previous split).

Note that individual segements (i.e., sections of the input between occurrences of split) whose
number of characters exceeds maxCharPerLine will not be split.

Value

A character vector of the same length as input labels.

Author(s)

Peter Langfelder

Examples

s = "A quick hare jumps over the brown fox";
formatLabels(s);

144 fundamentalNetworkConcepts

fundamentalNetworkConcepts

Calculation of fundamental network concepts from an adjacency ma-
trix.

Description

This function computes fundamental network concepts (also known as network indices or statistics)
based on an adjacency matrix and optionally a node significance measure. These network concepts
are defined for any symmetric adjacency matrix (weighted and unweighted). The network concepts
are described in Dong and Horvath (2007) and Horvath and Dong (2008). Fundamental network
concepts are defined as a function of the off-diagonal elements of an adjacency matrix adj and/or a
node significance measure GS.

Usage

fundamentalNetworkConcepts(adj, GS = NULL)

Arguments

adj an adjacency matrix, that is a square, symmetric matrix with entries between 0
and 1

GS a node significance measure: a vector of the same length as the number of rows
(and columns) of the adjacency matrix.

Value

A list with the following components:

Connectivity a numerical vector that reports the connectivity (also known as degree) of each
node. This fundamental network concept is also known as whole network con-
nectivity. One can also define the scaled connectivity K=Connectivity/max(Connectivity)
which is used for computing the hub gene significance.

ScaledConnectivity

the Connectivity vector scaled by the highest connectivity in the network, i.e.,
Connectivity/max(Connectivity).

ClusterCoef a numerical vector that reports the cluster coefficient for each node. This funda-
mental network concept measures the cliquishness of each node.

MAR a numerical vector that reports the maximum adjacency ratio for each node.
MAR[i] equals 1 if all non-zero adjacencies between node i and the remaining
network nodes equal 1. This fundamental network concept is always 1 for nodes
of an unweighted network. This is a useful measure for weighted networks since
it allows one to determine whether a node has high connectivity because of many
weak connections (small MAR) or because of strong (but few) connections (high
MAR), see Horvath and Dong 2008.

Density the density of the network.

GOenrichmentAnalysis 145

Centralization the centralization of the network.

Heterogeneity the heterogeneity of the network.

Author(s)

Steve Horvath

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network Analysis. PLoS
Comput Biol 4(8): e1000117

See Also

conformityBasedNetworkConcepts for calculation of conformity based network concepts for a
network adjacency matrix;

networkConcepts, for calculation of conformity based and eigennode based network concepts for
a correlation network.

GOenrichmentAnalysis Calculation of GO enrichment

Description

NOTE: GOenrichmentAnalysis is now a defunct stub that just prints an informational message.
Please use function enrichmentAnalysis.Entrez from R package anRichment, available from https://github.com/plangfelder/anRichment.

Usage

GOenrichmentAnalysis(...)

Arguments

... Ignored.

Author(s)

Peter Langfelder

See Also

Replacement functions are available from R package anRichment at https://github.com/plangfelder/anRichment

146 goodGenes

goodGenes Filter genes with too many missing entries

Description

This function checks data for missing entries and returns a list of genes that have non-zero variance
and pass two criteria on maximum number of missing values and values whose weight is below
a threshold: the fraction of missing values must be below a given threshold and the total number
of present samples must be at least equal to a given threshold. If weights are given, entries whose
relative weight is below a threshold will be considered missing.

Usage

goodGenes(
datExpr,
weights = NULL,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
tol = NULL,
minRelativeWeight = 0.1,
verbose = 1, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.

weights optional observation weights in the same format (and dimensions) as datExpr.

useSamples optional specifications of which samples to use for the check. Should be a log-
ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to using
all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of non-missing samples for a gene to be considered good.

minNGenes minimum number of good genes for the data set to be considered fit for analysis.
If the actual number of good genes falls below this threshold, an error will be
issued.

tol an optional ’small’ number to compare the variance against. Defaults to the
square of 1e-10 * max(abs(datExpr), na.rm = TRUE). The reason of compar-
ing the variance to this number, rather than zero, is that the fast way of comput-
ing variance used by this function sometimes causes small numerical overflow
errors which make variance of constant vectors slightly non-zero; comparing the

goodGenesMS 147

variance to tol rather than zero prevents the retaining of such genes as ’good
genes’.

minRelativeWeight

observations whose relative weight is below this threshold will be considered
missing. Here relative weight is weight divided by the maximum weight in the
column (gene).

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4.

If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the
column or gene) will be considered missing.

For most data sets, the fraction of missing samples criterion will be much more stringent than the
absolute number of missing samples criterion.

Value

A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE
otherwise. Note that all genes excluded by useGenes are automatically assigned FALSE.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodSamples, goodSamplesGenes

goodGenesMS Filter genes with too many missing entries across multiple sets

Description

This function checks data for missing entries and returns a list of genes that have non-zero variance
in all sets and pass two criteria on maximum number of missing values in each given set: the fraction
of missing values must be below a given threshold and the total number of missing samples must
be below a given threshold. If weights are given, entries whose relative weight is below a threshold
will be considered missing.

148 goodGenesMS

Usage

goodGenesMS(
multiExpr,
multiWeights = NULL,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
tol = NULL,
minRelativeWeight = 0.1,
verbose = 1, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.

useSamples optional specifications of which samples to use for the check. Should be a log-
ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to using
all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of non-missing samples for a gene to be considered good.

minNGenes minimum number of good genes for the data set to be considered fit for analysis.
If the actual number of good genes falls below this threshold, an error will be
issued.

tol an optional ’small’ number to compare the variance against. For each set in
multiExpr, the default value is 1e-10 * max(abs(multiExpr[[set]]$data),
na.rm = TRUE). The reason of comparing the variance to this number, rather than
zero, is that the fast way of computing variance used by this function sometimes
causes small numerical overflow errors which make variance of constant vectors
slightly non-zero; comparing the variance to tol rather than zero prevents the
retaining of such genes as ’good genes’.

minRelativeWeight

observations whose relative weight is below this threshold will be considered
missing. Here relative weight is weight divided by the maximum weight in the
column (gene).

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

goodSamples 149

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4.

If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the
column or gene) will be considered missing.

For most data sets, the fraction of missing samples criterion will be much more stringent than the
absolute number of missing samples criterion.

Value

A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE
otherwise. Note that all genes excluded by useGenes are automatically assigned FALSE.

Author(s)

Peter Langfelder

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;

goodSamplesMS, goodSamplesGenesMS for additional cleaning of multiple data sets together.

goodSamples Filter samples with too many missing entries

Description

This function checks data for missing entries and returns a list of samples that pass two criteria on
maximum number of missing values: the fraction of missing values must be below a given threshold
and the total number of missing genes must be below a given threshold.

Usage

goodSamples(
datExpr,
weights = NULL,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
minRelativeWeight = 0.1,
verbose = 1, indent = 0)

150 goodSamples

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.

weights optional observation weights in the same format (and dimensions) as datExpr.

useSamples optional specifications of which samples to use for the check. Should be a log-
ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to using
all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of good samples for the data set to be considered fit for anal-
ysis. If the actual number of good samples falls below this threshold, an error
will be issued.

minNGenes minimum number of non-missing samples for a sample to be considered good.

minRelativeWeight

observations whose weight divided by the maximum weight is below this thresh-
old will be considered missing.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4. For most data sets,
the fraction of missing samples criterion will be much more stringent than the absolute number of
missing samples criterion.

Value

A logical vector with one entry per sample that is TRUE if the sample is considered good and FALSE
otherwise. Note that all samples excluded by useSamples are automatically assigned FALSE.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodSamples, goodSamplesGenes

goodSamplesGenes 151

goodSamplesGenes Iterative filtering of samples and genes with too many missing entries

Description

This function checks data for missing entries, entries with weights below a threshold, and zero-
variance genes, and returns a list of samples and genes that pass criteria on maximum number of
missing or low weight values. If necessary, the filtering is iterated.

Usage

goodSamplesGenes(
datExpr,
weights = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
tol = NULL,
minRelativeWeight = 0.1,
verbose = 1, indent = 0)

Arguments

datExpr expression data. A matrix or data frame in which columns are genes and rows
ar samples.

weights optional observation weights in the same format (and dimensions) as datExpr.
minFraction minimum fraction of non-missing samples for a gene to be considered good.
minNSamples minimum number of non-missing samples for a gene to be considered good.
minNGenes minimum number of good genes for the data set to be considered fit for analysis.

If the actual number of good genes falls below this threshold, an error will be
issued.

tol an optional ’small’ number to compare the variance against. Defaults to the
square of 1e-10 * max(abs(datExpr), na.rm = TRUE). The reason of compar-
ing the variance to this number, rather than zero, is that the fast way of comput-
ing variance used by this function sometimes causes small numerical overflow
errors which make variance of constant vectors slightly non-zero; comparing the
variance to tol rather than zero prevents the retaining of such genes as ’good
genes’.

minRelativeWeight

observations whose relative weight is below this threshold will be considered
missing. Here relative weight is weight divided by the maximum weight in the
column (gene).

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

152 goodSamplesGenesMS

Details

This function iteratively identifies samples and genes with too many missing entries and genes with
zero variance. If weights are given, entries with relative weight (weight divided by maximum weight
in the column) below minRelativeWeight will be considered missing. The process is repeated until
the lists of good samples and genes are stable. The constants ..minNSamples and ..minNGenes
are both set to the value 4.

Value

A list with the foolowing components:

goodSamples A logical vector with one entry per sample that is TRUE if the sample is consid-
ered good and FALSE otherwise.

goodGenes A logical vector with one entry per gene that is TRUE if the gene is considered
good and FALSE otherwise.

Author(s)

Peter Langfelder

See Also

goodSamples, goodGenes

goodSamplesGenesMS Iterative filtering of samples and genes with too many missing entries
across multiple data sets

Description

This function checks data for missing entries and zero variance across multiple data sets and returns
a list of samples and genes that pass criteria maximum number of missing values. If weights are
given, entries whose relative weight is below a threshold will be considered missing. The filtering
is iterated until convergence.

Usage

goodSamplesGenesMS(
multiExpr,
multiWeights = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
tol = NULL,
minRelativeWeight = 0.1,
verbose = 2, indent = 0)

goodSamplesGenesMS 153

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of non-missing samples for a gene to be considered good.

minNGenes minimum number of good genes for the data set to be considered fit for analysis.
If the actual number of good genes falls below this threshold, an error will be
issued.

tol an optional ’small’ number to compare the variance against. For each set in
multiExpr, the default value is 1e-10 * max(abs(multiExpr[[set]]$data),
na.rm = TRUE). The reason of comparing the variance to this number, rather than
zero, is that the fast way of computing variance used by this function sometimes
causes small numerical overflow errors which make variance of constant vectors
slightly non-zero; comparing the variance to tol rather than zero prevents the
retaining of such genes as ’good genes’.

minRelativeWeight

observations whose relative weight is below this threshold will be considered
missing. Here relative weight is weight divided by the maximum weight in the
column (gene).

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

This function iteratively identifies samples and genes with too many missing entries, and genes
with zero variance; iterations are necessary since excluding samples effectively changes criteria on
genes and vice versa. The process is repeated until the lists of good samples and genes are stable.
If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the
column or gene) is below a threshold will be considered missing. The constants ..minNSamples
and ..minNGenes are both set to the value 4.

Value

A list with the foolowing components:

goodSamples A list with one component per given set. Each component is a logical vector
with one entry per sample in the corresponding set that is TRUE if the sample is
considered good and FALSE otherwise.

goodGenes A logical vector with one entry per gene that is TRUE if the gene is considered
good and FALSE otherwise.

154 goodSamplesMS

Author(s)

Peter Langfelder

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;

goodSamplesMS, goodGenesMS for additional cleaning of multiple data sets together.

goodSamplesMS Filter samples with too many missing entries across multiple data sets

Description

This function checks data for missing entries and returns a list of samples that pass two criteria on
maximum number of missing values: the fraction of missing values must be below a given threshold
and the total number of missing genes must be below a given threshold.

Usage

goodSamplesMS(multiExpr,
multiWeights = NULL,
useSamples = NULL,
useGenes = NULL,
minFraction = 1/2,
minNSamples = ..minNSamples,
minNGenes = ..minNGenes,
minRelativeWeight = 0.1,
verbose = 1, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.

useSamples optional specifications of which samples to use for the check. Should be a log-
ical vector; samples whose entries are FALSE will be ignored for the missing
value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a
logical vector; genes whose entries are FALSE will be ignored. Defaults to using
all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of good samples for the data set to be considered fit for anal-
ysis. If the actual number of good samples falls below this threshold, an error
will be issued.

greenBlackRed 155

minNGenes minimum number of non-missing samples for a sample to be considered good.
minRelativeWeight

observations whose relative weight is below this threshold will be considered
missing. Here relative weight is weight divided by the maximum weight in the
column (gene).

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4.

If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the
column or gene) will be considered missing.

For most data sets, the fraction of missing samples criterion will be much more stringent than the
absolute number of missing samples criterion.

Value

A list with one component per input set. Each component is a logical vector with one entry per
sample in the corresponding set, indicating whether the sample passed the missing value criteria.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;

goodGenesMS, goodSamplesGenesMS for additional cleaning of multiple data sets together.

greenBlackRed Green-black-red color sequence

Description

Generate a green-black-red color sequence of a given length.

Usage

greenBlackRed(n, gamma = 1)

Arguments

n number of colors to be returned

gamma color correction power

156 greenWhiteRed

Details

The function returns a color vector that starts with pure green, gradually turns into black and then
to red. The power gamma can be used to control the behaviour of the quarter- and three quarter-
values (between green and black, and black and red, respectively). Higher powers will make the
mid-colors more green and red, respectively.

Value

A vector of colors of length n.

Author(s)

Peter Langfelder

Examples

par(mfrow = c(3, 1))
displayColors(greenBlackRed(50));
displayColors(greenBlackRed(50, 2));
displayColors(greenBlackRed(50, 0.5));

greenWhiteRed Green-white-red color sequence

Description

Generate a green-white-red color sequence of a given length.

Usage

greenWhiteRed(n, gamma = 1, warn = TRUE)

Arguments

n number of colors to be returned
gamma color change power
warn logical: should the user be warned that this function produces a palette unsuit-

able for people with most common color blindness?

Details

The function returns a color vector that starts with green, gradually turns into white and then to
red. The power gamma can be used to control the behaviour of the quarter- and three quarter-values
(between green and white, and white and red, respectively). Higher powers will make the mid-
colors more white, while lower powers will make the colors more saturated, respectively.

Typical use of this function is to produce (via function numbers2colors) a color representation of
numbers within a symmetric interval around 0, for example, the interval [-1, 1]. Note though that
since green and red are not distinguishable by people with the most common type of color blindness,
we recommend using the analogous palette returned by the function blueWhiteRed.

GTOMdist 157

Value

A vector of colors of length n.

Author(s)

Peter Langfelder

See Also

blueWhiteRed for a color sequence more friendly to people with the most common type of color
blindness;

numbers2colors for a function that produces a color representation for continuous numbers.

Examples

par(mfrow = c(3, 1))
displayColors(greenWhiteRed(50));
title("gamma = 1")
displayColors(greenWhiteRed(50, 3));
title("gamma = 3")
displayColors(greenWhiteRed(50, 0.5));
title("gamma = 0.5")

GTOMdist Generalized Topological Overlap Measure

Description

Generalized Topological Overlap Measure, taking into account interactions of higher degree.

Usage

GTOMdist(adjMat, degree = 1)

Arguments

adjMat adjacency matrix. See details below.

degree integer specifying the maximum degree to be calculated.

Value

Matrix of the same dimension as the input adjMat.

Author(s)

Steve Horvath and Andy Yip

158 hierarchicalConsensusCalculation

References

Yip A, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap
measure. BMC Bioinformatics 2007, 8:22

hierarchicalConsensusCalculation

Hierarchical consensus calculation

Description

Hierarchical consensus calculation with optional data calibration.

Usage

hierarchicalConsensusCalculation(
individualData,

consensusTree,

level = 1,
useBlocks = NULL,
randomSeed = NULL,
saveCalibratedIndividualData = FALSE,
calibratedIndividualDataFilePattern =

"calibratedIndividualData-%a-Set%s-Block%b.RData",

Return options: the data can be either saved or returned but not both.
saveConsensusData = TRUE,
consensusDataFileNames = "consensusData-%a-Block%b.RData",
getCalibrationSamples= FALSE,

Return the intermediate results as well?
keepIntermediateResults = FALSE,

Internal handling of data
useDiskCache = NULL,
chunkSize = NULL,
cacheDir = ".",
cacheBase = ".blockConsModsCache",

Behaviour
collectGarbage = FALSE,
verbose = 1, indent = 0)

hierarchicalConsensusCalculation 159

Arguments

individualData Individual data from which the consensus is to be calculated. It can be either a
list or a multiData structure. Each element in individulData can in turn either
be a numeric object (vector, matrix or array) or a BlockwiseData structure.

consensusTree A list specifying the consensus calculation. See details.

level Integer which the user should leave at 1. This serves to keep default set names
unique.

useBlocks When individualData contains BlockwiseData, this argument can be an inte-
ger vector with indices of blocks for which the calculation should be performed.

randomSeed If non-NULL, the function will save the current state of the random generator, set
the given seed, and restore the random seed to its original state upon exit. If
NULL, the seed is not set nor is it restored on exit.

saveCalibratedIndividualData

Logical: should calibrated individual data be saved?
calibratedIndividualDataFilePattern

Pattern from which file names for saving calibrated individual data are deter-
mined. The conversions %a, %s and %b will be replaced by analysis name, set
number and block number, respectively.

saveConsensusData

Logical: should final consensus be saved (TRUE) or returned in the return value
(FALSE)?

consensusDataFileNames

Pattern from which file names for saving the final consensus are determined.
The conversions %a and %b will be replaced by analysis name and block number,
respectively.

getCalibrationSamples

When calibration method in the consensusOptions component of ConsensusTree
is "single quantile", this logical argument determines whether the calibration
samples should be returned within the return value.

keepIntermediateResults

Logical: should results of intermediate consensus calculations (if any) be kept?
These are always returned as BlockwiseData whose data are saved to disk.

useDiskCache Logical: should disk cache be used for consensus calculations? The disk cache
can be used to store chunks of calibrated data that are small enough to fit one
chunk from each set into memory (blocks may be small enough to fit one block
of one set into memory, but not small enough to fit one block from all sets in
a consensus calculation into memory at the same time). Using disk cache is
slower but lessens the memory footprint of the calculation. As a general guide,
if individual data are split into blocks, we recommend setting this argument to
TRUE. If this argument is NULL, the function will decide whether to use disk cache
based on the number of sets and block sizes.

chunkSize Integer giving the chunk size. If left NULL, a suitable size will be chosen auto-
matically.

cacheDir Directory in which to save cache files. The files are deleted on normal exit but
persist if the function terminates abnormally.

160 hierarchicalConsensusCalculation

cacheBase Base for the file names of cache files.

collectGarbage Logical: should garbage collection be forced after each major calculation?

verbose Integer level of verbosity of diagnostic messages. Zero means silent, higher
values make the output progressively more and more verbose.

indent Indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

This function calculates consensus in a hierarchical manner, using a separate (and possibly different)
set of consensus options at each step. The "recipe" for the consensus calculation is supplied in the
argument consensusTree.

The argument consensusTree should have the following components: (1) inputs must be either a
character vector whose components match names(inputData), or consensus trees in the own right.
(2) consensusOptions must be a list of class "ConsensusOptions" that specifies options for cal-
culating the consensus. A suitable set of options can be obtained by calling newConsensusOptions.
(3) Optionally, the component analysisName can be a single character string giving the name for
the analysis. When intermediate results are returned, they are returned in a list whose names will
be set from analysisName components, if they exist.

The actual consensus calculation at each level of the consensus tree is carried out in function
consensusCalculation. The consensus options for each individual consensus calculation are in-
dependent from one another, i.e., the consensus options for different steps can be different.

Value

A list containing the output of the top level call to consensusCalculation; if keepIntermediateResults
is TRUE, component inputs contains a (possibly recursive) list of the results of intermediate con-
sensus calculations. Names of the inputs list are taken from the corresponding analysisName
components if they exist, otherwise from names of the corresponding inputs components of the
supplied consensusTree. See example below for an example of a relatively simple consensus tree.

Author(s)

Peter Langfelder

See Also

newConsensusOptions for obtaining a suitable list of consensus options;

consensusCalculation for the actual calculation of a consensus that underpins this function.

Examples

We generate 3 simple matrices
set.seed(5)
data = replicate(3, matrix(rnorm(10*100), 10, 100))
names(data) = c("Set1", "Set2", "Set3");
Put together a consensus tree. In this example the final consensus uses
as input set 1 and a consensus of sets 2 and 3.

hierarchicalConsensusKME 161

First define the consensus of sets 2 and 3:
consTree.23 = newConsensusTree(

inputs = c("Set2", "Set3"),
consensusOptions = newConsensusOptions(calibration = "none",

consensusQuantile = 0.25),
analysisName = "Consensus of sets 1 and 2");

Now define the final consensus
consTree.final = newConsensusTree(

inputs = list("Set1", consTree.23),
consensusOptions = newConsensusOptions(calibration = "full quantile",

consensusQuantile = 0),
analysisName = "Final consensus");

consensus = hierarchicalConsensusCalculation(
individualData = data,
consensusTree = consTree.final,
saveConsensusData = FALSE,
keepIntermediateResults = FALSE)

names(consensus)

hierarchicalConsensusKME

Calculation of measures of fuzzy module membership (KME) in hier-
archical consensus modules

Description

This function calculates several measures of fuzzy module membership in hiearchical consensus
modules.

Usage

hierarchicalConsensusKME(
multiExpr,
moduleLabels,
multiWeights = NULL,
multiEigengenes = NULL,
consensusTree,
signed = TRUE,
useModules = NULL,
metaAnalysisWeights = NULL,
corAndPvalueFnc = corAndPvalue, corOptions = list(),
corComponent = "cor", getFDR = FALSE,
useRankPvalue = TRUE,
rankPvalueOptions = list(calculateQvalue = getFDR, pValueMethod = "scale"),
setNames = names(multiExpr), excludeGrey = TRUE,

162 hierarchicalConsensusKME

greyLabel = if (is.numeric(moduleLabels)) 0 else "grey",
reportWeightType = NULL,
getOwnModuleZ = TRUE,
getBestModuleZ = TRUE,
getOwnConsensusKME = TRUE,
getBestConsensusKME = TRUE,
getAverageKME = FALSE,
getConsensusKME = TRUE,

getMetaColsFor1Set = FALSE,
getMetaP = FALSE,
getMetaFDR = getMetaP && getFDR,

getSetKME = TRUE,
getSetZ = FALSE,
getSetP = FALSE,
getSetFDR = getSetP && getFDR,

includeID = TRUE,
additionalGeneInfo = NULL,
includeWeightTypeInColnames = TRUE)

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

moduleLabels A vector with one entry per column (gene or probe) in multiExpr, giving the
module labels.

multiWeights optional observation weights for data in multiExpr, in the same format (and
dimensions) as multiExpr. These weights are used in calculation of KME,
i.e., the correlation of module eigengenes with data in multiExpr. The module
eigengenes are not weighted in this calculation.

multiEigengenes

Optional specification of module eigengenes of the modules (moduleLabels) in
data sets within multiExpr. If not given, will be calculated.

consensusTree A list specifying the consensus calculation. See details.

signed Logical: should module membership be considered singed? Signed member-
ship should be used for signed (including signed hybrid) networks and means
that negative module membership means the gene is not a member of the mod-
ule. In other words, in signed networks negative kME values are not considered
significant and the corresponding p-values will be one-sided. In unsigned net-
works, negative kME values are considered significant and the corresponding
p-values will be two-sided.

useModules Optional vector specifying which modules should be used. Defaults to all mod-
ules except the unassigned module.

hierarchicalConsensusKME 163

metaAnalysisWeights

Optional specification of meta-analysis weights for each input set. If given,
must be a numeric vector of length equal the number of input data sets (i.e.,
length(multiExpr)). These weights will be used in addition to constant weights
and weights proportional to number of samples (observations) in each set.

corAndPvalueFnc

Function that calculates associations between expression profiles and eigen-
genes. See details.

corOptions List giving additional arguments to function corAndPvalueFnc. See details.

corComponent Name of the component of output of corAndPvalueFnc that contains the actual
correlation.

getFDR Logical: should FDR be calculated?

useRankPvalue Logical: should the rankPvalue function be used to obtain alternative meta-
analysis statistics?

rankPvalueOptions

Additional options for function rankPvalue. These include na.last (default
"keep"), ties.method (default "average"), calculateQvalue (default copied
from input getQvalues), and pValueMethod (default "scale"). See the help
file for rankPvalue for full details.

setNames Names for the input sets. If not given, will be taken from names(multiExpr).
If those are NULL as well, the names will be "Set_1", "Set_2",

excludeGrey logical: should the grey module be excluded from the kME tables? Since the
grey module is typically not a real module, it makes little sense to report kME
values for it.

greyLabel label that labels the grey module.
reportWeightType

One of "equal", "rootDoF", "DoF", "user". Indicates which of the weights
should be reported in the output. If not given, all available weight types will
be reported; this always includes "equal","rootDoF", "DoF", while "user"
weights are reported if metaAnalysisWeights above is given.

getOwnModuleZ Logical: should meta-analysis Z statistic in own module be returned as a column
of the output?

getBestModuleZ Logical: should highest meta-analysis Z statistic across all modules and the
corresponding module be returned as columns of the output?

getOwnConsensusKME

Logical: should consensus KME (eigengene-based connectivity) statistic in own
module be returned as a column of the output?

getBestConsensusKME

Logical: should highest consensus KME across all modules and the correspond-
ing module be returned as columns of the output?

getAverageKME Logical: Should average KME be calculated?
getConsensusKME

Logical: should consensus KME be calculated?

164 hierarchicalConsensusKME

getMetaColsFor1Set

Logical: should the meta-statistics be returned if the input data only have 1
set? For 1 set, meta- and individual kME values are the same, so meta-columns
essentially duplicate individual columns.

getMetaP Logical: should meta-analysis p-values corresponding to the KME meta-analysis
Z statistics be calculated?

getMetaFDR Logical: should FDR estimates for the meta-analysis p-values corresponding to
the KME meta-analysis Z statistics be calculated?

getSetKME Logical: should KME values for individual sets be returned?

getSetZ Logical: should Z statistics corresponding to KME for individual sets be re-
turned?

getSetP Logical: should p values corresponding to KME for individual sets be returned?

getSetFDR Logical: should FDR estimates corresponding to KME for individual sets be
returned?

includeID Logical: should gene ID (taken from column names of multiExpr) be included
as the first column in the output?

additionalGeneInfo

Optional data frame with rows corresponding to genes in multiExpr that should
be included as part of the output.

includeWeightTypeInColnames

Logical: should weight type ("equal", "rootDoF", "DoF", "user") be in-
cluded in appropriate meta-analysis column names?

Details

This function calculates several measures of (hierarchical) consensus KME (eigengene-based in-
tramodular connectivity or fuzzy module membership) for all genes in all modules.

First, it calculates the meta-analysis Z statistics for correlations between genes and module eigen-
genes; this is known as the consensus module membership Z statistic. The meta-analysis weights
can be specified by the user either explicitly or implicitly ("equal", "RootDoF" or "DoF").

Second, it can calculate the consensus KME, i.e., the hierarchical consensus of the KMEs (cor-
relations with eigengenes) across the individual sets. The consensus calculation is specified in the
argument consensusTree; typically, the consensusTree used here will be the same as the one used
for the actual consensus network construction and module identification. See newConsensusTree
for details on how to specify consensus trees.

Third, the function can also calculate the (weighted) average KME using the meta-analysis weights;
the average KME can be interpreted as the meta-analysis of the KMEs in the individual sets. This
is related to but somewhat distinct from the meta-analysis Z statistics.

In addition to these, optional output also includes, for each gene, KME values in the module to
which the gene is assigned as well as the maximum KME values and modules for which the maxima
are attained. For most genes, the assigned module will be the one with highest KME values, but for
some genes the assigned module and module of maximum KME may be different.

The function corAndPvalueFnc is currently is expected to accept arguments x (gene expression
profiles), y (eigengene expression profiles), and alternative with possibilities at least "greater",

hierarchicalConsensusKME 165

"two.sided". If weights are given, these are passed to corAndPvalueFnc as argument weights.x.
Any additional arguments can be passed via corOptions.

The function corAndPvalueFnc should return a list which at the least contains (1) a matrix of asso-
ciations of genes and eigengenes (this component should have the name given by corComponent),
and (2) a matrix of the corresponding p-values, named "p" or "p.value". Other components are
optional but for full functionality should include (3) nObs giving the number of observations for
each association (which is the number of samples less number of missing data - this can in principle
vary from association to association), and (4) Z giving a Z static for each observation. If these are
missing, nObs is calculated in the main function, and calculations using the Z statistic are skipped.

Value

Data frame with the following components, some of which may be missing depending on input
options (for easier readability the order here is not the same as in the actual output):

ID Gene ID, taken from the column names of the first input data set

If given, a copy of additionalGeneInfo.

Z.kME.inOwnModule

Meta-analysis Z statistic for membership in assigned module.

maxZ.kME Maximum meta-analysis Z statistic for membership across all modules.

moduleOfMaxZ.kME

Module in which the maximum meta-analysis Z statistic is attained.

consKME.inOwnModule

Consensus KME in assigned module.

maxConsKME Maximum consensus KME across all modules.
moduleOfMaxConsKME

Module in which the maximum consensus KME is attained.
consensus.kME.1, consensus.kME.2, ...

Consensus kME (that is, the requested quantile of the kMEs in the individual
data sets)in each module for each gene across the input data sets. The module
labels (here 1, 2, etc.) correspond to those in moduleLabels.

weightedAverage.equalWeights.kME1, weightedAverage.equalWeights.kME2,
...

Average kME in each module for each gene across the input data sets.

weightedAverage.RootDoFWeights.kME1, weightedAverage.RootDoFWeights.kME2,
...

Weighted average kME in each module for each gene across the input data sets.
The weight of each data set is proportional to the square root of the number of
samples in the set.

weightedAverage.DoFWeights.kME1, weightedAverage.DoFWeights.kME2,
...

Weighted average kME in each module for each gene across the input data sets.
The weight of each data set is proportional to number of samples in the set.

166 hierarchicalConsensusKME

weightedAverage.userWeights.kME1, weightedAverage.userWeights.kME2,
...

(Only present if input metaAnalysisWeights is non-NULL.) Weighted average
kME in each module for each gene across the input data sets. The weight of
each data set is given in metaAnalysisWeights.

meta.Z.equalWeights.kME1, meta.Z.equalWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the
Z scores in each set equally. Only returned if the function corAndPvalueFnc
returns the Z statistics corresponding to the correlations.

meta.Z.RootDoFWeights.kME1, meta.Z.RootDoFWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the Z
scores in each set by the square root of the number of samples. Only returned
if the function corAndPvalueFnc returns the Z statistics corresponding to the
correlations.

meta.Z.DoFWeights.kME1, meta.Z.DoFWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the
Z scores in each set by the number of samples. Only returned if the function
corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.Z.userWeights.kME1, meta.Z.userWeights.kME2, ...
Meta-analysis Z statistic for kME in each module, obtained by weighing the Z
scores in each set by metaAnalysisWeights. Only returned if metaAnalysisWeights
is non-NULL and the function corAndPvalueFnc returns the Z statistics corre-
sponding to the correlations.

meta.p.equalWeights.kME1, meta.p.equalWeights.kME2, ...
p-values obtained from the equal-weight meta-analysis Z statistics. Only re-
turned if the function corAndPvalueFnc returns the Z statistics corresponding
to the correlations.

meta.p.RootDoFWeights.kME1, meta.p.RootDoFWeights.kME2, ...
p-values obtained from the meta-analysis Z statistics with weights proportional
to the square root of the number of samples. Only returned if the function
corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.p.DoFWeights.kME1, meta.p.DoFWeights.kME2, ...
p-values obtained from the degree-of-freedom weight meta-analysis Z statistics.
Only returned if the function corAndPvalueFnc returns the Z statistics corre-
sponding to the correlations.

meta.p.userWeights.kME1, meta.p.userWeights.kME2, ...
p-values obtained from the user-supplied weight meta-analysis Z statistics. Only
returned if metaAnalysisWeights is non-NULL and the function corAndPvalueFnc
returns the Z statistics corresponding to the correlations.

meta.q.equalWeights.kME1, meta.q.equalWeights.kME2, ...
q-values obtained from the equal-weight meta-analysis p-values. Only present if
getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics
corresponding to the kME values.

meta.q.RootDoFWeights.kME1, meta.q.RootDoFWeights.kME2, ...
q-values obtained from the meta-analysis p-values with weights proportional to
the square root of the number of samples. Only present if getQvalues is TRUE
and the function corAndPvalueFnc returns the Z statistics corresponding to the
kME values.

hierarchicalConsensusKME 167

meta.q.DoFWeights.kME1, meta.q.DoFWeights.kME2, ...
q-values obtained from the degree-of-freedom weight meta-analysis p-values.
Only present if getQvalues is TRUE and the function corAndPvalueFnc returns
the Z statistics corresponding to the kME values.

meta.q.userWeights.kME1, meta.q.userWeights.kME2, ...
q-values obtained from the user-specified weight meta-analysis p-values. Only
present if metaAnalysisWeights is non-NULL, getQvalues is TRUE and the
function corAndPvalueFnc returns the Z statistics corresponding to the kME
values.

The next set of columns contain the results of function rankPvalue and are only present if input
useRankPvalue is TRUE. Some columns may be missing depending on the options specified in
rankPvalueOptions. We explicitly list columns that are based on weighing each set equally; names
of these columns carry the suffix .equalWeights

pValueExtremeRank.ME1.equalWeights, pValueExtremeRank.ME2.equalWeights,
...

This is the minimum between pValueLowRank and pValueHighRank, i.e. min(pValueLow,
pValueHigh)

pValueLowRank.ME1.equalWeights, pValueLowRank.ME2.equalWeights, ...
Asymptotic p-value for observing a consistently low value based on the rank
method.

pValueHighRank.ME1.equalWeights, pValueHighRank.ME2.equalWeights,
...

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the rank method.

pValueExtremeScale.ME1.equalWeights, pValueExtremeScale.ME2.equalWeights,
...

This is the minimum between pValueLowScale and pValueHighScale, i.e. min(pValueLow,
pValueHigh)

pValueLowScale.ME1.equalWeights, pValueLowScale.ME2.equalWeights,
...

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

pValueHighScale.ME1.equalWeights, pValueHighScale.ME2.equalWeights,
...

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

qValueExtremeRank.ME1.equalWeights, qValueExtremeRank.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueExtremeR-
ank

qValueLowRank.ME1.equalWeights, qValueLowRank.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueLowRank

qValueHighRank.ME1.equalWeights, lueHighRank.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueHigh-
Rank

168 hierarchicalConsensusKME

qValueExtremeScale.ME1.equalWeights, qValueExtremeScale.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueExtremeScale

qValueLowScale.ME1.equalWeights, qValueLowScale.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueLowS-
cale

qValueHighScale.ME1.equalWeights, qValueHighScale.ME2.equalWeights,
...

local false discovery rate (q-value) corresponding to the p-value pValueHigh-
Scale

... Analogous columns corresponding to weighing individual sets by the square
root of the number of samples, by number of samples, and by user weights
(if given). The corresponding column name suffixes are .RootDoFWeights,
.DoFWeights, and .userWeights.

The following set of columns summarize kME in individual input data sets.

kME1.Set_1, kME1.Set_2, ..., kME2.Set_1, kME2.Set_2, ...
kME values for each gene in each module in each given data set.

p.kME1.Set_1, p.kME1.Set_2, ..., p.kME2.Set_1, p.kME2.Set_2, ...
p-values corresponding to kME values for each gene in each module in each
given data set.

q.kME1.Set_1, q.kME1.Set_2, ..., q.kME2.Set_1, q.kME2.Set_2, ...
q-values corresponding to kME values for each gene in each module in each
given data set. Only returned if getQvalues is TRUE.

Z.kME1.Set_1, Z.kME1.Set_2, ..., Z.kME2.Set_1, Z.kME2.Set_2, ...
Z statistics corresponding to kME values for each gene in each module in each
given data set. Only present if the function corAndPvalueFnc returns the Z
statistics corresponding to the kME values.

Author(s)

Peter Langfelder

See Also

signedKME for eigengene based connectivity in a single data set. corAndPvalue, bicorAndPvalue
for two alternatives for calculating correlations and the corresponding p-values and Z scores. Both
can be used with this function. newConsensusTree for more details on hierarchical consensus trees
and calculations.

hierarchicalConsensusMEDissimilarity 169

hierarchicalConsensusMEDissimilarity

Hierarchical consensus calculation of module eigengene dissimilarity

Description

Hierarchical consensus calculation of module eigengene dissimilarities, or more generally, correlation-
based dissimilarities of sets of vectors.

Usage

hierarchicalConsensusMEDissimilarity(
MEs,
networkOptions,
consensusTree,
greyName = "ME0",
calibrate = FALSE)

Arguments

MEs A multiData structure containing vectors (usually module eigengenes) whose
consensus dissimilarity is to be calculated.

networkOptions A multiData structure containing, for each input data set, a list of class NetworkOptions
giving options for network calculation for all of the networks.

consensusTree A list specifying the consensus calculation. See details.
greyName Name of the "grey" module eigengene. Currently not used.
calibrate Logical: should the dissimilarities be calibrated using the calibration method

specified in consensusTree? See details.

Details

This function first calculates the similarities of the ME vectors from their correlations, using the
appropriate options in networkOptions (correlation type and options, signed or unsigned dissimi-
larity etc). This results in a similarity matrix in each of the input data sets.

Next, a hierarchical consensus of the similarities is calculated via a call to hierarchicalConsensusCalculation,
using the consensus specification and options in consensusTree. In typical use, consensusTree
contains the same consensus specification as the consensus network calculation that gave rise to the
consensus modules whose eigengenes are contained in MEs but this is not mandatory.

The argument consensusTree should have the following components: (1) inputs must be either a
character vector whose components match names(inputData), or consensus trees in the own right.
(2) consensusOptions must be a list of class "ConsensusOptions" that specifies options for cal-
culating the consensus. A suitable set of options can be obtained by calling newConsensusOptions.
(3) Optionally, the component analysisName can be a single character string giving the name for
the analysis. When intermediate results are returned, they are returned in a list whose names will
be set from analysisName components, if they exist.

In the final step, the consensus similarity is turned into a dissimilarity by subtracting it from 1.

170 hierarchicalConsensusModules

Value

A matrix with rows and columns corresponding to the variables (modules) in MEs, containing the
consensus dissimilarities.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusCalculation for the actual consensus calculation.

hierarchicalConsensusModules

Hierarchical consensus network construction and module identifica-
tion

Description

Hierarchical consensus network construction and module identification across multiple data sets.

Usage

hierarchicalConsensusModules(
multiExpr,
multiWeights = NULL,
multiExpr.imputed = NULL,

Data checking options
checkMissingData = TRUE,

Blocking options
blocks = NULL,
maxBlockSize = 5000,
blockSizePenaltyPower = 5,
nPreclusteringCenters = NULL,
randomSeed = 12345,

Network construction options.
networkOptions,

Save individual TOMs?
saveIndividualTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",
keepIndividualTOMs = FALSE,

Consensus calculation options

hierarchicalConsensusModules 171

consensusTree = NULL,

Return options
saveConsensusTOM = TRUE,
consensusTOMFilePattern = "consensusTOM-%a-Block%b.RData",

Keep the consensus?
keepConsensusTOM = saveConsensusTOM,

Internal handling of TOMs
useDiskCache = NULL, chunkSize = NULL,
cacheBase = ".blockConsModsCache",
cacheDir = ".",

Alternative consensus TOM input from a previous calculation
consensusTOMInfo = NULL,

Basic tree cut options
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = 20,
checkMinModuleSize = TRUE,

Advanced tree cut opyions
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,

useBranchEigennodeDissim = FALSE,
minBranchEigennodeDissim = mergeCutHeight,

stabilityLabels = NULL,
stabilityCriterion = c("Individual fraction", "Common fraction"),
minStabilityDissim = NULL,

pamStage = TRUE, pamRespectsDendro = TRUE,

iteratePruningAndMerging = FALSE,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.2,

Module eigengene calculation options

impute = TRUE,
trapErrors = FALSE,
excludeGrey = FALSE,

Module merging options

172 hierarchicalConsensusModules

calibrateMergingSimilarities = FALSE,
mergeCutHeight = 0.15,

General options
collectGarbage = TRUE,
verbose = 2, indent = 0,
...)

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
These weights are used for correlation calculations with data in multiExpr.

multiExpr.imputed

If multiExpr contain missing data, this argument can be used to supply the ex-
pression data with missing data imputed. If not given, the impute.knn function
will be used to impute the missing data.

checkMissingData

Logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks Optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per gene of multiExpr giving the number of the block to which the correspond-
ing gene belongs.

maxBlockSize Integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

blockSizePenaltyPower

Number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a lrge number or Inf if not exceeding maximum block
size is very important.

nPreclusteringCenters

Number of centers to be used in the preclustering. Defaults to smaller of nGenes/20
and 100*nGenes/maxBlockSize, where nGenes is the nunber of genes (vari-
ables) in multiExpr.

randomSeed Integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given,
the function will not save and restore the seed.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

saveIndividualTOMs

Logical: should individual TOMs be saved to disk (TRUE) or retuned directly in
the return value (FALSE)?

hierarchicalConsensusModules 173

individualTOMFileNames

Character string giving the file names to save individual TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

keepIndividualTOMs

Logical: should individual TOMs be retained after the calculation is finished?
consensusTree A list specifying the consensus calculation. See details.
saveConsensusTOM

Logical: should the consensus TOM be saved to disk?
consensusTOMFilePattern

Character string giving the file names to save consensus TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

keepConsensusTOM

Logical: should consensus TOM be retained after the calculation ends? Depend-
ing on saveConsensusTOM, the retained TOM is either saved to disk or returned
within the return value.

useDiskCache Logical: should disk cache be used for consensus calculations? The disk cache
can be used to store chunks of calibrated data that are small enough to fit one
chunk from each set into memory (blocks may be small enough to fit one block
of one set into memory, but not small enough to fit one block from all sets in
a consensus calculation into memory at the same time). Using disk cache is
slower but lessens the memory footprint of the calculation. As a general guide,
if individual data are split into blocks, we recommend setting this argument to
TRUE. If this argument is NULL, the function will decide whether to use disk cache
based on the number of sets and block sizes.

chunkSize Integer giving the chunk size. If left NULL, a suitable size will be chosen auto-
matically.

cacheDir Directory in which to save cache files. The files are deleted on normal exit but
persist if the function terminates abnormally.

cacheBase Base for the file names of cache files.
consensusTOMInfo

If the consensus TOM has been pre-calculated using function hierarchicalConsensusTOM,
this argument can be used to supply it. If given, the consensus TOM calculation
options above are ignored.

deepSplit Numeric value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight

Dendrogram cut height for module detection. See cutreeDynamic for more
details.

174 hierarchicalConsensusModules

minModuleSize Minimum module size for module detection. See cutreeDynamic for more de-
tails.

checkMinModuleSize

logical: should sanity checks be performed on minModuleSize?

maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more details.

maxAbsCoreScatter

maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for more
details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

minSplitHeight Minimum split height given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. Branches merging below this height
will automatically be merged. Defaults to zero but is used only if minAbsSplitHeight
below is NULL.

minAbsSplitHeight

Minimum split height given as an absolute height. Branches merging below this
height will automatically be merged. If not given (default), will be determined
from minSplitHeight above.

useBranchEigennodeDissim

Logical: should branch eigennode (eigengene) dissimilarity be considered when
merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim

Minimum consensus branch eigennode (eigengene) dissimilarity for branches to
be considerd separate. The branch eigennode dissimilarity in individual sets is
simly 1-correlation of the eigennodes; the consensus is defined as quantile with
probability consensusQuantile.

stabilityLabels

Optional matrix of cluster labels that are to be used for calculating branch dis-
similarity based on split stability. The number of rows must equal the number
of genes in multiExpr; the number of columns (clusterings) is arbitrary. See
branchSplitFromStabilityLabels for details.

stabilityCriterion

One of c("Individual fraction", "Common fraction"), indicating which method
for assessing stability similarity of two branches should be used. We recom-
mend "Individual fraction" which appears to perform better; the "Common
fraction" method is provided for backward compatibility since it was the
(only) method available prior to WGCNA version 1.60.

minStabilityDissim

Minimum stability dissimilarity criterion for two branches to be considered sep-
arate. Should be a number between 0 (essentially no dissimilarity required) and
1 (perfect dissimilarity or distinguishability based on stabilityLabels). See
branchSplitFromStabilityLabels for details.

hierarchicalConsensusModules 175

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

pamRespectsDendro

Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect
the dendrogram in the sense an object can be PAM-assigned only to clusters that
lie below it on the branch that the object is merged into. See cutreeDynamic
for more details.

iteratePruningAndMerging

Logical: should pruning of low-KME genes and module merging be iterated?
For backward compatibility, the default is FALSE but it setting it to TRUE may
lead to better-defined modules.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is disbanded
(its genes are unlabeled and returned to the pool of genes waiting for mofule de-
tection).

minCoreKMESize see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?

excludeGrey logical: should the returned module eigengenes exclude the eigengene of the
"module" that contains unassigned genes?

calibrateMergingSimilarities

Logical: should module eigengene similarities be calibrataed before calculating
the consensus? Although calibration is in principle desirable, the calibration
methods currently available assume large data and do not work very well on
eigengene similarities.

mergeCutHeight Dendrogram cut height for module merging.

collectGarbage Logical: should garbage be collected after some of the memory-intensive steps?

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

... Other arguments. Currently ignored.

Details

This function calculates a consensus network with a flexible, possibly hierarchical consensus spec-
ification, identifies (consensus) modules in the network, and calculates their eigengenes. "Block-
wise" calculation is available for large data sets for which a full network (TOM or adjacency matrix)
would not fit into avilable RAM.

The input can be either several numerical data sets (expression etc) in the argument multiExpr
together with all necessary network construction options, or a pre-calculated network, typically the
result of a call to hierarchicalConsensusTOM.

176 hierarchicalConsensusModules

Steps in the network construction include the following: (1) optional filtering of variables (genes)
and observations (samples) that contain too many missing values or have zero variance; (2) op-
tional pre-clustering to split data into blocks of manageable size; (3) calculation of adjacencies and
optionally of TOMs in each individual data set; (4) calculation of consensus network from the indi-
vidual networks; (5) hierarchical clustering and module identification; (6) trimming of modules by
removing genes with low correlation with the eigengene of the module; and (7) merging of modules
whose eigengenes are strongly correlated.

Steps 1-4 (up to and including the calculation of consensus network from the individual networks)
are handled by the function hierarchicalConsensusTOM.

Variables (genes) are clustered using average-linkage hierarchical clustering and modules are iden-
tified in the resulting dendrogram by the Dynamic Hybrid tree cut.

Found modules are trimmed of genes whose consensus module membership kME (that is, correla-
tion with module eigengene) is less than minKMEtoStay. Modules in which fewer than minCoreKMESize
genes have consensus KME higher than minCoreKME are disbanded, i.e., their constituent genes are
pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS (in every set), the
gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

The module trimming and merging process is optionally iterated. Iterations are recommended but
are (for now) not the default for backward compatibility.

Value

List with the following components:

labels A numeric vector with one component per variable (gene), giving the module la-
bel of each variable (gene). Label 0 is reserved for unassigned variables; module
labels are sequential and smaller numbers are used for larger modules.

unmergedLabels A numeric vector with one component per variable (gene), giving the unmerged
module label of each variable (gene), i.e., module labels before the call to mod-
ule merging.

colors A character vector with one component per variable (gene), giving the module
colors. The labels are mapped to colors using labels2colors.

unmergedColors A character vector with one component per variable (gene), giving the unmerged
module colors.

multiMEs Module eigengenes corresponding to the modules returned in colors, in multi-
set format. A vector of lists, one per set, containing eigengenes, proportion
of variance explained and other information. See multiSetMEs for a detailed
description.

hierarchicalConsensusModules 177

dendrograms A list with one component for each block of genes. Each component is the
hierarchical clustering dendrogram obtained by clustering the consensus gene
dissimilarity in the corresponding block.

consensusTOMInfo

A list detailing various aspects of the consensus TOM. See hierarchicalConsensusTOM
for details.

blockInfo A list with information about blocks as well as the vriables and observations
(genes and samples) retained after filtering out those with zero variance and too
many missing values.

moduleIdentificationArguments

A list with the module identification arguments supplied to this function. Con-
tains deepSplit, detectCutHeight, minModuleSize, maxCoreScatter, minGap,
maxAbsCoreScatter, minAbsGap, minSplitHeight, useBranchEigennodeDissim,
minBranchEigennodeDissim, minStabilityDissim, pamStage, pamRespectsDendro,
minCoreKME, minCoreKMESize, minKMEtoStay, calibrateMergingSimilarities,
and mergeCutHeight.

Note

If the input datasets have large numbers of genes, consider carefully the maxBlockSize as it signif-
icantly affects the memory footprint (and whether the function will fail with a memory allocation
error). From a theoretical point of view it is advantageous to use blocks as large as possible; on the
other hand, using smaller blocks is substantially faster and often the only way to work with large
numbers of genes. As a rough guide, when 4GB of memory are available, blocks should be no
larger than 8,000 genes; with 8GB one can handle some 13,000 genes; with 16GB around 20,000;
and with 32GB around 30,000. Depending on the operating system and its setup, these numbers
may vary substantially.

Author(s)

Peter Langfelder

References

Non-hierarchical consensus networks are described in Langfelder P, Horvath S (2007), Eigengene
networks for studying the relationships between co-expression modules. BMC Systems Biology
2007, 1:54.

More in-depth discussion of selected topics can be found at http://www.peterlangfelder.com/ , and
an FAQ at https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
.

See Also

hierarchicalConsensusTOM for calculation of hierarchical consensus networks (adjacency and
TOM), and a more detailed description of the calculation;

hclust and cutreeHybrid for hierarchical clustering and the Dynamic Tree Cut branch cutting
method;

mergeCloseModules for module merging;

178 hierarchicalConsensusTOM

blockwiseModules for an analogous analysis on a single data set.

hierarchicalConsensusTOM

Calculation of hierarchical consensus topological overlap matrix

Description

This function calculates consensus topological overlap in a hierarchical manner.

Usage

hierarchicalConsensusTOM(
... information needed to calculate individual TOMs
multiExpr,
multiWeights = NULL,

Data checking options
checkMissingData = TRUE,

Blocking options
blocks = NULL,
maxBlockSize = 20000,
blockSizePenaltyPower = 5,
nPreclusteringCenters = NULL,
randomSeed = 12345,

Network construction options
networkOptions,

Save individual TOMs?

keepIndividualTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

... or information about individual (more precisely, input) TOMs
individualTOMInfo = NULL,

Consensus calculation options
consensusTree,

useBlocks = NULL,

Save calibrated TOMs?
saveCalibratedIndividualTOMs = FALSE,

calibratedIndividualTOMFilePattern = "calibratedIndividualTOM-Set%s-Block%b.RData",

hierarchicalConsensusTOM 179

Return options
saveConsensusTOM = TRUE,
consensusTOMFilePattern = "consensusTOM-%a-Block%b.RData",
getCalibrationSamples = FALSE,

Return the intermediate results as well?
keepIntermediateResults = saveConsensusTOM,

Internal handling of TOMs
useDiskCache = NULL,
chunkSize = NULL,
cacheDir = ".",
cacheBase = ".blockConsModsCache",

Behavior
collectGarbage = TRUE,
verbose = 1,
indent = 0)

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
These weights are used for correlation calculations with data in multiExpr.

checkMissingData

Logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks Optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per gene of multiExpr giving the number of the block to which the correspond-
ing gene belongs.

maxBlockSize Integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

blockSizePenaltyPower

Number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a lrge number or Inf if not exceeding maximum block
size is very important.

nPreclusteringCenters

Number of centers to be used in the preclustering. Defaults to smaller of nGenes/20
and 100*nGenes/maxBlockSize, where nGenes is the nunber of genes (vari-
ables) in multiExpr.

180 hierarchicalConsensusTOM

randomSeed Integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given,
the function will not save and restore the seed.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

keepIndividualTOMs

Logical: should individual TOMs be retained after the calculation is finished?
individualTOMFileNames

Character string giving the file names to save individual TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

individualTOMInfo

A list, typically returned by individualTOMs, containing information about the
topological overlap matrices in the individual data sets in multiExpr. See the
output of individualTOMs for details on the content of the list.

consensusTree A list specifying the consensus calculation. See details.

useBlocks Optional vector giving the blocks that should be used for the calcualtions. If
NULL, all all blocks will be used.

saveCalibratedIndividualTOMs

Logical: should the calibrated individual TOMs be saved?
calibratedIndividualTOMFilePattern

Specification of file names in which calibrated individual TOMs should be saved.
saveConsensusTOM

Logical: should the consensus TOM be saved to disk?
consensusTOMFilePattern

Character string giving the file names to save consensus TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

getCalibrationSamples

Logical: should the sampled values used for network calibration be returned?
keepIntermediateResults

Logical: should intermediate consensus TOMs be saved as well?

useDiskCache Logical: should disk cache be used for consensus calculations? The disk cache
can be used to store chunks of calibrated data that are small enough to fit one
chunk from each set into memory (blocks may be small enough to fit one block
of one set into memory, but not small enough to fit one block from all sets in
a consensus calculation into memory at the same time). Using disk cache is
slower but lessens the memory footprint of the calculation. As a general guide,
if individual data are split into blocks, we recommend setting this argument to

hierarchicalConsensusTOM 181

TRUE. If this argument is NULL, the function will decide whether to use disk cache
based on the number of sets and block sizes.

chunkSize network similarities are saved in smaller chunks of size chunkSize. If NULL, an
appropriate chunk size will be determined from an estimate of available mem-
ory. Note that if the chunk size is greater than the memory required for storing
intemediate results, disk cache use will automatically be disabled.

cacheDir character string containing the directory into which cache files should be written.
The user should make sure that the filesystem has enough free space to hold the
cache files which can get quite large.

cacheBase character string containing the desired name for the cache files. The actual file
names will consists of cacheBase and a suffix to make the file names unique.

collectGarbage Logical: should garbage be collected after memory-intensive operations?

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

This function is essentially a wrapper for hierarchicalConsensusCalculation, with a few addi-
tional operations specific to calculations of topological overlaps.

Value

A list that contains the output of hierarchicalConsensusCalculation and two extra components:

individualTOMInfo

A copy of the input individualTOMInfo if it was non-NULL, or the result of
individualTOMs.

consensusTree A copy of the input consensusTree.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusCalculation for the actual hierarchical consensus calculation;

individualTOMs for the calculation of individual TOMs in a format suitable for consensus calcu-
lation.

182 hierarchicalMergeCloseModules

hierarchicalMergeCloseModules

Merge close (similar) hierarchical consensus modules

Description

Merges hierarchical consensus modules that are too close as measured by the correlation of their
eigengenes.

Usage

hierarchicalMergeCloseModules(
input data
multiExpr,
multiExpr.imputed = NULL,
labels,

Optional starting eigengenes
MEs = NULL,

unassdColor = if (is.numeric(labels)) 0 else "grey",
If missing data are present, impute them?
impute = TRUE,

Options for eigengene network construction
networkOptions,

Options for constructing the consensus
consensusTree,
calibrateMESimilarities = FALSE,

Merging options
cutHeight = 0.2,
iterate = TRUE,

Output options
relabel = FALSE,
colorSeq = NULL,
getNewMEs = TRUE,
getNewUnassdME = TRUE,

Options controlling behaviour of the function
trapErrors = FALSE,
verbose = 1, indent = 0)

hierarchicalMergeCloseModules 183

Arguments

multiExpr Expression data in the multi-set format (see multiData). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiExpr.imputed

If multiExpr contain missing data, this argument can be used to supply the ex-
pression data with missing data imputed. If not given, the impute.knn function
will be used to impute the missing data within each module (see imputeByModule.

labels A vector (numeric, character or a factor) giving module labels for genes (vari-
ables) in multiExpr.

MEs If module eigengenes have been calculated before, the user can save some com-
putational time by inputting them. MEs should have the same format as multiExpr.
If they are not given, they will be calculated.

unassdColor The label (value in labels) that represents unassigned genes. Module of this
label will not enter the module eigengene clustering and will not be merged
with other modules.

impute Should missing values be imputed in eigengene calculation? If imputation is dis-
abled, the presence of NA entries will cause the eigengene calculation to fail and
eigengenes will be replaced by their hubgene approximation. See moduleEigengenes
for more details.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

consensusTree A list specifying the consensus calculation. See newConsensusTree for details.
calibrateMESimilarities

Logical: should module eigengene similarities be calibrated? This setting over-
rides the calibration options in consensusTree.

cutHeight Maximum dissimilarity (i.e., 1-correlation) that qualifies modules for merging.

iterate Controls whether the merging procedure should be repeated until there is no
change. If FALSE, only one iteration will be executed.

relabel Controls whether, after merging, color labels should be ordered by module size.

colorSeq Color labels to be used for relabeling. Defaults to the standard color order used
in this package if colors are not numeric, and to integers starting from 1 if
colors is numeric.

getNewMEs Controls whether module eigengenes of merged modules should be calculated
and returned.

getNewUnassdME When doing module eigengene manipulations, the function does not normally
calculate the eigengene of the ’module’ of unassigned (’grey’) genes. Setting
this option to TRUE will force the calculation of the unassigned eigengene in the
returned newMEs, but not in the returned oldMEs.

trapErrors Controls whether computational errors in calculating module eigengenes, their
dissimilarity, and merging trees should be trapped. If TRUE, errors will be trapped
and the function will return the input colors. If FALSE, errors will cause the func-
tion to stop.

184 hierarchicalMergeCloseModules

verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5
the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0
means no indentation, each unit above that adds two spaces.

Details

This function merges input modules that are closely related. The similarities are quantified by corre-
lations of module eigengenes; a “consensus” similarity is calculated using hierarchicalConsensusMEDissimilarity
according to the recipe in consensusTree. Once the (dis-)similarities are calculated, average link-
age hierarchical clustering of the module eigengenes is performed, the dendrogram is cut at the
height cutHeight and modules on each branch are merged. The process is (optionally) repeated
until no more modules are merged.

If, for a particular module, the module eigengene calculation fails, a hubgene approximation will
be used.

The user should be aware that if a computational error occurs and trapErrors==TRUE, the returned
list (see below) will not contain all of the components returned upon normal execution.

Value

If no errors occurred, a list with components

labels Labels for the genes corresponding to merged modules. The function attempts to
mimic the mode of the input labels: if the input labels is numeric, character
and factor, respectively, so is the output. Note, however, that if the function
performs relabeling, a standard sequence of labels will be used: integers starting
at 1 if the input labels is numeric, and a sequence of color labels otherwise (see
colorSeq above).

dendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the
most recently computed tree. If iterate was set TRUE, this will be the dendro-
gram of the merged modules, otherwise it will be the dendrogram of the original
modules.

oldDendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the
original modules.

cutHeight The input cutHeight.

oldMEs Module eigengenes of the original modules in the sets given by useSets.

newMEs Module eigengenes of the merged modules in the sets given by useSets.

allOK A logical set to TRUE.

If an error occurred and trapErrors==TRUE, the list only contains these components:

colors A copy of the input colors.

allOK a logical set to FALSE.

Author(s)

Peter Langfelder

hubGeneSignificance 185

See Also

multiSetMEs for calculation of (consensus) module eigengenes across multiple data sets;

newConsensusTree for information about consensus trees;

hierarchicalConsensusMEDissimilarity for calculation of hierarchical consensus eigengene
dissimilarity.

hubGeneSignificance Hubgene significance

Description

Calculate approximate hub gene significance for all modules in network.

Usage

hubGeneSignificance(datKME, GS)

Arguments

datKME a data frame (or a matrix-like object) containing eigengene-based connectivities
of all genes in the network.

GS a vector with one entry for every gene containing its gene significance.

Details

In datKME rows correspond to genes and columns to modules.

Value

A vector whose entries are the hub gene significances for each module.

Author(s)

Steve Horvath

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

186 imputeByModule

ImmunePathwayLists Immune Pathways with Corresponding Gene Markers

Description

This matrix gives a predefined set of marker genes for many immune response pathways, as assem-
bled by Brian Modena (a member of Daniel R Salomon’s lab at Scripps Research Institute), and
colleagues. It is used with userListEnrichment to search user-defined gene lists for enrichment.

Usage

data(ImmunePathwayLists)

Format

A 3597 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists
genes corresponding to a given category (second column). Each Category entry is of the form
<Immune Pathway>__ImmunePathway. Note that the matrix is sorted first by Category and then
by Gene, such that all genes related to the same category are listed sequentially.

Source

For more information about this list, please see userListEnrichment

Examples

data(ImmunePathwayLists)
head(ImmunePathwayLists)

imputeByModule Impute missing data separately in each module

Description

Use impute.knn to ipmpute missing data, separately in each module.

Usage

imputeByModule(
data,
labels,
excludeUnassigned = FALSE,
unassignedLabel = if (is.numeric(labels)) 0 else "grey",
scale = TRUE,
...)

individualTOMs 187

Arguments

data Data to be imputed, with variables (genes) in columns and observations (sam-
ples) in rows.

labels Module labels. A vector with one entry for each column in data.
excludeUnassigned

Logical: should unassigned variables (genes) be excluded from the imputation?
unassignedLabel

The value in labels that represents unassigned variables.

scale Logical: should data be scaled to mean 0 and variance 1 before imputation?

... Other arguments to impute.knn.

Value

The input data with missing values imputed.

Note

This function is potentially faster but could give different imputed values than applying impute.knn
directly to (scaled) data.

Author(s)

Peter Langfelder

See Also

impute.knn that does the actual imputation.

individualTOMs Calculate individual correlation network matrices

Description

This function calculates correlation network matrices (adjacencies or topological overlaps), after
optionally first pre-clustering input data into blocks.

Usage

individualTOMs(
multiExpr,
multiWeights = NULL,
multiExpr.imputed = NULL,

Data checking options
checkMissingData = TRUE,

188 individualTOMs

Blocking options
blocks = NULL,
maxBlockSize = 5000,
blockSizePenaltyPower = 5,
nPreclusteringCenters = NULL,
randomSeed = 54321,

Network construction options
networkOptions,

Save individual TOMs?
saveTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

Behaviour options
collectGarbage = TRUE,
verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
These weights are used for correlation calculations with data in multiExpr.

multiExpr.imputed

Optional version of multiExpr with missing data imputed. If not given and
multiExpr contains missing data, they will be imputed using the function impute.knn.

checkMissingData

logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per gene of multiExpr giving the number of the block to which the correspond-
ing gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
exceed maxBlockSize.

blockSizePenaltyPower

number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a lrge number or Inf if not exceeding maximum block
size is very important.

nPreclusteringCenters

number of centers to be used in the preclustering. Defaults to smaller of nGenes/20
and 100*nGenes/maxBlockSize, where nGenes is the nunber of genes (vari-
ables) in multiExpr.

individualTOMs 189

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given,
the function will not save and restore the seed.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

saveTOMs logical: should individual TOMs be saved to disk (TRUE) or retuned directly in
the return value (FALSE)?

individualTOMFileNames

character string giving the file names to save individual TOMs into. The follow-
ing tags should be used to make the file names unique for each set and block: %s
will be replaced by the set number; %N will be replaced by the set name (taken
from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
placed by the block number. If the file names turn out to be non-unique, an error
will be generated.

collectGarbage Logical: should garbage collection be called after each block calculation? This
can be useful when the data are large, but could unnecessarily slow down calcu-
lation with small data.

verbose Integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent Indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The function starts by optionally filtering out samples that have too many missing entries and genes
that have either too many missing entries or zero variance in at least one set. Genes that are filtered
out are excluded from the network calculations.

If blocks is not given and the number of genes (columns) in multiExpr exceeds maxBlockSize,
genes are pre-clustered into blocks using the function consensusProjectiveKMeans; otherwise all
genes are treated in a single block. Any missing data in multiExpr will be imputed; if imputed data
are already available, they can be supplied separately.

For each block of genes, the network adjacency is constructed and (if requested) topological overlap
is calculated in each set. The topological overlaps can be saved to disk as RData files, or returned
directly within the return value (see below). Note that the matrices can be big and returning them
within the return value can quickly exhaust the system’s memory. In particular, if the block-wise
calculation is necessary, it is usually impossible to return all matrices in the return value.

Value

A list with the following components:

blockwiseAdjacencies

A multiData structure containing (possibly blockwise) network matrices for
each input data set. The network matrices are stored as BlockwiseData objects.

setNames A copy of names(multiExpr).

nSets Number of sets in multiExpr

190 Inline display of progress

blockInfo A list of class BlockInformation, giving information about blocks and gene
and sample filtering.

networkOptions The input networkOptions, returned as a multiData structure with one entry
per input data set.

Author(s)

Peter Langfelder

See Also

Input arguments and output components of this function use multiData, NetworkOptions, BlockwiseData,
and BlockInformation.

Underlying functions of interest include consensusProjectiveKMeans, TOMsimilarityFromExpr.

Inline display of progress

Inline display of progress

Description

These functions provide an inline display of pregress.

Usage

initProgInd(leadStr = "..", trailStr = "", quiet = !interactive())
updateProgInd(newFrac, progInd, quiet = !interactive())

Arguments

leadStr character string that will be printed before the actual progress number.

trailStr character string that will be printed after the actual progress number.

quiet can be used to silence the indicator for non-interactive sessions whose output is
typically redirected to a file.

newFrac new fraction of progress to be displayed.

progInd an object of class progressIndicator that encodes previously printed message.

Details

A progress indicator is a simple inline display of progress intended to satisfy impatient users
during lengthy operations. The function initProgInd initializes a progress indicator (at zero);
updateProgInd updates it to a specified fraction.

Note that excessive use of updateProgInd may lead to a performance penalty (see examples).

Inline display of progress 191

Value

Both functions return an object of class progressIndicator that holds information on the last
printed value and should be used for subsequent updates of the indicator.

Author(s)

Peter Langfelder

Examples

max = 10;
prog = initProgInd("Counting: ", "done");
for (c in 1:max)
{

Sys.sleep(0.10);
prog = updateProgInd(c/max, prog);

}
printFlush("");

printFlush("Example 2:");
prog = initProgInd();
for (c in 1:max)
{

Sys.sleep(0.10);
prog = updateProgInd(c/max, prog);

}
printFlush("");

Example of a significant slowdown:

Without progress indicator:

system.time({a = 0; for (i in 1:10000) a = a+i; })

With progress indicator, some 50 times slower:

system.time(
{
prog = initProgInd("Counting: ", "done");
a = 0;
for (i in 1:10000)
{

a = a+i;
prog = updateProgInd(i/10000, prog);

}
}

)

192 intramodularConnectivity

intramodularConnectivity

Calculation of intramodular connectivity

Description

Calculates intramodular connectivity, i.e., connectivity of nodes to other nodes within the same
module.

Usage

intramodularConnectivity(adjMat, colors, scaleByMax = FALSE)

intramodularConnectivity.fromExpr(datExpr, colors,
corFnc = "cor", corOptions = "use = 'p'",
weights = NULL,
distFnc = "dist", distOptions = "method = 'euclidean'",

networkType = "unsigned", power = if (networkType=="distance") 1 else 6,
scaleByMax = FALSE,
ignoreColors = if (is.numeric(colors)) 0 else "grey",
getWholeNetworkConnectivity = TRUE)

Arguments

adjMat adjacency matrix, a square, symmetric matrix with entries between 0 and 1.

colors module labels. A vector of length ncol(adjMat) giving a module label for each
gene (node) of the network.

scaleByMax logical: should intramodular connectivities be scaled by the maximum IM con-
nectivity in each module?

datExpr data frame or matrix containing expression data. Columns correspond to genes
and rows to samples.

corFnc character string specifying the function to be used to calculate co-expression
similarity for correlation networks. Defaults to Pearson correlation. Any func-
tion returning values between -1 and 1 can be used.

corOptions character string specifying additional arguments to be passed to the function
given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman
correlation.

weights optional matrix of the same dimensions as datExpr, giving the weights for in-
dividual observations in datExpr. These will be passed on to the correlation
function.

distFnc character string specifying the function to be used to calculate co-expression
similarity for distance networks. Defaults to the function dist. Any function
returning non-negative values can be used.

isMultiData 193

distOptions character string specifying additional arguments to be passed to the function
given by distFnc. For example, when the function dist is used, the argument
method can be used to specify various ways of computing the distance.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid", "distance".

power soft thresholding power.

ignoreColors level(s) of colors that identifies unassigned genes. The intramodular connec-
tivity in this "module" will not be calculated.

getWholeNetworkConnectivity

logical: should whole-network connectivity be computed as well? For large
networks, this can be quite time-consuming.

Details

The module labels can be numeric or character. For each node (gene), the function sums adjacency
entries (excluding the diagonal) to other nodes within the same module. Optionally, the connectivi-
ties can be scaled by the maximum connectivy in each module.

Value

If input getWholeNetworkConnectivity is TRUE, a data frame with 4 columns giving the total
connectivity, intramodular connectivity, extra-modular connectivity, and the difference of the intra-
and extra-modular connectivities for all genes; otherwise a vector of intramodular connectivities,

Author(s)

Steve Horvath and Peter Langfelder

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

See Also

adjacency

isMultiData Determine whether the supplied object is a valid multiData structure

Description

Attempts to determine whether the supplied object is a valid multiData structure (see Details).

Usage

isMultiData(x, strict = TRUE)

194 keepCommonProbes

Arguments

x An object.

strict Logical: should the structure of multiData be checked for "strict" compliance?

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

This function checks whether the supplied x is a multiData structure in the "strict" (when strict =
TRUE or "loose" strict = FALSE sense.

Value

Logical: TRUE if the input x is a multiData structure, FALSE otherwise.

Author(s)

Peter Langfelder

See Also

Other multiData handling functions whose names start with mtd.

keepCommonProbes Keep probes that are shared among given data sets

Description

This function strips out probes that are not shared by all given data sets, and orders the remaining
common probes using the same order in all sets.

Usage

keepCommonProbes(multiExpr, orderBy = 1)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

orderBy index of the set by which probes are to be ordered.

kMEcomparisonScatterplot 195

Value

Expression data in the same format as the input data, containing only common probes.

Author(s)

Peter Langfelder

See Also

checkSets

kMEcomparisonScatterplot

Function to plot kME values between two comparable data sets.

Description

Plots the kME values of genes in two groups of expression data for each module in an inputted color
vector.

Usage

kMEcomparisonScatterplot(
datExpr1, datExpr2, colorh,
inA = NULL, inB = NULL, MEsA = NULL, MEsB = NULL,
nameA = "A", nameB = "B",
plotAll = FALSE, noGrey = TRUE, maxPlot = 1000, pch = 19,
fileName = if (plotAll) paste("kME_correlations_between_",nameA,"_and_",

nameB,"_all.pdf",sep="") else
paste("kME_correlations_between_",nameA,"_and_",

nameB,"_inMod.pdf",sep=""), ...)

Arguments

datExpr1 The first expression matrix (samples=rows, genes=columns). This can either
include only the data for group A (in which case dataExpr2 must be entered), or
can contain all of the data for groups A and B (in which case inA and inB must
be entered).

datExpr2 The second expression matrix, or set to NULL if all data is from same expression
matrix. If entered, datExpr2 must contain the same genes as datExpr1 in the
same order.

colorh The common color vector (module labels) corresponding to both sets of expres-
sion data.

196 kMEcomparisonScatterplot

inA, inB Vectors of TRUE/FALSE indicating whether a sample is in group A/B, or a vec-
tor of numeric indices indicating which samples are in group A/B. If datExpr2 is
entered, these inputs are ignored (thus default = NULL). For these and all other
A/B inputs, "A" corresponds to datExpr1 and "B" corresponds to datExpr2 if
datExpr2 is entered; otherwise "A" corresponds to datExpr1[inA,] while "B"
corresponds to datExpr1[inB,].

MEsA, MEsB Either the module eigengenes or NULL (default) in which case the module
eigengenes will be calculated. In inputted, MEs MUST be calculated using
"moduleEigengenes(<parameters>)$eigengenes" for function to work properly.

nameA, nameB The names of these groups (defaults = "A" and "B"). The resulting file name
(see below) and x and y axis labels for each scatter plot depend on these names.

plotAll If TRUE, plot gene-ME correlations for all genes. If FALSE, plot correlations
for only genes in the plotted module (default). Note that the output file name will
be different depending on this parameter, so both can be run without overwriting
results.

noGrey If TRUE (default), the grey module genes are ignored. This parameter is only
used if MEsA and MEsB are calculated.

maxPlot The maximum number of random genes to include (default=1000). Smaller
values lead to smaller and less cluttered plots, usually without significantly af-
fecting the resulting correlations. This parameter is only used if plotAll=TRUE.

pch See help file for "points". Setting pch=19 (default) produces solid circles.

fileName Name of the file to hold the plots. Since the output format is pdf, the extension
should be .pdf .

... Other plotting parameters that are allowable inputs to verboseScatterplot.

Value

The default output is a file called "kME_correlations_between_[nameA]_and_[nameB]_[all/inMod].pdf",
where [nameA] and [nameB] correspond to the nameA and nameB input parameters, and [all/inMod]
depends on whether plotAll=TRUE or FALSE. This output file contains all of the plots as separate
pdf images, and will be located in the current working directory.

Note

The function "pdf", which can be found in the grDevices library, is required to run this function.

Author(s)

Jeremy Miller

Examples

Example output file ("kME_correlations_between_A_and_B_inMod.pdf") using simulated data.
Not run:
set.seed = 100
ME=matrix(0,50,5)
for (i in 1:5) ME[,i]=sample(1:100,50)

labeledBarplot 197

simData1 = simulateDatExpr5Modules(MEturquoise=ME[,1],MEblue=ME[,2],
MEbrown=ME[,3],MEyellow=ME[,4], MEgreen=ME[,5])

simData2 = simulateDatExpr5Modules(MEturquoise=ME[,1],MEblue=ME[,2],
MEbrown=ME[,3],MEyellow=ME[,4], MEgreen=ME[,5])

kMEcomparisonScatterplot(simData1$datExpr,simData2$datExpr,simData1$truemodule)

End(Not run)

labeledBarplot Barplot with text or color labels.

Description

Produce a barplot with extra annotation.

Usage

labeledBarplot(
Matrix, labels,
colorLabels = FALSE,
colored = TRUE,
setStdMargins = TRUE,
stdErrors = NULL,
cex.lab = NULL,
xLabelsAngle = 45,
...)

Arguments

Matrix vector or a matrix to be plotted.

labels labels to annotate the bars underneath the barplot.

colorLabels logical: should the labels be interpreted as colors? If TRUE, the bars will be
labeled by colored squares instead of text. See details.

colored logical: should the bars be divided into segments and colored? If TRUE, assumes
the labels can be interpreted as colors, and the input Matrix is square and the
rows have the same labels as the columns. See details.

setStdMargins if TRUE, the function wil set margins c(3, 3, 2, 2)+0.2.

stdErrors if given, error bars corresponding to 1.96*stdErrors will be plotted on top of
the bars.

cex.lab character expansion factor for axis labels, including the text labels underneath
the barplot.

xLabelsAngle angle at which text labels under the barplot will be printed.

... other parameters for the function barplot.

198 labeledHeatmap

Details

Individual bars in the barplot can be identified either by printing the text of the corresponding entry
in labels underneath the bar at the angle specified by xLabelsAngle, or by interpreting the labels
entry as a color (see below) and drawing a correspondingly colored square underneath the bar.

For reasons of compatibility with other functions, labels are interpreted as colors after stripping
the first two characters from each label. For example, the label "MEturquoise" is interpreted as the
color turquoise.

If colored is set, the code assumes that labels can be interpreted as colors, and the input Matrix
is square and the rows have the same labels as the columns. Each bar in the barplot is then sectioned
into contributions from each row entry in Matrix and is colored by the color given by the entry in
labels that corresponds to the row.

Value

None.

Author(s)

Peter Langfelder

labeledHeatmap Produce a labeled heatmap plot

Description

Plots a heatmap plot with color legend, row and column annotation, and optional text within th
heatmap.

Usage

labeledHeatmap(
Matrix,
xLabels, yLabels = NULL,
xSymbols = NULL, ySymbols = NULL,
colorLabels = NULL,
xColorLabels = FALSE, yColorLabels = FALSE,
checkColorsValid = TRUE,
invertColors = FALSE,
setStdMargins = TRUE,
xLabelsPosition = "bottom",
xLabelsAngle = 45,
xLabelsAdj = 1,
yLabelsPosition = "left",
xColorWidth = 2 * strheight("M"),
yColorWidth = 2 * strwidth("M"),
xColorOffset = strheight("M")/3,

labeledHeatmap 199

yColorOffset = strwidth("M")/3,
colorMatrix = NULL,
colors = NULL,
naColor = "grey",
textMatrix = NULL,
cex.text = NULL,
textAdj = c(0.5, 0.5),
cex.lab = NULL,
cex.lab.x = cex.lab,
cex.lab.y = cex.lab,
colors.lab.x = 1,
colors.lab.y = 1,
font.lab.x = 1,
font.lab.y = 1,

bg.lab.x = NULL,
bg.lab.y = NULL,
x.adj.lab.y = 1,

plotLegend = TRUE,
keepLegendSpace = plotLegend,
legendLabel = "",
cex.legendLabel = 1,

Separator line specification
verticalSeparator.x = NULL,
verticalSeparator.col = 1,
verticalSeparator.lty = 1,
verticalSeparator.lwd = 1,
verticalSeparator.ext = 0,
verticalSeparator.interval = 0,

horizontalSeparator.y = NULL,
horizontalSeparator.col = 1,
horizontalSeparator.lty = 1,
horizontalSeparator.lwd = 1,
horizontalSeparator.ext = 0,
horizontalSeparator.interval = 0,
optional restrictions on which rows and columns to actually show
showRows = NULL,
showCols = NULL,
...)

Arguments

Matrix numerical matrix to be plotted in the heatmap.

xLabels labels for the columns. See Details.

yLabels labels for the rows. See Details.

200 labeledHeatmap

xSymbols additional labels used when xLabels are interpreted as colors. See Details.

ySymbols additional labels used when yLabels are interpreted as colors. See Details.

colorLabels logical: should xLabels and yLabels be interpreted as colors? If given, over-
rides xColorLabels and yColorLabels below.

xColorLabels logical: should xLabels be interpreted as colors?

yColorLabels logical: should yLabels be interpreted as colors?
checkColorsValid

logical: should given colors be checked for validity against the output of colors()
? If this argument is FALSE, invalid color specification will trigger an error.

invertColors logical: should the color order be inverted?

setStdMargins logical: should standard margins be set before calling the plot function? Stan-
dard margins depend on colorLabels: they are wider for text labels and nar-
rower for color labels. The defaults are static, that is the function does not
attempt to guess the optimal margins.

xLabelsPosition

a character string specifying the position of labels for the columns. Recognized
values are (unique abbreviations of) "top", "bottom".

xLabelsAngle angle by which the column labels should be rotated.

xLabelsAdj justification parameter for column labels. See par and the description of param-
eter "adj".

yLabelsPosition

a character string specifying the position of labels for the columns. Recognized
values are (unique abbreviations of) "left", "right".

xColorWidth width of the color labels for the x axis expressed in user corrdinates.

yColorWidth width of the color labels for the y axis expressed in user coordinates.

xColorOffset gap between the y axis and color labels, in user coordinates.

yColorOffset gap between the x axis and color labels, in user coordinates.

colorMatrix optional explicit specification for the color of the heatmap cells. If given, over-
rides values specified in colors and naColor.

colors color pallette to be used in the heatmap. Defaults to heat.colors. Only used if
colorMatrix is not given.

naColor color to be used for encoding missing data. Only used if colorMatrix is not
used.

textMatrix optional text entries for each cell. Either a matrix of the same dimensions as
Matrix or a vector of the same length as the number of entries in Matrix.

cex.text character expansion factor for textMatrix.

textAdj Adjustment for the entries in the text matrix. See the adj argument to text.

cex.lab character expansion factor for text labels labeling the axes.

cex.lab.x character expansion factor for text labels labeling the x axis. Overrides cex.lab
above.

cex.lab.y character expansion factor for text labels labeling the y axis. Overrides cex.lab
above.

labeledHeatmap 201

colors.lab.x colors for character labels or symbols along x axis.
colors.lab.y colors for character labels or symbols along y axis.
font.lab.x integer specifying font for labels or symbols along x axis. See text.
font.lab.y integer specifying font for labels or symbols along y axis. See text.
bg.lab.x background color for the margin along the x axis.
bg.lab.y background color for the margin along the y axs.
x.adj.lab.y Justification of labels for the y axis along the x direction. A value of 0 produces

left-justified text, 0.5 (the default) centered text and 1 right-justified text.
plotLegend logical: should a color legend be plotted?
keepLegendSpace

logical: if the color legend is not drawn, should the space be left empty (TRUE),
or should the heatmap fill the space (FALSE)?

legendLabel character string to be shown next to the label analogous to an axis label.
cex.legendLabel

character expansion factor for the legend label.
verticalSeparator.x

indices of columns in input Matrix after which separator lines (vertical lines
between columns) should be drawn. NULL means no lines will be drawn.

verticalSeparator.col

color(s) of the vertical separator lines. Recycled if need be.
verticalSeparator.lty

line type of the vertical separator lines. Recycled if need be.
verticalSeparator.lwd

line width of the vertical separator lines. Recycled if need be.
verticalSeparator.ext

number giving the extension of the separator line into the margin as a fraction
of the margin width. 0 means no extension, 1 means extend all the way through
the margin.

verticalSeparator.interval

number giving the interval for vertical separators. If larger than zero, verti-
cal separators will be drawn after every verticalSeparator.interval of dis-
played columns. Used only when length of verticalSeparator.x is zero.

horizontalSeparator.y

indices of columns in input Matrix after which separator lines (horizontal lines
between columns) should be drawn. NULL means no lines will be drawn.

horizontalSeparator.col

color(s) of the horizontal separator lines. Recycled if need be.
horizontalSeparator.lty

line type of the horizontal separator lines. Recycled if need be.
horizontalSeparator.lwd

line width of the horizontal separator lines. Recycled if need be.
horizontalSeparator.ext

number giving the extension of the separator line into the margin as a fraction
of the margin width. 0 means no extension, 1 means extend all the way through
the margin.

202 labeledHeatmap

horizontalSeparator.interval

number giving the interval for horizontal separators. If larger than zero, hori-
zontal separators will be drawn after every horizontalSeparator.interval
of displayed rows. Used only when length of horizontalSeparator.y is zero.

showRows A numeric vector giving the indices of rows that are actually to be shown. De-
faults to all rows.

showCols A numeric vector giving the indices of columns that are actually to be shown.
Defaults to all columns.

... other arguments to function heatmap.

Details

The function basically plots a standard heatmap plot of the given Matrix and embellishes it with
row and column labels and/or with text within the heatmap entries. Row and column labels can be
either character strings or color squares, or both.

To get simple text labels, use colorLabels=FALSE and pass the desired row and column labels in
yLabels and xLabels, respectively.

To label rows and columns by color squares, use colorLabels=TRUE; yLabels and xLabels are
then expected to represent valid colors. For reasons of compatibility with other functions, each entry
in yLabels and xLabels is expected to consist of a color designation preceded by 2 characters: an
example would be MEturquoise. The first two characters can be arbitrary, they are stripped. Any
labels that do not represent valid colors will be considered text labels and printed in full, allowing
the user to mix text and color labels.

It is also possible to label rows and columns by both color squares and additional text annotation.
To achieve this, use the above technique to get color labels and, additionally, pass the desired text
annotation in the xSymbols and ySymbols arguments.

Value

None.

Author(s)

Peter Langfelder

See Also

heatmap, colors

Examples

This example illustrates 4 main ways of annotating columns and rows of a heatmap.
Copy and paste the whole example into an R session with an interactive plot window;
alternatively, you may replace the command sizeGrWindow below by opening
another graphical device such as pdf.

Generate a matrix to be plotted

nCol = 8; nRow = 7;

labeledHeatmap 203

mat = matrix(runif(nCol*nRow, min = -1, max = 1), nRow, nCol);

rowColors = standardColors(nRow);
colColors = standardColors(nRow + nCol)[(nRow+1):(nRow + nCol)];

rowColors;
colColors;

sizeGrWindow(9,7)
par(mfrow = c(2,2))
par(mar = c(4, 5, 4, 6));

Label rows and columns by text:

labeledHeatmap(mat, xLabels = colColors, yLabels = rowColors,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
main = "Text-labeled heatmap");

Label rows and columns by colors:

rowLabels = paste("ME", rowColors, sep="");
colLabels = paste("ME", colColors, sep="");

labeledHeatmap(mat, xLabels = colLabels, yLabels = rowLabels,
colorLabels = TRUE,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
main = "Color-labeled heatmap");

Mix text and color labels:

rowLabels[3] = "Row 3";
colLabels[1] = "Column 1";

labeledHeatmap(mat, xLabels = colLabels, yLabels = rowLabels,
colorLabels = TRUE,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
main = "Mix-labeled heatmap");

Color labels and additional text labels

rowLabels = paste("ME", rowColors, sep="");
colLabels = paste("ME", colColors, sep="");

extraRowLabels = paste("Row", c(1:nRow));
extraColLabels = paste("Column", c(1:nCol));

Extend margins to fit all labels

204 labeledHeatmap.multiPage

par(mar = c(6, 6, 4, 6));
labeledHeatmap(mat, xLabels = colLabels, yLabels = rowLabels,

xSymbols = extraColLabels,
ySymbols = extraRowLabels,
colorLabels = TRUE,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
main = "Text- + color-labeled heatmap");

labeledHeatmap.multiPage

Labeled heatmap divided into several separate plots.

Description

This function produces labaled heatmaps divided into several plots. This is useful for large heatmaps
where labels on individual columns and rows may become unreadably small (or overlap).

Usage

labeledHeatmap.multiPage(
Input data and ornaments
Matrix,
xLabels, yLabels = NULL,
xSymbols = NULL, ySymbols = NULL,
textMatrix = NULL,

Paging options
rowsPerPage = NULL, maxRowsPerPage = 20,
colsPerPage = NULL, maxColsPerPage = 10,
addPageNumberToMain = TRUE,

Further arguments to labeledHeatmap
zlim = NULL,
signed = TRUE,
main = "",
...)

Arguments

Matrix numerical matrix to be plotted in the heatmap.

xLabels labels for the columns. See Details.

yLabels labels for the rows. See Details.

xSymbols additional labels used when xLabels are interpreted as colors. See Details.

ySymbols additional labels used when yLabels are interpreted as colors. See Details.

labeledHeatmap.multiPage 205

textMatrix optional text entries for each cell. Either a matrix of the same dimensions as
Matrix or a vector of the same length as the number of entries in Matrix.

rowsPerPage optional list in which each component is a vector specifying which rows should
appear together in each plot. If not given, will be generated automatically based
on maxRowsPerPage below and the number of rows in Matrix.

maxRowsPerPage integer giving maximum number of rows appearing on each plot (page).

colsPerPage optional list in which each component is a vector specifying which columns
should appear together in each plot. If not given, will be generated automatically
based on maxColsPerPage below and the number of rows in Matrix.

maxColsPerPage integer giving maximum number of columns appearing on each plot (page).
addPageNumberToMain

logical: should plot/page number be added to the main title of each plot?

zlim Optional specification of the extreme values for the color scale. If not given,
will be determined from the input Matrix.

signed logical: should the input Matrix be converted to colors using a scale centered at
zero?

main Main title for each plot/page, optionally with the plot/page number added.

... other arguments to function labeledHeatmap.

Details

The function labeledHeatmap is used to produce each plot/page; most arguments are described in
more detail in the help file for that function.

In each plot/page labeledHeatmap plots a standard heatmap plot of an appropriate sub-rectangle of
Matrix and embellishes it with row and column labels and/or with text within the heatmap entries.
Row and column labels can be either character strings or color squares, or both.

To get simple text labels, use colorLabels=FALSE and pass the desired row and column labels in
yLabels and xLabels, respectively.

To label rows and columns by color squares, use colorLabels=TRUE; yLabels and xLabels are
then expected to represent valid colors. For reasons of compatibility with other functions, each entry
in yLabels and xLabels is expected to consist of a color designation preceded by 2 characters: an
example would be MEturquoise. The first two characters can be arbitrary, they are stripped. Any
labels that do not represent valid colors will be considered text labels and printed in full, allowing
the user to mix text and color labels.

It is also possible to label rows and columns by both color squares and additional text annotation.
To achieve this, use the above technique to get color labels and, additionally, pass the desired text
annotation in the xSymbols and ySymbols arguments.

If rowsPerPage (colsPerPage) is not given, rows (columns) are allocated automatically as uni-
formly as possible, in contiguous blocks of size at most maxRowsPerPage (maxColsPerPage). The
allocation is performed by the function allocateJobs.

Value

None.

206 labelPoints

Author(s)

Peter Langfelder

See Also

The workhorse function labeledHeatmap for the actual heatmap plot;

function allocateJobs for the allocation of rows/columns to each plot.

labelPoints Label scatterplot points

Description

Given scatterplot point coordinates, the function tries to place labels near the points such that the
labels overlap as little as possible. User beware: the algorithm implemented here is quite primitive
and while it will help in many cases, it is by no means perfect. Consider this function experimental.
We hope to improve the algorithm in the future to make it useful in a broader range of situations.

Usage

labelPoints(
x, y, labels,
cex = 0.7, offs = 0.01, xpd = TRUE,
jiggle = 0, protectEdges = TRUE,
doPlot = TRUE, ...)

Arguments

x a vector of x coordinates of the points

y a vector of y coordinates of the points

labels labels to be placed next to the points

cex character expansion factor for the labels

offs offset of the labels from the plotted coordinates in inches

xpd logical: controls truncating labels to fit within the plotting region. See par.

jiggle amount of random noise to be added to the coordinates. This may be useful if
the scatterplot is too regular (such as all points on one straight line).

protectEdges logical: should labels be shifted inside the (actual or virtual) frame of the plot?

doPlot logical: should the labels be actually added to the plot? Value FALSE may be use-
ful if the user would like to simply compute the best label positions the function
can come up with.

... other arguments to function text.

labelPoints 207

Details

The algorithm basically works by finding the direction of most surrounding points, and attempting
to place the label in the opposite direction. There are (not uncommon) situations in which this
placement is suboptimal; the author promises to further develop the function sometime in the future.

Note that this function does not plot the actual scatterplot; only the labels are plotted. Plotting the
scatterplot is the responsibility of the user.

The argument offs needs to be carefully tuned to the size of the plotted symbols. Sorry, no au-
tomation here yet.

The argument protectEdges can be used to shift labels that would otherwise extend beyond the
plot to within the plot. Sometimes this may cause some overlapping with other points or labels; use
with care.

Value

Invisibly, a data frame with 3 columns, giving the x and y positions of the labels, and the labels
themselves.

Author(s)

Peter Langfelder

See Also

plot.default, text

Examples

generate some random points
set.seed(11);
n = 20;
x = runif(n);
y = runif(n);

Create a basic scatterplot
col = standardColors(n);
plot(x,y, pch = 21, col =1, bg = col, cex = 2.6,

xlim = c(-0.1, 1.1), ylim = c(-0.1, 1.0));
labelPoints(x, y, paste("Pt", c(1:n), sep=""), offs = 0.10, cex = 1);

label points using longer text labels. Note the positioning is not perfect, but close enough.

plot(x,y, pch = 21, col =1, bg = col, cex = 2.6,
xlim = c(-0.1, 1.1), ylim = c(-0.1, 1.0));

labelPoints(x, y, col, offs = 0.10, cex = 0.8);

208 labels2colors

labels2colors Convert numerical labels to colors.

Description

Converts a vector or array of numerical labels into a corresponding vector or array of colors corre-
sponding to the labels.

Usage

labels2colors(labels, zeroIsGrey = TRUE, colorSeq = NULL, naColor = "grey",
commonColorCode = TRUE)

Arguments

labels Vector or matrix of non-negative integer or other (such as character) labels. See
details.

zeroIsGrey If TRUE, labels 0 will be assigned color grey. Otherwise, labels below 1 will
trigger an error.

colorSeq Color sequence corresponding to labels. If not given, a standard sequence will
be used.

naColor Color that will encode missing values.
commonColorCode

logical: if labels is a matrix, should each column have its own colors?

Details

If labels is numeric, it is used directly as index to the standard color sequence. If 0 is present
among the labels and zeroIsGrey=TRUE, labels 0 are given grey color.

If labels is not numeric, its columns are turned into factors and the numeric representation of each
factor is used to assign the corresponding colors. In this case commonColorCode governs whether
each column gets its own color code, or whether the color code will be universal.

The standard sequence start with well-distinguishable colors, and after about 40 turns into a quasi-
random sampling of all colors available in R with the exception of all shades of grey (and gray).

If the input labels have a dimension attribute, it is copied into the output, meaning the dimensions
of the returned value are the same as those of the input labels.

Value

A vector or array of character strings of the same length or dimensions as labels.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

list2multiData 209

Examples

labels = c(0:20);
labels2colors(labels);
labels = matrix(letters[1:9], 3,3);
labels2colors(labels)
Note the difference when commonColorCode = FALSE
labels2colors(labels, commonColorCode = FALSE)

list2multiData Convert a list to a multiData structure and vice-versa.

Description

list2multiData converts a list to a multiData structure; multiData2list does the inverse.

Usage

list2multiData(data)
multiData2list(multiData)

Arguments

data A list to be converted to a multiData structure.

multiData A multiData structure to be converted to a list.

Details

A multiData structure is a vector of lists (one list for each set) where each list has a component data
containing some useful information.

Value

For list2multiData, a multiData structure; for multiData2list, the corresponding list.

Author(s)

Peter Langfelder

210 lowerTri2matrix

lowerTri2matrix Reconstruct a symmetric matrix from a distance (lower-triangular)
representation

Description

Assuming the input vector contains a vectorized form of the distance representation of a symmetric
matrix, this function creates the corresponding matrix. This is useful when re-forming symmetric
matrices that have been vectorized to save storage space.

Usage

lowerTri2matrix(x, diag = 1)

Arguments

x a numeric vector

diag value to be put on the diagonal. Recycled if necessary.

Details

The function assumes that x contains the vectorized form of the distance representation of a sym-
metric matrix. In particular, x must have a length that can be expressed as n*(n-1)/2, with n an
integer. The result of the function is then an n times n matrix.

Value

A symmetric matrix whose lower triangle is given by x.

Author(s)

Peter Langfelder

Examples

Create a symmetric matrix
m = matrix(c(1:16), 4,4)
mat = (m + t(m));
diag(mat) = 0;

Print the matrix
mat

Take the lower triangle and vectorize it (in two ways)
x1 = mat[lower.tri(mat)]
x2 = as.vector(as.dist(mat))

all.equal(x1, x2) # The vectors are equal

matchLabels 211

Turn the vectors back into matrices
new.mat = lowerTri2matrix(x1, diag = 0);

Did we get back the same matrix?

all.equal(mat, new.mat)

matchLabels Relabel module labels to best match the given reference labels

Description

Given a source and reference vectors of module labels, the function produces a module labeling
that is equivalent to source, but individual modules are re-labeled so that modules with significant
overlap in source and reference have the same labels.

Usage

matchLabels(source,
reference,
pThreshold = 5e-2,
na.rm = TRUE,
ignoreLabels = if (is.numeric(reference)) 0 else "grey",

extraLabels = if (is.numeric(reference)) c(1:1000) else standardColors()
)

Arguments

source a vector or a matrix of reference labels. The labels may be numeric or character.

reference a vector of reference labels.

pThreshold threshold of Fisher’s exact test for considering modules to have a significant
overlap.

na.rm logical: should missing values in either source or reference be removed? If
not, missing values may be treated as a standard label or the function may throw
an error (exact behaviour depends on whether the input labels are numeric or
not).

ignoreLabels labels in source and reference to be considered unmatchable. These labels
are excluded from the re-labeling procedure.

extraLabels a vector of labels for modules in source that cannot be matched to any modules
in reference. The user should ensure that this vector contains enough labels
since the function automatically removes a values that occur in either source,
reference or ignoreLabels, to avoid possible confusion.

212 matrixToNetwork

Details

Each column of source is treated separately. Unlike in previous version of this function, source
and reference labels can be any labels, not necessarily of the same type.

The function calculates the overlap of the source and reference modules using Fisher’s exact
test. It then attempts to relabel source modules such that each source module gets the label of the
reference module that it overlaps most with, subject to not renaming two source modules to the
same reference module. (If two source modules point to the same reference module, the one
with the more significant overlap is chosen.)

Those source modules that cannot be matched to a reference module are labeled using those
labels from extraLabels that do not occur in either of source, reference or ignoreLabels.

Value

A vector (if the input source labels are a vector) or a matrix (if the input source labels are a matrix)
of the new labels.

Author(s)

Peter Langfelder

See Also

overlapTable for calculation of overlap counts and p-values;

standardColors for standard non-numeric WGCNA labels.

matrixToNetwork Construct a network from a matrix

Description

Constructs a network

Usage

matrixToNetwork(
mat,
symmetrizeMethod = c("average", "min", "max"),
signed = TRUE,
min = NULL, max = NULL,
power = 12,
diagEntry = 1)

matrixToNetwork 213

Arguments

mat matrix to be turned into a network. Must be square.

symmetrizeMethod

method for symmetrizing the matrix. The method will be applied to each com-
ponent of mat and its transpose.

signed logical: should the resulting network be signed? Unsigned networks are con-
structed from abs(mat).

min minimum allowed value for mat. If NULL, the actual attained minimum of mat
will be used. Missing data are ignored. Values below min are truncated to min.

max maximum allowed value for mat. If NULL, the actual attained maximum of mat
will be used. Missing data are ignored. Values below max are truncated to max.

power the soft-thresholding power.

diagEntry the value of the entries on the diagonal in the result. This is usally 1 but some
applications may require a zero (or even NA) diagonal.

Details

If signed is FALSE, the matrix mat is first converted to its absolute value.

This function then symmetrizes the matrix using the symmetrizeMethod component-wise on mat
and t(mat) (i.e., the transpose of mat).

In the next step, the symmetrized matrix is linearly scaled to the interval [0,1] using either min and
max (each either supplied or determined from the matrix). Values outside of the [min, max] range
are truncated to min or max.

Lastly, the adjacency is calculated by rasing the matrix to power. The diagonal of the result is set to
diagEntry. Note that most WGCNA functions expect the diagonal of an adjacency matrix to be 1.

Value

The adjacency matrix that encodes the network.

Author(s)

Peter Langfelder

See Also

adjacency for calculation of a correlation network (adjacency) from a numeric matrix such as
expression data

adjacency.fromSimilarity for simpler calculation of a network from a symmetric similarity
matrix.

214 mergeCloseModules

mergeCloseModules Merge close modules in gene expression data

Description

Merges modules in gene expression networks that are too close as measured by the correlation of
their eigengenes.

Usage

mergeCloseModules(
input data
exprData, colors,

Optional starting eigengenes
MEs = NULL,

Optional restriction to a subset of all sets
useSets = NULL,

If missing data are present, impute them?
impute = TRUE,

Input handling options
checkDataFormat = TRUE,
unassdColor = if (is.numeric(colors)) 0 else "grey",

Options for eigengene network construction
corFnc = cor, corOptions = list(use = 'p'),
useAbs = FALSE,

Options for constructing the consensus
equalizeQuantiles = FALSE,
quantileSummary = "mean",
consensusQuantile = 0,

Merging options
cutHeight = 0.2,
iterate = TRUE,

Output options
relabel = FALSE,
colorSeq = NULL,
getNewMEs = TRUE,
getNewUnassdME = TRUE,

Options controlling behaviour of the function

mergeCloseModules 215

trapErrors = FALSE,
verbose = 1, indent = 0)

Arguments

exprData Expression data, either a single data frame with rows corresponding to sam-
ples and columns to genes, or in a multi-set format (see checkSets). See
checkDataStructure below.

colors A vector (numeric, character or a factor) giving module colors for genes. The
method only makes sense when genes have the same color label in all sets, hence
a single vector.

MEs If module eigengenes have been calculated before, the user can save some com-
putational time by inputting them. MEs should have the same format as exprData.
If they are not given, they will be calculated.

useSets A vector of scalar allowing the user to specify which sets will be used to cal-
culate the consensus dissimilarity of module eigengenes. Defaults to all given
sets.

impute Should missing values be imputed in eigengene calculation? If imputation is dis-
abled, the presence of NA entries will cause the eigengene calculation to fail and
eigengenes will be replaced by their hubgene approximation. See moduleEigengenes
for more details.

checkDataFormat

If TRUE, the function will check exprData and MEs for correct multi-set struc-
ture. If single set data is given, it will be converted into a format usable for the
function. If FALSE, incorrect structure of input data will trigger an error.

unassdColor Specifies the string that labels unassigned genes. Module of this color will not
enter the module eigengene clustering and will not be merged with other mod-
ules.

corFnc Correlation function to be used to calculate correlation of module eigengenes.

corOptions Can be used to specify options to the correlation function, in addition to argu-
ment x which is used to pass the actual data to calculate the correlation of.

useAbs Specifies whether absolute value of correlation or plain correlation (of module
eigengenes) should be used in calculating module dissimilarity.

equalizeQuantiles

Logical: should quantiles of the eigengene dissimilarity matrix be equalized
("quantile normalized")? The default is FALSE for reproducibility of old code;
when there are many eigengenes (e.g., at least 50), better results may be achieved
if quantile equalization is used.

quantileSummary

One of "mean" or "median". Controls how a reference dissimilarity is computed
from the input ones (using mean or median, respectively).

consensusQuantile

A number giving the desired quantile to use in the consensus similarity calcula-
tion (see details).

216 mergeCloseModules

cutHeight Maximum dissimilarity (i.e., 1-correlation) that qualifies modules for merging.

iterate Controls whether the merging procedure should be repeated until there is no
change. If FALSE, only one iteration will be executed.

relabel Controls whether, after merging, color labels should be ordered by module size.

colorSeq Color labels to be used for relabeling. Defaults to the standard color order used
in this package if colors are not numeric, and to integers starting from 1 if
colors is numeric.

getNewMEs Controls whether module eigengenes of merged modules should be calculated
and returned.

getNewUnassdME When doing module eigengene manipulations, the function does not normally
calculate the eigengene of the ’module’ of unassigned (’grey’) genes. Setting
this option to TRUE will force the calculation of the unassigned eigengene in the
returned newMEs, but not in the returned oldMEs.

trapErrors Controls whether computational errors in calculating module eigengenes, their
dissimilarity, and merging trees should be trapped. If TRUE, errors will be trapped
and the function will return the input colors. If FALSE, errors will cause the func-
tion to stop.

verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5
the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0
means no indentation, each unit above that adds two spaces.

Details

This function merges input modules that are closely related. The similarities are measured by
correlations of module eigengenes; a “consensus” measure is defined as the “consensus quantile”
over the corresponding relationship in each set. Once the (dis-)similarity is calculated, average
linkage hierarchical clustering of the module eigengenes is performed, the dendrogram is cut at the
height cutHeight and modules on each branch are merged. The process is (optionally) repeated
until no more modules are merged.

If, for a particular module, the module eigengene calculation fails, a hubgene approximation will
be used.

The user should be aware that if a computational error occurs and trapErrors==TRUE, the returned
list (see below) will not contain all of the components returned upon normal execution.

Value

If no errors occurred, a list with components

colors Color labels for the genes corresponding to merged modules. The function at-
tempts to mimic the mode of the input colors: if the input colors is numeric,
character and factor, respectively, so is the output. Note, however, that if the
fnction performs relabeling, a standard sequence of labels will be used: inte-
gers starting at 1 if the input colors is numeric, and a sequence of color labels
otherwise (see colorSeq above).

metaAnalysis 217

dendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the
most recently computed tree. If iterate was set TRUE, this will be the dendro-
gram of the merged modules, otherwise it will be the dendrogram of the original
modules.

oldDendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the
original modules.

cutHeight The input cutHeight.

oldMEs Module eigengenes of the original modules in the sets given by useSets.

newMEs Module eigengenes of the merged modules in the sets given by useSets.

allOK A boolean set to TRUE.

If an error occurred and trapErrors==TRUE, the list only contains these components:

colors A copy of the input colors.

allOK a boolean set to FALSE.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

metaAnalysis Meta-analysis of binary and continuous variables

Description

This is a meta-analysis complement to functions standardScreeningBinaryTrait and standardScreeningNumericTrait.
Given expression (or other) data from multiple independent data sets, and the corresponding clin-
ical traits or outcomes, the function calculates multiple screening statistics in each data set, then
calculates meta-analysis Z scores, p-values, and optionally q-values (False Discovery Rates). Three
different ways of calculating the meta-analysis Z scores are provided: the Stouffer method, weighted
Stouffer method, and using user-specified weights.

Usage

metaAnalysis(multiExpr, multiTrait,
binary = NULL,
metaAnalysisWeights = NULL,
corFnc = cor, corOptions = list(use = "p"),
getQvalues = FALSE,
getAreaUnderROC = FALSE,
useRankPvalue = TRUE,
rankPvalueOptions = list(),
setNames = NULL,
kruskalTest = FALSE, var.equal = FALSE,
metaKruskal = kruskalTest, na.action = "na.exclude")

218 metaAnalysis

Arguments

multiExpr Expression data (or other data) in multi-set format (see checkSets). A vector
of lists; in each list there must be a component named data whose content is a
matrix or dataframe or array of dimension 2.

multiTrait Trait or ourcome data in multi-set format. Only one trait is allowed; conseques-
ntly, the data component of each component list can be either a vector or a data
frame (matrix, array of dimension 2).

binary Logical: is the trait binary (TRUE) or continuous (FALSE)? If not given, the deci-
sion will be made based on the content of multiTrait.

metaAnalysisWeights

Optional specification of set weights for meta-analysis. If given, must be a vec-
tor of non-negative weights, one entry for each set contained in multiExpr.

corFnc Correlation function to be used for screening. Should be either the default cor
or its robust alternative, bicor.

corOptions A named list giving extra arguments to be passed to the correlation function.

getQvalues Logical: should q-values (FDRs) be calculated?
getAreaUnderROC

Logical: should area under the ROC be calculated? Caution, enabling the cal-
culation will slow the function down considerably for large data sets.

useRankPvalue Logical: should the rankPvalue function be used to obtain alternative meta-
analysis statistics?

rankPvalueOptions

Additional options for function rankPvalue. These include na.last (default
"keep"), ties.method (default "average"), calculateQvalue (default copied
from input getQvalues), and pValueMethod (default "all"). See the help file
for rankPvalue for full details.

setNames Optional specification of set names (labels). These are used to label the corre-
sponding components of the output. If not given, will be taken from the names
attribute of multiExpr. If names(multiExpr) is NULL, generic names of the
form Set_1, Set2, ... will be used.

kruskalTest Logical: should the Kruskal test be performed in addition to t-test? Only applies
to binary traits.

var.equal Logical: should the t-test assume equal variance in both groups? If TRUE, the
function will warn the user that the returned test statistics will be different from
the results of the standard t.test function.

metaKruskal Logical: should the meta-analysis be based on the results of Kruskal test (TRUE)
or Student t-test (FALSE)?

na.action Specification of what should happen to missing values in t.test.

Details

The Stouffer method of combines Z statistics by simply taking a mean of input Z statistics and
multiplying it by sqrt(n), where n is the number of input data sets. We refer to this method
as Stouffer.equalWeights. In general, a better (i.e., more powerful) method of combining Z

metaAnalysis 219

statistics is to weigh them by the number of degrees of freedom (which approximately equals n).
We refer to this method as weightedStouffer. Finally, the user can also specify custom weights,
for example if a data set needs to be downweighted due to technical concerns; however, specifying
own weights by hand should be done carefully to avoid possible selection biases.

Value

Data frame with the following components:

ID Identifier of the input genes (or other variables)

Z.equalWeights Meta-analysis Z statistics obtained using Stouffer’s method with equal weights

p.equalWeights p-values corresponding to Z.Stouffer.equalWeights

q.equalWeights q-values corresponding to p.Stouffer.equalWeights, only present if getQvalues
is TRUE.

Z.RootDoFWeights

Meta-analysis Z statistics obtained using Stouffer’s method with weights given
by the square root of the number of (non-missing) samples in each data set

p.RootDoFWeights

p-values corresponding to Z.DoFWeights

q.RootDoFWeights

q-values corresponding to p.DoFWeights, only present if getQvalues is TRUE.

Z.DoFWeights Meta-analysis Z statistics obtained using Stouffer’s method with weights given
by the number of (non-missing) samples in each data set

p.DoFWeights p-values corresponding to Z.DoFWeights

q.DoFWeights q-values corresponding to p.DoFWeights, only present if getQvalues is TRUE.

Z.userWeights Meta-analysis Z statistics obtained using Stouffer’s method with user-defined
weights. Only present if input metaAnalysisWeights are present.

p.userWeights p-values corresponding to Z.userWeights

q.userWeights q-values corresponding to p.userWeights, only present if getQvalues is TRUE.

The next set of columns is present only if input useRankPvalue is TRUE and contain the output of
the function rankPvalue with the same column weights as the above meta-analysis. Depending
on the input options calculateQvalue and pValueMethod in rankPvalueOptions, some columns
may be missing. The following columns are calculated using equal weights for each data set.

pValueExtremeRank.equalWeights

This is the minimum between pValueLowRank and pValueHighRank, i.e. min(pValueLow,
pValueHigh)

pValueLowRank.equalWeights

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the rank method.

pValueHighRank.equalWeights

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the rank method.

pValueExtremeScale.equalWeights

This is the minimum between pValueLowScale and pValueHighScale, i.e. min(pValueLow,
pValueHigh)

220 metaAnalysis

pValueLowScale.equalWeights

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

pValueHighScale.equalWeights

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

qValueExtremeRank.equalWeights

local false discovery rate (q-value) corresponding to the p-value pValueExtremeR-
ank

qValueLowRank.equalWeights

local false discovery rate (q-value) corresponding to the p-value pValueLowRank
qValueHighRank.equalWeights

local false discovery rate (q-value) corresponding to the p-value pValueHigh-
Rank

qValueExtremeScale.equalWeights

local false discovery rate (q-value) corresponding to the p-value pValueExtremeScale
qValueLowScale.equalWeights

local false discovery rate (q-value) corresponding to the p-value pValueLowS-
cale

qValueHighScale.equalWeights

local false discovery rate (q-value) corresponding to the p-value pValueHigh-
Scale

... Analogous columns calculated by weighting each input set using the square root
of the number of samples, number of samples, and user weights (if given). The
corresponding column names carry the suffixes RootDofWeights, DoFWeights,
userWeights.

The following columns contain results returned by standardScreeningBinaryTrait or standardScreeningNumericTrait
(depending on whether the input trait is binary or continuous).

For binary traits, the following information is returned for each set:

corPearson.Set_1, corPearson.Set_2, ...
Pearson correlation with a binary numeric version of the input variable. The
numeric variable equals 1 for level 1 and 2 for level 2. The levels are given by
levels(factor(y)).

t.Student.Set_1, t.Student.Set_2, ...
Student t-test statistic

pvalueStudent.Set_1, pvalueStudent.Set_2, ...
two-sided Student t-test p-value.

qvalueStudent.Set_1, qvalueStudent.Set_2, ...
(if input qValues==TRUE) q-value (local false discovery rate) based on the Stu-
dent T-test p-value (Storey et al 2004).

foldChange.Set_1, foldChange.Set_2, ...
a (signed) ratio of mean values. If the mean in the first group (correspond-
ing to level 1) is larger than that of the second group, it equals meanFirst-
Group/meanSecondGroup. But if the mean of the second group is larger than
that of the first group it equals -meanSecondGroup/meanFirstGroup (notice the
minus sign).

metaAnalysis 221

meanFirstGroup.Set_1, meanSecondGroup.Set_2, ...
means of columns in input datExpr across samples in the second group.

SE.FirstGroup.Set_1, SE.FirstGroup.Set_2, ...
standard errors of columns in input datExpr across samples in the first group.
Recall that SE(x)=sqrt(var(x)/n) where n is the number of non-missing values of
x.

SE.SecondGroup.Set_1, SE.SecondGroup.Set_2, ...
standard errors of columns in input datExpr across samples in the second group.

areaUnderROC.Set_1, areaUnderROC.Set_2, ...
the area under the ROC, also known as the concordance index or C.index. This
is a measure of discriminatory power. The measure lies between 0 and 1 where
0.5 indicates no discriminatory power. 0 indicates that the "opposite" predictor
has perfect discriminatory power. To compute it we use the function rcorr.cens
with outx=TRUE (from Frank Harrel’s package Hmisc).

nPresentSamples.Set_1, nPresentSamples.Set_2, ...
number of samples with finite measurements for each gene.

If input kruskalTest is TRUE, the following columns further summarize results of Kruskal-Wallis
test:

stat.Kruskal.Set_1, stat.Kruskal.Set_2, ...
Kruskal-Wallis test statistic.

stat.Kruskal.signed.Set_1, stat.Kruskal.signed.Set_2, ...
(Warning: experimental) Kruskal-Wallis test statistic including a sign that indi-
cates whether the average rank is higher in second group (positive) or first group
(negative).

pvaluekruskal.Set_1, pvaluekruskal.Set_2, ...
Kruskal-Wallis test p-value.

qkruskal.Set_1, qkruskal.Set_2, ...
q-values corresponding to the Kruskal-Wallis test p-value (if input qValues==TRUE).

Z.Set1, Z.Set2, ...
Z statistics obtained from pvalueStudent.Set1, pvalueStudent.Set2, ...
or from pvaluekruskal.Set1, pvaluekruskal.Set2, ..., depending on in-
put metaKruskal.

For numeric traits, the following columns are returned:

cor.Set_1, cor.Set_2, ...
correlations of all genes with the trait

Z.Set1, Z.Set2, ...
Fisher Z statistics corresponding to the correlations

pvalueStudent.Set_1, pvalueStudent.Set_2, ...
Student p-values of the correlations

qvalueStudent.Set_1, qvalueStudent.Set_1, ...
(if input qValues==TRUE) q-values of the correlations calculated from the p-
values

AreaUnderROC.Set_1, AreaUnderROC.Set_2, ...
area under the ROC

nPresentSamples.Set_1, nPresentSamples.Set_2, ...
number of samples present for the calculation of each association.

222 metaZfunction

Author(s)

Peter Langfelder

References

For Stouffer’s method, see

Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A. & Williams, R.M. Jr. 1949. The Ameri-
can Soldier, Vol. 1: Adjustment during Army Life. Princeton University Press, Princeton.

A discussion of weighted Stouffer’s method can be found in

Whitlock, M. C., Combining probability from independent tests: the weighted Z-method is superior
to Fisher’s approach, Journal of Evolutionary Biology 18:5 1368 (2005)

See Also

standardScreeningBinaryTrait, standardScreeningNumericTrait for screening functions for
individual data sets

metaZfunction Meta-analysis Z statistic

Description

The function calculates a meta analysis Z statistic based on an input data frame of Z statistics.

Usage

metaZfunction(datZ, columnweights = NULL)

Arguments

datZ Matrix or data frame of Z statistics (assuming standard normal distribution under
the null hypothesis). Rows correspond to genes, columns to independent data
sets.

columnweights optional vector of non-negative numbers for weighing the columns of datZ.

Details

For example, if datZ has 3 columns whose columns are labelled Z1,Z2,Z3 then ZMeta= (Z1+Z2+Z3)/sqrt(3).
Under the null hypothesis (where all Z statistics follow a standard normal distribution and the Z
statistics are independent), ZMeta also follows a standard normal distribution. To calculate a 2
sided p-value, one an use the following code pvalue=2*pnorm(-abs(ZMeta))

Value

Vector of meta analysis Z statistic. Under the null hypothesis this should follow a standard normal
distribution.

minWhichMin 223

Author(s)

Steve Horvath

minWhichMin Fast joint calculation of row- or column-wise minima and indices of
minimum elements

Description

Fast joint calculation of row- or column-wise minima and indices of minimum elements. Missing
data are removed.

Usage

minWhichMin(x, byRow = FALSE, dims = 1)

Arguments

x A numeric matrix or array.

byRow Logical: should the minima and indices be found for columns (FALSE) or rows
(TRUE)?

dims Specifies dimensions for which to find the minima and indices. For byRow =
FALSE, they are calculated for dimensions dims+1 to n=length(dim(x)); for
For byRow = TRUE, they are calculated for dimensions 1,...,dims.

Value

A list with two components, min and which; each is a vector or array with dimensions

dim(x)[(dims+1):n] (with n=length(dim(x))) if byRow = FALSE, and

dim(x)[1:dims] if byRow = TRUE.

Author(s)

Peter Langfelder

224 modifiedBisquareWeights

modifiedBisquareWeights

Modified Bisquare Weights

Description

Calculation of bisquare weights and the intermediate weight factors similar to those used in the
calculation of biweight midcovariance and midcorrelation. The weights are designed such that
outliers get smaller weights; the weights become zero for data points more than 9 median absolute
deviations from the median.

Usage

modifiedBisquareWeights(
x,
removedCovariates = NULL,
pearsonFallback = TRUE,
maxPOutliers = 0.05,
outlierReferenceWeight = 0.1,
groupsForMinWeightRestriction = NULL,
minWeightInGroups = 0,
maxPropUnderMinWeight = 1,
defaultWeight = 1,
getFactors = FALSE)

Arguments

x A matrix of numeric observations with variables (features) in columns and ob-
servations (samples) in rows. Weights will be calculated separately for each
column.

removedCovariates

Optional matrix or data frame of variables that are to be regressed out of each
column of x before calculating the weights. If given, must have the same number
of rows as x.

pearsonFallback

Logical: for columns of x that have zero median absolute deviation (MAD),
should the appropriately scaled standard deviation be used instead?

maxPOutliers Optional numeric scalar between 0 and 1. Specifies the maximum proportion of
outliers in each column, i.e., data with weights equal to outlierReferenceWeight
below.

outlierReferenceWeight

A number between 0 and 1 specifying what is to be considered an outlier when
calculating the proportion of outliers.

groupsForMinWeightRestriction

An optional vector with length equal to the number of samples (rows) in x giving
a categorical variable. The output factors and weights are adjusted such that in

modifiedBisquareWeights 225

samples at each level of the variable, the weight is below minWeightInGroups
in a fraction of samples that is at most maxPropUnderMinWeight.

minWeightInGroups

A threshold weight, see groupsForMinWeightRestriction and details.
maxPropUnderMinWeight

A proportion (number between 0 and 1). See groupsForMinWeightRestriction
and details.

defaultWeight Value used for weights that would be undefined or not finite, for example, when
a column in x is constant.

getFactors Logical: should the intermediate weight factors be returned as well?

Details

Weights are calculated independently for each column of x. Denoting a column of x as y, the
weights are calculated as (1 − u2)2 where u is defined as min(1, |y − m|/(9MMAD)). Here m
is the median of the column y and MMAD is the modified median absolute deviation. We call the
expression |y − m|/(9MMAD) the weight factors. Note that outliers are observations with high
(>1) weight factors for outliers but low (zero) weights.

The calculation of MMAD starts with calculating the (unscaled) median absolute deviation of the col-
umn x. If the median absolute deviation is zero and pearsonFallback is TRUE, it is replaced
by the standard deviation (multiplied by qnorm(0.75) to make it asymptotically consistent with
MAD). The following two conditions are then checked: (1) The proportion of weights below
outlierReferenceWeight is at most maxPOutliers and (2) if groupsForMinWeightRestriction
has non-zero length, then for each individual level in groupsForMinWeightRestriction, the pro-
portion of samples with weights less than minWeightInGroups is at most maxPropUnderMinWeight.
(If groupsForMinWeightRestriction is zero-length, the second condition is considered trivially
satisfied.) If both conditions are met, MMAD equals the median absolute deviation, MAD. If either
condition is not met, MMAD equals the lowest number for which both conditions are met.

Value

When the input getFactors is TRUE, a list with two components:

weights A matrix of the same dimensions and dimnames as the input x giving the weights
of the individual observations in x.

factors A matrix of the same form as weights giving the weight factors.

When the input getFactors is FALSE, the function returns the matrix of weights.

Author(s)

Peter Langfelder

References

A full description of the weight calculation can be found, e.g., in Methods section of

Wang N, Langfelder P, et al (2022) Mapping brain gene coexpression in daytime transcriptomes
unveils diurnal molecular networks and deciphers perturbation gene signatures. Neuron. 2022 Oct
19;110(20):3318-3338.e9. PMID: 36265442; PMCID: PMC9665885. doi:10.1016/j.neuron.2022.09.028

https://doi.org/10.1016/j.neuron.2022.09.028

226 moduleColor.getMEprefix

Other references include, in reverse chronological order,

Peter Langfelder, Steve Horvath (2012) Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. https://www.jstatsoft.org/v46/
i11/

"Introduction to Robust Estimation and Hypothesis Testing", Rand Wilcox, Academic Press, 1997.

"Data Analysis and Regression: A Second Course in Statistics", Mosteller and Tukey, Addison-
Wesley, 1977, pp. 203-209.

See Also

bicovWeights for a simpler, less flexible calculation.

moduleColor.getMEprefix

Get the prefix used to label module eigengenes.

Description

Returns the currently used prefix used to label module eigengenes. When returning module eigen-
genes in a dataframe, names of the corresponding columns will start with the given prefix.

Usage

moduleColor.getMEprefix()

Details

Returns the prefix used to label module eigengenes. When returning module eigengenes in a
dataframe, names of the corresponding columns will consist of the corresponfing color label pre-
ceded by the given prefix. For example, if the prefix is "PC" and the module is turquoise, the
corresponding module eigengene will be labeled "PCturquoise". Most of old code assumes "PC",
but "ME" is more instructive and used in some newer analyses.

Value

A character string.

Note

Currently the standard prefix is "ME" and there is no way to change it.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

moduleEigengenes

https://www.jstatsoft.org/v46/i11/
https://www.jstatsoft.org/v46/i11/

moduleEigengenes 227

moduleEigengenes Calculate module eigengenes.

Description

Calculates module eigengenes (1st principal component) of modules in a given single dataset.

Usage

moduleEigengenes(expr,
colors,
impute = TRUE,
nPC = 1,
align = "along average",
excludeGrey = FALSE,
grey = if (is.numeric(colors)) 0 else "grey",
subHubs = TRUE,
trapErrors = FALSE,
returnValidOnly = trapErrors,
softPower = 6,
scale = TRUE,
verbose = 0, indent = 0)

Arguments

expr Expression data for a single set in the form of a data frame where rows are
samples and columns are genes (probes).

colors A vector of the same length as the number of probes in expr, giving module
color for all probes (genes). Color "grey" is reserved for unassigned genes.

impute If TRUE, expression data will be checked for the presence of NA entries and if the
latter are present, numerical data will be imputed, using function impute.knn
and probes from the same module as the missing datum. The function impute.knn
uses a fixed random seed giving repeatable results.

nPC Number of principal components and variance explained entries to be calculated.
Note that only the first principal component is returned; the rest are used only
for the calculation of proportion of variance explained. The number of returned
variance explained entries is currently min(nPC, 10). If given nPC is greater
than 10, a warning is issued.

align Controls whether eigengenes, whose orientation is undetermined, should be
aligned with average expression (align = "along average", the default) or left
as they are (align = ""). Any other value will trigger an error.

excludeGrey Should the improper module consisting of ’grey’ genes be excluded from the
eigengenes?

grey Value of colors designating the improper module. Note that if colors is a
factor of numbers, the default value will be incorrect.

228 moduleEigengenes

subHubs Controls whether hub genes should be substituted for missing eigengenes. If
TRUE, each missing eigengene (i.e., eigengene whose calculation failed and the
error was trapped) will be replaced by a weighted average of the most con-
nected hub genes in the corresponding module. If this calculation fails, or if
subHubs==FALSE, the value of trapErrors will determine whether the offend-
ing module will be removed or whether the function will issue an error and stop.

trapErrors Controls handling of errors from that may arise when there are too many NA
entries in expression data. If TRUE, errors from calling these functions will
be trapped without abnormal exit. If FALSE, errors will cause the function
to stop. Note, however, that subHubs takes precedence in the sense that if
subHubs==TRUE and trapErrors==FALSE, an error will be issued only if both
the principal component and the hubgene calculations have failed.

returnValidOnly

logical; controls whether the returned data frame of module eigengenes contains
columns corresponding only to modules whose eigengenes or hub genes could
be calculated correctly (TRUE), or whether the data frame should have columns
for each of the input color labels (FALSE).

softPower The power used in soft-thresholding the adjacency matrix. Only used when the
hubgene approximation is necessary because the principal component calcula-
tion failed. It must be non-negative. The default value should only be changed
if there is a clear indication that it leads to incorrect results.

scale logical; can be used to turn off scaling of the expression data before calculating
the singular value decomposition. The scaling should only be turned off if the
data has been scaled previously, in which case the function can run a bit faster.
Note however that the function first imputes, then scales the expression data in
each module. If the expression contain missing data, scaling outside of the func-
tion and letting the function impute missing data may lead to slightly different
results than if the data is scaled within the function.

verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5
the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0
means no indentation, each unit above that adds two spaces.

Details

Module eigengene is defined as the first principal component of the expression matrix of the cor-
responding module. The calculation may fail if the expression data has too many missing entries.
Handling of such errors is controlled by the arguments subHubs and trapErrors. If subHubs==TRUE,
errors in principal component calculation will be trapped and a substitute calculation of hubgenes
will be attempted. If this fails as well, behaviour depends on trapErrors: if TRUE, the offending
module will be ignored and the return value will allow the user to remove the module from further
analysis; if FALSE, the function will stop.

From the user’s point of view, setting trapErrors=FALSE ensures that if the function returns nor-
mally, there will be a valid eigengene (principal component or hubgene) for each of the input colors.
If the user sets trapErrors=TRUE, all calculational (but not input) errors will be trapped, but the
user should check the output (see below) to make sure all modules have a valid returned eigengene.

moduleEigengenes 229

While the principal component calculation can fail even on relatively sound data (it does not take all
that many "well-placed" NA to torpedo the calculation), it takes many more irregularities in the data
for the hubgene calculation to fail. In fact such a failure signals there likely is something seriously
wrong with the data.

Value

A list with the following components:

eigengenes Module eigengenes in a dataframe, with each column corresponding to one
eigengene. The columns are named by the corresponding color with an "ME"
prepended, e.g., MEturquoise etc. If returnValidOnly==FALSE, module eigen-
genes whose calculation failed have all components set to NA.

averageExpr If align == "along average", a dataframe containing average normalized ex-
pression in each module. The columns are named by the corresponding color
with an "AE" prepended, e.g., AEturquoise etc.

varExplained A dataframe in which each column corresponds to a module, with the com-
ponent varExplained[PC, module] giving the variance of module module ex-
plained by the principal component no. PC. The calculation is exact irrespective
of the number of computed principal components. At most 10 variance ex-
plained values are recorded in this dataframe.

nPC A copy of the input nPC.

validMEs A boolean vector. Each component (corresponding to the columns in data) is
TRUE if the corresponding eigengene is valid, and FALSE if it is invalid. Valid
eigengenes include both principal components and their hubgene approxima-
tions. When returnValidOnly==FALSE, by definition all returned eigengenes
are valid and the entries of validMEs are all TRUE.

validColors A copy of the input colors with entries corresponding to invalid modules set to
grey if given, otherwise 0 if colors is numeric and "grey" otherwise.

allOK Boolean flag signalling whether all eigengenes have been calculated correctly,
either as principal components or as the hubgene average approximation.

allPC Boolean flag signalling whether all returned eigengenes are principal compo-
nents.

isPC Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the first principal component and
FALSE if it is the hubgene approximation or is invalid.

isHub Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the hubgene approximation and FALSE
if it is the first principal component or is invalid.

validAEs Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding module average expression is valid.

allAEOK Boolean flag signalling whether all returned module average expressions contain
valid data. Note that returnValidOnly==TRUE does not imply allAEOK==TRUE:
some invalid average expressions may be returned if their corresponding eigen-
genes have been calculated correctly.

230 moduleMergeUsingKME

Author(s)

Steve Horvath <SHorvath@mednet.ucla.edu>, Peter Langfelder <Peter.Langfelder@gmail.com>

References

Zhang, B. and Horvath, S. (2005), "A General Framework for Weighted Gene Co-Expression Net-
work Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, Article
17

See Also

svd, impute.knn

moduleMergeUsingKME Merge modules and reassign genes using kME.

Description

This function takes an expression data matrix (and other user-defined parameters), calculates the
module membership (kME) values, and adjusts the module assignments, merging modules that are
not sufficiently distinct and reassigning modules that were originally assigned suboptimally.

Usage

moduleMergeUsingKME(
datExpr, colorh, ME = NULL,
threshPercent = 50, mergePercent = 25,
reassignModules = TRUE,
convertGrey = TRUE,
omitColors = "grey",
reassignScale = 1,
threshNumber = NULL)

Arguments

datExpr An expression data matrix, with samples as rows, genes (or probes) as column.

colorh The color vector (module assignments) corresponding to the columns of dat-
Expr.

ME Either NULL (default), at which point the module eigengenes will be calculated,
or pre-calculated module eigengenes for each of the modules, with samples as
rows (corresponding to datExpr), and modules corresponding to columns (col-
umn names MUST be module colors or module colors prefixed by "ME" or
"PC").

threshPercent Threshold percent of the number of genes in the module that should be included
for the various analyses. For example, in a module with 200 genes, if threshPer-
cent=50 (default), then 50 genes will be checked for reassignment and used to
test whether two modules should be merged. See also threshNumber.

moduleMergeUsingKME 231

mergePercent If greater than this percent of the assigned genes are above the threshold are in a
module other than the assigned module, then these two modules will be merged.
For example, if mergePercent=25 (default), and the 70 out of 200 genes in the
blue module were more highly correlated with the black module eigengene, then
all genes in the blue module would be reassigned to the black module.

reassignModules

If TRUE (default), genes are resassigned to the module with which they have the
highest module membership (kME), but only if their kME is above the thresh-
Percent (or threshNumber) threshold of that module.

convertGrey If TRUE (default), unassigned (grey) genes are assigned as in "reassignMod-
ules"

omitColors These are all of the module assignments which indicate genes that are not as-
signed to modules (default="grey"). These genes will all be assigned as "grey"
by this function.

reassignScale A value between 0 and 1 (default) which determines how the threshPercent gets
scaled for reassigning genes. Smaller values reassign more genes, but does not
affect the merging process.

threshNumber Either NULL (default) or, if entered, every module is counted as having exactly
threshNumber genes, and threshPercent it ignored. This parameter should have
the effect of

Value

moduleColors The NEW color vector (module assignments) corresponding to the columns of
datExpr, after module merging and reassignments.

mergeLog A log of the order in which modules were merged, for reference.

Note

Note that this function should be considered "experimental" as it has only been beta tested. Please
e-mail jeremyinla@gmail.com if you have any issues with the function.

Author(s)

Jeremy Miller

Examples

First simulate some data and the resulting network dendrogram
set.seed(100)
MEturquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = c(MEyellow[1:30], sample(1:100,20))
MEred = c(MEbrown [1:20], sample(1:100,30))
#MEblack = c(MEblue [1:25], sample(1:100,25))
ME = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen, MEred)#, MEblack)
dat1 = simulateDatExpr(ME, 300, c(0.15,0.13,0.12,0.10,0.09,0.09,0.1), signed=TRUE)

232 moduleNumber

TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed", nThreads = 1)
tree1 = fastcluster::hclust(as.dist(1-TOM1),method="average")

Here is an example using different mergePercentages,
setting an inclusive threshPercent (91)
colorh1 <- colorPlot <- labels2colors(dat1$allLabels)
merges = c(65,40,20,5)
for (m in merges)

colorPlot = cbind(colorPlot,
moduleMergeUsingKME(dat1$datExpr,colorh1,

threshPercent=91, mergePercent=m)$moduleColors)
plotDendroAndColors(tree1, colorPlot, c("ORIG",merges), dendroLabels=FALSE)

Here is an example using a lower reassignScale (so that more genes get reassigned)
colorh1 <- colorPlot <- labels2colors(dat1$allLabels)
merges = c(65,40,20,5)
for (m in merges) colorPlot = cbind(colorPlot,

moduleMergeUsingKME(dat1$datExpr,colorh1,threshPercent=91,
reassignScale=0.7, mergePercent=m)$moduleColors)

plotDendroAndColors(tree1, colorPlot, c("ORIG",merges), dendroLabels=FALSE)

Here is an example using a less-inclusive threshPercent (75),
little if anything is merged.

colorh1 <- colorPlot <- labels2colors(dat1$allLabels)
merges = c(65,40,20,5)
for (m in merges) colorPlot = cbind(colorPlot,

moduleMergeUsingKME(dat1$datExpr,colorh1,
threshPercent=75, mergePercent=m)$moduleColors)

plotDendroAndColors(tree1, colorPlot, c("ORIG",merges), dendroLabels=FALSE)
(Note that with real data, the default threshPercent=50 usually results
in some modules being merged)

moduleNumber Fixed-height cut of a dendrogram.

Description

Detects branches of on the input dendrogram by performing a fixed-height cut.

Usage

moduleNumber(dendro, cutHeight = 0.9, minSize = 50)

Arguments

dendro a hierarchical clustering dendorgram such as one returned by hclust.

cutHeight Maximum joining heights that will be considered.

minSize Minimum cluster size.

modulePreservation 233

Details

All contiguous branches below the height cutHeight that contain at least minSize objects are
assigned unique positive numerical labels; all unassigned objects are assigned label 0.

Value

A vector of numerical labels giving the assigment of each object.

Note

The numerical labels may not be sequential. See normalizeLabels for a way to put the labels into
a standard order.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

hclust, cutree, normalizeLabels

modulePreservation Calculation of module preservation statistics

Description

Calculations of module preservation statistics between independent data sets.

Usage

modulePreservation(
multiData,
multiColor,
multiWeights = NULL,
dataIsExpr = TRUE,
networkType = "unsigned",
corFnc = "cor",
corOptions = "use = 'p'",
referenceNetworks = 1,
testNetworks = NULL,
nPermutations = 100,
includekMEallInSummary = FALSE,
restrictSummaryForGeneralNetworks = TRUE,
calculateQvalue = FALSE,
randomSeed = 12345,
maxGoldModuleSize = 1000,
maxModuleSize = 1000,

234 modulePreservation

quickCor = 1,
ccTupletSize = 2,
calculateCor.kIMall = FALSE,
calculateClusterCoeff = FALSE,
useInterpolation = FALSE,
checkData = TRUE,
greyName = NULL,
goldName = NULL,
savePermutedStatistics = TRUE,
loadPermutedStatistics = FALSE,

permutedStatisticsFile = if (useInterpolation) "permutedStats-intrModules.RData"
else "permutedStats-actualModules.RData",

plotInterpolation = TRUE,
interpolationPlotFile = "modulePreservationInterpolationPlots.pdf",
discardInvalidOutput = TRUE,
parallelCalculation = FALSE,
verbose = 1, indent = 0)

Arguments

multiData expression data or adjacency data in multi-set format (see checkSets). A vector
of lists, one per set. Each set must contain a component data that contains the
expression or adjacency data. If expression data are used, rows correspond to
samples and columns to genes or probes. In case of adjacencies, each data ma-
trix should be a symmetric matrix ith entries between 0 and 1 and unit diagonal.
Each component of the outermost list should be named.

multiColor a list in which every component is a vector giving the module labels of genes
in multiExpr. The components must be named using the same names that are
used in multiExpr; these names are used top match labels to expression data
sets. See details.

multiWeights optional weights, only when multiData contains expression data. If given, must
be in the multi-set format (see checkSets) and weights for each set must have
the same dimensions as the corresponding set in multiData. The weights are
used in correlation calculations that involve multiData, and are supplied as
argument weights.x and possibly weights.y (where appropriate) to the corre-
lation function specified by corFnc.

dataIsExpr logical: if TRUE, multiData will be interpreted as expression data; if FALSE,
multiData will be interpreted as adjacencies.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

corFnc character string specifying the function to be used to calculate co-expression
similarity. Defaults to Pearson correlation. Another useful choice is bicor.
More generally, any function returning values between -1 and 1 can be used.

corOptions character string specifying additional arguments to be passed to the function
given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman
correlation.

modulePreservation 235

referenceNetworks

a vector giving the indices of expression data to be used as reference networks.
Reference networks must have their module labels given in multiColor.

testNetworks a list with one component per each entry in referenceNetworks above, giv-
ing the test networks in which to evaluate module preservation for the corre-
sponding reference network. If not given, preservation will be evaluated in all
networks (except each reference network). If referenceNetworks is of length
1, testNetworks can also be a vector (instead of a list containing the single
vector).

nPermutations specifies the number of permutations that will be calculated in the permutation
test.

includekMEallInSummary

logical: should cor.kMEall be included in the calculated summary statistics? Be-
cause kMEall takes into account all genes in the network, this statistic measures
preservation of the full network with respect to the eigengene of the module.
This may be undesirable, hence the default is FALSE.

restrictSummaryForGeneralNetworks

logical: should the summary statistics for general (not correlation) networks
be restricted (density to meanAdj, connectivity to cor.kIM and cor.Adj)? The
default TRUE corresponds to published work.

calculateQvalue

logical: should q-values (local FDR estimates) be calculated? Package qvalue
must be installed for this calculation. Note that q-values may not be meaningful
when the number of modules is small and/or most modules are preserved.

randomSeed seed for the random number generator. If NULL, the seed will not be set. If non-
NULL and the random generator has been initialized prior to the function call, the
latter’s state is saved and restored upon exit

maxGoldModuleSize

maximum size of the "gold" module, i.e., the random sample of all network
genes.

maxModuleSize maximum module size used for calculations. Modules larger than maxModuleSize
will be reduced by randomly sampling maxModuleSize genes.

quickCor number between 0 and 1 specifying the handling of missing data in calculation
of correlation. Zero means exact but potentially slower calculations; one means
potentially faster calculations, but with potentially inaccurate results if the pro-
portion of missing data is large. See cor for more details.

ccTupletSize tuplet size for co-clustering calculations.
calculateCor.kIMall

logical: should cor.kMEall be calculated? This option is only valid for adjacency
input. If FALSE, cor.kIMall will not be calculated, potentially saving significant
amount of time if the input adjacencies are large and contain many modules.

calculateClusterCoeff

logical: should statistics based on the clustering coefficient be calculated? While
these statistics may be interesting, the calculations are also computationally ex-
pensive.

236 modulePreservation

checkData logical: should data be checked for excessive number of missing entries? See
goodSamplesGenesMS for details.

greyName label used for unassigned genes. Traditionally such genes are labeled by grey
color or numeric label 0. These values are the default when multiColor con-
tains character or numeric vectors, respectively.

goldName label used for the "module" representing a random sample of the whole network.
Traditionally such genes are labeled by gold color or numeric label 0.1. These
values are the default when greyName is character and numeric, respectively. If
these values conflict with the module labels in multiColor, they should be set
to something not present in multiColor.

savePermutedStatistics

logical: should calculated permutation statistics be saved? Saved statistics may
be re-used if the calculation needs to be repeated.

permutedStatisticsFile

file name to save the permutation statistics into.

loadPermutedStatistics

logical: should permutation statistics be loaded? If a previously executed calcu-
lation needs to be repeated, loading permutation study results can cut the calcu-
lation time many-fold.

useInterpolation

logical: should permutation statistics be calculated by interpolating an artificial
set of evenly spaced modules? This option may potentially speed up the calcu-
lations, but it restricts calculations to density measures.

plotInterpolation

logical: should interpolation plots be saved? If interpolation is used (see useInterpolation
above), the function can optionally generate diagnostic plots that can be used to
assess whether the interpolation makes sense.

interpolationPlotFile

file name to save the interpolation plots into.

discardInvalidOutput

logical: should output columns containing no valid data be discarded? This
option may be useful when input dataIsExpr is FALSE and some of the output
statistics cannot be calculated. This option causes such statistics to be dropped
from output.

parallelCalculation

logical: should calculations be done in parallel? Note that parallel calculations
are turned off by default and will lead to somewhat DIFFERENT results than
serial calculations because the random seed is set differently. For the calculation
to actually run in parallel mode, a call to enableWGCNAThreads must be made
before this function is called.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

modulePreservation 237

Details

This function calculates module preservation statistics pair-wise between given reference sets and
all other sets in multiExpr. Reference sets must have their corresponding module assignment
specified in multiColor; module assignment is optional for test sets. Individual expression sets
and their module labels are matched using names of the corresponding components in multiExpr
and multiColor.

For each reference-test pair, the function calculates module preservation statistics that measure how
well the modules of the reference set are preserved in the test set. If the multiColor also contains
module assignment for the test set, the calculated statistics also include cross-tabulation statistics
that make use of the test module assignment.

For each reference-test pair, the function only uses genes (columns of the data component of each
component of multiExpr) that are in common between the reference and test set. Columns are
matched by column names, so column names must be valid.

In addition to preservation statistics, the function also calculates several statistics of module quality,
that is measures of how well-defined modules are in the reference set. The quality statistics are
calculated with respect to genes in common with with a test set; thus the function calculates a set of
quality statistics for each reference-test pair. This may be somewhat counter-intuitive, but it allows
a direct comparison of corresponding quality and preservation statistics.

The calculated p-values are determined from the Z scores of individual measures under assumption
of normality. No p-value is calculated for the Zsummary measures. Bonferoni correction to the
number of tested modules. Because the p-values for strongly preserved modules are often extremely
low, the function reports natural logarithms (base e) of the p-values. However, q-values are reported
untransformed since they are calculated that way in package qvalue.

Missing data are removed (but see quickCor above).

Value

The function returns a nested list of preservation statistics. At the top level, the list components are:

quality observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
(optionally) q-values of quality statistics. All logarithms are in base 10.

preservation observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
(optionally) q-values of density and connectivity preservation statistics. All log-
arithms are in base 10.

accuracy observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
(optionally) q-values of cross-tabulation statistics. All logarithms are in base 10.

referenceSeparability

observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
(optionally) q-values of module separability in the reference network. All loga-
rithms are in base 10.

testSeparability

observed values, Z scores, p-values, Bonferoni-corrected p-values, and (option-
ally) q-values of module separability in the test network. All logarithms are in
base 10.

permutationDetails

results of individual permutations, useful for diagnostics

238 mtd.apply

All of the above are lists. The lists quality, preservation, referenceSeparability, and
testSeparability each contain 4 or 5 components: observed contains observed values, Z con-
tains the corresponding Z scores, log.p contains base 10 logarithms of the p-values, log.pBonf
contains base 10 logarithms of the Bonferoni corrected p-values, and optionally q contains the as-
sociated q-values. The list accuracy contains observed, Z, log.p, log.pBonf, optionally q, and
additional components observedOverlapCounts and observedFisherPvalues that contain the
observed matrices of overlap counts and Fisher test p-values.

Each of the lists observed, Z, log.p, log.pBonf, optionally q, observedOverlapCounts and
observedFisherPvalues is structured as a 2-level list where the outer components correspond to
reference sets and the inner components to tests sets. As an example, preservation$observed[[1]][[2]]
contains the density and connectivity preservation statistics for the preservation of set 1 modules in
set 2, that is set 1 is the reference set and set 2 is the test set. preservation$observed[[1]][[2]]
is a data frame in which each row corresponds to a module in the reference network 1 plus one row
for the unassigned objects, and one row for a "module" that contains randomly sampled objects and
that represents a whole-network average. Each column corresponds to a statistic as indicated by the
column name.

Note

For large data sets, the permutation study may take a while (typically on the order of several hours).
Use verbose = 3 to get detailed progress report as the calculations advance.

Author(s)

Rui Luo and Peter Langfelder

References

Peter Langfelder, Rui Luo, Michael C. Oldham, and Steve Horvath, to appear

See Also

Network construction and module detection functions in the WGCNA package such as adjacency,
blockwiseModules; rudimentary cleaning in goodSamplesGenesMS; the WGCNA implementation
of correlation in cor.

mtd.apply Apply a function to each set in a multiData structure.

Description

Inspired by lapply, these functions apply a given function to each data component in the input
multiData structure, and optionally simplify the result to an array if possible.

mtd.apply 239

Usage

mtd.apply(
What to do
multiData, FUN, ...,

Pre-existing results and update options
mdaExistingResults = NULL, mdaUpdateIndex = NULL,
mdaCopyNonData = FALSE,

Output formatting options
mdaSimplify = FALSE,
returnList = FALSE,

Internal behaviour options
mdaVerbose = 0, mdaIndent = 0)

mtd.applyToSubset(
What to do
multiData, FUN, ...,

Which rows and cols to keep
mdaRowIndex = NULL, mdaColIndex = NULL,

Pre-existing results and update options
mdaExistingResults = NULL, mdaUpdateIndex = NULL,
mdaCopyNonData = FALSE,

Output formatting options
mdaSimplify = FALSE,
returnList = FALSE,

Internal behaviour options
mdaVerbose = 0, mdaIndent = 0)

Arguments

multiData A multiData structure to apply the function over

FUN Function to be applied.

... Other arguments to the function FUN.

mdaRowIndex If given, must be a list of the same length as multiData. Each element must be
a logical or numeric vector that specifies rows in each data component to select
before applying the function.

mdaColIndex A logical or numeric vector that specifies columns in each data component to
select before applying the function.

mdaExistingResults

Optional list that contains previously calculated results. This can be useful if

240 mtd.apply

only a few sets in multiData have changed and recalculating the unchanged
ones is computationally expensive. If not given, all calculations will be per-
formed. If given, components of this list are copied into the output. See mdmUpdateIndex
for which components are re-calculated by default.

mdaUpdateIndex Optional specification of which sets in multiData the calculation should actu-
ally be carried out. This argument has an effect only if mdaExistingResults
is non-NULL. If the length of mdaExistingResults (call the length ‘k’) is less
than the number of sets in multiData, the function assumes that the existing
results correspond to the first ‘k’ sets in multiData and the rest of the sets are
automatically calculated, irrespective of the setting of mdaUpdateIndex. The
argument mdaUpdateIndex can be used to specify re-calculation of some (or
all) of the results that already exist in mdaExistingResults.

mdaCopyNonData Logical: should non-data components of multiData be copied into the output?
Note that the copying is incompatible with simplification; enabling both will
trigger an error.

mdaSimplify Logical: should the result be simplified to an array, if possible? Note that this
may lead to errors; if so, disable simplification.

returnList Logical: should the result be turned into a list (rather than a multiData struc-
ture)? Note that this is incompatible with simplification: if mdaSimplify is
TRUE, this argument is ignored.

mdaVerbose Integer specifying whether progress diagnistics should be printed out. Zero
means silent, increasing values will lead to more diagnostic messages.

mdaIndent Integer specifying the indentation of the printed progress messages. Each unit
equals two spaces.

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

mtd.apply works on any "loose" multiData structure; mtd.applyToSubset assumes (and checks
for) a "strict" multiData structure.

Value

A multiData structure containing the results of the supplied function on each data component in
the input multiData structure. Other components are simply copied.

Author(s)

Peter Langfelder

mtd.mapply 241

See Also

multiData to create a multiData structure; mtd.applyToSubset for applying a function to a subset
of a multiData structure; mtd.mapply for vectorizing over several arguments.

mtd.mapply Apply a function to elements of given multiData structures.

Description

Inspired by mapply, this function applies a given function to each data component in the input
multiData arguments, and optionally simplify the result to an array if possible.

Usage

mtd.mapply(

What to do
FUN, ..., MoreArgs = NULL,

How to interpret the input
mdma.argIsMultiData = NULL,

Copy previously known results?
mdmaExistingResults = NULL, mdmaUpdateIndex = NULL,

How to format output
mdmaSimplify = FALSE,
returnList = FALSE,

Options controlling internal behaviour
mdma.doCollectGarbage = FALSE,
mdmaVerbose = 0, mdmaIndent = 0)

Arguments

FUN Function to be applied.

... Arguments to be vectorized over. These can be multiData structures or simple
vectors (e.g., lists).

MoreArgs A named list that specifies the scalar arguments (if any) to FUN.
mdma.argIsMultiData

Optional specification whether arguments are multiData structures. A logical
vector where each component corresponds to one entry of If not given, mul-
tiData status will be determined using isMultiData with argument strict=FALSE.

242 mtd.mapply

mdmaExistingResults

Optional list that contains previously calculated results. This can be useful if
only a few sets in multiData have changed and recalculating the unchanged
ones is computationally expensive. If not given, all calculations will be per-
formed. If given, components of this list are copied into the output. See mdmUpdateIndex
for which components are re-calculated by default.

mdmaUpdateIndex

Optional specification of which sets in multiData the calculation should actu-
ally be carried out. This argument has an effect only if mdmaExistingResults
is non-NULL. If the length of mdmaExistingResults (call the length ‘k’) is less
than the number of sets in multiData, the function assumes that the existing re-
sults correspond to the first ‘k’ sets in multiData and the rest of the sets are
automatically calculated, irrespective of the setting of mdmaUpdateIndex. The
argument mdmaUpdateIndex can be used to specify re-calculation of some (or
all) of the results that already exist in mdmaExistingResults.

mdmaSimplify Logical: should simplification of the result to an array be attempted? The sim-
plification is fragile and can produce unexpected errors; use the default FALSE if
that happens.

returnList Logical: should the result be turned into a list (rather than a multiData struc-
ture)? Note that this is incompatible with simplification: if mdaSimplify is
TRUE, this argument is ignored.

mdma.doCollectGarbage

Should garbage collection be forced after each application of FUN?

mdmaVerbose Integer specifying whether progress diagnistics should be printed out. Zero
means silent, increasing values will lead to more diagnostic messages.

mdmaIndent Integer specifying the indentation of the printed progress messages. Each unit
equals two spaces.

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

This function applies the function FUN to each data component of those arguments in ... that are
multiData structures in the "loose" sense, and to each component of those arguments in ... that are
not multiData structures.

Value

A multiData structure containing (as the data components) the results of FUN. If simplification is
successful, an array instead.

mtd.rbindSelf 243

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure;

multiData.apply for application of a function to a single multiData structure.

mtd.rbindSelf Turn a multiData structure into a single matrix or data frame.

Description

This function "rbinds" the data components of all sets in the input into a single matrix or data
frame.

Usage

mtd.rbindSelf(multiData)

Arguments

multiData A multiData structure.

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

This function requires a "strict" multiData structure.

Value

A single matrix or data frame containing the "rbinded" result.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure;

rbind for various subtleties of the row binding operation.

244 mtd.setColnames

mtd.setAttr Set attributes on each component of a multiData structure

Description

Set attributes on each data component of a multiData structure

Usage

mtd.setAttr(multiData, attribute, valueList)

Arguments

multiData A multiData structure.

attribute Name for the attribute to be set

valueList List that gives the attribute value for each set in the multiData structure.

Value

The input multiData with the attribute set on each data component.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure;

isMultiData for a description of the multiData structure.

mtd.setColnames Get and set column names in a multiData structure.

Description

Get and set column names on each data component in a multiData structure.

Usage

mtd.colnames(multiData)
mtd.setColnames(multiData, colnames)

Arguments

multiData A multiData structure

colnames A vector (coercible to character) of column names.

mtd.simplify 245

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

The mtd.colnames and mtd.setColnames assume (and checks for) a "strict" multiData structure.

Value

mtd.colnames returns the vector of column names of the data component. The function assumes
the column names in all sets are the same.

mtd.setColnames returns the multiData structure with the column names set in all data compo-
nents.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure.

mtd.simplify If possible, simplify a multiData structure to a 3-dimensional array.

Description

This function attempts to put all data components into a 3-dimensional array, with the last dimen-
sion corresponding to the sets. This is only possible if all data components are matrices or data
frames with the same dimensiosn.

Usage

mtd.simplify(multiData)

Arguments

multiData A multiData structure in the "strict" sense (see below).

246 mtd.subset

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

This function assumes a "strict" multiData structure.

Value

A 3-dimensional array collecting all data components.

Note

The function is relatively fragile and may fail. Use at your own risk.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure;

multiData2list for converting multiData structures to plain lists.

mtd.subset Subset rows and columns in a multiData structure

Description

The function restricts each data component to the given columns and rows.

Usage

mtd.subset(
Input
multiData,

Rows and columns to keep
rowIndex = NULL, colIndex = NULL,
invert = FALSE,

Strict or permissive checking of structure?
permissive = FALSE,

mtd.subset 247

Output formatting options
drop = FALSE)

Arguments

multiData A multiData structure.

rowIndex A list in which each component corresponds to a set and is a vector giving the
rows to be retained in that set. All indexing methods recognized by R can be
used (numeric, logical, negative indexing, etc). If NULL, all columns will be
retained in each set. Note that setting individual elements of rowIndex to NULL
will lead to errors.

colIndex A vector giving the columns to be retained. All indexing methods recognized
by R can be used (numeric, logical, negative indexing, etc). In addition, column
names of the retained columns may be given; if a given name cannot be matched
to a column, an error will be thrown. If NULL, all columns will be retained.

invert Logical: should the selection be inverted?

permissive Logical: should the function tolerate "loose" multiData input? Note that the
subsetting may lead to cryptic errors if the input multiData does not follow the
"strict" format.

drop Logical: should dimensions with extent 1 be dropped?

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

This function assumes a "strict" multiData structure unless permissive is TRUE.

Value

A multiData structure containing the selected rows and columns. Attributes (except possibly di-
mensions and the corresponding dimnames) are retained.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure.

248 multiData

multiData Create a multiData structure.

Description

This function creates a multiData structure by storing its input arguments as the ’data’ components.

Usage

multiData(...)

Arguments

... Arguments to be stored in the multiData structure.

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent,
realizations (for example, expression data for several independent experiments). It is a list where
each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData
structure, the data components are required to each be a matrix or a data frame and have the same
number of columns. In a "loose" multiData structure, the data components can be anything (but
for most purposes should be of comparable type and content).

Value

The resulting multiData structure.

Author(s)

Peter Langfelder

See Also

multiData2list for converting a multiData structure to a list; list2multiData for an alternative
way of creating a multiData structure; mtd.apply, mtd.applyToSubset, mtd.mapply for ways of
applying a function to each component of a multiData structure.

Examples

data1 = matrix(rnorm(100), 20, 5);
data2 = matrix(rnorm(50), 10, 5);

md = multiData(Set1 = data1, Set2 = data2);

checkSets(md)

multiData.eigengeneSignificance 249

multiData.eigengeneSignificance

Eigengene significance across multiple sets

Description

This function calculates eigengene significance and the associated significance statistics (p-values,
q-values etc) across several data sets.

Usage

multiData.eigengeneSignificance(
multiData, multiTrait,
moduleLabels, multiEigengenes = NULL,
useModules = NULL,
corAndPvalueFnc = corAndPvalue, corOptions = list(),
corComponent = "cor",
getQvalues = FALSE, setNames = NULL,
excludeGrey = TRUE, greyLabel = ifelse(is.numeric(moduleLabels), 0, "grey"))

Arguments

multiData Expression data (or other data) in multi-set format (see checkSets). A vector
of lists; in each list there must be a component named data whose content is a
matrix or dataframe or array of dimension 2.

multiTrait Trait or ourcome data in multi-set format. Only one trait is allowed; conseques-
ntly, the data component of each component list can be either a vector or a data
frame (matrix, array of dimension 2).

moduleLabels Module labels: one label for each gene in multiExpr.
multiEigengenes

Optional eigengenes of modules specified in moduleLabels. If not given, will
be calculated from multiExpr.

useModules Optional specification of module labels to which the analysis should be re-
stricted. This could be useful if there are many modules, most of which are
not interesting. Note that the "grey" module cannot be used with useModules.

corAndPvalueFnc

Function that calculates associations between expression profiles and eigen-
genes. See details.

corOptions List giving additional arguments to function corAndPvalueFnc. See details.

corComponent Name of the component of output of corAndPvalueFnc that contains the actual
correlation.

getQvalues logical: should q-values (estimates of FDR) be calculated?

setNames names for the input sets. If not given, will be taken from names(multiExpr). If
those are NULL as well, the names will be "Set_1", "Set_2",

250 multiGSub

excludeGrey logical: should the grey module be excluded from the kME tables? Since the
grey module is typically not a real module, it makes little sense to report kME
values for it.

greyLabel label that labels the grey module.

Details

This is a convenience function that calculates module eigengene significances (i.e., correlations
of module eigengenes with a given trait) across all sets in a multi-set analysis. Also returned are
p-values, Z scores, numbers of present (i.e., non-missing) observations for each significance, and
optionally the q-values (false discovery rates) corresponding to the p-values.

The function corAndPvalueFnc is currently is expected to accept arguments x (gene expression pro-
files) and y (eigengene expression profiles). Any additional arguments can be passed via corOptions.

The function corAndPvalueFnc should return a list which at the least contains (1) a matrix of asso-
ciations of genes and eigengenes (this component should have the name given by corComponent),
and (2) a matrix of the corresponding p-values, named "p" or "p.value". Other components are
optional but for full functionality should include (3) nObs giving the number of observations for
each association (which is the number of samples less number of missing data - this can in principle
vary from association to association), and (4) Z giving a Z static for each observation. If these are
missing, nObs is calculated in the main function, and calculations using the Z statistic are skipped.

Value

A list containing the following components. Each component is a matrix in which the rows corre-
spond to module eigengenes and columns to data sets. Row and column names are set appropriately.

eigengeneSignificance

Module eigengene significance.

p.value p-values (returned by corAndPvalueFnc).

q.value q-values corresponding to the p-values above. Only returned in input getWvalues
is TRUE.

Z Z statistics (if returned by corAndPvalueFnc).

nObservations Number of non-missing observations in each correlation/p-value.

Author(s)

Peter Langfelder

multiGSub Analogs of grep(l) and (g)sub for multiple patterns and relacements

Description

These functions provide convenient pattern finding and substitution for multiple patterns.

multiGSub 251

Usage

multiGSub(patterns, replacements, x, ...)
multiSub(patterns, replacements, x, ...)
multiGrep(patterns, x, ..., sort = TRUE, value = FALSE, invert = FALSE)
multiGrepl(patterns, x, ...)

Arguments

patterns A character vector of patterns.

replacements A character vector of replacements; must be of the same length as patterns.

x Character vector of strings in which the pattern finding and replacements should
be carried out.

sort Logical: should the output indices be sorted in increasing order?

value Logical: should value rather than the index of the value be returned?

invert Logical: should the search be inverted and only indices of elements of x match-
ing none of the patterns be returned?

... Other arguments to sub or grep

Details

For each element of x, patterns are sequentiall searched for and (for multiSub and multiGSub
substituted with the corresponding replacement.

Value

multiSub and multiGSub return a character vector of the same length as x, with all patterns replaces
by their replacements in each element of x. multiSub replaces each pattern in each element of x
only once, multiGSub as many times as the pattern is found.

multiGrep returns the indices of those elements in x in which at least one of patterns was found,
or, if invert is TRUE, the indices of elements in which none of the patterns were found. If value
is TRUE, values rather than indices are returned.

multiGrepl returns a logical vector of the same length as x, with TRUE is any of the patterns
matched the element of x, and FALSE otherwise.

Author(s)

Peter Langfelder

See Also

The workhorse functions sub, gsub, grep and grepl.

252 multiSetMEs

multiSetMEs Calculate module eigengenes.

Description

Calculates module eigengenes for several sets.

Usage

multiSetMEs(exprData,
colors,
universalColors = NULL,
useSets = NULL,
useGenes = NULL,
impute = TRUE,
nPC = 1,
align = "along average",
excludeGrey = FALSE,
grey = if (is.null(universalColors)) {

if (is.numeric(colors)) 0 else "grey"
} else

if (is.numeric(universalColors)) 0 else "grey",
subHubs = TRUE,
trapErrors = FALSE,
returnValidOnly = trapErrors,
softPower = 6,
verbose = 1, indent = 0)

Arguments

exprData Expression data in a multi-set format (see checkSets). A vector of lists, with
each list corresponding to one microarray dataset and expression data in the
component data, that is expr[[set]]$data[sample, probe] is the expression
of probe probe in sample sample in dataset set. The number of samples can be
different between the sets, but the probes must be the same.

colors A matrix of dimensions (number of probes, number of sets) giving the module
assignment of each gene in each set. The color "grey" is interpreted as unas-
signed.

universalColors

Alternative specification of module assignment. A single vector of length (num-
ber of probes) giving the module assignment of each gene in all sets (that is the
modules are common to all sets). If given, takes precedence over color.

useSets If calculations are requested in (a) selected set(s) only, the set(s) can be specified
here. Defaults to all sets.

useGenes Can be used to restrict calculation to a subset of genes (the same subset in all
sets). If given, validColors in the returned list will only contain colors for the
genes specified in useGenes.

multiSetMEs 253

impute Logical. If TRUE, expression data will be checked for the presence of NA en-
tries and if the latter are present, numerical data will be imputed, using function
impute.knn and probes from the same module as the missing datum. The func-
tion impute.knn uses a fixed random seed giving repeatable results.

nPC Number of principal components to be calculated. If only eigengenes are needed,
it is best to set it to 1 (default). If variance explained is needed as well, use value
NULL. This will cause all principal components to be computed, which is slower.

align Controls whether eigengenes, whose orientation is undetermined, should be
aligned with average expression (align = "along average", the default) or left
as they are (align = ""). Any other value will trigger an error.

excludeGrey Should the improper module consisting of ’grey’ genes be excluded from the
eigengenes?

grey Value of colors or universalColors (whichever applies) designating the im-
proper module. Note that if the appropriate colors argument is a factor of num-
bers, the default value will be incorrect.

subHubs Controls whether hub genes should be substituted for missing eigengenes. If
TRUE, each missing eigengene (i.e., eigengene whose calculation failed and the
error was trapped) will be replaced by a weighted average of the most con-
nected hub genes in the corresponding module. If this calculation fails, or if
subHubs==FALSE, the value of trapErrors will determine whether the offend-
ing module will be removed or whether the function will issue an error and stop.

trapErrors Controls handling of errors from that may arise when there are too many NA
entries in expression data. If TRUE, errors from calling these functions will
be trapped without abnormal exit. If FALSE, errors will cause the function
to stop. Note, however, that subHubs takes precedence in the sense that if
subHubs==TRUE and trapErrors==FALSE, an error will be issued only if both
the principal component and the hubgene calculations have failed.

returnValidOnly

Boolean. Controls whether the returned data frames of module eigengenes con-
tain columns corresponding only to modules whose eigengenes or hub genes
could be calculated correctly in every set (TRUE), or whether the data frame
should have columns for each of the input color labels (FALSE).

softPower The power used in soft-thresholding the adjacency matrix. Only used when the
hubgene approximation is necessary because the principal component calcula-
tion failed. It must be non-negative. The default value should only be changed
if there is a clear indication that it leads to incorrect results.

verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5
the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0
means no indentation, each unit above that adds two spaces.

Details

This function calls moduleEigengenes for each set in exprData.

Module eigengene is defined as the first principal component of the expression matrix of the cor-
responding module. The calculation may fail if the expression data has too many missing entries.

254 multiSetMEs

Handling of such errors is controlled by the arguments subHubs and trapErrors. If subHubs==TRUE,
errors in principal component calculation will be trapped and a substitute calculation of hubgenes
will be attempted. If this fails as well, behaviour depends on trapErrors: if TRUE, the offending
module will be ignored and the return value will allow the user to remove the module from further
analysis; if FALSE, the function will stop. If universalColors is given, any offending module will
be removed from all sets (see validMEs in return value below).

From the user’s point of view, setting trapErrors=FALSE ensures that if the function returns nor-
mally, there will be a valid eigengene (principal component or hubgene) for each of the input colors.
If the user sets trapErrors=TRUE, all calculational (but not input) errors will be trapped, but the
user should check the output (see below) to make sure all modules have a valid returned eigengene.

While the principal component calculation can fail even on relatively sound data (it does not take all
that many "well-placed" NA to torpedo the calculation), it takes many more irregularities in the data
for the hubgene calculation to fail. In fact such a failure signals there likely is something seriously
wrong with the data.

Value

A vector of lists similar in spirit to the input exprData. For each set there is a list with the following
components:

data Module eigengenes in a data frame, with each column corresponding to one
eigengene. The columns are named by the corresponding color with an "ME"
prepended, e.g., MEturquoise etc. Note that, when trapErrors == TRUE and
returnValidOnly==FALSE, this data frame also contains entries corresponding
to removed modules, if any. (validMEs below indicates which eigengenes are
valid and allOK whether all module eigengens were successfully calculated.)

averageExpr If align == "along average", a dataframe containing average normalized ex-
pression in each module. The columns are named by the corresponding color
with an "AE" prepended, e.g., AEturquoise etc.

varExplained A dataframe in which each column corresponds to a module, with the com-
ponent varExplained[PC, module] giving the variance of module module ex-
plained by the principal component no. PC. This is only accurate if all principal
components have been computed (input nPC = NULL). At most 5 principal com-
ponents are recorded in this dataframe.

nPC A copy of the input nPC.

validMEs A boolean vector. Each component (corresponding to the columns in data) is
TRUE if the corresponding eigengene is valid, and FALSE if it is invalid. Valid
eigengenes include both principal components and their hubgene approxima-
tions. When returnValidOnly==FALSE, by definition all returned eigengenes
are valid and the entries of validMEs are all TRUE.

validColors A copy of the input colors (universalColors if set, otherwise colors[, set])
with entries corresponding to invalid modules set to grey if given, otherwise 0
if the appropriate input colors are numeric and "grey" otherwise.

allOK Boolean flag signalling whether all eigengenes have been calculated correctly,
either as principal components or as the hubgene approximation. If universalColors
is set, this flag signals whether all eigengenes are valid in all sets.

multiUnion 255

allPC Boolean flag signalling whether all returned eigengenes are principal compo-
nents. This flag (as well as the subsequent ones) is set independently for each
set.

isPC Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the first principal component and
FALSE if it is the hubgene approximation or is invalid.

isHub Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding eigengene is the hubgene approximation and FALSE
if it is the first principal component or is invalid.

validAEs Boolean vector. Each component (corresponding to the columns in eigengenes)
is TRUE if the corresponding module average expression is valid.

allAEOK Boolean flag signalling whether all returned module average expressions contain
valid data. Note that returnValidOnly==TRUE does not imply allAEOK==TRUE:
some invalid average expressions may be returned if their corresponding eigen-
genes have been calculated correctly.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

moduleEigengenes

multiUnion Union and intersection of multiple sets

Description

Union and intersection of multiple sets. These function generalize the standard functions union and
intersect.

Usage

multiUnion(setList)
multiIntersect(setList)

Arguments

setList A list containing the sets to be performed upon.

Value

The union or intersection of the given sets.

Author(s)

Peter Langfelder

256 mutualInfoAdjacency

See Also

The "standard" functions union and intersect.

mutualInfoAdjacency Calculate weighted adjacency matrices based on mutual information

Description

The function calculates different types of weighted adjacency matrices based on the mutual infor-
mation between vectors (corresponding to the columns of the input data frame datE). The mutual
information between pairs of vectors is divided by an upper bound so that the resulting normalized
measure lies between 0 and 1.

Usage

mutualInfoAdjacency(
datE,
discretizeColumns = TRUE,
entropyEstimationMethod = "MM",
numberBins = NULL)

Arguments

datE datE is a data frame or matrix whose columns correspond to variables and whose
rows correspond to measurements. For example, the columns may correspond
to genes while the rows correspond to microarrays. The number of nodes in the
mutual information network equals the number of columns of datE.

discretizeColumns

is a logical variable. If it is set to TRUE then the columns of datE will be
discretized into a user-defined number of bins (see numberBins).

entropyEstimationMethod

takes a text string for specifying the entropy and mutual information estimation
method. If entropyEstimationMethod="MM" then the Miller-Madow asymp-
totic bias corrected empirical estimator is used. If entropyEstimationMethod="ML"
the maximum likelihood estimator (also known as plug-in or empirical estima-
tor) is used. If entropyEstimationMethod="shrink", the shrinkage estimator
of a Dirichlet probability distribution is used. If entropyEstimationMethod="SG",
the Schurmann-Grassberger estimator of the entropy of a Dirichlet probability
distribution is used.

numberBins is an integer larger than 0 which specifies how many bins are used for the dis-
cretization step. This argument is only relevant if discretizeColumns has been
set to TRUE. By default numberBins is set to sqrt(m) where m is the number of
samples, i.e. the number of rows of datE. Thus the default is numberBins=sqrt(nrow(datE)).

mutualInfoAdjacency 257

Details

The function inputs a data frame datE and outputs a list whose components correspond to different
weighted network adjacency measures defined beteween the columns of datE. Make sure to install
the following R packages entropy, minet, infotheo since the function mutualInfoAdjacency
makes use of the entropy function from the R package entropy (Hausser and Strimmer 2008) and
functions from the minet and infotheo package (Meyer et al 2008). A weighted network adjacency
matrix is a symmetric matrix whose entries take on values between 0 and 1. Each weighted adja-
cency matrix contains scaled versions of the mutual information between the columns of the input
data frame datE. We assume that datE contains numeric values which will be discretized unless the
user chooses the option discretizeColumns=FALSE. The raw (unscaled) mutual information and
entropy measures have units "nat", i.e. natural logarithms are used in their definition (base e=2.71..).
Several mutual information estimation methods have been proposed in the literature (reviewed in
Hausser and Strimmer 2008, Meyer et al 2008). While mutual information networks allows one to
detect non-linear relationships between the columns of datE, they may overfit the data if relatively
few observations are available. Thus, if the number of rows of datE is smaller than say 200, it may
be better to fit a correlation using the function adjacency.

Value

The function outputs a list with the following components:

Entropy is a vector whose components report entropy estimates of each column of datE.
The natural logarithm (base e) is used in the definition. Using the notation from
the Wikipedia entry (http://en.wikipedia.org/wiki/Mutual_information), this vec-
tor contains the values Hx where x corresponds to a column in datE.

MutualInformation

is a symmetric matrix whose entries contain the pairwise mutual information
measures between the columns of datE. The diagonal of the matrix MutualInformation
equals Entropy. In general, the entries of this matrix can be larger than 1, i.e.
this is not an adjacency matrix. Using the notation from the Wikipedia entry,
this matrix contains the mutual information estimates I(X;Y)

AdjacencySymmetricUncertainty

is a weighted adjacency matrix whose entries are based on the mutual informa-
tion. Using the notation from the Wikipedia entry, this matrix contains the mu-
tual information estimates AdjacencySymmetricUncertainty=2*I(X;Y)/(H(X)+H(Y)).
Since I(X;X)=H(X), the diagonal elements of AdjacencySymmetricUncertainty
equal 1. In general the entries of this symmetric matrix AdjacencySymmetricUncertainty
lie between 0 and 1.

AdjacencyUniversalVersion1

is a weighted adjacency matrix that is a simple function of the AdjacencySymmetricUncertainty.
Specifically, AdjacencyUniversalVersion1= AdjacencySymmetricUncertainty/(2-
AdjacencySymmetricUncertainty). Note that f(x)= x/(2-x) is a monotoni-
cally increasing function on the unit interval [0,1] whose values lie between 0
and 1. The reason why we call it the universal adjacency is that dissUA=1-
AdjacencyUniversalVersion1 turns out to be a universal distance function,
i.e. it satisfies the properties of a distance (including the triangle inequality) and
it takes on a small value if any other distance measure takes on a small value
(Kraskov et al 2003).

258 mutualInfoAdjacency

AdjacencyUniversalVersion2

is a weighted adjacency matrix for which dissUAversion2=1-AdjacencyUniversalVersion2
is also a universal distance measure. Using the notation from Wikipedia, the
entries of the symmetric matrix AdjacencyUniversalVersion2 are defined as fol-
lows AdjacencyUniversalVersion2=I(X;Y)/max(H(X),H(Y)).

Author(s)

Steve Horvath, Lin Song, Peter Langfelder

References

Hausser J, Strimmer K (2008) Entropy inference and the James-Stein estimator, with application to
nonlinear gene association networks. See http://arxiv.org/abs/0811.3579

Patrick E. Meyer, Frederic Lafitte, and Gianluca Bontempi. minet: A R/Bioconductor Package for
Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinformatics, Vol 9,
2008

Kraskov A, Stoegbauer H, Andrzejak RG, Grassberger P (2003) Hierarchical Clustering Based on
Mutual Information. ArXiv q-bio/0311039

See Also

adjacency

Examples

Load requisite packages. These packages are considered "optional",
so WGCNA does not load them automatically.

if (require(infotheo, quietly = TRUE) &&
require(minet, quietly = TRUE) &&
require(entropy, quietly = TRUE))

{
Example can be executed.
#Simulate a data frame datE which contains 5 columns and 50 observations
m=50
x1=rnorm(m)
r=.5; x2=r*x1+sqrt(1-r^2)*rnorm(m)
r=.3; x3=r*(x1-.5)^2+sqrt(1-r^2)*rnorm(m)
x4=rnorm(m)
r=.3; x5=r*x4+sqrt(1-r^2)*rnorm(m)
datE=data.frame(x1,x2,x3,x4,x5)

#calculate entropy, mutual information matrix and weighted adjacency
matrices based on mutual information.
MIadj=mutualInfoAdjacency(datE=datE)

} else
printFlush(paste("Please install packages infotheo, minet and entropy",

"before running this example."));

nearestCentroidPredictor 259

nearestCentroidPredictor

Nearest centroid predictor

Description

Nearest centroid predictor for binary (i.e., two-outcome) data. Implements a whole host of op-
tions and improvements such as accounting for within-class heterogeneity using sample networks,
various ways of feature selection and weighing etc.

Usage

nearestCentroidPredictor(

Input training and test data
x, y,
xtest = NULL,

Feature weights and selection criteria
featureSignificance = NULL,
assocFnc = "cor", assocOptions = "use = 'p'",
assocCut.hi = NULL, assocCut.lo = NULL,
nFeatures.hi = 10, nFeatures.lo = 10,
weighFeaturesByAssociation = 0,
scaleFeatureMean = TRUE, scaleFeatureVar = TRUE,

Predictor options
centroidMethod = c("mean", "eigensample"),
simFnc = "cor", simOptions = "use = 'p'",
useQuantile = NULL,
sampleWeights = NULL,
weighSimByPrediction = 0,

What should be returned
CVfold = 0, returnFactor = FALSE,

General options
randomSeed = 12345,
verbose = 2, indent = 0)

Arguments

x Training features (predictive variables). Each column corresponds to a feature
and each row to an observation.

y The response variable. Can be a single vector or a matrix with arbitrary many
columns. Number of rows (observations) must equal to the number of rows
(observations) in x.

260 nearestCentroidPredictor

xtest Optional test set data. A matrix of the same number of columns (i.e., features)
as x. If test set data are not given, only the prediction on training data will be
returned.

featureSignificance

Optional vector of feature significance for the response variable. If given, it
is used for feature selection (see details). Should preferably be signed, that is
features can have high negative significance.

assocFnc Character string specifying the association function. The association function
should behave roughly as link{cor} in that it takes two arguments (a matrix
and a vector) plus options and returns the vector of associations between the
columns of the matrix and the vector. The associations may be signed (i.e.,
negative or positive).

assocOptions Character string specifying options to the association function.
assocCut.hi Association (or featureSignificance) threshold for including features in the pre-

dictor. Features with associtation higher than assocCut.hi will be included.
If not given, the threshold method will not be used; instead, a fixed number of
features will be included as specified by nFeatures.hi and nFeatures.lo.

assocCut.lo Association (or featureSignificance) threshold for including features in the pre-
dictor. Features with associtation lower than assocCut.lo will be included. If
not given, defaults to -assocCut.hi. If assocCut.hi is NULL, the threshold
method will not be used; instead, a fixed number of features will be included as
specified by nFeatures.hi and nFeatures.lo.

nFeatures.hi Number of highest-associated features (or features with highest featureSignificance)
to include in the predictor. Only used if assocCut.hi is NULL.

nFeatures.lo Number of lowest-associated features (or features with highest featureSignificance)
to include in the predictor. Only used if assocCut.hi is NULL.

weighFeaturesByAssociation

(Optional) power to downweigh features that are less associated with the re-
sponse. See details.

scaleFeatureMean

Logical: should the training features be scaled to mean zero? Unless there are
good reasons not to scale, the features should be scaled.

scaleFeatureVar

Logical: should the training features be scaled to unit variance? Again, unless
there are good reasons not to scale, the features should be scaled.

centroidMethod One of "mean" and "eigensample", specifies how the centroid should be calcu-
lated. "mean" takes the mean across all samples (or all samples within a sample
module, if sample networks are used), whereas "eigensample" calculates the
first principal component of the feature matrix and uses that as the centroid.

simFnc Character string giving the similarity function for measuring the similarity be-
tween test samples and centroids. This function should behave roughly like the
function cor in that it takes two arguments (x, y) and calculates the pair-wise
similarities between columns of x and y. For convenience, the value "dist"
is treated specially: the Euclidean distance between the columns of x and y is
calculated and its negative is returned (so that smallest distance corresponds to
highest similarity). Since values of this function are only used for ranking cen-
troids, its values are not restricted to be positive or within certain bounds.

nearestCentroidPredictor 261

simOptions Character string specifying the options to the similarity function.

useQuantile If non-NULL, the "nearest quantiloid" will be used instead of the nearest cen-
troid. See details.

sampleWeights Optional specification of sample weights. Useful for example if one wants to
explore boosting.

weighSimByPrediction

(Optional) power to downweigh features that are not well predicted between
training and test sets. See details.

CVfold Non-negative integer specifying cross-validation. Zero means no cross-validation
will be performed. values above zero specify the number of samples to be con-
sidered test data for each step of cross-validation.

returnFactor Logical: should a factor be returned?

randomSeed Integere specifying the seed for the random number generator. If NULL, the seed
will not be set. See set.seed.

verbose Integer controling how verbose the diagnostic messages should be. Zero means
silent.

indent Indentation for the diagnostic messages. Zero means no indentation, each unit
adds two spaces.

Details

Nearest centroid predictor works by forming a representative profile (centroid) across features for
each class from the training data, then assigning each test sample to the class of the nearest repre-
sentative profile. The representative profile can be formed either as mean or as athe first principal
component ("eigensample"; this choice is governed by the option centroidMethod).

When the number of features is large and only a small fraction is likely to be associated with the
outcome, feature selection can be used to restrict the features that actually enter the centroid. Fea-
ture selection can be based either on their association with the outcome calculated from the training
data using assocFnc, or on user-supplied feature significance (e.g., derived from literature, argu-
ment featureSignificance). In either case, features can be selected by high and low association
tresholds or by taking a fixed number of highest- and lowest-associated features.

As an alternative to centroids, the predictor can also assign test samples based on a given quantile
of the distances from the training samples in each class (argument useQuantile). This may be
advantageous if the samples in each class form irregular clusters. Note that setting useQuantile=0
(i.e., using minimum distance in each class) essentially gives a nearest neighbor predictor: each test
sample will be assigned to the class of its nearest training neighbor.

If features exhibit non-trivial correlations among themselves (such as, for example, in gene expres-
sion data), one can attempt to down-weigh features that do not exhibit the same correlation in the
test set. This is done by using essentially the same predictor to predict _features_ from all other
features in the test data (using the training data to train the feature predictor). Because test features
are known, the prediction accuracy can be evaluated. If a feature is predicted badly (meaning the
error in the test set is much larger than the error in the cross-validation prediction in training data),
it may mean that its quality in the training or test data is low (for example, due to excessive noise or
outliers). Such features can be downweighed using the argument weighByPrediction. The extra
factor is min(1, (root mean square prediction error in test set)/(root mean square cross-validation
prediction error in the trainig data)^weighByPrediction), that is it is never bigger than 1.

262 nearestCentroidPredictor

Unless the features’ mean and variance can be ascribed clear meaning, the (training) features should
be scaled to mean 0 and variance 1 before the centroids are formed.

The function implements a basic option for removal of spurious effects in the training and test data,
by removng a fixed number of leading principal components from the features. This sometimes
leads to better prediction accuracy but should be used with caution.

If samples within each class are heterogenous, a single centroid may not represent each class well.
This function can deal with within-class heterogeneity by clustering samples (separately in each
class), then using a one representative (mean, eigensample) or quantile for each cluster in each
class to assign test samples. Various similarity measures, specified by adjFnc, can be used to
construct the sample network adjacency. Similarly, the user can specify a clustering function using
clusteringFnc. The requirements on the clustering function are described in a separate section
below.

Value

A list with the following components:

predicted The back-substitution prediction in the training set.

predictedTest Prediction in the test set.
featureSignificance

A vector of feature significance calculated by assocFnc or a copy of the input
featureSignificance if the latter is non-NULL.

selectedFeatures

A vector giving the indices of the features that were selected for the predictor.
centroidProfile

The representative profiles of each class (or cluster). Only returned in useQuntile
is NULL.

testSample2centroidSimilarities

A matrix of calculated similarities between the test samples and class/cluster
centroids.

featureValidationWeights

A vector of validation weights (see Details) for the selected features. If weighFeaturesByValidation
is 0, a unit vector is used and returned.

CVpredicted Cross-validation prediction on the training data. Present only if CVfold is non-
zero.

sampleClusterLabels

A list with two components (one per class). Each component is a vector of
sample cluster labels for samples in the class.

Author(s)

Peter Langfelder

See Also

votingLinearPredictor

nearestNeighborConnectivity 263

nearestNeighborConnectivity

Connectivity to a constant number of nearest neighbors

Description

Given expression data and basic network parameters, the function calculates connectivity of each
gene to a given number of nearest neighbors.

Usage

nearestNeighborConnectivity(datExpr,
nNeighbors = 50, power = 6, type = "unsigned",
corFnc = "cor", corOptions = "use = 'p'",
blockSize = 1000,
sampleLinks = NULL, nLinks = 5000, setSeed = 38457,
verbose = 1, indent = 0)

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

nNeighbors number of nearest neighbors to use.

power soft thresholding power for network construction. Should be a number greater
than 1.

type a character string encoding network type. Recognized values are (unique abbre-
viations of) "unsigned", "signed", and "signed hybrid".

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

blockSize correlation calculations will be split into square blocks of this size, to prevent
running out of memory for large gene sets.

sampleLinks logical: should network connections be sampled (TRUE) or should all connec-
tions be used systematically (FALSE)?

nLinks number of links to be sampled. Should be set such that nLinks * nNeighbors
be several times larger than the number of genes.

setSeed seed to be used for sampling, for repeatability. If a seed already exists, it is saved
before the sampling starts and restored upon exit.

verbose integer controlling the level of verbosity. 0 means silent.

indent integer controlling indentation of output. Each unit above 0 adds two spaces.

264 nearestNeighborConnectivityMS

Details

Connectivity of gene i is the sum of adjacency strengths between gene i and other genes; in this
case we take the nNeighbors nodes with the highest connection strength to gene i. The adjacency
strengths are calculated by correlating the given expression data using the function supplied in
corFNC and transforming them into adjacency according to the given network type and power.

Value

A vector with one component for each gene containing the nearest neighbor connectivity.

Author(s)

Peter Langfelder

See Also

adjacency, softConnectivity

nearestNeighborConnectivityMS

Connectivity to a constant number of nearest neighbors across multi-
ple data sets

Description

Given expression data from several sets and basic network parameters, the function calculates con-
nectivity of each gene to a given number of nearest neighbors in each set.

Usage

nearestNeighborConnectivityMS(multiExpr, nNeighbors = 50, power = 6,
type = "unsigned", corFnc = "cor", corOptions = "use = 'p'",
blockSize = 1000,
sampleLinks = NULL, nLinks = 5000, setSeed = 36492,
verbose = 1, indent = 0)

Arguments

multiExpr expression data in multi-set format. A vector of lists, one list per set. In each list
there must be a component named data whose content is a matrix or dataframe
or array of dimension 2 containing the expression data. Rows correspond to
samples and columns to genes (probes).

nNeighbors number of nearest neighbors to use.

power soft thresholding power for network construction. Should be a number greater
than 1.

type a character string encoding network type. Recognized values are (unique abbre-
viations of) "unsigned", "signed", and "signed hybrid".

networkConcepts 265

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

blockSize correlation calculations will be split into square blocks of this size, to prevent
running out of memory for large gene sets.

sampleLinks logical: should network connections be sampled (TRUE) or should all connec-
tions be used systematically (FALSE)?

nLinks number of links to be sampled. Should be set such that nLinks * nNeighbors
be several times larger than the number of genes.

setSeed seed to be used for sampling, for repeatability. If a seed already exists, it is saved
before the sampling starts and restored after.

verbose integer controlling the level of verbosity. 0 means silent.

indent integer controlling indentation of output. Each unit above 0 adds two spaces.

Details

Connectivity of gene i is the sum of adjacency strengths between gene i and other genes; in this
case we take the nNeighbors nodes with the highest connection strength to gene i. The adjacency
strengths are calculated by correlating the given expression data using the function supplied in
corFNC and transforming them into adjacency according to the given network type and power.

Value

A matrix in which columns correspond to sets and rows to genes; each entry contains the nearest
neighbor connectivity of the corresponding gene.

Author(s)

Peter Langfelder

See Also

adjacency, softConnectivity, nearestNeighborConnectivity

networkConcepts Calculations of network concepts

Description

This functions calculates various network concepts (topological properties, network indices) of a
network calculated from expression data. See details for a detailed description.

Usage

networkConcepts(datExpr, power = 1, trait = NULL, networkType = "unsigned")

266 networkConcepts

Arguments

datExpr a data frame containg the expression data, with rows corresponding to samples
and columns to genes (nodes).

power soft thresholding power.

trait optional specification of a sample trait. A vector of length equal the number of
samples in datExpr.

networkType network type. Recognized values are (unique abbreviations of) "unsigned",
"signed", and "signed hybrid".

Details

This function computes various network concepts (also known as network statistics, topological
properties, or network indices) for a weighted correlation network. The nodes of the weighted
correlation network will be constructed between the columns (interpreted as nodes) of the input
datExpr. If the option networkType="unsigned" then the adjacency between nodes i and j is
defined as A[i,j]=abs(cor(datExpr[,i],datExpr[,j]))^power. In the following, we use the
term gene and node interchangeably since these methods were originally developed for gene net-
works. The function computes the following 4 types of network concepts (introduced in Horvath
and Dong 2008):

Type I: fundamental network concepts are defined as a function of the off-diagonal elements of an
adjacency matrix A and/or a node significance measure GS. These network concepts can be defined
for any network (not just correlation networks). The adjacency matrix of an unsigned weighted cor-
relation network is given by A=abs(cor(datExpr,use="p"))^power and the trait based gene sig-
nificance measure is given by GS= abs(cor(datExpr,trait, use="p"))^power where datExpr,
trait, power are input parameters.

Type II: conformity-based network concepts are functions of the off-diagonal elements of the con-
formity based adjacency matrix A.CF=CF*t(CF) and/or the node significance measure. These net-
work concepts are defined for any network for which a conformity vector can be defined. Details:
For any adjacency matrix A, the conformity vector CF is calculated by requiring that A[i,j] is ap-
proximately equal to CF[i]*CF[j]. Using the conformity one can define the matrix A.CF=CF*t(CF)
which is the outer product of the conformity vector with itself. In general, A.CF is not an adjacency
matrix since its diagonal elements are different from 1. If the off-diagonal elements of A.CF are
similar to those of A according to the Frobenius matrix norm, then A is approximately factorizable.
To measure the factorizability of a network, one can calculate the Factorizability, which is a
number between 0 and 1 (Dong and Horvath 2007). T he conformity is defined using a monotonic,
iterative algorithm that maximizes the factorizability measure.

Type III: approximate conformity based network concepts are functions of all elements of the con-
formity based adjacency matrix A.CF (including the diagonal) and/or the node significance measure
GS. These network concepts are very useful for deriving relationships between network concepts in
networks that are approximately factorizable.

Type IV: eigengene-based (also known as eigennode-based) network concepts are functions of the
eigengene-based adjacency matrix A.E=ConformityE*t(ConformityE) (diagonal included) and/or
the corresponding eigengene-based gene significance measure GSE. These network concepts can
only be defined for correlation networks. Details: The columns (nodes) of datExpr can be summa-
rized with the first principal component, which is referred to as Eigengene in coexpression network
analysis. In general correlation networks, it is called eigennode. The eigengene-based conformity

networkConcepts 267

ConformityE[i] is defined as abs(cor(datE[,i], Eigengene))^power where the power corre-
sponds to the power used for defining the weighted adjacency matrix A. The eigengene-based con-
formity can also be used to define an eigengene-based adjacency matrix A.E=ConformityE*t(ConformityE).
The eigengene based factorizability EF(datE) is a number between 0 and 1 that measures how well
A.E approximates A when the power parameter equals 1. EF(datE) is defined with respect to the sin-
gular values of datExpr. For a trait based node significance measure GS=abs(cor(datE,trait))^power,
one can also define an eigengene-based node significance measure GSE[i]=ConformityE[i]*EigengeneSignificance
where the eigengene significance abs(cor(Eigengene,trait))^power is defined as power of the
absolute value of the correlation between eigengene and trait. Eigengene-based network concepts
are very useful for providing a geometric interpretation of network concepts and for deriving re-
lationships between network concepts. For example, the hub gene significance measure and its
eigengene-based analog have been used to characterize networks where highly connected hub genes
are important with regard to a trait based gene significance measure (Horvath and Dong 2008).

Value

A list with the following components:

Summary a data frame whose rows report network concepts that only depend on the adja-
cency matrix. Density (mean adjacency), Centralization , Heterogeneity (coef-
ficient of variation of the connectivity), Mean ClusterCoef, Mean Connectivity.
The columns of the data frame report the 4 types of network concepts men-
tioned in the description: Fundamental concepts, eigengene-based concepts,
conformity-based concepts, and approximate conformity-based concepts.

Size reports the network size, i.e. the number of nodes, which equals the number of
columns of the input data frame datExpr.

Factorizability

a number between 0 and 1. The closer it is to 1, the better the off-diagonal ele-
ments of the conformity based network A.CF approximate those of A (according
to the Frobenius norm).

Eigengene the first principal component of the standardized columns of datExpr. The num-
ber of components of this vector equals the number of rows of datExpr.

VarExplained the proportion of variance explained by the first principal component (the Eigengene).
It is numerically different from the eigengene based factorizability. While VarExplained
is based on the squares of the singular values of datExpr, the eigengene-based
factorizability is based on fourth powers of the singular values.

Conformity numerical vector giving the conformity. The number of components of the con-
formity vector equals the number of columns in datExpr. The conformity is
often highly correlated with the vector of node connectivities. The conformity
is computed using an iterative algorithm for maximizing the factorizability mea-
sure. The algorithm and related network concepts are described in Dong and
Horvath 2007.

ClusterCoef a numerical vector that reports the cluster coefficient for each node. This funda-
mental network concept measures the cliquishness of each node.

Connectivity a numerical vector that reports the connectivity (also known as degree) of each
node. This fundamental network concept is also known as whole network con-
nectivity. One can also define the scaled connectivity K=Connectivity/max(Connectivity)
which is used for computing the hub gene significance.

268 networkConcepts

MAR a numerical vector that reports the maximum adjacency ratio for each node.
MAR[i] equals 1 if all non-zero adjacencies between node i and the remaining
network nodes equal 1. This fundamental network concept is always 1 for nodes
of an unweighted network. This is a useful measure for weighted networks since
it allows one to determine whether a node has high connectivity because of many
weak connections (small MAR) or because of strong (but few) connections (high
MAR), see Horvath and Dong 2008.

ConformityE a numerical vector that reports the eigengene based (aka eigenenode based) con-
formity for the correlation network. The number of components equals the num-
ber of columns of datExpr.

GS a numerical vector that encodes the node (gene) significance. The i-th compo-
nent equals the node significance of the i-th column of datExpr if a sample trait
was supplied to the function (input trait). GS[i]=abs(cor(datE[,i], trait,
use="p"))^power

GSE a numerical vector that reports the eigengene based gene significance measure.
Its i-th component is given by GSE[i]=ConformityE[i]*EigengeneSignificance
where the eigengene significance abs(cor(Eigengene,trait))^power is de-
fined as power of the absolute value of the correlation between eigengene and
trait.

Significance a data frame whose rows report network concepts that also depend on the trait
based node significance measure. The rows correspond to network concepts
and the columns correspond to the type of network concept (fundamental versus
eigengene based). The first row of the data frame reports the network signifi-
cance. The fundamental version of this network concepts is the average gene sig-
nificance=mean(GS). The eigengene based analog of this concept is defined as
mean(GSE). The second row reports the hub gene significance which is defined
as slope of the intercept only regression model that regresses the gene signifi-
cance on the scaled network connectivity K. The third row reports the eigengene
significance abs(cor(Eigengene,trait))^power. More details can be found
in Horvath and Dong (2008).

Author(s)

Jun Dong, Steve Horvath, Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network Analysis. PLoS
Comput Biol 4(8): e1000117

See Also

conformityBasedNetworkConcepts for approximate conformity-based network concepts

networkScreening 269

fundamentalNetworkConcepts for calculation of fundamental network concepts only.

networkScreening Identification of genes related to a trait

Description

This function blends standard and network approaches to selecting genes (or variables in general)
highly related to a given trait.

Usage

networkScreening(y, datME, datExpr,
corFnc = "cor", corOptions = "use = 'p'",
oddPower = 3,
blockSize = 1000,
minimumSampleSize = ..minNSamples,
addMEy = TRUE, removeDiag = FALSE,
weightESy = 0.5, getQValues = TRUE)

Arguments

y clinical trait given as a numeric vector (one value per sample)

datME data frame of module eigengenes

datExpr data frame of expression data

corFnc character string specifying the function to be used to calculate co-expression
similarity. Defaults to Pearson correlation. Any function returning values be-
tween -1 and 1 can be used.

corOptions character string specifying additional arguments to be passed to the function
given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman
correlation.

oddPower odd integer used as a power to raise module memberships and significances

blockSize block size to use for calculations with large data sets
minimumSampleSize

minimum acceptable number of samples. Defaults to the default minimum num-
ber of samples used throughout the WGCNA package, currently 4.

addMEy logical: should the trait be used as an additional "module eigengene"?

removeDiag logical: remove the diagonal?

weightESy weight to use for the trait as an additional eigengene; should be between 0 and 1

getQValues logical: should q-values be calculated?

Details

This function should be considered experimental. It takes into account both the "standard" and the
network measures of gene importance for the trait.

270 networkScreeningGS

Value

datout = data.frame(p.Weighted, q.Weighted, Cor.Weighted, Z.Weighted, p.Standard, q.Standard,
Cor.Standard, Z.Standard) Data frame reporting the following quantities for each given gene:

p.Weighted weighted p-value of association with the trait
q.Weighted q-value (local FDR) calculated from p.Weighted

cor.Weighted correlation of trait with gene expression weighted by a network term
Z.Weighted Fisher Z score of the weighted correlation
p.Standard standard Student p-value of association of the gene with the trait
q.Standard q-value (local FDR) calculated from p.Standard

cor.Standard correlation of gene with the trait
Z.Standard Fisher Z score of the standard correlation

Author(s)

Steve Horvath

networkScreeningGS Network gene screening with an external gene significance measure

Description

This function blends standard and network approaches to selecting genes (or variables in general)
with high gene significance

Usage

networkScreeningGS(
datExpr,
datME,
GS,
oddPower = 3,
blockSize = 1000,
minimumSampleSize = ..minNSamples,
addGS = TRUE)

Arguments

datExpr data frame of expression data
datME data frame of module eigengenes
GS numeric vector of gene significances
oddPower odd integer used as a power to raise module memberships and significances
blockSize block size to use for calculations with large data sets
minimumSampleSize

minimum acceptable number of samples. Defaults to the default minimum num-
ber of samples used throughout the WGCNA package, currently 4.

addGS logical: should gene significances be added to the screening statistics?

newBlockInformation 271

Details

This function should be considered experimental. It takes into account both the "standard" and the
network measures of gene importance for the trait.

Value

GS.Weighted weighted gene significance

GS copy of the input gene significances (only if addGS=TRUE)

Author(s)

Steve Horvath

See Also

networkScreening, automaticNetworkScreeningGS

newBlockInformation Create a list holding information about dividing data into blocks

Description

This function creates a list storing information about dividing data into blocks, as well as about
possibly excluding genes or samples with excessive numbers of missing data.

Usage

newBlockInformation(blocks, goodSamplesAndGenes)

Arguments

blocks A vector giving block labels. It is assumed to be a numeric vector with block
labels consecutive integers starting at 1.

goodSamplesAndGenes

A list returned by goodSamplesGenes or goodSamplesGenesMS.

Value

A list with class attribute set to BlockInformation, with the following componens:

blocks A copy of the input blocks.

blockGenes A list with one component per block, giving the indices of elements in block
whose value is the same.

goodSamplesAndGenes

A copy of input goodSamplesAndGenes.

nGGenes Number of ‘good’ genes in goodSamplesAndGenes.

gBlocks The input blocks restricted to ‘good’ genes in goodSamplesAndGenes.

272 newBlockwiseData

Author(s)

Peter Langfelder

See Also

goodSamplesGenes, goodSamplesGenesMS.

newBlockwiseData Create, merge and expand BlockwiseData objects

Description

These functions create, merge and expand BlockwiseData objects for holding in-memory or disk-
backed blockwise data. Blockwise here means that the data is too large to be loaded or processed in
one piece and is therefore split into blocks that can be handled one by one in a divide-and-conquer
manner.

Usage

newBlockwiseData(
data,
external = FALSE,
fileNames = NULL,
doSave = external,
recordAttributes = TRUE,
metaData = list())

mergeBlockwiseData(...)

addBlockToBlockwiseData(
bwData,
blockData,
external = bwData$external,
blockFile = NULL,
doSave = external,
recordAttributes = !is.null(bwData$attributes),
metaData = NULL)

Arguments

data A list in which each component carries the data of a single block.

external Logical: should the data be disk-backed (TRUE) or in-memory (FALSE)?

fileNames When external is TRUE, this argument must be a character vector of the same
length as data, giving the file names for the data to be saved to, or where the
data is already located.

newBlockwiseData 273

doSave Logical: should data be saved? If this is FALSE, it is the user’s responsibility to
ensure the files supplied in fileNames already exist and contain the expected
data.

recordAttributes

Logical: should attributes of the given data be recorded within the object?

metaData A list giving any additional meta-data for data that should be attached to the
object.

bwData An existing BlockwiseData object.

blockData A vector, matrix or array carrying the data of a single block.

blockFile File name where data contained in blockData should be saved.

... One or more objects of class BlockwiseData.

Details

Several functions in this package use the concept of blockwise, or "divide-and-conquer", analysis.
The BlockwiseData class is meant to hold the blockwise data, or all necessary information about
blockwise data that is saved in disk files.

The data can be stored in disk files (one file per block) or in-memory. In memory storage is provided
so that same code can be used for both smaller (single-block) data where disk storage could slow
down operations as well as larger data sets where disk storage and block by block analysis are
necessary.

Value

All three functions return a list with the class set to "BlockwiseData", containing the following
components:

external Copy of the input argument external

data If external is TRUE, an empty list, otherwise a copy of the input data.

fileNames Copy of the input argument fileNames.

lengths A vector of lengths (results of length) of elements of data.

attributes If input recordAttributes is TRUE, a list with one component per block (com-
ponent of data); each component is in turn a list of attributes of that component
of data.

metaData A copy of the input metaData.

Warning

The definition of BlockwiseData should be considered experimental and may change in the future.

Author(s)

Peter Langfelder

274 newConsensusOptions

See Also

Other functions on BlockwiseData:

BD.getData for retrieving data

BD.actualFileNames for retrieving file names of files containing data;

BD.nBlocks for retrieving the number of blocks;

BD.blockLengths for retrieving block lengths;

BD.getMetaData for retrieving metadata;

BD.checkAndDeleteFiles for deleting files of an unneeded object.

newConsensusOptions Create a list holding consensus calculation options.

Description

This function creates a list of class ConsensusOptions that holds options for consensus calcula-
tions. This list holds options for a single-level analysis.

Usage

newConsensusOptions(
calibration = c("full quantile", "single quantile", "none"),

Simple quantile scaling options
calibrationQuantile = 0.95,
sampleForCalibration = TRUE,
sampleForCalibrationFactor = 1000,

Consensus definition
consensusQuantile = 0,
useMean = FALSE,
setWeights = NULL,
suppressNegativeResults = FALSE,
Name to prevent files clashes
analysisName = "")

Arguments

calibration Calibration method. One of "full quantile", "single quantile", "none"
(or a unique abbreviation of one of them).

calibrationQuantile

if calibration is "single quantile", input data to a consensus calculation
will be scaled such that their calibrationQuantile quantiles will agree.

newConsensusTree 275

sampleForCalibration

if TRUE, calibration quantiles will be determined from a sample of network simi-
larities. Note that using all data can double the memory footprint of the function
and the function may fail.

sampleForCalibrationFactor

Determines the number of samples for calibration: the number is 1/calibrationQuantile
* sampleForCalibrationFactor. Should be set well above 1 to ensure accu-
racy of the sampled quantile.

consensusQuantile

Quantile at which consensus is to be defined. See details.

useMean Logical: should the consensus be calculated using (weighted) mean rather than
a quantile?

setWeights Optional specification of weights when useMean is TRUE.

suppressNegativeResults

Logical: should negative consensus results be replaced by 0? In a typical net-
work connstruction, negative topological overlap values may results with TOMType
= "signed Nowick".

analysisName Optional character string naming the consensus analysis. Useful for identifying
partial consensus calculation in hierarchical consensus analysis.

Value

A list of type ConsensusOptions that holds copies of the input arguments.

Author(s)

Peter Langfelder

newConsensusTree Create a new consensus tree

Description

This function creates a new consensus tree, a class for representing "recipes" for hierarchical con-
sensus calculations.

Usage

newConsensusTree(
consensusOptions = newConsensusOptions(),
inputs,
analysisName = NULL)

276 newCorrelationOptions

Arguments

consensusOptions

An object of class ConsensusOptions, usually obtained by calling newConsensusOptions.

inputs A vector (or list) of inputs. Each component can be either a character string
giving a names of a data set, or another ConsensusTree object.

analysisName Optional specification of a name for this consensus analysis. While this has
no effect on the actual consensus calculation, some functions use this character
string to make certain file names unique.

Details

Consensus trees specify a "recipe" for the calculation of hierarchical consensus in hierarchicalConsensusCalculation
and other functions.

Value

A list with class set to "ConsensusTree" with these components:

consensusOptions

A copy of the input consensusOptions.

inputs A copy of the input inputs.

analysisName A copy of the input analysisName.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusCalculation for hierarchical consensus calculation for which a ConsensusTree
object specifies the recipe

newCorrelationOptions Creates a list of correlation options.

Description

Convenience function to create a re-usable list of correlation options.

newCorrelationOptions 277

Usage

newCorrelationOptions(
corType = c("pearson", "bicor"),
maxPOutliers = 0.05,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,
nThreads = 0,
corFnc = if (corType=="bicor") "bicor" else "cor",
corOptions = c(
list(use = 'p',

cosine = cosineCorrelation,
quick = quickCor,
nThreads = nThreads),

if (corType=="bicor")
list(maxPOutliers = maxPOutliers,

pearsonFallback = pearsonFallback) else NULL))

Arguments

corType Character specifying the type of correlation function. Currently supported op-
tions are "pearson","bicor".

maxPOutliers Maximum proportion of outliers for biweight mid-correlation. See bicor.

quickCor Real number between 0 and 1 that controls the handling of missing data in the
calculation of correlations. See bicor.

pearsonFallback

Specifies whether the bicor calculation should revert to Pearson when median
absolute deviation (mad) is zero. Recongnized values are (abbreviations of)
"none", "individual", "all". If set to "none", zero mad will result in NA for
the corresponding correlation. If set to "individual", Pearson calculation will
be used only for columns that have zero mad. If set to "all", the presence of a
single zero mad will cause the whole variable to be treated in Pearson correlation
manner (as if the corresponding robust option was set to FALSE).

cosineCorrelation

Logical: calculate cosine biweight midcorrelation? Cosine bicorrelation is sim-
ilar to standard bicorrelation but the median subtraction is not performed.

nThreads A non-negative integer specifying the number of parallel threads to be used by
certain parts of correlation calculations. This option only has an effect on sys-
tems on which a POSIX thread library is available (which currently includes
Linux and Mac OSX, but excludes Windows). If zero, the number of online
processors will be used if it can be determined dynamically, otherwise correla-
tion calculations will use 2 threads.

corFnc Correlation function to be called in R code. Should correspoind to the value of
corType above.

corOptions A list of options to be supplied to the correlation function (in addition to appro-
priate arguments x and y).

278 newNetworkOptions

Value

A list containing a copy of the input arguments. The output has class CorrelationOptions.

Author(s)

Peter Langfelder

newNetworkOptions Create a list of network construction arguments (options).

Description

This function creates a reusable list of network calculation arguments/options.

Usage

newNetworkOptions(
correlationOptions = newCorrelationOptions(),

Adjacency options
replaceMissingAdjacencies = TRUE,
power = 6,
networkType = c("signed hybrid", "signed", "unsigned"),
checkPower = TRUE,

Topological overlap options
TOMType = c("signed", "signed Nowick", "unsigned", "none",

"signed 2", "signed Nowick 2", "unsigned 2"),
TOMDenom = c("mean", "min"),
suppressTOMForZeroAdjacencies = FALSE,
suppressNegativeTOM = FALSE,

Internal behavior options
useInternalMatrixAlgebra = FALSE)

Arguments

correlationOptions

A list of correlation options. See newCorrelationOptions.
replaceMissingAdjacencies

Logical: should missing adjacencies be replaced by zero?

power Soft-thresholding power for network construction.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

checkPower Logicel: should the power be checked for sanity?

normalizeLabels 279

TOMType One of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See TOMsimilarityFromExpr for details.

TOMDenom Character string specifying the TOM variant to be used. Recognized values
are "min" giving the standard TOM described in Zhang and Horvath (2005),
and "mean" in which the min function in the denominator is replaced by mean.
The "mean" may produce better results but at this time should be considered
experimental.

suppressTOMForZeroAdjacencies

logical: for those components that have zero adjacency, should TOM be set to
zero as well?

suppressNegativeTOM

Logical: should the result be set to zero when negative? Negative TOM values
can occur when TOMType is "signed Nowick".

newNetworkOptions

useInternalMatrixAlgebra

logical: should internal implementation of matrix multiplication be used in-
stead of R-provided BLAS? The internal implementation is slow and this option
should only be used if one suspects a bug in R-provided BLAS.

Value

A list of class NetworkOptions.

Author(s)

Peter Langfelder

See Also

newCorrelationOptions

normalizeLabels Transform numerical labels into normal order.

Description

Transforms numerical labels into normal order, that is the largest group will be labeled 1, next
largest 2 etc. Label 0 is optionally preserved.

Usage

normalizeLabels(labels, keepZero = TRUE)

280 nPresent

Arguments

labels Numerical labels.

keepZero If TRUE (the default), labels 0 are preserved.

Value

A vector of the same length as input, containing the normalized labels.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

nPresent Number of present data entries.

Description

A simple sum of present entries in the argument.

Usage

nPresent(x)

Arguments

x data in which to count number of present entries.

Value

A single number giving the number of present entries in x.

Author(s)

Steve Horvath

nSets 281

nSets Number of sets in a multi-set variable

Description

A convenience function that returns the number of sets in a multi-set variable.

Usage

nSets(multiData, ...)

Arguments

multiData vector of lists; in each list there must be a component named data whose content
is a matrix or dataframe or array of dimension 2.

... Other arguments to function checkSets.

Value

A single integer that equals the number of sets given in the input multiData.

Author(s)

Peter Langfelder

See Also

checkSets

numbers2colors Color representation for a numeric variable

Description

The function creates a color represenation for the given numeric input.

Usage

numbers2colors(
x,
signed = NULL,
centered = signed,
lim = NULL,
commonLim = FALSE,
colors = if (signed) blueWhiteRed(100) else blueWhiteRed(100)[51:100],
naColor = "grey")

282 numbers2colors

Arguments

x a vector or matrix of numbers. Missing values are allowed and will be assigned
the color given in naColor. If a matrix, each column of the matrix is processed
separately and the return value will be a matrix of colors.

signed logical: should x be considered signed? If TRUE, the default setting is to use
to use a palette that starts with green for the most negative values, continues
with white for values around zero and turns red for positive values. If FALSE,
the default palette ranges from white for minimum values to red for maximum
values. If not given, the behaviour is controlled by values in x: if there are both
positive and negative values, signed will be considered TRUE, otherwise FALSE.

centered logical. If TRUE and signed==TRUE, numeric value zero will correspond to the
middle of the color palette. If FALSE or signed==FALSE, the middle of the color
palette will correspond to the average of the minimum and maximum value.
If neither signed nor centered are given, centered will follow signed (see
above).

lim optional specification of limits, that is numeric values that should correspond to
the first and last entry of colors.

commonLim logical: should limits be calculated separately for each column of x, or should
the limits be the same for all columns? Only applies if lim is NULL.

colors color palette to represent the given numbers.

naColor color to represent missing values in x.

Details

Each column of x is processed individually, meaning that the color palette is adjusted individually
for each column of x.

Value

A vector or matrix (of the same dimensions as x) of colors.

Author(s)

Peter Langfelder

See Also

labels2colors for color coding of ordinal labels.

orderBranchesUsingHubGenes 283

orderBranchesUsingHubGenes

Optimize dendrogram using branch swaps and reflections.

Description

This function takes as input the hierarchical clustering tree as well as a subset of genes in the
network (generally corresponding to branches in the tree), then returns a semi-optimally ordered
tree. The idea is to maximize the correlations between adjacent branches in the dendrogram, in as
much as that is possible by adjusting the arbitrary positionings of the branches by swapping and
reflecting branches.

Usage

orderBranchesUsingHubGenes(
hierTOM,
datExpr = NULL, colorh = NULL,
type = "signed", adj = NULL, iter = NULL,
useReflections = FALSE, allowNonoptimalSwaps = FALSE)

Arguments

hierTOM A hierarchical clustering object (or gene tree) that is used to plot the dendro-
gram. For example, the output object from the function hclust or fastclus-
ter::hclust. Note that elements of hierTOM$order MUST be named (for ex-
ample, with the corresponding gene name).

datExpr Gene expression data with rows as samples and columns as genes, or NULL if
a pre-made adjacency is entered. Column names of datExpr must be a subset of
gene names of hierTOM$order.

colorh The module assignments (color vectors) corresponding to the rows in datExpr,
or NULL if a pre-made adjacency is entered.

type What type of network is being entered. Common choices are "signed" (default)
and "unsigned". With "signed" negative correlations count against, whereas with
"unsigned" negative correlations are treated identically as positive correlations.

adj Either NULL (default) or an adjacency (or any other square) matrix with rows
and columns corresponding to a subset of the genes in hierTOM$order. If en-
tered, datExpr, colorh, and type are all ignored. Typically, this would be left
blank but could include correlations between module eigengenes, with rows and
columns renamed as genes in the corresponding modules, for example.

iter The number of iterations to run the function in search of optimal branch order-
ing. The default is the square of the number of modules (or the quare of the
number of genes in the adjacency matrix).

useReflections If TRUE, both reflections and branch swapping will be used to optimize dendro-
gram. If FALSE (default) only branch swapping will be used.

284 orderBranchesUsingHubGenes

allowNonoptimalSwaps

If TRUE, there is chance (that decreases with each iteration) of swapping /
reflecting branches whether or not the new correlation between expression of
genes in adjacent branches is better or worse. The idea (which has not been
sufficiently tested), is that this would prevent the function from getting stuck
at a local maxima of correlation. If FALSE (default), the swapping / reflection
of branches only occurs if it results in a higher correlation between adjacent
branches.

Value

hierTOM A hierarchical clustering object with the hierTOM$order variable properly ad-
justed, but all other variables identical as the heirTOM input.

changeLog A log of all of the changes that were made to the dendrogram, including what
change was made, on what iteration, and the Old and New scores based on
correlation. These scores have arbitrary units, but higher is better.

Note

This function is very slow and is still in an *experimental* function. We have not had problems
with ~10 modules across ~5000 genes, although theoretically it should work for many more genes
and modules, depending upon the speed of the computer running R. Please address any problems
or suggestions to jeremyinla@gmail.com.

Author(s)

Jeremy Miller

Examples

Not run:
Example: first simulate some data.

MEturquoise = sample(1:100,50)
MEblue = c(MEturquoise[1:25], sample(1:100,25))
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = c(MEyellow[1:30], sample(1:100,20))
MEred = c(MEbrown [1:20], sample(1:100,30))
ME = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen, MEred)
dat1 = simulateDatExpr(ME,400,c(0.16,0.12,0.11,0.10,0.10,0.10,0.1), signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 = fastcluster::hclust(as.dist(1-TOM1),method="average")
colorh = labels2colors(dat1$allLabels)

plotDendroAndColors(tree1,colorh,dendroLabels=FALSE)

Reassign modules using the selectBranch and chooseOneHubInEachModule functions

datExpr = dat1$datExpr

orderMEs 285

hubs = chooseOneHubInEachModule(datExpr, colorh)
colorh2 = rep("grey", length(colorh))
colorh2 [selectBranch(tree1,hubs["blue"],hubs["turquoise"])] = "blue"
colorh2 [selectBranch(tree1,hubs["turquoise"],hubs["blue"])] = "turquoise"
colorh2 [selectBranch(tree1,hubs["green"],hubs["yellow"])] = "green"
colorh2 [selectBranch(tree1,hubs["yellow"],hubs["green"])] = "yellow"
colorh2 [selectBranch(tree1,hubs["red"],hubs["brown"])] = "red"
colorh2 [selectBranch(tree1,hubs["brown"],hubs["red"])] = "brown"
plotDendroAndColors(tree1,cbind(colorh,colorh2),c("Old","New"),dendroLabels=FALSE)

Now swap and reflect some branches, then optimize the order of the branches
and output pdf with resulting images

pdf("DENDROGRAM_PLOTS.pdf",width=10,height=5)
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Starting Dendrogram")

tree1 = swapTwoBranches(tree1,hubs["red"],hubs["turquoise"])
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Swap blue/turquoise and red/brown")

tree1 = reflectBranch(tree1,hubs["blue"],hubs["green"])
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Reflect turquoise/blue")

(This function will take a few minutes)
out = orderBranchesUsingHubGenes(tree1,datExpr,colorh2,useReflections=TRUE,iter=100)
tree1 = out$geneTree
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Semi-optimal branch order")

out$changeLog

dev.off()

End(Not run)

orderMEs Put close eigenvectors next to each other

Description

Reorder given (eigen-)vectors such that similar ones (as measured by correlation) are next to each
other.

Usage

orderMEs(MEs, greyLast = TRUE,
greyName = paste(moduleColor.getMEprefix(), "grey", sep=""),
orderBy = 1, order = NULL,
useSets = NULL, verbose = 0, indent = 0)

286 orderMEs

Arguments

MEs Module eigengenes in a multi-set format (see checkSets). A vector of lists, with
each list corresponding to one dataset and the module eigengenes in the compo-
nent data, that is MEs[[set]]$data[sample, module] is the expression of the
eigengene of module module in sample sample in dataset set. The number of
samples can be different between the sets, but the modules must be the same.

greyLast Normally the color grey is reserved for unassigned genes; hence the grey module
is not a proper module and it is conventional to put it last. If this is not desired,
set the parameter to FALSE.

greyName Name of the grey module eigengene.

orderBy Specifies the set by which the eigengenes are to be ordered (in all other sets
as well). Defaults to the first set in useSets (or the first set, if useSets is not
given).

order Allows the user to specify a custom ordering.

useSets Allows the user to specify for which sets the eigengene ordering is to be per-
formed.

verbose Controls verbostity of printed progress messages. 0 means silent, nonzero ver-
bose.

indent A single non-negative integer controling indentation of printed messages. 0
means no indentation, each unit above zero adds two spaces.

Details

Ordering module eigengenes is useful for plotting purposes. For this function the order can be spec-
ified explicitly, or a set can be given in which the correlations of the eigengenes will determine the
order. For the latter, a hierarchical dendrogram is calculated and the order given by the dendrogram
is used for the eigengenes in all other sets.

Value

A vector of lists of the same type as MEs containing the re-ordered eigengenes.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

moduleEigengenes, multiSetMEs, consensusOrderMEs

orderMEsByHierarchicalConsensus 287

orderMEsByHierarchicalConsensus

Order module eigengenes by their hierarchical consensus similarity

Description

This function calculates a hiearchical consensus similarity of the input eigengenes, clusters the
eigengenes according to the similarity and returns the input module eigengenes ordered by the
order of resulting dendrogram.

Usage

orderMEsByHierarchicalConsensus(
MEs,
networkOptions,
consensusTree,
greyName = "ME0",
calibrate = FALSE)

Arguments

MEs Module eigengenes, or more generally, vectors, to be ordered, in a multiData
format: A vector of lists, one per set. Each set must contain a component data
that contains the module eigenegens or general vectors, with rows corresponding
to samples and columns to genes or probes.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

consensusTree A list specifying the consensus calculation. See newConsensusTree for details.
greyName Specifies the column name of eigengene of the "module" that contains unas-

signed genes. This eigengene (column) will be excluded from the clustering and
will be put last in the order.

calibrate Logical: should module eigengene similarities be calibrated? This setting over-
rides the calibration options in consensusTree.

Value

A multiData structure of the same format as the input MEs, with columns ordered by the calculated
dendrogram.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusMEDissimilarity for calculating the consensus ME dissimilarity

288 overlapTable

overlapTable Calculate overlap of modules

Description

The function calculates overlap counts and Fisher exact test p-values for the given two sets of
module assignments.

Usage

overlapTable(
labels1, labels2,
na.rm = TRUE, ignore = NULL,
levels1 = NULL, levels2 = NULL,
log.p = FALSE)

Arguments

labels1 a vector containing module labels.

labels2 a vector containing module labels to be compared to labels1.

na.rm logical: should entries missing in either labels1 or labels2 be removed?

ignore an optional vector giving label levels that are to be ignored.

levels1 optional vector giving levels for labels1. Defaults to sorted unique non-missing
values in labels1 that are not present in ignore.

levels2 optional vector giving levels for labels2. Defaults to sorted unique non-missing
values in labels2 that are not present in ignore.

log.p logical: should (natural) logarithms of the p-values be returned instead of the
p-values?

Value

A list with the following components:

countTable a matrix whose rows correspond to modules (unique labels) in labels1 and
whose columns correspond to modules (unique labels) in labels2, giving the
number of objects in the intersection of the two respective modules.

pTable a matrix whose rows correspond to modules (unique labels) in labels1 and
whose columns correspond to modules (unique labels) in labels2, giving Fisher’s
exact test significance p-values (or their logarithms) for the overlap of the two
respective modules.

Author(s)

Peter Langfelder

overlapTableUsingKME 289

See Also

fisher.test, matchLabels

overlapTableUsingKME Determines significant overlap between modules in two networks
based on kME tables.

Description

Takes two sets of expression data (or kME tables) as input and returns a table listing the significant
overlap between each module in each data set, as well as the actual genes in common for every
module pair. Modules can be defined in several ways (generally involving kME) based on user
input.

Usage

overlapTableUsingKME(
dat1, dat2,
colorh1, colorh2,
MEs1 = NULL, MEs2 = NULL,
name1 = "MM1", name2 = "MM2",
cutoffMethod = "assigned", cutoff = 0.5,
omitGrey = TRUE, datIsExpression = TRUE)

Arguments

dat1, dat2 Either expression data sets (with samples as rows and genes as columns) or mod-
ule membership (kME) tables (with genes as rows and modules as columns).
Function reads these inputs based on whether datIsExpression=TRUE or FALSE.
***Be sure that these inputs include relevant row and column names, or else the
function will not work properly.***

colorh1, colorh2
Color vector (module assignments) corresponding to the genes from dat1/2. This
vector must be the same length as the Gene dimension from dat1/2.

MEs1, MEs2 If entered (default=NULL), these are the module eigengenes that will be used to
form the kME tables. Rows are samples and columns are module assignments.
Note that if datIsExpression=FALSE, these inputs are ignored.

name1, name2 The names of the two data sets being compared. These names affect the output
parameters.

cutoffMethod This variable is used to determine how modules are defined in each data set.
Must be one of four options: (1) "assigned" -> use the module assignments in
colorh (default); (2) "kME" -> any gene with kME > cutoff is in the module; (3)
"numGenes" -> the top cutoff number of genes based on kME is in the module;
and (4) "pvalue" -> any gene with correlation pvalue < cutoff is in the module
(this includes both positively and negatively-correlated genes).

290 overlapTableUsingKME

cutoff For all cutoffMethods other than "assigned", this parameter is used as the de-
scribed cutoff value.

omitGrey If TRUE the grey modules (non-module genes) for both networks are not re-
turned.

datIsExpression

If TRUE (default), dat1/2 is assumed to be expression data. If FALSE, dat1/2 is
assumed to be a table of kME values.

Value
PvaluesHypergeo

A table of p-values showing significance of module overlap based on the hyper-
geometric test. Note that these p-values are not corrected for multiple compar-
isons.

AllCommonGenes A character vector of all genes in common between the two data sets.

Genes<name1/2> A list of character vectors of all genes in each module in both data sets. All
genes in the MOD module in data set MM1 could be found using "<outputVari-
ableName>$GenesMM1$MM1_MOD"

OverlappingGenes

A list of character vectors of all genes for each between-set comparison from
PvaluesHypergeo. All genes in MOD.A from MM1 that are also in MOD.B
from MM2 could be found using "<outputVariableName>$OverlappingGenes$MM1_MOD.A_MM2_MOD.B"

Author(s)

Jeremy Miller

See Also

overlapTable

Examples

Example: first generate simulated data.

set.seed(100)
ME.A = sample(1:100,50); ME.B = sample(1:100,50)
ME.C = sample(1:100,50); ME.D = sample(1:100,50)
ME.E = sample(1:100,50); ME.F = sample(1:100,50)
ME.G = sample(1:100,50); ME.H = sample(1:100,50)
ME1 = data.frame(ME.A, ME.B, ME.C, ME.D, ME.E)
ME2 = data.frame(ME.A, ME.C, ME.D, ME.E, ME.F, ME.G, ME.H)
simDat1 = simulateDatExpr(ME1,1000,c(0.2,0.1,0.08,0.05,0.04,0.3), signed=TRUE)
simDat2 = simulateDatExpr(ME2,1000,c(0.2,0.1,0.08,0.05,0.04,0.03,0.02,0.3),

signed=TRUE)

Now run the function using assigned genes
results = overlapTableUsingKME(simDat1$datExpr, simDat2$datExpr,

labels2colors(simDat1$allLabels), labels2colors(simDat2$allLabels),
cutoffMethod="assigned")

pickHardThreshold 291

results$PvaluesHypergeo

Now run the function using a p-value cutoff, and inputting the original MEs
colnames(ME1) = standardColors(5); colnames(ME2) = standardColors(7)
results = overlapTableUsingKME(simDat1$datExpr, simDat2$datExpr,

labels2colors(simDat1$allLabels),
labels2colors(simDat2$allLabels),
ME1, ME2, cutoffMethod="pvalue", cutoff=0.05)

results$PvaluesHypergeo

Check which genes are in common between the black modules from set 1 and
the green module from set 2
results$OverlappingGenes$MM1_green_MM2_black

pickHardThreshold Analysis of scale free topology for hard-thresholding.

Description

Analysis of scale free topology for multiple hard thresholds. The aim is to help the user pick an
appropriate threshold for network construction.

Usage

pickHardThreshold(
data,
dataIsExpr,
RsquaredCut = 0.85,
cutVector = seq(0.1, 0.9, by = 0.05),
moreNetworkConcepts = FALSE,
removeFirst = FALSE, nBreaks = 10,
corFnc = "cor", corOptions = "use = 'p'")

pickHardThreshold.fromSimilarity(
similarity,
RsquaredCut = 0.85,
cutVector = seq(0.1, 0.9, by = 0.05),
moreNetworkConcepts=FALSE,
removeFirst = FALSE, nBreaks = 10)

Arguments

data expression data in a matrix or data frame. Rows correspond to samples and
columns to genes.

dataIsExpr logical: should the data be interpreted as expression (or other numeric) data, or
as a similarity matrix of network nodes?

similarity similarity matrix: a symmetric matrix with entries between -1 and 1 and unit
diagonal.

292 pickHardThreshold

RsquaredCut desired minimum scale free topology fitting index R2.
cutVector a vector of hard threshold cuts for which the scale free topology fit indices are

to be calculated.
moreNetworkConcepts

logical: should additional network concepts be calculated? If TRUE, the function
will calculate how the network density, the network heterogeneity, and the net-
work centralization depend on the power. For the definition of these additional
network concepts, see Horvath and Dong (2008). PloS Comp Biol.

removeFirst should the first bin be removed from the connectivity histogram?
nBreaks number of bins in connectivity histograms
corFnc a character string giving the correlation function to be used in adjacency calcu-

lation.
corOptions further options to the correlation function specified in corFnc.

Details

The function calculates unsigned networks by thresholding the correlation matrix using thresholds
given in cutVector. For each power the scale free topology fit index is calculated and returned
along with other information on connectivity.

Value

A list with the following components:

cutEstimate estimate of an appropriate hard-thresholding cut: the lowest cut for which the
scale free topology fit R2 exceeds RsquaredCut. If R2 is below RsquaredCut
for all cuts, NA is returned.

fitIndices a data frame containing the fit indices for scale free topology. The columns con-
tain the hard threshold, Student p-value for the correlation threshold, adjusted
R2 for the linear fit, the linear coefficient, adjusted R2 for a more complicated fit
models, mean connectivity, median connectivity and maximum connectivity. If
input moreNetworkConcepts is TRUE, 3 additional columns containing network
density, centralization, and heterogeneity.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17
Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network Analysis. PLoS
Comput Biol 4(8): e1000117

See Also

signumAdjacencyFunction

pickSoftThreshold 293

pickSoftThreshold Analysis of scale free topology for soft-thresholding

Description

Analysis of scale free topology for multiple soft thresholding powers. The aim is to help the user
pick an appropriate soft-thresholding power for network construction.

Usage

pickSoftThreshold(
data,
dataIsExpr = TRUE,
weights = NULL,
RsquaredCut = 0.85,
powerVector = c(seq(1, 10, by = 1), seq(12, 20, by = 2)),
removeFirst = FALSE, nBreaks = 10, blockSize = NULL,
corFnc = cor, corOptions = list(use = 'p'),
networkType = "unsigned",
moreNetworkConcepts = FALSE,
gcInterval = NULL,
verbose = 0, indent = 0)

pickSoftThreshold.fromSimilarity(
similarity,
RsquaredCut = 0.85,
powerVector = c(seq(1, 10, by = 1), seq(12, 20, by = 2)),
removeFirst = FALSE, nBreaks = 10, blockSize = 1000,
moreNetworkConcepts=FALSE,
verbose = 0, indent = 0)

Arguments

data expression data in a matrix or data frame. Rows correspond to samples and
columns to genes.

dataIsExpr logical: should the data be interpreted as expression (or other numeric) data, or
as a similarity matrix of network nodes?

weights optional observation weights for data to be used in correlation calculation. A
matrix of the same dimensions as datExpr, containing non-negative weights.
Only used with Pearson correlation.

similarity similarity matrix: a symmetric matrix with entries between 0 and 1 and unit di-
agonal. The only transformation applied to similarity is raising it to a power.

RsquaredCut desired minimum scale free topology fitting index R2.

powerVector a vector of soft thresholding powers for which the scale free topology fit indices
are to be calculated.

294 pickSoftThreshold

removeFirst should the first bin be removed from the connectivity histogram?

nBreaks number of bins in connectivity histograms

blockSize block size into which the calculation of connectivity should be broken up. If not
given, a suitable value will be calculated using function blockSize and printed
if verbose>0. If R runs into memory problems, decrease this value.

corFnc the correlation function to be used in adjacency calculation.

corOptions a list giving further options to the correlation function specified in corFnc.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

moreNetworkConcepts

logical: should additional network concepts be calculated? If TRUE, the function
will calculate how the network density, the network heterogeneity, and the net-
work centralization depend on the power. For the definition of these additional
network concepts, see Horvath and Dong (2008). PloS Comp Biol.

gcInterval a number specifying in interval (in terms of individual genes) in which garbage
collection will be performed. The actual interval will never be less than blockSize.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The function calculates weighted networks either by interpreting data directly as similarity, or first
transforming it to similarity of the type specified by networkType. The weighted networks are
obtained by raising the similarity to the powers given in powerVector. For each power the scale
free topology fit index is calculated and returned along with other information on connectivity.

On systems with multiple cores or processors, the function pickSoftThreshold takes advantage of
parallel processing if the function enableWGCNAThreads has been called to allow parallel process-
ing and set up the parallel calculation back-end.

Value

A list with the following components:

powerEstimate estimate of an appropriate soft-thresholding power: the lowest power for which
the scale free topology fit R2 exceeds RsquaredCut. If R2 is below RsquaredCut
for all powers, NA is returned.

fitIndices a data frame containing the fit indices for scale free topology. The columns
contain the soft-thresholding power, adjusted R2 for the linear fit, the linear co-
efficient, adjusted R2 for a more complicated fit models, mean connectivity, me-
dian connectivity and maximum connectivity. If input moreNetworkConcepts
is TRUE, 3 additional columns containing network density, centralization, and
heterogeneity.

plotClusterTreeSamples 295

Author(s)

Steve Horvath and Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network Analysis. PLoS
Comput Biol 4(8): e1000117

See Also

adjacency, softConnectivity

plotClusterTreeSamples

Annotated clustering dendrogram of microarray samples

Description

This function plots an annotated clustering dendorgram of microarray samples.

Usage

plotClusterTreeSamples(
datExpr,
y = NULL,
traitLabels = NULL,
yLabels = NULL,
main = if (is.null(y)) "Sample dendrogram" else

"Sample dendrogram and trait indicator",
setLayout = TRUE, autoColorHeight = TRUE, colorHeight = 0.3,
dendroLabels = NULL,
addGuide = FALSE, guideAll = TRUE,
guideCount = NULL, guideHang = 0.2,
cex.traitLabels = 0.8,
cex.dendroLabels = 0.9,
marAll = c(1, 5, 3, 1),
saveMar = TRUE,
abHeight = NULL, abCol = "red",
...)

296 plotClusterTreeSamples

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

y microarray sample trait. Either a vector with one entry per sample, or a matrix in
which each column corresponds to a (different) trait and each row to a sample.

traitLabels labels to be printed next to the color rows depicting sample traits. Defaults to
column names of y.

yLabels Optional labels to identify colors in the row identifying the sample classes. If
given, must be of the same dimensions as y. Each label that occurs will be
displayed once.

main title for the plot.
setLayout logical: should the plotting device be partitioned into a standard layout? If

FALSE, the user is responsible for partitioning. The function expects two regions
of the same width, the first one immediately above the second one.

autoColorHeight

logical: should the height of the color area below the dendrogram be automati-
cally adjusted for the number of traits? Only effective if setLayout is TRUE.

colorHeight Specifies the height of the color area under dendrogram as a fraction of the
height of the dendrogram area. Only effective when autoColorHeight above is
FALSE.

dendroLabels dendrogram labels. Set to FALSE to disable dendrogram labels altogether; set to
NULL to use row labels of datExpr.

addGuide logical: should vertical "guide lines" be added to the dendrogram plot? The
lines make it easier to identify color codes with individual samples.

guideAll logical: add a guide line for every sample? Only effective for addGuide set
TRUE.

guideCount number of guide lines to be plotted. Only effective when addGuide is TRUE and
guideAll is FALSE.

guideHang fraction of the dendrogram height to leave between the top end of the guide line
and the dendrogram merge height. If the guide lines overlap with dendrogram
labels, increase guideHang to leave more space for the labels.

cex.traitLabels

character expansion factor for trait labels.
cex.dendroLabels

character expansion factor for dendrogram (sample) labels.
marAll a 4-element vector giving the bottom, left, top and right margins around the

combined plot. Note that this is not the same as setting the margins via a call
to par, because the bottom margin of the dendrogram and the top margin of the
color underneath are always zero.

saveMar logical: save margins setting before starting the plot and restore on exit?
abHeight optional specification of the height for a horizontal line in the dendrogram, see

abline.
abCol color for plotting the horizontal line.
... other graphical parameters to plot.hclust.

plotColorUnderTree 297

Details

The function generates an average linkage hierarchical clustering dendrogram (see hclust) of sam-
ples from the given expression data, using Eclidean distance of samples. The dendrogram is plotted
together with color annotation for the samples.

The trait y must be numeric. If y is integer, the colors will correspond to values. If y is continouos,
it will be dichotomized to two classes, below and above median.

Value

None.

Author(s)

Steve Horvath and Peter Langfelder

See Also

dist, hclust, plotDendroAndColors

plotColorUnderTree Plot color rows in a given order, for example under a dendrogram

Description

Plot color rows encoding information about objects in a given order, for example the order of a
clustering dendrogram, usually below the dendrogram or a barplot.

Usage

plotOrderedColors(
order,
colors,
main = "",
rowLabels = NULL,
rowWidths = NULL,
rowText = NULL,
rowTextAlignment = c("left", "center", "right"),
rowTextIgnore = NULL,
textPositions = NULL,
addTextGuide = TRUE,
cex.rowLabels = 1,
col.rowLabels = 1,
font.rowLabels = 1,
cex.rowText = 0.8,
startAt = 0,
align = c("center", "edge"),
separatorLine.col = "black",

298 plotColorUnderTree

...)

plotColorUnderTree(
dendro,
colors,
rowLabels = NULL,
rowWidths = NULL,
rowText = NULL,
rowTextAlignment = c("left", "center", "right"),
rowTextIgnore = NULL,
textPositions = NULL,
addTextGuide = TRUE,
cex.rowLabels = 1,
col.rowLabels = 1,
font.rowLabels = 1,
cex.rowText = 0.8,
separatorLine.col = "black",
...)

Arguments

order A vector giving the order of the objects. Must have the same length as colors if
colors is a vector, or as the number of rows if colors is a matrix or data frame.

dendro A hierarchical clustering dendrogram such one returned by hclust.

colors Coloring of objects on the dendrogram. Either a vector (one color per object)
or a matrix (can also be an array or a data frame) with each column giving one
color per object. Each column will be plotted as a horizontal row of colors under
the dendrogram.

main Optional main title.

rowLabels Labels for the colorings given in colors. The labels will be printed to the left of
the color rows in the plot. If the argument is given, it must be a vector of length
equal to the number of columns in colors. If not given, names(colors) will
be used if available. If not, sequential numbers starting from 1 will be used.

rowWidths Optional specification of relative row widths for the color and text (if given)
rows. Need not sum to 1.

rowText Optional labels to identify colors in the color rows. If given, must be of the same
dimensions as colors. Each label that occurs will be displayed once.

rowTextAlignment

Character string specifying whether the labels should be left-justified to the start
of the largest block of each label, centered in the middle, or right-justified to the
end of the largest block.

rowTextIgnore Optional specifications of labels that should be ignored when displaying them
using rowText above.

textPositions optional numeric vector of the same length as the number of columns in rowText
giving the color rows under which the text rows should appear.

plotColorUnderTree 299

addTextGuide logical: should guide lines be added for the text rows (if given)?
cex.rowLabels Font size scale factor for the row labels. See par.
col.rowLabels Font color for the row labels.
font.rowLabels Font for the row labels. 1 means regular, 2 bold, 3 italicized.
cex.rowText character expansion factor for text rows (if given).
startAt A numeric value indicating where in relationship to the left edge of the plot the

center of the first rectangle should be. Useful values are 0 if ploting color under
a dendrogram, and 0.5 if ploting colors under a barplot.

align Controls the alignment of the color rectangles. "center" means aligning centers
of the rectangles on equally spaced values; "edge" means aligning edges of the
first and last rectangles on the edges of the plot region.

separatorLine.col

Color of the line separating rows of color rectangles. If NA, no lines will be
drawn.

... Other parameters to be passed on to the plotting method (such as main for the
main title etc).

Details

It is often useful to plot dendrograms or other plots (e.g., barplots) of objects together with additional
information about the objects, for example module assignment (by color) that was obtained by
cutting a hierarchical dendrogram or external color-coded measures such as gene significance. This
function provides a way to do so. The calling code should section the screen into two (or more)
parts, plot the dendrogram (via plot(hclust)) or other information in the upper section and use
this function to plot color annotation in the order corresponding to the dendrogram in the lower
section.

Value

A list with the following components

colorRectangles

A list with one component per color row. Each component is a list with 4 ele-
ments xl, yb, xr, yt giving the left, bottom, right and top coordinates of the
rectangles in that row.

Note

This function replaces plotHclustColors in package moduleColor.

Author(s)

Steve Horvath <SHorvath@mednet.ucla.edu> and Peter Langfelder <Peter.Langfelder@gmail.com>

See Also

cutreeDynamic for module detection in a dendrogram;

plotDendroAndColors for automated plotting of dendrograms and colors in one step.

300 plotCor

plotCor Red and Green Color Image of Correlation Matrix

Description

This function produces a red and green color image of a correlation matrix using an RGB color
specification. Increasingly positive correlations are represented with reds of increasing intensity,
and increasingly negative correlations are represented with greens of increasing intensity.

Usage

plotCor(x, new=FALSE, nrgcols=50, labels=FALSE, labcols=1, title="", ...)

Arguments

x a matrix of numerical values.

new If new=F, x must already be a correlation matrix. If new=T, the correlation matrix
for the columns of x is computed and displayed in the image.

nrgcols the number of colors (>= 1) to be used in the red and green palette.

labels vector of character strings to be placed at the tickpoints, labels for the columns
of x.

labcols colors to be used for the labels of the columns of x. labcols can have either
length 1, in which case all the labels are displayed using the same color, or the
same length as labels, in which case a color is specified for the label of each
column of x.

title character string, overall title for the plot.

... graphical parameters may also be supplied as arguments to the function (see
par). For comparison purposes, it is good to set zlim=c(-1,1).

Author(s)

Sandrine Dudoit, <sandrine@stat.berkeley.edu>

See Also

plotMat,rgcolors.func, cor, image, rgb.

plotDendroAndColors 301

plotDendroAndColors Dendrogram plot with color annotation of objects

Description

This function plots a hierarchical clustering dendrogram and color annotation(s) of objects in the
dendrogram underneath.

Usage

plotDendroAndColors(
dendro,
colors,
groupLabels = NULL,
rowText = NULL,
rowTextAlignment = c("left", "center", "right"),
rowTextIgnore = NULL,
textPositions = NULL,
setLayout = TRUE,
autoColorHeight = TRUE,
colorHeight = 0.2,
colorHeightBase = 0.2,
colorHeightMax = 0.6,
rowWidths = NULL,
dendroLabels = NULL,
addGuide = FALSE, guideAll = FALSE,
guideCount = 50, guideHang = 0.2,
addTextGuide = FALSE,
cex.colorLabels = 0.8, cex.dendroLabels = 0.9,
cex.rowText = 0.8,
marAll = c(1, 5, 3, 1), saveMar = TRUE,
abHeight = NULL, abCol = "red", ...)

Arguments

dendro a hierarchical clustering dendrogram such as one produced by hclust.

colors Coloring of objects on the dendrogram. Either a vector (one color per object)
or a matrix (can also be an array or a data frame) with each column giving one
color per object. Each column will be plotted as a horizontal row of colors under
the dendrogram.

groupLabels Labels for the colorings given in colors. The labels will be printed to the left of
the color rows in the plot. If the argument is given, it must be a vector of length
equal to the number of columns in colors. If not given, names(colors) will
be used if available. If not, sequential numbers starting from 1 will be used.

rowText Optional labels to identify colors in the color rows. If given, must be either
the same dimensions as colors or must have the same number of rows and

302 plotDendroAndColors

textPositions must be used to specify which columns of colors each column
of rowText corresponds to. Each label that occurs will be displayed once, under
the largest continuous block of the corresponding colors.

rowTextAlignment

Character string specifying whether the labels should be left-justified to the start
of the largest block of each label, centered in the middle, or right-justified to the
end of the largest block.

rowTextIgnore Optional specifications of labels that should be ignored when displaying them
using rowText above.

textPositions optional numeric vector of the same length as the number of columns in rowText
giving the color rows under which the text rows should appear.

setLayout logical: should the plotting device be partitioned into a standard layout? If
FALSE, the user is responsible for partitioning. The function expects two regions
of the same width, the first one immediately above the second one.

autoColorHeight

logical: should the height of the color area below the dendrogram be automati-
cally adjusted for the number of traits? Only effective if setLayout is TRUE.

colorHeight specifies the height of the color area under dendrogram as a fraction of the height
of the dendrogram area. Only effective when autoColorHeight above is FALSE.

colorHeightBase

when autoColorHeight is TRUE, this specifies the minimum height of the color
area (the height when there is one color row).

colorHeightMax when autoColorHeight is TRUE, this specifies the maximum height of the color
area (the height when there are many color rows).

rowWidths optional specification of relative row widths for the color and text (if given)
rows. Need not sum to 1.

dendroLabels dendrogram labels. Set to FALSE to disable dendrogram labels altogether; set to
NULL to use row labels of datExpr.

addGuide logical: should vertical "guide lines" be added to the dendrogram plot? The
lines make it easier to identify color codes with individual samples.

guideAll logical: add a guide line for every sample? Only effective for addGuide set
TRUE.

guideCount number of guide lines to be plotted. Only effective when addGuide is TRUE and
guideAll is FALSE.

guideHang fraction of the dendrogram height to leave between the top end of the guide line
and the dendrogram merge height. If the guide lines overlap with dendrogram
labels, increase guideHang to leave more space for the labels.

addTextGuide logical: should guide lines be added for the text rows (if given)?
cex.colorLabels

character expansion factor for trait labels.
cex.dendroLabels

character expansion factor for dendrogram (sample) labels.

cex.rowText character expansion factor for text rows (if given).

plotEigengeneNetworks 303

marAll a vector of length 4 giving the bottom, left, top and right margins of the com-
bined plot. There is no margin between the dendrogram and the color plot un-
derneath.

saveMar logical: save margins setting before starting the plot and restore on exit?

abHeight optional specification of the height for a horizontal line in the dendrogram, see
abline.

abCol color for plotting the horizontal line.

... other graphical parameters to plot.hclust.

Details

The function slits the plotting device into two regions, plots the given dendrogram in the upper
region, then plots color rows in the region below the dendrogram.

Value

None.

Author(s)

Peter Langfelder

See Also

plotColorUnderTree

plotEigengeneNetworks Eigengene network plot

Description

This function plots dendrogram and eigengene representations of (consensus) eigengenes networks.
In the case of conensus eigengene networks the function also plots pairwise preservation measures
between consensus networks in different sets.

Usage

plotEigengeneNetworks(
multiME,
setLabels,
letterSubPlots = FALSE, Letters = NULL,
excludeGrey = TRUE, greyLabel = "grey",
plotDendrograms = TRUE, plotHeatmaps = TRUE,
setMargins = TRUE, marDendro = NULL, marHeatmap = NULL,
colorLabels = TRUE, signed = TRUE,
heatmapColors = NULL,
plotAdjacency = TRUE,

304 plotEigengeneNetworks

printAdjacency = FALSE, cex.adjacency = 0.9,
coloredBarplot = TRUE, barplotMeans = TRUE, barplotErrors = FALSE,
plotPreservation = "standard",
zlimPreservation = c(0, 1),
printPreservation = FALSE, cex.preservation = 0.9,
...)

Arguments

multiME either a single data frame containing the module eigengenes, or module eigen-
genes in the multi-set format (see checkSets). The multi-set format is a vector
of lists, one per set. Each set must contain a component data whose rows cor-
respond to samples and columns to eigengenes.

setLabels A vector of character strings that label sets in multiME.

letterSubPlots logical: should subplots be lettered?

Letters optional specification of a sequence of letters for lettering. Defaults to "ABCD"...

excludeGrey logical: should the grey module eigengene be excluded from the plots?

greyLabel label for the grey module. Usually either "grey" or the number 0.
plotDendrograms

logical: should eigengene dendrograms be plotted?

plotHeatmaps logical: should eigengene network heatmaps be plotted?

setMargins logical: should margins be set? See par.

marDendro a vector of length 4 giving the margin setting for dendrogram plots. See par.
If setMargins is TRUE and marDendro is not given, the function will provide
reasonable default values.

marHeatmap a vector of length 4 giving the margin setting for heatmap plots. See par. If
setMargins is TRUE and marDendro is not given, the function will provide rea-
sonable default values.

colorLabels logical: should module eigengene names be interpreted as color names and the
colors used to label heatmap plots and barplots?

signed logical: should eigengene networks be constructed as signed?

heatmapColors color palette for heatmaps. Defaults to heat.colors when signed is FALSE,
and to redWhiteGreen when signed is TRUE.

plotAdjacency logical: should module eigengene heatmaps plot adjacency (ranging from 0 to
1), or correlation (ranging from -1 to 1)?

printAdjacency logical: should the numerical values be printed into the adjacency or correlation
heatmap?

cex.adjacency character expansion factor for printing of numerical values into the adjacency or
correlation heatmap

coloredBarplot logical: should the barplot of eigengene adjacency preservation distinguish in-
dividual contributions by color? This is possible only if colorLabels is TRUE
and module eigengene names encode valid colors.

plotEigengeneNetworks 305

barplotMeans logical: plot mean preservation in the barplot? This option effectively rescales
the preservation by the number of eigengenes in the network. If means are
plotted, the barplot is not colored.

barplotErrors logical: should standard errors of the mean preservation be plotted?

plotPreservation

a character string specifying which type of preservation measure to plot. Al-
lowed values are (unique abbreviations of) "standard", "hyperbolic", "both".

zlimPreservation

a vector of length 2 giving the value limits for the preservation heatmaps.

printPreservation

logical: should preservation values be printed within the heatmap?

cex.preservation

character expansion factor for preservation display.

... other graphical arguments to function labeledHeatmap.

Details

Consensus eigengene networks consist of a fixed set of eigengenes "expressed" in several different
sets. Network connection strengths are given by eigengene correlations. This function aims to
visualize the networks as well as their similarities and differences across sets.

The function partitions the screen appropriately and plots eigengene dendrograms in the top row,
then a square matrix of plots: heatmap plots of eigengene networks in each set on the diagonal,
heatmap plots of pairwise preservation networks below the diagonal, and barplots of aggregate
network preservation of individual eigengenes above the diagonal. A preservation plot or barplot in
the row i and column j of the square matrix represents the preservation between sets i and j.

Individual eigengenes are labeled by their name in the dendrograms; in the heatmaps and barplots
they can optionally be labeled by color squares. For compatibility with other functions, the color la-
bels are encoded in the eigengene names by prefixing the color with two letters, such as "MEturquoise".

Two types of network preservation can be plotted: the "standard" is simply the difference between
adjacencies in the two compared sets. The "hyperbolic" difference de-emphasizes the preserva-
tion of low adjacencies. When "both" is specified, standard preservation is plotted in the lower
triangle and hyperbolic in the upper triangle of each preservation heatmap.

If the eigengenes are labeled by color, the bars in the barplot can be split into segments representing
the contribution of each eigengene and labeled by the contribution. For example, a yellow segment
in a bar labeled by a turquoise square represents the preservation of the adjacency between the
yellow and turquoise eigengenes in the two networks compared by the barplot.

For large numbers of eigengenes and/or sets, it may be difficult to get a meaningful plot fit a standard
computer screen. In such cases we recommend using a device such as postscript or pdf where
the user can specify large dimensions; such plots can be conveniently viewed in standard pdf or
postscript viewers.

Value

None.

306 plotMat

Author(s)

Peter Langfelder

References

For theory and applications of consensus eigengene networks, see

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

labeledHeatmap, labeledBarplot for annotated heatmaps and barplots;

hclust for hierarchical clustering and dendrogram plots

plotMat Red and Green Color Image of Data Matrix

Description

This function produces a red and green color image of a data matrix using an RGB color speci-
fication. Larger entries are represented with reds of increasing intensity, and smaller entries are
represented with greens of increasing intensity.

Usage

plotMat(x, nrgcols=50, rlabels=FALSE, clabels=FALSE, rcols=1, ccols=1, title="",...)

Arguments

x a matrix of numbers.
nrgcols the number of colors (>= 1) to be used in the red and green palette.
rlabels vector of character strings to be placed at the row tickpoints, labels for the rows

of x.
clabels vector of character strings to be placed at the column tickpoints, labels for the

columns of x.
rcols colors to be used for the labels of the rows of x. rcols can have either length

1, in which case all the labels are displayed using the same color, or the same
length as rlabels, in which case a color is specified for the label of each row of
x.

ccols colors to be used for the labels of the columns of x. ccols can have either length
1, in which case all the labels are displayed using the same color, or the same
length as clabels, in which case a color is specified for the label of each column
of x.

title character string, overall title for the plot.
... graphical parameters may also be supplied as arguments to the function (see

par). E.g. zlim=c(-3,3)

plotMEpairs 307

Author(s)

Sandrine Dudoit, <sandrine@stat.berkeley.edu>

See Also

plotCor, rgcolors.func, cor, image, rgb.

plotMEpairs Pairwise scatterplots of eigengenes

Description

The function produces a matrix of plots containing pairwise scatterplots of given eigengenes, the
distribution of their values and their pairwise correlations.

Usage

plotMEpairs(
datME,
y = NULL,
main = "Relationship between module eigengenes",
clusterMEs = TRUE,
...)

Arguments

datME a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

y optional microarray sample trait vector. Will be treated as an additional eigen-
gene.

main main title for the plot.

clusterMEs logical: should the module eigengenes be ordered by their dendrogram?

... additional graphical parameters to the function pairs

Details

The function produces an NxN matrix of plots, where N is the number of eigengenes. In the upper
traingle it plots pairwise scatterplots of module eigengenes (plus the trait y, if given). On the
diagonal it plots histograms of sample values for each eigengene. Below the diagonal, it displays
the pairwise correlations of the eigengenes.

Value

None.

308 plotModuleSignificance

Author(s)

Steve Horvath

See Also

pairs

plotModuleSignificance

Barplot of module significance

Description

Plot a barplot of gene significance.

Usage

plotModuleSignificance(
geneSignificance,
colors,
boxplot = FALSE,
main = "Gene significance across modules,",
ylab = "Gene Significance", ...)

Arguments

geneSignificance

a numeric vector giving gene significances.

colors a character vector specifying module assignment for the genes whose signifi-
cance is given in geneSignificance . The modules should be labeled by col-
ors.

boxplot logical: should a boxplot be produced instead of a barplot?

main main title for the plot.

ylab y axis label for the plot.

... other graphical parameters to plot.

Details

Given individual gene significances and their module assigment, the function calculates the module
significance for each module as the average gene significance of the genes within the module. The
result is plotted in a barplot or boxplot form. Each bar or box is labeled by the corresponding
module color.

Value

None.

plotMultiHist 309

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

See Also

barplot, boxplot

plotMultiHist Plot multiple histograms in a single plot

Description

This function plots density or cumulative distribution function of multiple histograms in a single
plot, using lines.

Usage

plotMultiHist(
data,
nBreaks = 100,
col = 1:length(data),
scaleBy = c("area", "max", "none"),
cumulative = FALSE,
...)

Arguments

data A list in which each component corresponds to a separate histogram and is a
vector of values to be shown in each histogram.

nBreaks Number of breaks in the combined plot.

col Color of the lines. Should be a vector of the same length as data.

scaleBy Method to make the different histograms comparable. The counts are scaled
such that either the total area or the maximum are the same for all histograms,
or the histograms are shown without scaling.

cumulative Logical: should the cumulative distribution be shown instead of the density?

... Other graphical arguments.

310 plotNetworkHeatmap

Value

Invisibly,

x A list with one component per histogram (component of data), giving the bin
midpoints

y A list with one component per histogram (component of data), giving the scaled
bin counts

Note

This function is still experimental and behavior may change in the future.

Author(s)

Peter Langfelder

See Also

hist

Examples

data = list(rnorm(1000), rnorm(10000) + 2);
plotMultiHist(data, xlab = "value", ylab = "scaled density")

plotNetworkHeatmap Network heatmap plot

Description

Network heatmap plot.

Usage

plotNetworkHeatmap(
datExpr,
plotGenes,
weights = NULL,
useTOM = TRUE,
power = 6,
networkType = "unsigned",
main = "Heatmap of the network")

plotNetworkHeatmap 311

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples
and columns to genes. Missing values are allowed and will be ignored.

plotGenes a character vector giving the names of genes to be included in the plot. The
names will be matched against names(datExpr).

weights optional observation weights for datExpr to be used in correlation calculation.
A matrix of the same dimensions as datExpr, containing non-negative weights.
Only used with Pearson correlation.

useTOM logical: should TOM be plotted (TRUE), or correlation-based adjacency (FALSE)?

power soft-thresholding power for network construction.

networkType a character string giving the newtork type. Recognized values are (unique ab-
breviations of) "unsigned", "signed", and "signed hybrid".

main main title for the plot.

Details

The function constructs a network from the given expression data (selected by plotGenes) using the
soft-thresholding procedure, optionally calculates Topological Overlap (TOM) and plots a heatmap
of the network.

Note that all network calculations are done in one block and may fail due to memory allocation
issues for large numbers of genes.

Value

None.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency, TOMsimilarity

312 populationMeansInAdmixture

populationMeansInAdmixture

Estimate the population-specific mean values in an admixed popula-
tion.

Description

Uses the expression values from an admixed population and estimates of the proportions of sub-
populations to estimate the population specific mean values. For example, this function can be used
to estimate the cell type specific mean gene expression values based on expression values from a
mixture of cells. The method is described in Shen-Orr et al (2010) where it was used to estimate
cell type specific gene expression levels based on a mixture sample.

Usage

populationMeansInAdmixture(
datProportions, datE.Admixture,
scaleProportionsTo1 = TRUE,
scaleProportionsInCelltype = TRUE,
setMissingProportionsToZero = FALSE)

Arguments

datProportions a matrix of non-negative numbers (ideally proportions) where the rows corre-
spond to the samples (rows of datE.Admixture) and the columns correspond to
the sub-populations of the mixture. The function calculates a mean expression
value for each column of datProportions. Negative entries in datProportions
lead to an error message. But the rows of datProportions do not have to sum
to 1, see the argument scaleProportionsTo1.

datE.Admixture a matrix of numbers. The rows correspond to samples (mixtures of populations).
The columns contain the variables (e.g. genes) for which the means should be
estimated.

scaleProportionsTo1

logical. If set to TRUE (default) then the proportions in each row of datProportions
are scaled so that they sum to 1, i.e. datProportions[i,]=datProportions[i,]/max(datProportions[i,]).
In general, we recommend to set it to TRUE.

scaleProportionsInCelltype

logical. If set to TRUE (default) then the proportions in each cell types are
recaled and make the mean to 0.

setMissingProportionsToZero

logical. Default is FALSE. If set to TRUE then it sets missing values in datProportions
to zero.

Details

The function outputs a matrix of coefficients resulting from fitting a regression model. If the pro-
portions sum to 1, then i-th row of the output matrix reports the coefficients of the following model

populationMeansInAdmixture 313

lm(datE.Admixture[,i]~.-1,data=datProportions). Aside, the minus 1 in the formula indi-
cates that no intercept term will be fit. Under certain assumptions, the coefficients can be interpreted
as the mean expression values in the sub-populations (Shen-Orr 2010).

Value

a numeric matrix whose rows correspond to the columns of datE.Admixture (e.g. to genes) and
whose columns correspond to the columns of datProportions (e.g. sub populations or cell types).

Note

This can be considered a wrapper of the lm function.

Author(s)

Steve Horvath, Chaochao Cai

References

Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM,
Davis MM, Butte AJ (2010) Cell type-specific gene expression differences in complex tissues.
Nature Methods, vol 7 no.4

Examples

set.seed(1)
this is the number of complex (mixed) tissue samples, e.g. arrays
m=10
true count data (e.g. pure cells in the mixed sample)
datTrueCounts=as.matrix(data.frame(TrueCount1=rpois(m,lambda=16),
TrueCount2=rpois(m,lambda=8),TrueCount3=rpois(m,lambda=4),
TrueCount4=rpois(m,lambda=2)))
no.pure=dim(datTrueCounts)[[2]]

now we transform the counts into proportions
divideBySum=function(x) t(x)/sum(x)
datProportions= t(apply(datTrueCounts,1,divideBySum))
dimnames(datProportions)[[2]]=paste("TrueProp",1:dim(datTrueCounts)[[2]],sep=".")

number of genes that are highly expressed in each pure population
no.genesPerPure=rep(5, no.pure)
no.genes= sum(no.genesPerPure)
GeneIndicator=rep(1:no.pure, no.genesPerPure)
true mean values of the genes in the pure populations
in the end we hope to estimate them from the mixed samples
datTrueMeans0=matrix(rnorm(no.genes*no.pure,sd=.3), nrow= no.genes,ncol=no.pure)
for (i in 1:no.pure){
datTrueMeans0[GeneIndicator==i,i]= datTrueMeans0[GeneIndicator==i,i]+1
}
dimnames(datTrueMeans0)[[1]]=paste("Gene",1:dim(datTrueMeans0)[[1]],sep=".")
dimnames(datTrueMeans0)[[2]]=paste("MeanPureCellType",1:dim(datTrueMeans0)[[2]],

sep=".")

314 pquantile

plot.mat(datTrueMeans0)
simulate the (expression) values of the admixed population samples

noise=matrix(rnorm(m*no.genes,sd=.1),nrow=m,ncol= no.genes)
datE.Admixture= as.matrix(datProportions) %*% t(datTrueMeans0) + noise
dimnames(datE.Admixture)[[1]]=paste("MixedTissue",1:m,sep=".")

datPredictedMeans=populationMeansInAdmixture(datProportions,datE.Admixture)

par(mfrow=c(2,2))
for (i in 1:4){
verboseScatterplot(datPredictedMeans[,i],datTrueMeans0[,i],
xlab="predicted mean",ylab="true mean",main="all populations")
abline(0,1)
}

#assume we only study 2 populations (ie we ignore the others)
selectPopulations=c(1,2)
datPredictedMeansTooFew=populationMeansInAdmixture(datProportions[,selectPopulations],

datE.Admixture)

par(mfrow=c(2,2))
for (i in 1:length(selectPopulations)){
verboseScatterplot(datPredictedMeansTooFew[,i],datTrueMeans0[,i],
xlab="predicted mean",ylab="true mean",main="too few populations")
abline(0,1)
}

#assume we erroneously add a population
datProportionsTooMany=data.frame(datProportions,WrongProp=sample(datProportions[,1]))
datPredictedMeansTooMany=populationMeansInAdmixture(datProportionsTooMany,

datE.Admixture)

par(mfrow=c(2,2))
for (i in 1:4){

verboseScatterplot(datPredictedMeansTooMany[,i],datTrueMeans0[,i],
xlab="predicted mean",ylab="true mean",main="too many populations")
abline(0,1)

}

pquantile Parallel quantile, median, mean

Description

Calculation of “parallel” quantiles, minima, maxima, medians, and means, across given arguments
or across lists

pquantile 315

Usage

pquantile(prob, ...)
pquantile.fromList(dataList, prob)
pmedian(...)
pmean(..., weights = NULL)
pmean.fromList(dataList, weights = NULL)
pminWhich.fromList(dataList)

Arguments

prob A single probability at which to calculate the quantile. See quantile.

dataList A list of numeric vectors or arrays, all of the same length and dimensions, over
which to calculate “parallel” quantiles.

weights Optional vector of the same length as dataList, giving the weights to be used
in the weighted mean. If not given, unit weights will be used.

... Numeric arguments. All arguments must have the same dimensions. See details.

Details

Given numeric arguments, say x,y,z, of equal dimensions (and length), the pquantile calculates
and returns the quantile of the first components of x,y,z, then the second components, etc. Similarly,
pmedian and pmean calculate the median and mean, respectively. The funtion pquantile.fromList
is identical to pquantile except that the argument dataList replaces the ... in holding the numeric
vectors over which to calculate the quantiles.

Value
pquantile, pquantile.fromList

A vector or array containing quantiles.

pmean, pmean.fromList
A vector or array containing means.

pmedian A vector or array containing medians.

pminWhich.fromList

A list with two components: min gives the minima, which gives the indices of
the elements that are the minima.

Dimensions are copied from dimensions of the input arguments. If any of the input variables have
dimnames, the first non-NULL dimnames are copied into the output.

Author(s)

Peter Langfelder and Steve Horvath

See Also

quantile, median, mean for the underlying statistics.

316 prepComma

Examples

Generate 2 simple matrices
a = matrix(c(1:12), 3, 4);
b = a+ 1;
c = a + 2;

Set the colnames on matrix a

colnames(a) = spaste("col_", c(1:4));

Example use

pquantile(prob = 0.5, a, b, c)

pmean(a,b,c)
pmedian(a,b,c)

prepComma Prepend a comma to a non-empty string

Description

Utility function that prepends a comma before the input string if the string is non-empty.

Usage

prepComma(s)

Arguments

s Character string.

Value

If s is non-empty, returns paste(",", s), otherwise returns s.

Author(s)

Peter Langfelder

Examples

prepComma("abc");
prepComma("");

prependZeros 317

prependZeros Pad numbers with leading zeros to specified total width

Description

These functions pad the specified numbers with zeros to a specified total width.

Usage

prependZeros(x, width = max(nchar(x)))
prependZeros.int(x, width = max(nchar(as.integer(x))))

Arguments

x Vector of numbers to be padded. For prependZeros, the vector may be real
(non-integer) or even character (and not necessarily representing numbers). For
prependZeros, the vector must be numeric and non-integers get rounded down
to the nearest integer.

width Width to pad the numbers to.

Details

The prependZeros.int version works better with numbers such as 100000 which may get con-
verted to character as 1e5 and hence be incorrectly padded in the prependZeros function. On the
flip side, prependZeros works also for non-integer inputs.

Value

Character vector with the 0-padded numbers.

Author(s)

Peter Langfelder

Examples

prependZeros(1:10)
prependZeros(1:10, 4)
more exotic examples
prependZeros(c(1, 100000), width = 6) ### Produces incorrect output
prependZeros.int(c(1, 100000)) ### Correct output
prependZeros(c("a", "b", "aa")) ### pads the shorter strings using zeros.

318 preservationNetworkConnectivity

preservationNetworkConnectivity

Network preservation calculations

Description

This function calculates several measures of gene network preservation. Given gene expression data
in several individual data sets, it calculates the individual adjacency matrices, forms the preserva-
tion network and finally forms several summary measures of adjacency preservation for each node
(gene) in the network.

Usage

preservationNetworkConnectivity(
multiExpr,
useSets = NULL, useGenes = NULL,
corFnc = "cor", corOptions = "use='p'",
networkType = "unsigned",
power = 6,
sampleLinks = NULL, nLinks = 5000,
blockSize = 1000,
setSeed = 12345,
weightPower = 2,
verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

useSets optional specification of sets to be used for the preservation calculation. Defaults
to using all sets.

useGenes optional specification of genes to be used for the preservation calculation. De-
faults to all genes.

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

networkType a character string encoding network type. Recognized values are (unique abbre-
viations of) "unsigned", "signed", and "signed hybrid".

power soft thresholding power for network construction. Should be a number greater
than 1.

sampleLinks logical: should network connections be sampled (TRUE) or should all connec-
tions be used systematically (FALSE)?

preservationNetworkConnectivity 319

nLinks number of links to be sampled. Should be set such that nLinks * nNeighbors
be several times larger than the number of genes.

blockSize correlation calculations will be split into square blocks of this size, to prevent
running out of memory for large gene sets.

setSeed seed to be used for sampling, for repeatability. If a seed already exists, it is saved
before the sampling starts and restored upon exit.

weightPower power with which higher adjacencies will be weighted in weighted means

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The preservation network is formed from adjacencies of compared sets. For ’complete’ preserva-
tions, all given sets are compared at once; for ’pairwise’ preservations, the sets are compared in
pairs. Unweighted preservations are simple mean preservations for each node; their weighted coun-
terparts are weighted averages in which a preservation of adjacencies A

(1)
ij and A

(2)
ij of nodes i, j

between sets 1 and 2 is weighted by [(A
(1)
ij +A

(2)
ij)/2]weightPower. The hyperbolic preservation

is based on tanh[(max − min)/(max + min)2], where max and min are the componentwise
maximum and minimum of the compared adjacencies, respectively.

Value

A list with the following components:

pairwise a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise preservation of the adjacencies connecting the gene to
all other genes.

complete a vector with one entry for each input gene containing the complete mean preser-
vation of the adjacencies connecting the gene to all other genes.

pairwiseWeighted

a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise weighted preservation of the adjacencies connecting
the gene to all other genes.

completeWeighted

a vector with one entry for each input gene containing the complete weighted
mean preservation of the adjacencies connecting the gene to all other genes.

pairwiseHyperbolic

a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise hyperbolic preservation of the adjacencies connecting
the gene to all other genes.

completeHyperbolic

a vector with one entry for each input gene containing the complete mean hy-
perbolic preservation of the adjacencies connecting the gene to all other genes.

320 projectiveKMeans

pairwiseWeightedHyperbolic

a matrix with rows corresponding to genes and columns to unique pairs of given
sets, giving the pairwise weighted hyperbolic preservation of the adjacencies
connecting the gene to all other genes.

completeWeightedHyperbolic

a vector with one entry for each input gene containing the complete weighted
hyperbolic mean preservation of the adjacencies connecting the gene to all other
genes.

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

adjacency for calculation of adjacency;

projectiveKMeans Projective K-means (pre-)clustering of expression data

Description

Implementation of a variant of K-means clustering for expression data.

Usage

projectiveKMeans(
datExpr,
preferredSize = 5000,
nCenters = as.integer(min(ncol(datExpr)/20, preferredSize^2/ncol(datExpr))),
sizePenaltyPower = 4,
networkType = "unsigned",
randomSeed = 54321,
checkData = TRUE,
imputeMissing = TRUE,
maxIterations = 1000,
verbose = 0, indent = 0)

projectiveKMeans 321

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed, but not too many.

preferredSize preferred maximum size of clusters.

nCenters number of initial clusters. Empirical evidence suggests that more centers will
give a better preclustering; the default is an attempt to arrive at a reasonable
number.

sizePenaltyPower

parameter specifying how severe is the penalty for clusters that exceed preferredSize.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit.

checkData logical: should data be checked for genes with zero variance and genes and
samples with excessive numbers of missing samples? Bad samples are ignored;
returned cluster assignment for bad genes will be NA.

imputeMissing logical: should missing values in datExpr be imputed before the calculations
start? The early imputation makes the code run faster but may produce slightly
different results if re-running older calculations.

maxIterations maximum iterations to be attempted.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The principal aim of this function within WGCNA is to pre-cluster a large number of genes into
smaller blocks that can be handled using standard WGCNA techniques.

This function implements a variant of K-means clustering that is suitable for co-expression anal-
ysis. Cluster centers are defined by the first principal component, and distances by correlation
(more precisely, 1-correlation). The distance between a gene and a cluster is multiplied by a fac-
tor of max(clusterSize/preferredSize, 1)sizePenaltyPower, thus penalizing clusters whose size
exceeds preferredSize. The function starts with randomly generated cluster assignment (hence
the need to set the random seed for repeatability) and executes interations of calculating new cen-
ters and reassigning genes to nearest center until the clustering becomes stable. Before returning,
nearby clusters are iteratively combined if their combined size is below preferredSize.

The standard principal component calculation via the function svd fails from time to time (likely a
convergence problem of the underlying lapack functions). Such errors are trapped and the principal
component is approximated by a weighted average of expression profiles in the cluster. If verbose
is set above 2, an informational message is printed whenever this approximation is used.

Value

A list with the following components:

322 proportionsInAdmixture

clusters A numerical vector with one component per input gene, giving the cluster num-
ber in which the gene is assigned.

centers Cluster centers, that is their first principal components.

Author(s)

Peter Langfelder

See Also

sizeRestrictedClusterMerge which implements the last step of merging smaller clusters.

proportionsInAdmixture

Estimate the proportion of pure populations in an admixed population
based on marker expression values.

Description

Assume that datE.Admixture provides the expression values from a mixture of cell types (admixed
population) and you want to estimate the proportion of each pure cell type in the mixed samples
(rows of datE.Admixture). The function allows you to do this as long as you provide a data frame
MarkerMeansPure that reports the mean expression values of markers in each of the pure cell types.

Usage

proportionsInAdmixture(
MarkerMeansPure,
datE.Admixture,
calculateConditionNumber = FALSE,
coefToProportion = TRUE)

Arguments

MarkerMeansPure

is a data frame whose first column reports the name of the marker and the re-
maining columns report the mean values of the markers in each of the pure popu-
lations. The function will estimate the proportion of pure cells which correspond
to columns 2 through of dim(MarkerMeansPure)[[2]] of MarkerMeansPure.
Rows that contain missing values (NA) will be removed.

datE.Admixture is a data frame of expression data, e.g. the columns of datE.Admixture could
correspond to thousands of genes. The rows of datE.Admixture correspond
to the admixed samples for which the function estimates the proportions of pure
populations. Some of the markers specified in the first column of MarkerMeansPure
should correspond to column names of datE.Admixture.

proportionsInAdmixture 323

calculateConditionNumber

logical. Default is FALSE. If set to TRUE then it uses the kappa function to
calculates the condition number of the matrix MarkerMeansPure[,-1]. This
allows one to determine whether the linear model for estimating the proportions
is well specified. Type help(kappa) to learn more. kappa() computes by
default (an estimate of) the 2-norm condition number of a matrix or of the R
matrix of a QR decomposition, perhaps of a linear fit.

coefToProportion

logical. By default, it is set to TRUE. When estimating the proportions the func-
tion fits a multivariate linear model. Ideally, the coefficients of the linear model
correspond to the proportions in the admixed samples. But sometimes the coef-
ficients take on negative values or do not sum to 1. If coefToProportion=TRUE
then negative coefficients will be set to 0 and the remaining coefficients will be
scaled so that they sum to 1.

Details

The methods implemented in this function were motivated by the gene expression deconvolution
approach described by Abbas et al (2009), Lu et al (2003), Wang et al (2006). This approach can
be used to predict the proportions of (pure) cells in a complex tissue, e.g. the proportion of blood
cell types in whole blood. To define the markers, you may need to have expression data from pure
populations. Then you can define markers based on a significant t-test or ANOVA across the pure
populations. Next use the pure population data to estimate corresponding mean expression values.
Hopefully, the array platforms and normalization methods for datE.MarkersAdmixtureTranspose
and MarkerMeansPure are comparable. When dealing with Affymetrix data: we have successfully
used it on untransformed MAS5 data. For statisticians: To estimate the proportions, we use the
coefficients of a linear model. Specifically: datCoef= t(lm(datE.MarkersAdmixtureTranspose
~MarkerMeansPure[,-1])$coefficients[-1,]) where datCoef is a matrix whose rows corre-
spond to the mixed samples (rows of datE.Admixture) and the columns correspond to pure popu-
lations (e.g. cell types), i.e. the columns of MarkerMeansPure[,-1]. More details can be found in
Abbas et al (2009).

Value

A list with the following components

PredictedProportions

data frame that contains the predicted proportions. The rows of PredictedProportions
correspond to the admixed samples, i.e. the rows of datE.Admixture. The
columns of PredictedProportions correspond to the pure populations, i.e.
the columns of MarkerMeansPure[,-1].

datCoef=datCoef

data frame of numbers that is analogous to PredictedProportions. In general,
datCoef will only be different from PredictedProportions if coefToProportion=TRUE.
See the description of coefToProportion

conditionNumber

This is the condition number resulting from the kappa function. See the descrip-
tion of calculateConditionNumber.

324 propVarExplained

markersUsed vector of character strings that contains the subset of marker names (speci-
fied in the first column of MarkerMeansPure) that match column names of
datE.Admixture and that contain non-missing pure mean values.

Note

This function can be considered a wrapper of the lm function.

Author(s)

Steve Horvath, Chaochao Cai

References

Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF (2009) Deconvolution of Blood
Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus. PLoS
ONE 4(7): e6098. doi:10.1371/journal.pone.0006098

Lu P, Nakorchevskiy A, Marcotte EM (2003) Expression deconvolution: a reinterpretation of DNA
microarray data reveals dynamic changes in cell populations. Proc Natl Acad Sci U S A 100:
10370-10375.

Wang M, Master SR, Chodosh LA (2006) Computational expression deconvolution in a complex
mammalian organ. BMC Bioinformatics 7: 328.

See Also

lm, kappa

propVarExplained Proportion of variance explained by eigengenes.

Description

This function calculates the proportion of variance of genes in each module explained by the re-
spective module eigengene.

Usage

propVarExplained(datExpr, colors, MEs, corFnc = "cor", corOptions = "use = 'p'")

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed and will be ignored.

colors a vector giving module assignment for genes given in datExpr. Unique values
should correspond to the names of the eigengenes in MEs.

MEs a data frame of module eigengenes in which each column is an eigengene and
each row corresponds to a sample.

pruneAndMergeConsensusModules 325

corFnc character string containing the name of the function to calculate correlation.
Suggested functions include "cor" and "bicor".

corOptions further argument to the correlation function.

Details

For compatibility with other functions, entries in color are matched to a substring of names(MEs)
starting at position 3. For example, the entry "turquoise" in colors will be matched to the
eigengene named "MEturquoise". The first two characters of the eigengene name are ignored and
can be arbitrary.

Value

A vector with one entry per eigengene containing the proportion of variance of the module explained
by the eigengene.

Author(s)

Peter Langfelder

See Also

moduleEigengenes

pruneAndMergeConsensusModules

Iterative pruning and merging of (hierarchical) consensus modules

Description

This function prunes genes with low consensus eigengene-based intramodular connectivity (kME)
from modules and merges modules whose consensus similarity is high. The process is repeated
until the modules become stable.

Usage

pruneAndMergeConsensusModules(
multiExpr,
multiWeights = NULL,
multiExpr.imputed = NULL,
labels,
unassignedLabel = if (is.numeric(labels)) 0 else "grey",
networkOptions,
consensusTree,

Pruning options
minModuleSize,

326 pruneAndMergeConsensusModules

minCoreKMESize = minModuleSize/3,
minCoreKME = 0.5,
minKMEtoStay = 0.2,

Module eigengene calculation and merging options
impute = TRUE,
trapErrors = FALSE,
calibrateMergingSimilarities = FALSE,
mergeCutHeight = 0.15,

Behavior
iterate = TRUE,
collectGarbage = FALSE,
getDetails = TRUE,
verbose = 1, indent=0)

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
These weights are used for correlation calculations with data in multiExpr.

multiExpr.imputed

If multiExpr contain missing data, this argument can be used to supply the ex-
pression data with missing data imputed. If not given, the impute.knn function
will be used to impute the missing data.

labels A vector (numeric, character or a factor) giving module labels for each variable
(gene) in multiExpr.

unassignedLabel

The label (value in labels) that represents unassigned genes. Module of this
label will not enter the module eigengene clustering and will not be merged
with other modules.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

consensusTree A list of class ConsensusTree specifying the consensus calculation.

minModuleSize Minimum number of genes in a module. Modules that have fewer genes (after
trimming) will be removed (i.e., their genes will be given the unassigned label).

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with consensus eigengene connectivity at least minCoreKME, the module
is disbanded (its genes are unlabeled).

minCoreKMESize see minCoreKME above.

minKMEtoStay genes whose consensus eigengene connectivity to their module eigengene is
lower than minKMEtoStay are removed from the module.

pruneAndMergeConsensusModules 327

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?

calibrateMergingSimilarities

Logical: should module eigengene similarities be calibrated before calculating
the consensus? Although calibration is in principle desirable, the calibration
methods currently available assume large data and do not work very well on
eigengene similarities.

mergeCutHeight Dendrogram cut height for module merging.

iterate Logical: should the pruning and merging process be iterated until no changes
occur? If FALSE, only one iteration will be carried out.

collectGarbage Logical: should garbage be collected after some of the memory-intensive steps?

getDetails Logical: should certain intermediate results be returned? These include labels
and module merging information at each iteration (see return value).

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Value

If input getDetails is FALSE, a vector the resulting module labels. If getDetails is TRUE, a list
with these components:

labels The resulting module labels

details A list. The first component, named originalLabels, contains a copy of the in-
put labels. The following components are named Iteration.1, Iteration.2
etc and contain, for each iteration, components prunedLabels (the result of
pruning in that iteration) and mergeInfo (result of the call to hierarchicalMergeCloseModules
in that iteration).

Author(s)

Peter Langfelder

See Also

The underlying functions pruneConsensusModules and hierarchicalMergeCloseModules.

328 pruneConsensusModules

pruneConsensusModules Prune (hierarchical) consensus modules by removing genes with low
eigengene-based intramodular connectivity

Description

This function prunes (hierarchical) consensus modules by removing genes with low eigengene-
based intramodular connectivity (KME) and by removing modules that do not have a certain mini-
mum number of genes with a required minimum KME.

Usage

pruneConsensusModules(multiExpr,
multiWeights = NULL,
multiExpr.imputed = NULL,
MEs = NULL,
labels,

unassignedLabel = if (is.numeric(labels)) 0 else "grey",

networkOptions,
consensusTree,

minModuleSize,
minCoreKMESize = minModuleSize/3,
minCoreKME = 0.5,
minKMEtoStay = 0.2,

Module eigengene calculation options
impute = TRUE,
collectGarbage = FALSE,
checkWeights = TRUE,

verbose = 1, indent=0)

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
These weights are used for correlation calculations with data in multiExpr.

multiExpr.imputed

If multiExpr contain missing data, this argument can be used to supply the ex-
pression data with missing data imputed. If not given, the impute.knn function
will be used to impute the missing data.

pruneConsensusModules 329

MEs Optional consensus module eigengenes, in multi-set format analogous to that of
multiExpr.

labels A vector (numeric, character or a factor) giving module labels for each variable
(gene) in multiExpr.

unassignedLabel

The label (value in labels) that represents unassigned genes. Module of this
label will not enter the module eigengene clustering and will not be merged
with other modules.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

consensusTree A list of class ConsensusTree specifying the consensus calculation.

minModuleSize Minimum number of genes in a module. Modules that have fewer genes (after
trimming) will be removed (i.e., their genes will be given the unassigned label).

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with consensus eigengene connectivity at least minCoreKME, the module
is disbanded (its genes are unlabeled).

minCoreKMESize see minCoreKME above.

minKMEtoStay genes whose consensus eigengene connectivity to their module eigengene is
lower than minKMEtoStay are removed from the module.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

collectGarbage Logical: should garbage be collected after some of the memory-intensive steps?

checkWeights Logical: should multiWeights be checked to make sure their dimensions are
concordant with multiExpr and the weights are valid?

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Value

The pruned module labels: a vector of the same form as the input labels.

Author(s)

Peter Langfelder

330 qvalue

PWLists Pathways with Corresponding Gene Markers - Compiled by Mike
Palazzolo and Jim Wang from CHDI

Description

This matrix gives a predefined set of marker genes for many immune response pathways, as assem-
bled by Mike Palazzolo and Jim Wang from CHDI, and colleagues. It is used with userListEnrich-
ment to search user-defined gene lists for enrichment.

Usage

data(PWLists)

Format

A 124350 x 2 matrix of characters containing 2724 Gene / Category pairs. The first column (Gene)
lists genes corresponding to a given category (second column). Each Category entry is of the form
<gene set>__<reference>.

Source

For more information about this list, please see userListEnrichment

Examples

data(PWLists)
head(PWLists)

qvalue Estimate the q-values for a given set of p-values

Description

Estimate the q-values for a given set of p-values. The q-value of a test measures the proportion of
false positives incurred (called the false discovery rate) when that particular test is called significant.

Usage

qvalue(p, lambda=seq(0,0.90,0.05), pi0.method="smoother", fdr.level=NULL, robust=FALSE,
smooth.df=3, smooth.log.pi0=FALSE)

qvalue 331

Arguments

p A vector of p-values (only necessary input)

lambda The value of the tuning parameter to estimate π0. Must be in [0,1). Optional,
see Storey (2002).

pi0.method Either "smoother" or "bootstrap"; the method for automatically choosing tuning
parameter in the estimation of π0, the proportion of true null hypotheses

fdr.level A level at which to control the FDR. Must be in (0,1]. Optional; if this is se-
lected, a vector of TRUE and FALSE is returned that specifies whether each
q-value is less than fdr.level or not.

robust An indicator of whether it is desired to make the estimate more robust for small
p-values and a direct finite sample estimate of pFDR. Optional.

smooth.df Number of degrees-of-freedom to use when estimating π0 with a smoother. Op-
tional.

smooth.log.pi0 If TRUE and pi0.method = "smoother", π0 will be estimated by applying a
smoother to a scatterplot of log π0 estimates against the tuning parameter λ.
Optional.

Details

If no options are selected, then the method used to estimate π0 is the smoother method described
in Storey and Tibshirani (2003). The bootstrap method is described in Storey, Taylor & Siegmund
(2004).

Value

A list containing:

call function call

pi0 an estimate of the proportion of null p-values

qvalues a vector of the estimated q-values (the main quantity of interest)

pvalues a vector of the original p-values

significant if fdr.level is specified, and indicator of whether the q-value fell below fdr.level
(taking all such q-values to be significant controls FDR at level fdr.level)

Note

This function is adapted from package qvalue. The reason we provide our own copy is that package
qvalue contains additional functionality that relies on Tcl/Tk which has led to multiple problems.
Our copy does not require Tcl/Tk.

Author(s)

John D. Storey <jstorey@u.washington.edu>, adapted for WGCNA by Peter Langfelder

332 qvalue.restricted

References

Storey JD. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society,
Series B, 64: 479-498.

Storey JD and Tibshirani R. (2003) Statistical significance for genome-wide experiments. Proceed-
ings of the National Academy of Sciences, 100: 9440-9445.

Storey JD. (2003) The positive false discovery rate: A Bayesian interpretation and the q-value.
Annals of Statistics, 31: 2013-2035.

Storey JD, Taylor JE, and Siegmund D. (2004) Strong control, conservative point estimation, and
simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the
Royal Statistical Society, Series B, 66: 187-205.

qvalue.restricted qvalue convenience wrapper

Description

This function calls qvalue on finite input p-values, optionally traps errors from the q-value calcu-
lation, and returns just the q values.

Usage

qvalue.restricted(p, trapErrors = TRUE, ...)

Arguments

p a vector of p-values. Missing data are allowed and will be removed.

trapErrors logical: should errors generated by function qvalue trapped? If TRUE, the errors
will be silently ignored and the returned q-values will all be NA.

... other arguments to function qvalue.

Value

A vector of q-values. Entries whose corresponding p-values were not finite will be NA.

Author(s)

Peter Langfelder

See Also

qvalue

randIndex 333

randIndex Rand index of two partitions

Description

Computes the Rand index, a measure of the similarity between two clusterings.

Usage

randIndex(tab, adjust = TRUE)

Arguments

tab a matrix giving the cross-tabulation table of two clusterings.

adjust logical: should the "adjusted" version be computed?

Value

the Rand index of the input table.

Author(s)

Steve Horvath

References

W. M. Rand (1971). "Objective criteria for the evaluation of clustering methods". Journal of the
American Statistical Association 66: 846-850

rankPvalue Estimate the p-value for ranking consistently high (or low) on multiple
lists

Description

The function rankPvalue calculates the p-value for observing that an object (corresponding to a row
of the input data frame datS) has a consistently high ranking (or low ranking) according to multiple
ordinal scores (corresponding to the columns of the input data frame datS).

Usage

rankPvalue(datS, columnweights = NULL,
na.last = "keep", ties.method = "average",
calculateQvalue = TRUE, pValueMethod = "all")

334 rankPvalue

Arguments

datS a data frame whose rows represent objects that will be ranked. Each column
of datS represents an ordinal variable (which can take on negative values).
The columns correspond to (possibly signed) object significance measures, e.g.,
statistics (such as Z statistics), ranks, or correlations.

columnweights allows the user to input a vector of non-negative numbers reflecting weights for
the different columns of datZ. If it is set to NULL then all weights are equal.

na.last controls the treatment of missing values (NAs) in the rank function. If TRUE,
missing values in the data are put last (i.e. they get the highest rank values). If
FALSE, they are put first; if NA, they are removed; if "keep" they are kept with
rank NA. See rank for more details.

ties.method represents the ties method used in the rank function for the percentile rank
method. See rank for more details.

calculateQvalue

logical: should q-values be calculated? If set to TRUE then the function calcu-
lates corresponding q-values (local false discovery rates) using the qvalue pack-
age, see Storey JD and Tibshirani R. (2003). This option assumes that qvalue
package has been installed.

pValueMethod determines which method is used for calculating p-values. By default it is set to
"all", i.e. both methods are used. If it is set to "rank" then only the percentile
rank method is used. If it set to "scale" then only the scale method will be used.

Details

The function calculates asymptotic p-values (and optionally q-values) for testing the null hypothesis
that the values in the columns of datS are independent. This allows us to find objects (rows) with
consistently high (or low) values across the columns.

Example: Imagine you have 5 vectors of Z statistics corresponding to the columns of datS. Further
assume that a gene has ranks 1,1,1,1,20 in the 5 lists. It seems very significant that the gene ranks
number 1 in 4 out of the 5 lists. The function rankPvalue can be used to calculate a p-value for this
occurrence.

The function uses the central limit theorem to calculate asymptotic p-values for two types of test
statistics that measure consistently high or low ordinal values. The first method (referred to as per-
centile rank method) leads to accurate estimates of p-values if datS has at least 4 columns but it
can be overly conservative. The percentile rank method replaces each column datS by the ranked
version rank(datS[,i]) (referred to ask low ranking) and by rank(-datS[,i]) (referred to as high rank-
ing). Low ranking and high ranking allow one to find consistently small values or consistently large
values of datS, respectively. All ranks are divided by the maximum rank so that the result lies in
the unit interval [0,1]. In the following, we refer to rank/max(rank) as percentile rank. For a given
object (corresponding to a row of datS) the observed percentile rank follows approximately a uni-
form distribution under the null hypothesis. The test statistic is defined as the sum of the percentile
ranks (across the columns of datS). Under the null hypothesis that there is no relationship between
the rankings of the columns of datS, this (row sum) test statistic follows a distribution that is given
by the convolution of random uniform distributions. Under the null hypothesis, the individual per-
centile ranks are independent and one can invoke the central limit theorem to argue that the row
sum test statistic follows asymptotically a normal distribution. It is well-known that the speed of

rankPvalue 335

convergence to the normal distribution is extremely fast in case of identically distributed uniform
distributions. Even when datS has only 4 columns, the difference between the normal approxima-
tion and the exact distribution is negligible in practice (Killmann et al 2001). In summary, we use
the central limit theorem to argue that the sum of the percentile ranks follows a normal distribution
whose mean and variance can be calculated using the fact that the mean value of a uniform random
variable (on the unit interval) equals 0.5 and its variance equals 1/12.

The second method for calculating p-values is referred to as scale method. It is often more powerful
but its asymptotic p-value can only be trusted if either datS has a lot of columns or if the ordinal
scores (columns of datS) follow an approximate normal distribution. The scale method scales (or
standardizes) each ordinal variable (column of datS) so that it has mean 0 and variance 1. Under
the null hypothesis of independence, the row sum follows approximately a normal distribution if
the assumptions of the central limit theorem are met. In practice, we find that the second approach
is often more powerful but it makes more distributional assumptions (if datS has few columns).

Value

A list whose actual content depends on which p-value methods is selected, and whether q0values
are calculated. The following inner components are calculated, organized in outer components
datoutrank and datoutscale,:

pValueExtremeRank

This is the minimum between pValueLowRank and pValueHighRank, i.e. min(pValueLow,
pValueHigh)

pValueLowRank Asymptotic p-value for observing a consistently low value across the columns
of datS based on the rank method.

pValueHighRank Asymptotic p-value for observing a consistently low value across the columns
of datS based on the rank method.

pValueExtremeScale

This is the minimum between pValueLowScale and pValueHighScale, i.e. min(pValueLow,
pValueHigh)

pValueLowScale Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

pValueHighScale

Asymptotic p-value for observing a consistently low value across the columns
of datS based on the Scale method.

qValueExtremeRank

local false discovery rate (q-value) corresponding to the p-value pValueExtremeR-
ank

qValueLowRank local false discovery rate (q-value) corresponding to the p-value pValueLowRank
qValueHighRank local false discovery rate (q-value) corresponding to the p-value pValueHigh-

Rank
qValueExtremeScale

local false discovery rate (q-value) corresponding to the p-value pValueExtremeScale
qValueLowScale local false discovery rate (q-value) corresponding to the p-value pValueLowS-

cale
qValueHighScale

local false discovery rate (q-value) corresponding to the p-value pValueHigh-
Scale

336 recutBlockwiseTrees

Author(s)

Steve Horvath

References

Killmann F, VonCollani E (2001) A Note on the Convolution of the Uniform and Related Dis-
tributions and Their Use in Quality Control. Economic Quality Control Vol 16 (2001), No. 1,
17-41.ISSN 0940-5151

Storey JD and Tibshirani R. (2003) Statistical significance for genome-wide experiments. Proceed-
ings of the National Academy of Sciences, 100: 9440-9445.

See Also

rank, qvalue

recutBlockwiseTrees Repeat blockwise module detection from pre-calculated data

Description

Given consensus networks constructed for example using blockwiseModules, this function (re-
)detects modules in them by branch cutting of the corresponding dendrograms. If repeated branch
cuts of the same gene network dendrograms are desired, this function can save substantial time by
re-using already calculated networks and dendrograms.

Usage

recutBlockwiseTrees(
datExpr,
goodSamples, goodGenes,
blocks,
TOMFiles,
dendrograms,
corType = "pearson",
networkType = "unsigned",
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = min(20, ncol(datExpr)/2),
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,

useBranchEigennodeDissim = FALSE,
minBranchEigennodeDissim = mergeCutHeight,

pamStage = TRUE, pamRespectsDendro = TRUE,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,

recutBlockwiseTrees 337

minKMEtoStay = 0.3,
reassignThreshold = 1e-6,
mergeCutHeight = 0.15, impute = TRUE,
trapErrors = FALSE, numericLabels = FALSE,
verbose = 0, indent = 0,
...)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed, but not too many.

goodSamples a logical vector specifying which samples are considered "good" for the analy-
sis. See goodSamplesGenes.

goodGenes a logical vector with length equal number of genes in multiExpr that specifies
which genes are considered "good" for the analysis. See goodSamplesGenes.

blocks specification of blocks in which hierarchical clustering and module detection
should be performed. A numeric vector with one entry per gene of multiExpr
giving the number of the block to which the corresponding gene belongs.

TOMFiles a vector of character strings specifying file names in which the block-wise topo-
logical overlaps are saved.

dendrograms a list of length equal the number of blocks, in which each component is a hier-
archical clustering dendrograms of the genes that belong to the block.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pariwise.complete.obs
option.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight

dendrogram cut height for module detection. See cutreeDynamic for more de-
tails.

minModuleSize minimum module size for module detection. See cutreeDynamic for more de-
tails.

maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more details.

338 recutBlockwiseTrees

maxAbsCoreScatter

maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for more
details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

minSplitHeight Minimum split height given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. Branches merging below this height
will automatically be merged. Defaults to zero but is used only if minAbsSplitHeight
below is NULL.

minAbsSplitHeight

Minimum split height given as an absolute height. Branches merging below this
height will automatically be merged. If not given (default), will be determined
from minSplitHeight above.

useBranchEigennodeDissim

Logical: should branch eigennode (eigengene) dissimilarity be considered when
merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim

Minimum consensus branch eigennode (eigengene) dissimilarity for branches to
be considerd separate. The branch eigennode dissimilarity in individual sets is
simly 1-correlation of the eigennodes; the consensus is defined as quantile with
probability consensusQuantile.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

pamRespectsDendro

Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect
the dendrogram in the sense an object can be PAM-assigned only to clusters that
lie below it on the branch that the object is merged into. See cutreeDynamic
for more details.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is disbanded
(its genes are unlabeled and returned to the pool of genes waiting for mofule de-
tection).

minCoreKMESize see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

reassignThreshold

p-value ratio threshold for reassigning genes between modules. See Details.

mergeCutHeight dendrogram cut height for module merging.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?

numericLabels logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

recutBlockwiseTrees 339

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

... Other arguments.

Details

For details on blockwise module detection, see blockwiseModules. This function implements
the module detection subset of the functionality of blockwiseModules; network construction and
clustering must be performed in advance. The primary use of this function is to experiment with
module detection settings without having to re-execute long network and clustering calculations
whose results are not affected by the cutting parameters.

This function takes as input the networks and dendrograms that are produced by blockwiseModules.
Working block by block, modules are identified in the dendrogram by the Dynamic Hybrid Tree Cut
algorithm. Found modules are trimmed of genes whose correlation with module eigengene (KME)
is less than minKMEtoStay. Modules in which fewer than minCoreKMESize genes have KME higher
than minCoreKME are disbanded, i.e., their constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS, the gene is re-
assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

Value

A list with the following components:

colors a vector of color or numeric module labels for all genes.
unmergedColors a vector of color or numeric module labels for all genes before module merging.
MEs a data frame containing module eigengenes of the found modules (given by

colors).
MEsOK logical indicating whether the module eigengenes were calculated without er-

rors.

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

340 recutConsensusTrees

See Also

blockwiseModules for full module calculation;

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

recutConsensusTrees Repeat blockwise consensus module detection from pre-calculated
data

Description

Given consensus networks constructed for example using blockwiseConsensusModules, this func-
tion (re-)detects modules in them by branch cutting of the corresponding dendrograms. If repeated
branch cuts of the same gene network dendrograms are desired, this function can save substantial
time by re-using already calculated networks and dendrograms.

Usage

recutConsensusTrees(
multiExpr,
goodSamples, goodGenes,
blocks,
TOMFiles,
dendrograms,
corType = "pearson",
networkType = "unsigned",
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = 20,
checkMinModuleSize = TRUE,
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,

useBranchEigennodeDissim = FALSE,
minBranchEigennodeDissim = mergeCutHeight,

pamStage = TRUE, pamRespectsDendro = TRUE,
trimmingConsensusQuantile = 0,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMEtoStay = 0.2,
reassignThresholdPS = 1e-4,
mergeCutHeight = 0.15,
mergeConsensusQuantile = trimmingConsensusQuantile,
impute = TRUE,
trapErrors = FALSE,
numericLabels = FALSE,

recutConsensusTrees 341

verbose = 2, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

goodSamples a list with one component per set. Each component is a logical vector specifying
which samples are considered "good" for the analysis. See goodSamplesGenesMS.

goodGenes a logical vector with length equal number of genes in multiExpr that specifies
which genes are considered "good" for the analysis. See goodSamplesGenesMS.

blocks specification of blocks in which hierarchical clustering and module detection
should be performed. A numeric vector with one entry per gene of multiExpr
giving the number of the block to which the corresponding gene belongs.

TOMFiles a vector of character strings specifying file names in which the block-wise topo-
logical overlaps are saved.

dendrograms a list of length equal the number of blocks, in which each component is a hier-
archical clustering dendrograms of the genes that belong to the block.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pariwise.complete.obs
option.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency. Note that while no new networks are com-
puted in this function, this parameter affects the interpretation of correlations in
this function.

deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive
module detection should be to module splitting, with 0 least and 4 most sensitive.
See cutreeDynamic for more details.

detectCutHeight

dendrogram cut height for module detection. See cutreeDynamic for more de-
tails.

minModuleSize minimum module size for module detection. See cutreeDynamic for more de-
tails.

checkMinModuleSize

logical: should sanity checks be performed on minModuleSize?

maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of
cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic
for more details.

minGap minimum cluster gap given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. See cutreeDynamic for more details.

maxAbsCoreScatter

maximum scatter of the core for a branch to be a cluster given as absolute
heights. If given, overrides maxCoreScatter. See cutreeDynamic for more
details.

342 recutConsensusTrees

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides
minGap. See cutreeDynamic for more details.

minSplitHeight Minimum split height given as the fraction of the difference between cutHeight
and the 5th percentile of joining heights. Branches merging below this height
will automatically be merged. Defaults to zero but is used only if minAbsSplitHeight
below is NULL.

minAbsSplitHeight

Minimum split height given as an absolute height. Branches merging below this
height will automatically be merged. If not given (default), will be determined
from minSplitHeight above.

useBranchEigennodeDissim

Logical: should branch eigennode (eigengene) dissimilarity be considered when
merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim

Minimum consensus branch eigennode (eigengene) dissimilarity for branches to
be considerd separate. The branch eigennode dissimilarity in individual sets is
simly 1-correlation of the eigennodes; the consensus is defined as quantile with
probability consensusQuantile.

pamStage logical. If TRUE, the second (PAM-like) stage of module detection will be
performed. See cutreeDynamic for more details.

pamRespectsDendro

Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect
the dendrogram in the sense an object can be PAM-assigned only to clusters that
lie below it on the branch that the object is merged into. See cutreeDynamic
for more details.

trimmingConsensusQuantile

a number between 0 and 1 specifying the consensus quantile used for kME cal-
culation that determines module trimming according to the arguments below.

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize
genes with eigengene connectivity at least minCoreKME, the module is disbanded
(its genes are unlabeled and returned to the pool of genes waiting for mofule de-
tection).

minCoreKMESize see minCoreKME above.

minKMEtoStay genes whose eigengene connectivity to their module eigengene is lower than
minKMEtoStay are removed from the module.

reassignThresholdPS

per-set p-value ratio threshold for reassigning genes between modules. See De-
tails.

mergeCutHeight dendrogram cut height for module merging.
mergeConsensusQuantile

consensus quantile for module merging. See mergeCloseModules for details.

impute logical: should imputation be used for module eigengene calculation? See
moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?

recutConsensusTrees 343

numericLabels logical: should the returned modules be labeled by colors (FALSE), or by num-
bers (TRUE)?

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

For details on blockwise consensus module detection, see blockwiseConsensusModules. This
function implements the module detection subset of the functionality of blockwiseConsensusModules;
network construction and clustering must be performed in advance. The primary use of this func-
tion is to experiment with module detection settings without having to re-execute long network and
clustering calculations whose results are not affected by the cutting parameters.

This function takes as input the networks and dendrograms that are produced by blockwiseConsensusModules.
Working block by block, modules are identified in the dendrograms by the Dynamic Hybrid tree
cut. Found modules are trimmed of genes whose consensus module membership kME (that is,
correlation with module eigengene) is less than minKMEtoStay. Modules in which fewer than
minCoreKMESize genes have consensus KME higher than minCoreKME are disbanded, i.e., their
constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the
module they assigned is lower than KME to another module. If p-values of the higher correlations
are smaller than those of the native module by the factor reassignThresholdPS (in every set), the
gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by
clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting
the dendrogram at the height mergeCutHeight and merging all modules on each branch. The
process is iterated until no modules are merged. See mergeCloseModules for more details on
module merging.

Value

A list with the following components:

colors module assignment of all input genes. A vector containing either character
strings with module colors (if input numericLabels was unset) or numeric mod-
ule labels (if numericLabels was set to TRUE). The color "grey" and the numeric
label 0 are reserved for unassigned genes.

unmergedColors module colors or numeric labels before the module merging step.
multiMEs module eigengenes corresponding to the modules returned in colors, in multi-

set format. A vector of lists, one per set, containing eigengenes, proportion
of variance explained and other information. See multiSetMEs for a detailed
description.

Note

Basic sanity checks are performed on given arguments, but it is left to the user’s responsibility to
provide valid input.

344 redWhiteGreen

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

blockwiseConsensusModules for the full blockwise modules calculation. Parts of its output are
natural input for this function.

cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;

mergeCloseModules for merging of close modules.

redWhiteGreen Red-white-green color sequence

Description

Generate a red-white-green color sequence of a given length.

Usage

redWhiteGreen(n, gamma = 1)

Arguments

n number of colors to be returned

gamma color correction power

Details

The function returns a color vector that starts with pure green, gradually turns into white and then
to red. The power gamma can be used to control the behaviour of the quarter- and three quarter-
values (between red and white, and white and green, respectively). Higher powers will make the
mid-colors more white, while lower powers will make the colors more saturated, respectively.

Value

A vector of colors of length n.

Author(s)

Peter Langfelder

relativeCorPredictionSuccess 345

Examples

par(mfrow = c(3, 1))
displayColors(redWhiteGreen(50));
displayColors(redWhiteGreen(50, 3));
displayColors(redWhiteGreen(50, 0.5));

relativeCorPredictionSuccess

Compare prediction success

Description

Compare prediction success of several gene screening methods.

Usage

relativeCorPredictionSuccess(
corPredictionNew,
corPredictionStandard,
corTestSet,
topNumber = 100)

Arguments

corPredictionNew

Matrix of predictor statistics
corPredictionStandard

Reference presdictor statistics

corTestSet Correlations of predictor variables with trait in test set

topNumber A vector giving the numbers of top genes to consider

Value

Data frame with components

topNumber copy of the input topNumber

kruskalp Kruskal-Wallis p-values

Author(s)

Steve Horvath

See Also

corPredictionSuccess

346 removePrincipalComponents

removeGreyME Removes the grey eigengene from a given collection of eigengenes.

Description

Given module eigengenes either in a single data frame or in a multi-set format, removes the grey
eigengenes from each set. If the grey eigengenes are not found, a warning is issued.

Usage

removeGreyME(MEs, greyMEName = paste(moduleColor.getMEprefix(), "grey", sep=""))

Arguments

MEs Module eigengenes, either in a single data frame (typicaly for a single set), or in
a multi-set format. See checkSets for a description of the multi-set format.

greyMEName Name of the module eigengene (in each corresponding data frame) that corre-
sponds to the grey color. This will typically be "PCgrey" or "MEgrey". If the
module eigengenes were calculated using standard functions in this library, the
default should work.

Value

Module eigengenes in the same format as input (either a single data frame or a vector of lists) with
the grey eigengene removed.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

removePrincipalComponents

Remove leading principal components from data

Description

This function calculates a fixed number of the first principal components of the given data and
returns the residuals of a linear regression of each column on the principal components.

Usage

removePrincipalComponents(x, n)

replaceMissing 347

Arguments

x Input data, a numeric matrix. All entries must be non-missing and finite.

n Number of principal components to remove. This must be smaller than the
smaller of the number of rows and columns in x.

Value

A matrix of residuals of the same dimensions as x.

Author(s)

Peter Langfelder

See Also

svd for singular value decomposition, lm for linear regression

replaceMissing Replace missing values with a constant.

Description

A convenience function for replacing missing values with a (non-missing) constant.

Usage

replaceMissing(x, replaceWith)

Arguments

x An atomic vector or array.

replaceWith Value to replace missing entries in x. The default is FALSE for logical vectors, 0
for numeric vectors, and empty string "" for character vectors.

Value

x with missing data replaced.

Author(s)

Peter Langfelder

348 returnGeneSetsAsList

Examples

logVec = c(TRUE, FALSE, NA, TRUE);
replaceMissing(logVec)

numVec = c(1,2,3,4,NA,2)
replaceMissing(numVec)

returnGeneSetsAsList Return pre-defined gene lists in several biomedical categories.

Description

This function returns gene sets for use with other R functions. These gene sets can include inputted
lists of genes and files containing user-defined lists of genes, as well as a pre-made collection of
brain, blood, and other biological lists. The function returns gene lists associated with each category
for use with other enrichment strategies (i.e., GSVA).

Usage

returnGeneSetsAsList(
fnIn = NULL, catNmIn = fnIn,
useBrainLists = FALSE, useBloodAtlases = FALSE,
useStemCellLists = FALSE, useBrainRegionMarkers = FALSE,
useImmunePathwayLists = FALSE, geneSubset=NULL)

Arguments

fnIn A vector of file names containing user-defined lists. These files must be in one
of three specific formats (see details section). The default (NULL) may only be
used if one of the "use_____" parameters is TRUE.

catNmIn A vector of category names corresponding to each fnIn. This name will be
appended to each overlap corresponding to that filename. The default sets the
category names as the corresponding file names.

useBrainLists If TRUE, a pre-made set of brain-derived enrichment lists will be added to any
user-defined lists for enrichment comparison. The default is FALSE. See refer-
ences section for related references.

useBloodAtlases

If TRUE, a pre-made set of blood-derived enrichment lists will be added to
any user-defined lists for enrichment comparison. The default is FALSE. See
references section for related references.

useStemCellLists

If TRUE, a pre-made set of stem cell (SC)-derived enrichment lists will be added
to any user-defined lists for enrichment comparison. The default is FALSE. See
references section for related references.

returnGeneSetsAsList 349

useBrainRegionMarkers

If TRUE, a pre-made set of enrichment lists for human brain regions will be
added to any user-defined lists for enrichment comparison. The default is FALSE.
These lists are derived from data from the Allen Human Brain Atlas (https://human.brain-
map.org/). See references section for more details.

useImmunePathwayLists

If TRUE, a pre-made set of enrichment lists for immune system pathways will
be added to any user-defined lists for enrichment comparison. The default is
FALSE. These lists are derived from the lab of Daniel R Saloman. See refer-
ences section for more details.

geneSubset A vector of gene (or other) identifiers. If entered, only genes in this list will
be returned in the output, otherwise all genes in each category will be returned
(default, geneSubset=NULL).

Details

User-inputted files for fnIn can be in one of three formats:

1) Text files (must end in ".txt") with one list per file, where the first line is the list descriptor and
the remaining lines are gene names corresponding to that list, with one gene per line. For example
Ribosome RPS4 RPS8 ...

2) Gene / category files (must be csv files), where the first line is the column headers corresponding
to Genes and Lists, and the remaining lines correspond to the genes in each list, for any number
of genes and lists. For example: Gene, Category RPS4, Ribosome RPS8, Ribosome ... NDUF1,
Mitohcondria NDUF3, Mitochondria ... MAPT, AlzheimersDisease PSEN1, AlzheimersDisease
PSEN2, AlzheimersDisease ...

3) Module membership (kME) table in csv format. Currently, the module assignment is the only
thing that is used, so as long as the Gene column is 2nd and the Module column is 3rd, it doesn’t
matter what is in the other columns. For example, PSID, Gene, Module, <other columns> <psid>,
RPS4, blue, <other columns> <psid>, NDUF1, red, <other columns> <psid>, RPS8, blue, <other
columns> <psid>, NDUF3, red, <other columns> <psid>, MAPT, green, <other columns> ...

Value

geneSets A list of categories in alphabetical order, where each compnent of the list is a
character vector of all genes corresponding to the named category. For example:
geneSets = list(category1=c("gene1","gene2"),category2=c("gene3","gene4","gene5"))

Author(s)

Jeremy Miller

References

Please see the help file for userListEnrichment in the WGCNA library for references for the pre-
defined lists.

350 rgcolors.func

Examples

Example: Return a list of genes for various immune pathways
geneSets = returnGeneSetsAsList(useImmunePathwayLists=TRUE)
geneSets[7:8]

rgcolors.func Red and Green Color Specification

Description

This function creates a vector of n “contiguous” colors, corresponding to n intensities (between 0
and 1) of the red, green and blue primaries, with the blue intensities set to zero. The values returned
by rgcolors.func can be used with a col= specification in graphics functions or in par.

Usage

rgcolors.func(n=50)

Arguments

n the number of colors (>= 1) to be used in the red and green palette.

Value

a character vector of color names. Colors are specified directly in terms of their RGB compo-
nents with a string of the form "#RRGGBB", where each of the pairs RR, GG, BB consist of two
hexadecimal digits giving a value in the range 00 to FF.

Author(s)

Sandrine Dudoit, <sandrine@stat.berkeley.edu>
Jane Fridlyand, <janef@stat.berkeley.edu>

See Also

plotCor, plotMat, colors, rgb, image.

Examples

rgcolors.func(n=5)

sampledBlockwiseModules 351

sampledBlockwiseModules

Blockwise module identification in sampled data

Description

This function repeatedly resamples the samples (rows) in supplied data and identifies modules on
the resampled data.

Usage

sampledBlockwiseModules(
datExpr,
nRuns,
startRunIndex = 1,
endRunIndex = startRunIndex + nRuns - skipUnsampledCalculation,
replace = FALSE,
fraction = if (replace) 1.0 else 0.63,
randomSeed = 12345,
checkSoftPower = TRUE,
nPowerCheckSamples = 2000,
skipUnsampledCalculation = FALSE,
corType = "pearson",
power = 6,
networkType = "unsigned",
saveTOMs = FALSE,
saveTOMFileBase = "TOM",
...,
verbose = 2, indent = 0)

Arguments

datExpr Expression data. A matrix (preferred) or data frame in which columns are genes
and rows ar samples.

nRuns Number of sampled network construction and module identification runs. If
skipUnsampledCalculation is FALSE, one extra calculation (the first) will con-
tain the unsampled calculation.

startRunIndex Number to be assigned to the start run. The run number or index is used to make
saved files unique. It is also used in setting the seed for each run to allow the
runs to be replicated in smaller or larger batches.

endRunIndex Number (index) of the last run. If given, nRuns is ignored.

replace Logical: should samples (observations or rows in entries in multiExpr) be sam-
pled with replacement?

fraction Fraction of samples to sample for each run.

352 sampledBlockwiseModules

randomSeed Integer specifying the random seed. If non-NULL, the random number genera-
tor state is saved before the seed is set and restored at the end of the function. If
NULL, the random number generator state is not saved nor changed at the start,
and not restored at the end.

checkSoftPower Logical: should the soft-tresholding power be adjusted to approximately match
the connectivity distribution of the sampled data set and the full data set?

nPowerCheckSamples

Number of genes to be sampled from the full data set to calculate connectivity
and match soft-tresholding powers.

skipUnsampledCalculation

Logical: should a calculation on original (not resampled) data be skipped?

corType Character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs
option.

power Soft-thresholding power for network construction.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

saveTOMs Logical: should the networks (topological overlaps) be saved for each run? Note
that for large data sets (tens of thousands of nodes) the TOM files are rather
large.

saveTOMFileBase

Character string giving the base of the file names for TOMs. The actual file
names will consist of a concatenation of saveTOMFileBase and "-run-<run
number>-Block-<block number>.RData".

... Other arguments to blockwiseModules.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

For each run, samples (but not genes) are randomly sampled to obtain a perturbed data set; a full
network analysis and module identification is carried out, and the results are returned in a list with
one component per run.

For each run, the soft-thresholding power can optionally be adjusted such that the mean adjacency
in the re-sampled data set equals the mean adjacency in the original data.

Value

A list with one component per run. Each component is a list with the following components:

mods The output of the function blockwiseModules applied to a resampled data set.

samples Indices of the samples selected for the resampled data step for this run.

powers Actual soft-thresholding powers used in this run.

sampledHierarchicalConsensusModules 353

Author(s)

Peter Langfelder

References

An application of this function is described in the motivational example section of

Langfelder P, Horvath S (2012) Fast R Functions for Robust Correlations and Hierarchical Cluster-
ing. Journal of Statistical Software 46(11) 1-17; PMID: 23050260 PMCID: PMC3465711

See Also

blockwiseModules for the underlying network analysis and module identification;

sampledHierarchicalConsensusModules for a similar resampling analysis of consensus networks.

sampledHierarchicalConsensusModules

Hierarchical consensus module identification in sampled data

Description

This function repeatedly resamples the samples (rows) in supplied data and identifies hierarchical
consensus modules on the resampled data.

Usage

sampledHierarchicalConsensusModules(
multiExpr,
multiWeights = NULL,

networkOptions,
consensusTree,

nRuns,
startRunIndex = 1,
endRunIndex = startRunIndex + nRuns -1,
replace = FALSE,
fraction = if (replace) 1.0 else 0.63,
randomSeed = 12345,
checkSoftPower = TRUE,
nPowerCheckSamples = 2000,
individualTOMFilePattern = "individualTOM-Run.%r-Set%s-Block.%b.RData",
keepConsensusTOMs = FALSE,
consensusTOMFilePattern = "consensusTOM-Run.%r-%a-Block.%b.RData",
skipUnsampledCalculation = FALSE,
...,
verbose = 2, indent = 0,

354 sampledHierarchicalConsensusModules

saveRunningResults = TRUE,
runningResultsFile = "results.tmp.RData")

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one
per set. Each set must contain a component data that contains the expression
data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
These weights are used for correlation calculations with data in multiExpr.

networkOptions A single list of class NetworkOptions giving options for network calculation
for all of the networks, or a multiData structure containing one such list for
each input data set.

consensusTree A list specifying the consensus calculation. See details.

nRuns Number of network construction and module identification runs.

startRunIndex Number to be assigned to the start run. The run number or index is used to make
saved files unique; it has no effect on the actual results of the run.

endRunIndex Number (index) of the last run. If given, nRuns is ignored.

replace Logical: should samples (observations or rows in entries in multiExpr) be sam-
pled with replacement?

fraction Fraction of samples to sample for each run.

randomSeed Integer specifying the random seed. If non-NULL, the random number genera-
tor state is saved before the seed is set and restored at the end of the function. If
NULL, the random number generator state is not changed nor saved at the start,
and not restored at the end.

checkSoftPower Logical: should the soft-tresholding power be adjusted to approximately match
the connectivity distribution of the sampled data set and the full data set?

nPowerCheckSamples

Number of genes to be sampled from the full data set to calculate connectivity
and match soft-tresholding powers.

individualTOMFilePattern

Pattern for file names for files holding individual TOMs. The tags "%r, %a, %b"
are replaced by run number, analysis name and block number, respectively. The
TOM files are usually temporary but can be retained, see keepConsensusTOM
below.

keepConsensusTOMs

Logical: should the (final) consensus TOMs of each sampled calculation be
retained after the run ends? Note that for large data sets (tens of thousands of
nodes) the TOM files are rather large.

consensusTOMFilePattern

Pattern for file names for files holding consensus TOMs. The tags "%r, %a, %b"
are replaced by run number, analysis name and block number, respectively. The
TOM files are usually temporary but can be retained, see keepConsensusTOM
above.

sampledHierarchicalConsensusModules 355

skipUnsampledCalculation

Logical: should a calculation on original (not resampled) data be skipped?

... Other arguments to hierarchicalConsensusModules.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

saveRunningResults

Logical: should the cumulative results be saved after each run on resampled
data?

runningResultsFile

File name of file in which to save running results into. In case of a parallel
execution (say on several nodes of a cluster), one should choose a unique name
for each process to avoid overwriting the same file.

Details

For each run, samples (but not genes) are randomly sampled to obtain a perturbed data set; a full
network analysis and module identification is carried out, and the results are returned in a list with
one component per run.

For each run, the soft-thresholding power can optionally be adjusted such that the mean adjacency
in the re-sampled data set equals the mean adjacency in the original data.

Value

A list with one component per run. Each component is a list with the following components:

mods The output of the function hierarchicalConsensusModules on the resampled
data.

samples Indices of the samples selected for the resampled data step for this run.

powers Actual soft-thresholding powers used in this run.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusModules for consensus networ analysis and module identification;

sampledBlockwiseModules for a similar resampling analysis for a single data set.

356 scaleFreePlot

scaleFreeFitIndex Calculation of fitting statistics for evaluating scale free topology fit.

Description

The function scaleFreeFitIndex calculates several indices (fitting statistics) for evaluating scale free
topology fit. The input is a vector (of connectivities) k. Next k is discretized into nBreaks number
of equal-width bins. Let’s denote the resulting vector dk. The relative frequency for each bin is
denoted p.dk.

Usage

scaleFreeFitIndex(k, nBreaks = 10, removeFirst = FALSE)

Arguments

k numeric vector whose components contain non-negative values

nBreaks positive integer. This determines the number of equal width bins.

removeFirst logical. If TRUE then the first bin will be removed.

Value

Data frame with columns

Rsquared.SFT the model fitting index (R.squared) from the following model lm(log.p.dk ~
log.dk)

slope.SFT the slope estimate from model lm(log(p(k))~log(k))
truncatedExponentialAdjRsquared

the adjusted R.squared measure from the truncated exponential model given by
lm2 = lm(log.p.dk ~ log.dk + dk).

Author(s)

Steve Horvath

scaleFreePlot Visual check of scale-free topology

Description

A simple visula check of scale-free network ropology.

scaleFreePlot 357

Usage

scaleFreePlot(
connectivity,
nBreaks = 10,
truncated = FALSE,
removeFirst = FALSE,
main = "", ...)

Arguments

connectivity vector containing network connectivities.

nBreaks number of breaks in the connectivity dendrogram.

truncated logical: should a truncated exponential fit be calculated and plotted in addition
to the linear one?

removeFirst logical: should the first bin be removed from the fit?

main main title for the plot.

... other graphical parameter to the plot function.

Details

The function plots a log-log plot of a histogram of the given connectivities, and fits a linear
model plus optionally a truncated exponential model. The R2 of the fit can be considered an index
of the scale freedom of the network topology.

Value

None.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

softConnectivity for connectivity calculation in weigheted networks.

358 selectFewestConsensusMissing

SCsLists Stem Cell-Related Genes with Corresponding Gene Markers

Description

This matrix gives a predefined set of genes related to several stem cell (SC) types, as reported in
two previously-published studies. It is used with userListEnrichment to search user-defined gene
lists for enrichment.

Usage

data(SCsLists)

Format

A 14003 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists
genes corresponding to a given category (second column). Each Category entry is of the form <Stem
cell-related category>__<reference>, where the references can be found at userListEnrichment.
Note that the matrix is sorted first by Category and then by Gene, such that all genes related to the
same category are listed sequentially.

Source

For references used in this variable, please see userListEnrichment

Examples

data(SCsLists)
head(SCsLists)

selectFewestConsensusMissing

Select columns with the lowest consensus number of missing data

Description

Given a multiData structure, this function calculates the consensus number of present (non-missing)
data for each variable (column) across the data sets, forms the consensus and for each group selects
variables whose consensus proportion of present data is at least selectFewestMissing (see usage
below).

selectFewestConsensusMissing 359

Usage

selectFewestConsensusMissing(
mdx,
colID,
group,
minProportionPresent = 1,
consensusQuantile = 0,
verbose = 0,
...)

Arguments

mdx A multiData structure. All sets must have the same columns.

colID Character vector of column identifiers. This must include all the column names
from mdx, but can include other values as well. Its entries must be unique (no
duplicates) and no missing values are permitted.

group Character vector whose components contain the group label (e.g. a character
string) for each entry of colID. This vector must be of the same length as the
vector colID. In gene expression applications, this vector could contain the gene
symbol (or a co-expression module label).

minProportionPresent

A numeric value between 0 and 1 (logical values will be coerced to numeric).
Denotes the minimum consensus fraction of present data in each column that
will result in the column being retained.

consensusQuantile

A number between 0 and 1 giving the quantile probability for consensus calcu-
lation. 0 means the minimum value (true consensus) will be used.

verbose Level of verbosity; 0 means silent, larger values will cause progress messages
to be printed.

... Other arguments that should be considered undocumented and subject to change.

Details

A ’consensus’ of a vector (say ’x’) is simply defined as the quantile with probability consensusQuantile
of the vector x. This function calculates, for each variable in mdx, its proportion of present (i.e., non-
NA and non-NaN) values in each of the data sets in mdx, and forms the consensus. Only variables
whose consensus proportion of present data is at least selectFewestMissing are retained.

Value

A logical vector with one element per variable in mdx, giving TRUE for the retained variables.

Author(s)

Jeremy Miller and Peter Langfelder

360 setCorrelationPreservation

See Also

multiData

setCorrelationPreservation

Summary correlation preservation measure

Description

Given consensus eigengenes, the function calculates the average correlation preservation pair-wise
for all pairs of sets.

Usage

setCorrelationPreservation(
multiME,
setLabels,
excludeGrey = TRUE, greyLabel = "grey",
method = "absolute")

Arguments

multiME consensus module eigengenes in a multi-set format. A vector of lists with one
list corresponding to each set. Each list must contain a component data that is
a data frame whose columns are consensus module eigengenes.

setLabels names to be used for the sets represented in multiME.

excludeGrey logical: exclude the ’grey’ eigengene from preservation measure?

greyLabel module label corresponding to the ’grey’ module. Usually this will be the char-
acter string "grey" if the labels are colors, and the number 0 if the labels are
numeric.

method character string giving the correlation preservation measure to use. Recognized
values are (unique abbreviations of) "absolute", "hyperbolic".

Details

For each pair of sets, the function calculates the average preservation of correlation among the
eigengenes. Two preservation measures are available, the abosolute preservation (high if the two
correlations are similar and low if they are different), and the hyperbolically scaled preservation,
which de-emphasizes preservation of low correlation values.

Value

A data frame with each row and column corresponding to a set given in multiME, containing
the pairwise average correlation preservation values. Names and rownames are set to entries of
setLabels.

shortenStrings 361

Author(s)

Peter Langfelder

References

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also

multiSetMEs for module eigengene calculation;

plotEigengeneNetworks for eigengene network visualization.

shortenStrings Shorten given character strings by truncating at a suitable separator.

Description

This function shortens given character strings so they are not longer than a given maximum length.

Usage

shortenStrings(strings, maxLength = 25, minLength = 10,
split = " ", fixed = TRUE,
ellipsis = "...", countEllipsisInLength = FALSE)

Arguments

strings Character strings to be shortened.

maxLength Maximum length (number of characters) in the strings to be retained. See details
for when the returned strings can exceed this length.

minLength Minimum length of the returned strings. See details.

split Character string giving the split at which the strings can be truncated. This can
be a literal string or a regular expression (if the latter, fixed below must be set
to FALSE).

fixed Logical: should split be interpreted as a literal specification (TRUE) or as a
regular expression (FALSE)?

ellipsis Character string that will be appended to every shorten string, to indicate that
the string has been shortened.

countEllipsisInLength

Logical: should the length of the ellipsis count toward the minimum and maxi-
mum length?

362 sigmoidAdjacencyFunction

Details

Strings whose length (number of characters) is at most maxLength are returned unchanged. For
those that are longer, the function uses gregexpr to search for the occurrences of split in each
given character string. If such occurrences are found at positions between minLength and maxLength,
the string will be truncated at the last such split; otherwise, the string will be truncated at maxLength.
The ellipsis is appended to each truncated string.

Value

A character vector of strings, shortened as necessary. If the input strings had non-NULL dimen-
sions and dimnames, these are copied to the output.

Author(s)

Peter Langfelder

See Also

gregexpr, the workhorse pattern matching function formatLabels for splitting strings into multi-
ple lines

sigmoidAdjacencyFunction

Sigmoid-type adacency function.

Description

Sigmoid-type function that converts a similarity to a weighted network adjacency.

Usage

sigmoidAdjacencyFunction(ss, mu = 0.8, alpha = 20)

Arguments

ss similarity, a number between 0 and 1. Can be given as a scalar, vector or a
matrix.

mu shift parameter.

alpha slope parameter.

Details

The sigmoid adjacency function is defined as 1/(1 + exp[−α(ss− µ)]).

Value

Adjacencies returned in the same form as the input ss

signedKME 363

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

signedKME Signed eigengene-based connectivity

Description

Calculation of (signed) eigengene-based connectivity, also known as module membership.

Usage

signedKME(
datExpr,
datME,
exprWeights = NULL,
MEWeights = NULL,
outputColumnName = "kME",
corFnc = "cor",
corOptions = "use = 'p'")

Arguments

datExpr a data frame containing the gene expression data. Rows correspond to samples
and columns to genes. Missing values are allowed and will be ignored.

datME a data frame containing module eigengenes. Rows correspond to samples and
columns to module eigengenes.

exprWeights optional weight matrix of observation weights for datExpr, of the same di-
mensions as datExpr. If given, the weights must be non-negative and will be
passed on to the correlation function given in argument corFnc as argument
weights.x.

MEWeights optional weight matrix of observation weights for datME, of the same dimen-
sions as datME. If given, the weights must be non-negative and will be passed on
to the correlation function given in argument corFnc as argument weights.y.

outputColumnName

a character string specifying the prefix of column names of the output.

corFnc character string specifying the function to be used to calculate co-expression
similarity. Defaults to Pearson correlation. Any function returning values be-
tween -1 and 1 can be used.

364 signifNumeric

corOptions character string specifying additional arguments to be passed to the function
given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman
correlation.

Details

Signed eigengene-based connectivity of a gene in a module is defined as the correlation of the gene
with the corresponding module eigengene. The samples in datExpr and datME must be the same.

Value

A data frame in which rows correspond to input genes and columns to module eigengenes, giving
the signed eigengene-based connectivity of each gene with respect to each eigengene.

Author(s)

Steve Horvath

References

Dong J, Horvath S (2007) Understanding Network Concepts in Modules, BMC Systems Biology
2007, 1:24

Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network Analysis. PLoS
Comput Biol 4(8): e1000117

signifNumeric Round numeric columns to given significant digits.

Description

This function applies link{signif} (or possibly other rounding function) to numeric, non-integer
columns of a given data frame.

Usage

signifNumeric(x, digits, fnc = "signif")

Arguments

x Input data frame, matrix or matrix-like object that can be coerced to a data frame.

digits Significant digits to retain.

fnc The rounding function. Typically either signif or round.

Details

The function fnc is applied to each numeric column that contains at least one non-integer (i.e., at
least one element that does not equal its own round).

signumAdjacencyFunction 365

Value

The transformed data frame.

Author(s)

Peter Langfelder

See Also

The rounding functions signif and round.

Examples

df = data.frame(text = letters[1:3], ints = c(1:3)+234, nonints = c(0:2) + 0.02345);
df;
signifNumeric(df, 2);
signifNumeric(df, 2, fnc = "round");

signumAdjacencyFunction

Hard-thresholding adjacency function

Description

This function transforms correlations or other measures of similarity into an unweighted network
adjacency.

Usage

signumAdjacencyFunction(corMat, threshold)

Arguments

corMat a matrix of correlations or other measures of similarity.

threshold threshold for connecting nodes: all nodes whose corMat is above the threshold
will be connected in the resulting network.

Value

An unweighted adjacency matrix of the same dimensions as the input corMat.

Author(s)

Steve Horvath

366 simpleConsensusCalculation

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency for soft-thresholding and creating weighted networks.

simpleConsensusCalculation

Simple calculation of a single consenus

Description

This function calculates a single consensus from given individual data.

Usage

simpleConsensusCalculation(
individualData,
consensusOptions,
verbose = 1,
indent = 0)

Arguments

individualData Individual data from which the consensus is to be calculated. It can be either a
list or a multiData structure in which each element is a numeric vector or array.

consensusOptions

A list of class ConsensusOptions that contains options for the consensus calcu-
lation. A suitable list can be obtained by calling function newConsensusOptions.

verbose Integer level of verbosity of diagnostic messages. Zero means silent, higher
values make the output progressively more and more verbose.

indent Indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Consensus is defined as the element-wise (also known as "parallel") quantile of of the individual
data at probability given by the consensusQuantile element of consensusOptions.

Value

A numeric vector or array of the same dimensions as each element of individualData

simpleHierarchicalConsensusCalculation 367

Author(s)

Peter Langfelder

References

Consensus network analysis was originally described in Langfelder P, Horvath S. Eigengene net-
works for studying the relationships between co-expression modules. BMC Systems Biology 2007,
1:54 https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-1-54

See Also

consensusCalculation for consensus calculation that can work with BlockwiseData and can
calibrate data before calculating consensus.

simpleHierarchicalConsensusCalculation

Simple hierarchical consensus calculation

Description

Hierarchical consensus calculation without calibration.

Usage

simpleHierarchicalConsensusCalculation(individualData, consensusTree, level = 1)

Arguments

individualData Individual data from which the consensus is to be calculated. It can be either
a list or a multiData structure. Each element in individulData should be a
numeric object (vector, matrix or array).

consensusTree A list specifying the consensus calculation. See details.

level Integer which the user should leave at 1. This serves to keep default set names
unique.

Details

This function calculates consensus in a hierarchical manner, using a separate (and possibly different)
set of consensus options at each step. The "recipe" for the consensus calculation is supplied in the
argument consensusTree.

The argument consensusTree should have the following components: (1) inputs must be either a
character vector whose components match names(inputData), or consensus trees in the own right.
(2) consensusOptions must be a list of class "ConsensusOptions" that specifies options for cal-
culating the consensus. A suitable set of options can be obtained by calling newConsensusOptions.
(3) Optionally, the component analysisName can be a single character string giving the name for

368 simulateDatExpr

the analysis. When intermediate results are returned, they are returned in a list whose names will
be set from analysisName components, if they exist.

Unlike the similar function hierarchicalConsensusCalculation, this function ignores the cali-
bration settings in the consensusOptions component of consensusTree; no calibration of input
data is performed.

The actual consensus calculation at each level of the consensus tree is carried out in function
simpleConsensusCalculation. The consensus options for each individual consensus calculation
are independent from one another, i.e., the consensus options for different steps can be different.

Value

A list with a single component consensus, containing the consensus data of the same dimensions
as the individual entries in the input individualData. This perhaps somewhat cumbersome con-
vention is used to make the output compatible with that of hierarchicalConsensusCalculation.

Author(s)

Peter Langfelder

See Also

simpleConsensusCalculation for a "single-level" consensus calculation;

hierarchicalConsensusCalculation for hierarchical consensus calculation with calibration

simulateDatExpr Simulation of expression data

Description

Simulation of expression data with a customizable modular structure and several different types of
noise.

Usage

simulateDatExpr(
eigengenes,
nGenes,
modProportions,
minCor = 0.3,
maxCor = 1,
corPower = 1,
signed = FALSE,
propNegativeCor = 0.3,
geneMeans = NULL,
backgroundNoise = 0.1,
leaveOut = NULL,
nSubmoduleLayers = 0,

simulateDatExpr 369

nScatteredModuleLayers = 0,
averageNGenesInSubmodule = 10,
averageExprInSubmodule = 0.2,
submoduleSpacing = 2,
verbose = 1, indent = 0)

Arguments

eigengenes a data frame containing the seed eigengenes for the simulated modules. Rows
correspond to samples and columns to modules.

nGenes total number of genes to be simulated.

modProportions a numeric vector with length equal the number of eigengenes in eigengenes
plus one, containing fractions of the total number of genes to be put into each of
the modules and into the "grey module", which means genes not related to any
of the modules. See details.

minCor minimum correlation of module genes with the corresponding eigengene. See
details.

maxCor maximum correlation of module genes with the corresponding eigengene. See
details.

corPower controls the dropoff of gene-eigengene correlation. See details.

signed logical: should the genes be simulated as belonging to a signed network? If
TRUE, all genes will be simulated to have positive correlation with the eigen-
gene. If FALSE, a proportion given by propNegativeCor will be simulated with
negative correlations of the same absolute values.

propNegativeCor

proportion of genes to be simulated with negative gene-eigengene correlations.
Only effective if signed is FALSE.

geneMeans optional vector of length nGenes giving desired mean expression for each gene.
If not given, the returned expression profiles will have mean zero.

backgroundNoise

amount of background noise to be added to the simulated expression data.

leaveOut optional specification of modules that should be left out of the simulation, that
is their genes will be simulated as unrelated ("grey"). This can be useful when
simulating several sets, in some which a module is present while in others it is
absent.

nSubmoduleLayers

number of layers of ordered submodules to be added. See details.
nScatteredModuleLayers

number of layers of scattered submodules to be added. See details.
averageNGenesInSubmodule

average number of genes in a submodule. See details.
averageExprInSubmodule

average strength of submodule expression vectors.
submoduleSpacing

a number giving submodule spacing: this multiple of the submodule size will
lie between the submodule and the next one.

370 simulateDatExpr

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Given eigengenes can be unrelated or they can exhibit non-trivial correlations. Each module is
simulated separately from others. The expression profiles are chosen such that their correlations
with the eigengene run from just below maxCor to minCor (hence minCor must be between 0 and
1, not including the bounds). The parameter corPower can be chosen to control the behaviour of
the simulated correlation with the gene index; values higher than 1 will result in the correlation
approaching minCor faster and lower than 1 slower.

Numbers of genes in each module are specified (as fractions of the total number of genes nGenes)
by modProportions. The last entry in modProportions corresponds to the genes that will be
simulated as unrelated to anything else ("grey" genes). The proportion must add up to 1 or less. If
the sum is less than one, the remaining genes will be partitioned into groups and simulated to be
"close" to the proper modules, that is with small but non-zero correlations (between minCor and 0)
with the module eigengene.

If signed is set FALSE, the correlation for some of the module genes is chosen negative (but the
absolute values remain the same as they would be for positively correlated genes). To ensure con-
sistency for simulations of multiple sets, the indices of the negatively correlated genes are fixed and
distributed evenly.

In addition to the primary module structure, a secondary structure can be optionally simulated.
Modules in the secondary structure have sizes chosen from an exponential distribution with mean
equal averageNGenesInSubmodule. Expression vectors simulated in the secondary structure are
simulated with expected standard deviation chosen from an exponential distribution with mean
equal averageExprInSubmodule; the higher this coefficient, the more pronounced will the sub-
modules be in the main modules. The secondary structure can be simulated in several layers; their
number is given by SubmoduleLayers. Genes in these submodules are ordered in the same order
as in the main modules.

In addition to the ordered submodule structure, a scattered submodule structure can be simulated as
well. This structure can be viewed as noise that tends to correlate random groups of genes. The size
and effect parameters are the same as for the ordered submodules, and the number of layers added
is controlled by nScatteredModuleLayers.

Value

A list with the following components:

datExpr simulated expression data in a data frame whose columns correspond genes and
rows to samples.

setLabels simulated module assignment. Module labels are numeric, starting from 1.
Genes simulated to be outside of proper modules have label 0. Modules that
are left out (specified in leaveOut) are indicated as 0 here.

allLabels simulated module assignment. Genes that belong to leftout modules (specified
in leaveOut) are indicated by their would-be assignment here.

simulateDatExpr5Modules 371

labelOrder a vector specifying the order in which labels correspond to the given eigen-
genes, that is labelOrder[1] is the label assigned to module whose seed is
eigengenes[, 1] etc.

Author(s)

Peter Langfelder

References

A short description of the simulation method can also be found in the Supplementary Material to
the article

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54.

The material is posted at http://horvath.genetics.ucla.edu/html/CoexpressionNetwork/EigengeneNetwork/SupplementSimulations.pdf.

See Also

simulateEigengeneNetwork for a simulation of eigengenes with a given causal structure;

simulateModule for simulations of individual modules;

simulateDatExpr5Modules for a simplified interface to expression simulations;

simulateMultiExpr for a simulation of several related data sets.

simulateDatExpr5Modules

Simplified simulation of expression data

Description

This function provides a simplified interface to the expression data simulation, at the cost of con-
siderably less flexibility.

Usage

simulateDatExpr5Modules(
nGenes = 2000,
colorLabels = c("turquoise", "blue", "brown", "yellow", "green"),
simulateProportions = c(0.1, 0.08, 0.06, 0.04, 0.02),
MEturquoise, MEblue, MEbrown, MEyellow, MEgreen,
SDnoise = 1, backgroundCor = 0.3)

372 simulateDatExpr5Modules

Arguments

nGenes total number of genes to be simulated.

colorLabels labels for simulated modules.
simulateProportions

a vector of length 5 giving proportions of the total number of genes to be placed
in each individual module. The entries must be positive and sum to at most 1. If
the sum is less than 1, the leftover genes will be simulated outside of modules.

MEturquoise seed module eigengene for the first module.

MEblue seed module eigengene for the second module.

MEbrown seed module eigengene for the third module.

MEyellow seed module eigengene for the fourth module.

MEgreen seed module eigengene for the fifth module.

SDnoise level of noise to be added to the simulated expressions.

backgroundCor backgrond correlation. If non-zero, a component will be added to all genes such
that the average correlation of otherwise unrelated genes will be backgroundCor.

Details

Roughly one-third of the genes are simulated with a negative correlation to their seed eigengene.
See the functions simulateModule and simulateDatExpr for more details.

Value

A list with the following components:

datExpr the simulated expression data in a data frame, with rows corresponding to sam-
ples and columns to genes.

truemodule a vector with one entry per gene containing the simulated module membership.

datME a data frame containing a copy of the input module eigengenes.

Author(s)

Steve Horvath and Peter Langfelder

See Also

simulateModule for simulation of individual modules;

simulateDatExpr for a more comprehensive data simulation interface.

simulateEigengeneNetwork 373

simulateEigengeneNetwork

Simulate eigengene network from a causal model

Description

Simulates a set of eigengenes (vectors) from a given set of causal anchors and a causal matrix.

Usage

simulateEigengeneNetwork(
causeMat,
anchorIndex, anchorVectors,
noise = 1,
verbose = 0, indent = 0)

Arguments

causeMat causal matrix. The entry [i,j] is the influence (path coefficient) of vector j on
vector i.

anchorIndex specifies the indices of the anchor vectors.
anchorVectors a matrix giving the actual anchor vectors as columns. Their number must equal

the length of anchorIndex.
noise standard deviation of the noise added to each simulated vector.
verbose level of verbosity. 0 means silent.
indent indentation for diagnostic messages. Zero means no indentation; each unit adds

two spaces.

Details

The algorithm starts with the anchor vectors and iteratively generates the rest from the path coeffi-
cients given in the matrix causeMat.

Value

A list with the following components:

eigengenes generated eigengenes.
causeMat a copy of the input causal matrix
levels useful for debugging. A vector with one entry for each eigengene giving the

number of generations of parents of the eigengene. Anchors have level 0, their
direct causal children have level 1 etc.

anchorIndex a copy of the input anchorIndex.

Author(s)

Peter Langfelder

374 simulateModule

simulateModule Simulate a gene co-expression module

Description

Simulation of a single gene co-expression module.

Usage

simulateModule(
ME,
nGenes,
nNearGenes = 0,
minCor = 0.3, maxCor = 1, corPower = 1,
signed = FALSE, propNegativeCor = 0.3,
geneMeans = NULL,
verbose = 0, indent = 0)

Arguments

ME seed module eigengene.

nGenes number of genes in the module to be simulated. Must be non-zero.

nNearGenes number of genes to be simulated with low correlation with the seed eigengene.

minCor minimum correlation of module genes with the eigengene. See details.

maxCor maximum correlation of module genes with the eigengene. See details.

corPower controls the dropoff of gene-eigengene correlation. See details.

signed logical: should the genes be simulated as belonging to a signed network? If
TRUE, all genes will be simulated to have positive correlation with the eigen-
gene. If FALSE, a proportion given by propNegativeCor will be simulated with
negative correlations of the same absolute values.

propNegativeCor

proportion of genes to be simulated with negative gene-eigengene correlations.
Only effective if signed is FALSE.

geneMeans optional vector of length nGenes giving desired mean expression for each gene.
If not given, the returned expression profiles will have mean zero.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

simulateMultiExpr 375

Details

Module genes are simulated around the eigengene by choosing them such that their (expected)
correlations with the seed eigengene decrease progressively from (just below) maxCor to minCor.
The genes are otherwise independent from one another. The variable corPower determines how
fast the correlation drops towards minCor. Higher powers lead to a faster frop-off; corPower must
be above zero but need not be integer.

If signed is FALSE, the genes are simulated so as to be part of an unsigned network module, that is
some genes will be simulated with a negative correlation with the seed eigengene (but of the same
absolute value that a positively correlated gene would be simulated with). The proportion of genes
with negative correlation is controlled by propNegativeCor.

Optionally, the function can also simulate genes that are "near" the module, meaning they are sim-
ulated with a low but non-zero correlation with the seed eigengene. The correlations run between
minCor and zero.

Value

A matrix containing the expression data with rows corresponding to samples and columns to genes.

Author(s)

Peter Langfelder

References

A short description of the simulation method can also be found in the Supplementary Material to
the article

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54.

The material is posted at http://horvath.genetics.ucla.edu/html/CoexpressionNetwork/EigengeneNetwork/SupplementSimulations.pdf.

See Also

simulateEigengeneNetwork for a simulation of eigengenes with a given causal structure;

simulateDatExpr for simulations of whole datasets consisting of multiple modules;

simulateDatExpr5Modules for a simplified interface to expression simulations;

simulateMultiExpr for a simulation of several related data sets.

simulateMultiExpr Simulate multi-set expression data

Description

Simulation of expression data in several sets with relate module structure.

376 simulateMultiExpr

Usage

simulateMultiExpr(eigengenes,
nGenes,
modProportions,
minCor = 0.5, maxCor = 1,
corPower = 1,
backgroundNoise = 0.1,
leaveOut = NULL,
signed = FALSE,
propNegativeCor = 0.3,
geneMeans = NULL,
nSubmoduleLayers = 0,
nScatteredModuleLayers = 0,
averageNGenesInSubmodule = 10,
averageExprInSubmodule = 0.2,
submoduleSpacing = 2,
verbose = 1, indent = 0)

Arguments

eigengenes the seed eigengenes for the simulated modules in a multi-set format. A list with
one component per set. Each component is again a list that must contain a com-
ponent data. This is a data frame of seed eigengenes for the corresponding data
set. Columns correspond to modules, rows to samples. Number of samples in
the simulated data is determined from the number of samples of the eigengenes.

nGenes integer specifyin the number of simulated genes.

modProportions a numeric vector with length equal the number of eigengenes in eigengenes
plus one, containing fractions of the total number of genes to be put into each of
the modules and into the "grey module", which means genes not related to any
of the modules. See details.

minCor minimum correlation of module genes with the corresponding eigengene. See
details.

maxCor maximum correlation of module genes with the corresponding eigengene. See
details.

corPower controls the dropoff of gene-eigengene correlation. See details.
backgroundNoise

amount of background noise to be added to the simulated expression data.

leaveOut optional specification of modules that should be left out of the simulation, that
is their genes will be simulated as unrelated ("grey"). A logical matrix in which
columns correspond to sets and rows to modules. Wherever TRUE, the corre-
sponding module in the corresponding data set will not be simulated, that is its
genes will be simulated independently of the eigengene.

signed logical: should the genes be simulated as belonging to a signed network? If
TRUE, all genes will be simulated to have positive correlation with the eigen-
gene. If FALSE, a proportion given by propNegativeCor will be simulated with
negative correlations of the same absolute values.

simulateMultiExpr 377

propNegativeCor

proportion of genes to be simulated with negative gene-eigengene correlations.
Only effective if signed is FALSE.

geneMeans optional vector of length nGenes giving desired mean expression for each gene.
If not given, the returned expression profiles will have mean zero.

nSubmoduleLayers

number of layers of ordered submodules to be added. See details.
nScatteredModuleLayers

number of layers of scattered submodules to be added. See details.
averageNGenesInSubmodule

average number of genes in a submodule. See details.
averageExprInSubmodule

average strength of submodule expression vectors.
submoduleSpacing

a number giving submodule spacing: this multiple of the submodule size will
lie between the submodule and the next one.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

For details of simulation of individual data sets and the meaning of individual set simulation argu-
ments, see simulateDatExpr. This function simulates several data sets at a time and puts the result
in a multi-set format. The number of genes is the same for all data sets. Module memberships are
also the same, but modules can optionally be “dissolved”, that is their genes will be simulated as
unassigned. Such “dissolved”, or left out, modules can be specified in the matrix leaveOut.

Value

A list with the following components:

multiExpr simulated expression data in multi-set format analogous to that of the input
eigengenes. A list with one component per set. Each component is again a
list that must contains a component data. This is a data frame of expression
data for the corresponding data set. Columns correspond to genes, rows to sam-
ples.

setLabels a matrix of dimensions (number of genes) times (number of sets) that contains
module labels for each genes in each simulated data set.

allLabels a matrix of dimensions (number of genes) times (number of sets) that contains
the module labels that would be simulated if no module were left out using
leaveOut. This means that all columns of the matrix are equal; the columns are
repeated for convenience so allLabels has the same dimensions as setLabels.

labelOrder a matrix of dimensions (number of modules) times (number of sets) that contains
the order in which module labels were assigned to genes in each set. The first
label is assigned to genes 1...(module size of module labeled by first label), the
second label to the following batch of genes etc.

378 simulateSmallLayer

Author(s)

Peter Langfelder

References

A short description of the simulation method can also be found in the Supplementary Material to
the article

Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54.

The material is posted at http://horvath.genetics.ucla.edu/html/CoexpressionNetwork/EigengeneNetwork/SupplementSimulations.pdf.

See Also

simulateEigengeneNetwork for a simulation of eigengenes with a given causal structure;

simulateDatExpr for simulation of individual data sets;

simulateDatExpr5Modules for a simple simulation of a data set consisting of 5 modules;

simulateModule for simulations of individual modules;

simulateSmallLayer Simulate small modules

Description

This function simulates a set of small modules. The primary purpose is to add a submodule structure
to the main module structure simulated by simulateDatExpr.

Usage

simulateSmallLayer(
order,
nSamples,
minCor = 0.3, maxCor = 0.5, corPower = 1,
averageModuleSize,
averageExpr,
moduleSpacing,
verbose = 4, indent = 0)

Arguments

order a vector giving the simulation order for vectors. See details.

nSamples integer giving the number of samples to be simulated.

minCor a multiple of maxCor (see below) giving the minimum correlation of module
genes with the corresponding eigengene. See details.

maxCor maximum correlation of module genes with the corresponding eigengene. See
details.

simulateSmallLayer 379

corPower controls the dropoff of gene-eigengene correlation. See details.

averageModuleSize

average number of genes in a module. See details.

averageExpr average strength of module expression vectors.

moduleSpacing a number giving module spacing: this multiple of the module size will lie be-
tween the module and the next one.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Module eigenvectors are chosen randomly and independently. Module sizes are chosen randomly
from an exponential distribution with mean equal averageModuleSize. Two thirds of genes in each
module are simulated as proper module genes and one third as near-module genes (see simulateModule
for details). Between each successive pairs of modules a number of genes given by moduleSpacing
will be left unsimulated (zero expression). Module expression, that is the expected standard devi-
ation of the module expression vectors, is chosen randomly from an exponential distribution with
mean equal averageExpr. The expression profiles are chosen such that their correlations with the
eigengene run from just below maxCor to minCor * maxCor (hence minCor must be between 0 and
1, not including the bounds). The parameter corPower can be chosen to control the behaviour of
the simulated correlation with the gene index; values higher than 1 will result in the correlation
approaching minCor * maxCor faster and lower than 1 slower.

The simulated genes will be returned in the order given in order.

Value

A matrix of simulated gene expressions, with dimension (nSamples, length(order)).

Author(s)

Peter Langfelder

See Also

simulateModule for simulation of individual modules;

simulateDatExpr for the main gene expression simulation function.

380 sizeRestrictedClusterMerge

sizeGrWindow Opens a graphics window with specified dimensions

Description

If a graphic device window is already open, it is closed and re-opened with specified dimensions (in
inches); otherwise a new window is opened.

Usage

sizeGrWindow(width, height)

Arguments

width desired width of the window, in inches.

height desired heigh of the window, in inches.

Value

None.

Author(s)

Peter Langfelder

sizeRestrictedClusterMerge

Cluter merging with size restrictions

Description

This function merges clusters by correlation of the first principal components such that the resulting
merged clusters do not exceed a given maximum size.

Usage

sizeRestrictedClusterMerge(
datExpr,
clusters,
clusterSizes = NULL,
centers = NULL,
maxSize,
networkType = "unsigned",
verbose = 0,
indent = 0)

sizeRestrictedClusterMerge 381

Arguments

datExpr Data on which the clustering is based (e.g., expression data). Variables are in
columns and observations (samples) in rows.

clusters A vector with element per variable (column) in datExpr giving the cluster label
for the corresponding variable.

clusterSizes Optional pre-calculated cluster sizes. If not given, will be determined from given
clusters.

centers Optional pre-calculaed cluster centers (first principal components/singular vec-
tors). If not given, will be calculated from given data and cluster assignments.

maxSize Maximum allowed size of merged clusters. If any of the given clusters are
larger than maxSize, they will not be changed.

networkType One of "unsigned" and "signed". Determines whether clusters with nega-
tively correlated representatives will be considered similar ("unsigned") or dis-
similar ("signed").

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The function iteratively merges two closest clusters subject to the constraint that the merged cluster
size cannot exceed maxSize. Merging stops when no two clusters can be merged without exceeding
the maximum size.

Value

A list with two components

clusters A numeric vector with one component per input gene, giving the cluster number
in which the gene is assigned.

centers Cluster centers, that is their first principal components/singular vectors.

Author(s)

Peter Langfelder

See Also

The last step in projectiveKMeans uses this function.

382 softConnectivity

softConnectivity Calculates connectivity of a weighted network.

Description

Given expression data or a similarity, the function constructs the adjacency matrix and for each
node calculates its connectivity, that is the sum of the adjacency to the other nodes.

Usage

softConnectivity(
datExpr,
corFnc = "cor", corOptions = "use = 'p'",
weights = NULL,
type = "unsigned",
power = if (type == "signed") 15 else 6,
blockSize = 1500,
minNSamples = NULL,
verbose = 2, indent = 0)

softConnectivity.fromSimilarity(
similarity,
type = "unsigned",
power = if (type == "signed") 15 else 6,
blockSize = 1500,
verbose = 2, indent = 0)

Arguments

datExpr a data frame containing the expression data, with rows corresponding to samples
and columns to genes.

similarity a similarity matrix: a square symmetric matrix with entries between -1 and 1.

corFnc character string giving the correlation function to be used for the adjacency cal-
culation. Recommended choices are "cor" and "bicor", but other functions
can be used as well.

corOptions character string giving further options to be passed to the correlation function.

weights optional observation weights for datExpr to be used in correlation calculation.
A matrix of the same dimensions as datExpr, containing non-negative weights.
Only used with Pearson correlation.

type network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid".

power soft thresholding power.

spaste 383

blockSize block size in which adjacency is to be calculated. Too low (say below 100)
may make the calculation inefficient, while too high may cause R to run out
of physical memory and slow down the computer. Should be chosen such that
an array of doubles of size (number of genes) * (block size) fits into available
physical memory.

minNSamples minimum number of samples available for the calculation of adjacency for the
adjacency to be considered valid. If not given, defaults to the greater of ..minNSamples
(currently 4) and number of samples divided by 3. If the number of samples falls
below this threshold, the connectivity of the corresponding gene will be returned
as NA.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Value

A vector with one entry per gene giving the connectivity of each gene in the weighted network.

Author(s)

Steve Horvath

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency

spaste Space-less paste

Description

A convenient wrapper for the paste function with sep="".

Usage

spaste(...)

Arguments

... standard arguments to function paste except sep.

384 standardColors

Value

The result of the corresponding paste.

Note

Do not use the sep argument. Using will lead to an error.

Author(s)

Peter Langfelder

See Also

paste

Examples

a = 1;
paste("a=", a);
spaste("a=", a);

standardColors Colors this library uses for labeling modules.

Description

Returns the vector of color names in the order they are assigned by other functions in this library.

Usage

standardColors(n = NULL)

Arguments

n Number of colors requested. If NULL, all (approx. 450) colors will be re-
turned. Any other invalid argument such as less than one or more than maximum
(length(standardColors())) will trigger an error.

Value

A vector of character color names of the requested length.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

Examples

standardColors(10);

standardScreeningBinaryTrait 385

standardScreeningBinaryTrait

Standard screening for binatry traits

Description

The function standardScreeningBinaryTrait computes widely used statistics for relating the columns
of the input data frame (argument datE) to a binary sample trait (argument y). The statistics include
Student t-test p-value and the corresponding local false discovery rate (known as q-value, Storey et
al 2004), the fold change, the area under the ROC curve (also known as C-index), mean values etc.
If the input option KruskalTest is set to TRUE, it also computes the Kruskal Wallist test p-value and
corresponding q-value. The Kruskal Wallis test is a non-parametric, rank-based group comparison
test.

Usage

standardScreeningBinaryTrait(
datExpr, y,
corFnc = cor, corOptions = list(use = 'p'),
kruskalTest = FALSE, qValues = FALSE,
var.equal=FALSE, na.action="na.exclude",
getAreaUnderROC = TRUE)

Arguments

datExpr a data frame or matrix whose columns will be related to the binary trait

y a binary vector whose length (number of components) equals the number of
rows of datE

corFnc correlation function. Defaults to Pearson correlation.

corOptions a list specifying options to corFnc. An empty list must be specified as list()
(supplying NULL instead will trigger an error).

kruskalTest logical: should the Kruskal test be performed?

qValues logical: should the q-values be calculated?

var.equal logical input parameter for the Student t-test. It indicates whether to treat the
two variances (corresponding to the binary grouping) are being equal. If TRUE
then the pooled variance is used to estimate the variance otherwise the Welch
(or Satterthwaite) approximation to the degrees of freedom is used. Warning:
here the default value is TRUE which is different from the default value of t.test.
Type help(t.test) for more details.

na.action character string for the Student t-test: indicates what should happen when the
data contain missing values NAs.

getAreaUnderROC

logical: should area under the ROC curve be calculated? The calculation slows
the function down somewhat.

386 standardScreeningBinaryTrait

Value

A data frame whose rows correspond to the columns of datE and whose columns report

ID column names of the input datExpr.

corPearson pearson correlation with a binary numeric version of the input variable. The
numeric variable equals 1 for level 1 and 2 for level 2. The levels are given by
levels(factor(y)).

t.Student Student’s t-test statistic

pvalueStudent two-sided Student t-test p-value.

qvalueStudent (if input qValues==TRUE) q-value (local false discovery rate) based on the Stu-
dent T-test p-value (Storey et al 2004).

foldChange a (signed) ratio of mean values. If the mean in the first group (correspond-
ing to level 1) is larger than that of the second group, it equals meanFirst-
Group/meanSecondGroup. But if the mean of the second group is larger than
that of the first group it equals -meanSecondGroup/meanFirstGroup (notice the
minus sign).

meanFirstGroup means of columns in input datExpr across samples in the first group.
meanSecondGroup

means of columns in input datExpr across samples in the second group.

SE.FirstGroup standard errors of columns in input datExpr across samples in the first group.
Recall that SE(x)=sqrt(var(x)/n) where n is the number of non-missing values of
x.

SE.SecondGroup standard errors of columns in input datExpr across samples in the second group.

areaUnderROC the area under the ROC, also known as the concordance index or C.index. This
is a measure of discriminatory power. The measure lies between 0 and 1 where
0.5 indicates no discriminatory power. 0 indicates that the "opposite" predictor
has perfect discriminatory power. To compute it we use the function rcorr.cens
with outx=TRUE (from Frank Harrel’s package Hmisc). Only present if input
getAreUnderROC is TRUE.

nPresentSamples

number of samples with finite measurements for each gene.

If input kruskalTest is TRUE, the following columns further summarize results of Kruskal-Wallis
test:

stat.Kruskal Kruskal-Wallis test statistic.
stat.Kruskal.signed

(Warning: experimental) Kruskal-Wallis test statistic including a sign that indi-
cates whether the average rank is higher in second group (positive) or first group
(negative).

pvaluekruskal Kruskal-Wallis test p-values.

qkruskal q-values corresponding to the Kruskal-Wallis test p-value (if input qValues==TRUE).

Author(s)

Steve Horvath

standardScreeningCensoredTime 387

References

Storey JD, Taylor JE, and Siegmund D. (2004) Strong control, conservative point estimation, and
simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the
Royal Statistical Society, Series B, 66: 187-205.

Examples

require(survival) # For is.Surv in rcorr.cens
m=50
y=sample(c(1,2),m,replace=TRUE)
datExprSignal=simulateModule(scale(y),30)
datExprNoise=simulateModule(rnorm(m),150)
datExpr=data.frame(datExprSignal,datExprNoise)

Result1=standardScreeningBinaryTrait(datExpr,y)
Result1[1:5,]

use unequal variances and calculate q-values
Result2=standardScreeningBinaryTrait(datExpr,y, var.equal=FALSE,qValue=TRUE)
Result2[1:5,]

calculate Kruskal Wallis test and q-values
Result3=standardScreeningBinaryTrait(datExpr,y,kruskalTest=TRUE,qValue=TRUE)
Result3[1:5,]

standardScreeningCensoredTime

Standard Screening with regard to a Censored Time Variable

Description

The function standardScreeningCensoredTime computes association measures between the columns
of the input data datE and a censored time variable (e.g. survival time). The censored time is spec-
ified using two input variables "time" and "event". The event variable is binary where 1 indicates
that the event took place (e.g. the person died) and 0 indicates censored (i.e. lost to follow up).
The function fits univariate Cox regression models (one for each column of datE) and outputs a
Wald test p-value, a logrank p-value, corresponding local false discovery rates (known as q-values,
Storey et al 2004), hazard ratios. Further it reports the concordance index (also know as area under
the ROC curve) and optionally results from dichotomizing the columns of datE.

Usage

standardScreeningCensoredTime(
time,
event,

388 standardScreeningCensoredTime

datExpr,
percentiles = seq(from = 0.1, to = 0.9, by = 0.2),
dichotomizationResults = FALSE,
qValues = TRUE,
fastCalculation = TRUE)

Arguments

time numeric variable showing time to event or time to last follow up.

event Input variable time specifies the time to event or time to last follow up. Input
variable event indicates whether the event happend (=1) or whether there was
censoring (=0).

datExpr a data frame or matrix whose columns will be related to the censored time.

percentiles numeric vector which is only used when dichotomizationResults=T. Each value
should lie between 0 and 1. For each value specified in the vector percentiles,
a binary vector will be defined by dichotomizing the column value according to
the corresponding quantile. Next a corresponding p-value will be calculated.

dichotomizationResults

logical. If this option is set to TRUE then the values of the columns of datE will
be dichotomized and corresponding Cox regression p-values will be calculated.

qValues logical. If this option is set to TRUE (default) then q-values will be calculated
for the Cox regression p-values.

fastCalculation

logical. If set to TRUE, the function outputs correlation test p-values (and q-
values) for correlating the columns of datE with the expected hazard (if no
covariate is fit). Specifically, the expected hazard is defined as the deviance
residual of an intercept only Cox regression model. The results are very sim-
ilar to those resulting from a univariate Cox model where the censored time
is regressed on the columns of dat. Specifically, this computational speed up
is facilitated by the insight that the p-values resulting from a univariate Cox
regression coxph(Surv(time,event)~datE[,i]) are very similar to those from cor-
PvalueFisher(cor(devianceResidual,datE[,i]), nSamples).

Details

If input option fastCalculation=TRUE, then the function outputs correlation test p-values (and
q-values) for correlating the columns of datE with the expected hazard (if no covariate is fit).
Specifically, the expected hazard is defined as the deviance residual of an intercept only Cox
regression model. The results are very similar to those resulting from a univariate Cox model
where the censored time is regressed on the columns of dat. Specifically, this computational
speed up is facilitated by the insight that the p-values resulting from a univariate Cox regression
coxph(Surv(time,event)~datE[,i]) are very similar to those from corPvalueFisher(cor(devianceResidual,datE[,i]),
nSamples)

Value

If fastCalculation is FALSE, the function outputs a data frame whose rows correspond to the
columns of datE and whose columns report

standardScreeningCensoredTime 389

ID column names of the input data datExpr.

pvalueWald Wald test p-value from fitting a univariate Cox regression model where the cen-
sored time is regressed on each column of datExpr.

qValueWald local false discovery rate (q-value) corresponding to the Wald test p-value.

pvalueLogrank Logrank p-value resulting from the Cox regression model. Also known as score
test p-value. For large sample sizes this sould be similar to the Wald test p-value.

qValueLogrank local false discovery rate (q-value) corresponding to the Logrank test p-value.

HazardRatio hazard ratio resulting from the Cox model. If the value is larger than 1, then high
values of the column are associated with shorter time, e.g. increased hazard of
death. A hazard ratio equal to 1 means no relationship between the column and
time. HR<1 means that high values are associated with longer time, i.e. lower
hazard.

CI.LowerLimitHR

Lower bound of the 95 percent confidence interval of the hazard ratio.

CI.UpperLimitHR

Upper bound of the 95 percent confidence interval of the hazard ratio.

C.index concordance index, also known as C-index or area under the ROC curve. Cal-
culated with the rcorr.cens option outx=TRUE (ties are ignored).

MinimumDichotPvalue

This is the smallest p-value from the dichotomization results. To see which
dichotomized variable (and percentile) corresponds to the minimum, study the
following columns.

pValueDichot0.1

This columns report the p-value when the column is dichotomized according
to the specified percentile (here 0.1). The percentiles are specified in the input
option percentiles.

pvalueDeviance The p-value resulting from using a correlation test to relate the expected hazard
(deviance residual) with each (undichotomized) column of datE. Specifically,
the Fisher transformation is used to calculate the p-value for the Pearson corre-
lation. The resulting p-value should be very similar to that of a univariate Cox
regression model.

qvalueDeviance Local false discovery rate (q-value) corresponding to pvalueDeviance.

corDeviance Pearson correlation between the expected hazard (deviance residual) with each
(undichotomized) column of datExpr.

Author(s)

Steve Horvath

390 standardScreeningNumericTrait

standardScreeningNumericTrait

Standard screening for numeric traits

Description

Standard screening for numeric traits based on Pearson correlation.

Usage

standardScreeningNumericTrait(datExpr, yNumeric, corFnc = cor,
corOptions = list(use = 'p'),
alternative = c("two.sided", "less", "greater"),
qValues = TRUE,
areaUnderROC = TRUE)

Arguments

datExpr data frame containing expression data (or more generally variables to be screened),
with rows corresponding to samples and columns to genes (variables)

yNumeric a numeric vector giving the trait measurements for each sample

corFnc correlation function. Defaults to Pearson correlation but can also be bicor.

corOptions list specifying additional arguments to be passed to the correlation function
given by corFnc.

alternative alternative hypothesis for the correlation test

qValues logical: should q-values be calculated?

areaUnderROC logical: should are under the receiver-operating curve be calculated?

Details

The function calculates the correlations, associated p-values, area under the ROC, and q-values

Value

Data frame with the following components:

ID Gene (or variable) identifiers copied from colnames(datExpr)

cor correlations of all genes with the trait

Z Fisher Z statistics corresponding to the correlations

pvalueStudent Student p-values of the correlations

qvalueStudent (if input qValues==TRUE) q-values of the correlations calculated from the p-
values

AreaUnderROC (if input areaUnderROC==TRUE) area under the ROC
nPresentSamples

number of samples present for the calculation of each association.

stdErr 391

Author(s)

Steve Horvath

See Also

standardScreeningBinaryTrait, standardScreeningCensoredTime

stdErr Standard error of the mean of a given vector.

Description

Returns the standard error of the mean of a given vector. Missing values are ignored.

Usage

stdErr(x)

Arguments

x a numeric vector

Value

Standard error of the mean of x.

Author(s)

Steve Horvath

stratifiedBarplot Bar plots of data across two splitting parameters

Description

This function takes an expression matrix which can be split using two separate splitting parameters
(ie, control vs AD with multiple brain regions), and plots the results as a barplot. Group average,
standard deviations, and relevant Kruskal-Wallis p-values are returned.

Usage

stratifiedBarplot(
expAll,
groups, split, subset,
genes = NA,
scale = "N", graph = TRUE,
las1 = 2, cex1 = 1.5, ...)

392 stratifiedBarplot

Arguments

expAll An expression matrix, with rows as samples and genes/probes as columns. If
genes=NA, then column names must be included.

groups A character vector corresponding to the samples in expAll, with each element
the group name of the relevant sample or NA for samples not in any group. For,
example: NA, NA, NA, Con, Con, Con, Con, AD, AD, AD, AD, NA, NA. This
trait will be plotted as adjacent bars for each split.

split A character vector corresponding to the samples in expAll, with each element
the group splitting name of the relevant sample or NA for samples not in any
group. For, example: NA, NA, NA, Hip, Hip, EC, EC, Hip, Hip, EC, EC, NA,
NA. This trait will be plotted as the same color across each split of the barplot.
For the function to work properly, the same split values should be inputted for
each group.

subset A list of one or more genes to compare the expression with. If the list contains
more than one gene, the first element contains the group name. For example,
Ribosomes, RPL3, RPL4, RPS3.

genes If entered, this parameter is a list of gene/probe identifiers corresponding to the
columns in expAll.

scale For subsets of genes that include more than one gene, this parameter determines
how the genes are combined into a single value. Currently, there are five op-
tions: 1) ("N")o scaling (default); 2) first divide each gene by the ("A")verage
across samples; 3) first scale genes to ("Z")-score across samples; 4) only take
the top ("H")ub gene (ignore all but the highest-connected gene); and 5) take
the ("M")odule eigengene. Note that these scaling methods have not been suffi-
ciently tested, and should be considered experimental.

graph If TRUE (default), bar plot is made. If FALSE, only the results are returned, and
no plot is made.

cex1 Sets the graphing parameters of cex.axis and cex.names (default=1.5)

las1 Sets the graphing parameter las (default=2).

... Other graphing parameters allowed in the barplot function. Note that the param-
eters for cex.axis, cex.names, and las are superseded by cex1 and las1 and will
therefore be ignored.

Value
splitGroupMeans

The group/split averaged expression across each group and split combination.
This is the height of the bars in the graph.

splitGroupSDs The standard deviation of group/split expression across each group and split
combination. This is the height of the error bars in the graph.

splitPvals Kruskal-Wallis p-values for each splitting parameter across groups.

groupPvals Kruskal-Wallis p-values for each group parameter across splits.

Author(s)

Jeremy Miller

subsetTOM 393

See Also

barplot, verboseBarplot

Examples

Example: first simulate some data
set.seed(100)
ME.A = sample(1:100,50); ME.B = sample(1:100,50)
ME.C = sample(1:100,50); ME.D = sample(1:100,50)
ME1 = data.frame(ME.A, ME.B, ME.C, ME.D)
simDatA = simulateDatExpr(ME1,1000,c(0.2,0.1,0.08,0.05,0.3), signed=TRUE)
datExpr = simDatA$datExpr+5
datExpr[1:10,] = datExpr[1:10,]+2
datExpr[41:50,] = datExpr[41:50,]-1

Now split up the data and plot it!
subset = c("Random Genes", "Gene.1", "Gene.234", "Gene.56", "Gene.789")
groups = rep(c("A","A","A","B","B","B","C","C","C","C"),5)
split = c(rep("ZZ",10), rep("YY",10), rep("XX",10), rep("WW",10), rep("VV",10))
par(mfrow = c(1,1))
results = stratifiedBarplot(datExpr, groups, split, subset)
results

Now plot it the other way
results = stratifiedBarplot(datExpr, split, groups, subset)

subsetTOM Topological overlap for a subset of a whole set of genes

Description

This function calculates topological overlap of a subset of vectors with respect to a whole data set.

Usage

subsetTOM(
datExpr,
subset,
corFnc = "cor", corOptions = "use = 'p'",
weights = NULL,
networkType = "unsigned",
power = 6,
verbose = 1, indent = 0)

394 subsetTOM

Arguments

datExpr a data frame containing the expression data of the whole set, with rows corre-
sponding to samples and columns to genes.

subset a single logical or numeric vector giving the indices of the nodes for which the
TOM is to be calculated.

corFnc character string giving the correlation function to be used for the adjacency cal-
culation. Recommended choices are "cor" and "bicor", but other functions
can be used as well.

corOptions character string giving further options to be passed to the correlation function.

weights optional observation weights for datExpr to be used in correlation calculation.
A matrix of the same dimensions as datExpr, containing non-negative weights.
Only used with Pearson correlation.

networkType character string giving network type. Allowed values are (unique abbreviations
of) "unsigned", "signed", "signed hybrid". See adjacency.

power soft-thresholding power for network construction.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

This function is designed to calculated topological overlaps of small subsets of large expression
data sets, for example in individual modules.

Value

A matrix of dimensions n*n, where n is the number of entries selected by block.

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

TOMsimilarity for standard calculation of topological overlap.

swapTwoBranches 395

swapTwoBranches Select, swap, or reflect branches in a dendrogram.

Description

swapTwoBranches takes the a gene tree object and two genes as input, and swaps the branches
containing these two genes at the nearest branch point of the dendrogram.

reflectBranch takes the a gene tree object and two genes as input, and reflects the branch containing
the first gene at the nearest branch point of the dendrogram.

selectBranch takes the a gene tree object and two genes as input, and outputs indices for all genes
in the branch containing the first gene, up to the nearest branch point of the dendrogram.

Usage

swapTwoBranches(hierTOM, g1, g2)
reflectBranch(hierTOM, g1, g2, both = FALSE)
selectBranch(hierTOM, g1, g2)

Arguments

hierTOM A hierarchical clustering object (or gene tree) that is used to plot the dendro-
gram. For example, the output object from the function hclust or fastclus-
ter::hclust. Note that elements of hierTOM$order MUST be named (for ex-
ample, with the corresponding gene name).

g1 Any gene in the branch of interest.

g2 Any gene in a branch directly adjacent to the branch of interest.

both Logical: should the selection include the branch gene g2?

Value

swapTwoBranches and reflectBranch return a hierarchical clustering object with the hierTOM$order
variable properly adjusted, but all other variables identical as the heirTOM input.

selectBranch returns a numeric vector corresponding to all genes in the requested branch.

Author(s)

Jeremy Miller

Examples

Not run:
Example: first simulate some data.
n = 30;
n2 = 2*n;
n.3 = 20;
n.5 = 10;

396 swapTwoBranches

MEturquoise = sample(1:(2*n),n)
MEblue = c(MEturquoise[1:(n/2)], sample(1:(2*n),n/2))
MEbrown = sample(1:n2,n)
MEyellow = sample(1:n2,n)
MEgreen = c(MEyellow[1:n.3], sample(1:n2,n.5))
MEred = c(MEbrown [1:n.5], sample(1:n2,n.3))

ME = data.frame(MEturquoise, MEblue, MEbrown, MEyellow, MEgreen, MEred)
dat1 = simulateDatExpr(ME,8*n ,c(0.16,0.12,0.11,0.10,0.10,0.09,0.15),

signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 = fastcluster::hclust(as.dist(1-TOM1),method="average")
colorh = labels2colors(dat1$allLabels)

plotDendroAndColors(tree1,colorh,dendroLabels=FALSE)

Reassign modules using the selectBranch and chooseOneHubInEachModule functions

datExpr = dat1$datExpr
hubs = chooseOneHubInEachModule(datExpr, colorh)
colorh2 = rep("grey", length(colorh))
colorh2 [selectBranch(tree1,hubs["blue"],hubs["turquoise"])] = "blue"
colorh2 [selectBranch(tree1,hubs["turquoise"],hubs["blue"])] = "turquoise"
colorh2 [selectBranch(tree1,hubs["green"],hubs["yellow"])] = "green"
colorh2 [selectBranch(tree1,hubs["yellow"],hubs["green"])] = "yellow"
colorh2 [selectBranch(tree1,hubs["red"],hubs["brown"])] = "red"
colorh2 [selectBranch(tree1,hubs["brown"],hubs["red"])] = "brown"
plotDendroAndColors(tree1,cbind(colorh,colorh2),c("Old","New"),dendroLabels=FALSE)

Now swap and reflect some branches, then optimize the order of the branches

Open a suitably sized graphics window

sizeGrWindow(12,9);

partition the screen for 3 dendrogram + module color plots

layout(matrix(c(1:6), 6, 1), heights = c(0.8, 0.2, 0.8, 0.2, 0.8, 0.2));

plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Starting Dendrogram",
setLayout = FALSE)

tree1 = swapTwoBranches(tree1,hubs["red"],hubs["turquoise"])
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Swap blue/turquoise and red/brown",

setLayout = FALSE)

tree1 = reflectBranch(tree1,hubs["blue"],hubs["green"])
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Reflect turquoise/blue",

setLayout = FALSE)

End(Not run)

TOMplot 397

TOMplot Graphical representation of the Topological Overlap Matrix

Description

Graphical representation of the Topological Overlap Matrix using a heatmap plot combined with
the corresponding hierarchical clustering dendrogram and module colors.

Usage

TOMplot(
dissim,
dendro,
Colors = NULL,
ColorsLeft = Colors,
terrainColors = FALSE,
setLayout = TRUE,
...)

Arguments

dissim a matrix containing the topological overlap-based dissimilarity

dendro the corresponding hierarchical clustering dendrogram

Colors optional specification of module colors to be plotted on top

ColorsLeft optional specification of module colors on the left side. If NULL, Colors will be
used.

terrainColors logical: should terrain colors be used?

setLayout logical: should layout be set? If TRUE, standard layout for one plot will be
used. Note that this precludes multiple plots on one page. If FALSE, the user is
responsible for setting the correct layout.

... other graphical parameters to heatmap.

Details

The standard heatmap function uses the layout function to set the following layout (when Colors
is given):

0 0 5
0 0 2
4 1 3

To get a meaningful heatmap plot, user-set layout must respect this geometry.

Value

None.

398 TOMsimilarity

Author(s)

Steve Horvath and Peter Langfelder

See Also

heatmap, the workhorse function doing the plotting.

TOMsimilarity Topological overlap matrix similarity and dissimilarity

Description

Calculation of the topological overlap matrix, and the corresponding dissimilarity, from a given
adjacency matrix.

Usage

TOMsimilarity(
adjMat,
TOMType = "unsigned",
TOMDenom = "min",
suppressTOMForZeroAdjacencies = FALSE,
suppressNegativeTOM = FALSE,
useInternalMatrixAlgebra = FALSE,
verbose = 1,
indent = 0)

TOMdist(
adjMat,
TOMType = "unsigned",
TOMDenom = "min",
suppressTOMForZeroAdjacencies = FALSE,
suppressNegativeTOM = FALSE,
useInternalMatrixAlgebra = FALSE,
verbose = 1,
indent = 0)

Arguments

adjMat adjacency matrix, that is a square, symmetric matrix with entries between 0 and
1 (negative values are allowed if TOMType=="signed").

TOMType one of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See TOMsimilarityFromExpr for details.

TOMDenom a character string specifying the TOM variant to be used. Recognized values
are "min" giving the standard TOM described in Zhang and Horvath (2005),
and "mean" in which the min function in the denominator is replaced by mean.

TOMsimilarity 399

The "mean" may produce better results but at this time should be considered
experimental.

suppressTOMForZeroAdjacencies

Logical: should the results be set to zero for zero adjacencies?
suppressNegativeTOM

Logical: should the result be set to zero when negative?
useInternalMatrixAlgebra

Logical: should WGCNA’s own, slow, matrix multiplication be used instead of
R-wide BLAS? Only useful for debugging.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

The functions perform basically the same calculations of topological overlap. TOMdist turns the
overlap (which is a measure of similarity) into a measure of dissimilarity by subtracting it from 1.

Basic checks on the adjacency matrix are performed and missing entries are replaced by zeros.

See TOMsimilarityFromExpr for details on the various TOM types.

The underlying C code assumes that the diagonal of the adjacency matrix equals 1. If this is not the
case, the diagonal of the input is set to 1 before the calculation begins.

Value

A matrix holding the topological overlap.

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

For the Nowick-type signed TOM (referred to as weighted TO, wTO, by Nowick et al.), see

Nowick K, Gernat T, Almaas E, Stubbs L. Differences in human and chimpanzee gene expression
patterns define an evolving network of transcription factors in brain. Proc Natl Acad Sci U S A.
2009 Dec 29;106(52):22358-63. doi: 10.1073/pnas.0911376106. Epub 2009 Dec 10.

or Gysi DM, Voigt A, Fragoso TM, Almaas E, Nowick K. wTO: an R package for computing
weighted topological overlap and a consensus network with integrated visualization tool. BMC
Bioinformatics. 2018 Oct 24;19(1):392. doi: 10.1186/s12859-018-2351-7.

See Also

TOMsimilarityFromExpr

400 TOMsimilarityFromExpr

TOMsimilarityFromExpr Topological overlap matrix

Description

Calculation of the topological overlap matrix from given expression data.

Usage

TOMsimilarityFromExpr(
datExpr,
weights = NULL,
corType = "pearson",
networkType = "unsigned",
power = 6,
TOMType = "signed",
TOMDenom = "min",
maxPOutliers = 1,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,
replaceMissingAdjacencies = FALSE,
suppressTOMForZeroAdjacencies = FALSE,
suppressNegativeTOM = FALSE,
useInternalMatrixAlgebra = FALSE,
nThreads = 0,
verbose = 1, indent = 0)

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
NAs are allowed, but not too many.

weights optional observation weights for datExpr to be used in correlation calculation.
A matrix of the same dimensions as datExpr, containing non-negative weights.

corType character string specifying the correlation to be used. Allowed values are (unique
abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-
weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs
option.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed",
"signed hybrid". See adjacency.

power soft-thresholding power for netwoek construction.

TOMType one of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See details and keep in mind that the "2" versions should be considered experi-
mental and are subject to change.

TOMsimilarityFromExpr 401

TOMDenom a character string specifying the TOM variant to be used. Recognized values
are "min" giving the standard TOM described in Zhang and Horvath (2005),
and "mean" in which the min function in the denominator is replaced by mean.
The "mean" may produce better results but at this time should be considered
experimental.

maxPOutliers only used for corType=="bicor". Specifies the maximum percentile of data
that can be considered outliers on either side of the median separately. For each
side of the median, if higher percentile than maxPOutliers is considered an out-
lier by the weight function based on 9*mad(x), the width of the weight function
is increased such that the percentile of outliers on that side of the median equals
maxPOutliers. Using maxPOutliers=1 will effectively disable all weight func-
tion broadening; using maxPOutliers=0 will give results that are quite similar
(but not equal to) Pearson correlation.

quickCor real number between 0 and 1 that controls the handling of missing data in the
calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation, if used, should revert to Pearson when
median absolute deviation (mad) is zero. Recongnized values are (abbreviations
of) "none", "individual", "all". If set to "none", zero mad will result in NA
for the corresponding correlation. If set to "individual", Pearson calculation
will be used only for columns that have zero mad. If set to "all", the presence
of a single zero mad will cause the whole variable to be treated in Pearson cor-
relation manner (as if the corresponding robust option was set to FALSE). Has
no effect for Pearson correlation. See bicor.

cosineCorrelation

logical: should the cosine version of the correlation calculation be used? The
cosine calculation differs from the standard one in that it does not subtract the
mean.

replaceMissingAdjacencies

logical: should missing values in the calculation of adjacency be replaced by 0?
suppressTOMForZeroAdjacencies

Logical: should the result be set to zero for zero adjacencies?
suppressNegativeTOM

Logical: should the result be set to zero when negative?
useInternalMatrixAlgebra

Logical: should WGCNA’s own, slow, matrix multiplication be used instead of
R-wide BLAS? Only useful for debugging.

nThreads non-negative integer specifying the number of parallel threads to be used by cer-
tain parts of correlation calculations. This option only has an effect on systems
on which a POSIX thread library is available (which currently includes Linux
and Mac OSX, but excludes Windows). If zero, the number of online processors
will be used if it can be determined dynamically, otherwise correlation calcula-
tions will use 2 threads.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

402 TOMsimilarityFromExpr

Details

Several alternate definitions of topological overlap are available. The oldest version is now called
"unsigned"; in this version, all adjacencies are assumed to be non-negative and the topological
overlap of nodes i, j is given by

TOMij =
aij +

∑
k ̸=i,j aikakj

f(ki, kj) + 1− aij
,

where the sum is over k not equal to either i or j, the function f in the denominator can be either
min or mean (goverened by argument TOMDenom), and ki =

∑
j ̸=i aij is the connectivity of node i.

The signed versions assume that the adjacency matrix was obtained from an underlying correlation
matrix, and the element aij carries the sign of the underlying correlation of the two vectors. (Within
WGCNA, this can really only apply to the unsigned adjacency since signed adjacencies are (essen-
tially) zero when the underlying correlation is negative.) The signed and signed Nowick versions
are similar to the above unsigned version, differing only in absolute values placed in the expression:
the signed Nowick expression is

TOMij =
aij +

∑
k ̸=i,j aikakj

f(ki, kj) + 1− |aij |
.

This TOM lies between -1 and 1, and typically is negative when the underlying adjacency is nega-
tive. The signed TOM is simply the absolute value of the signed Nowick TOM and is hence always
non-negative. For non-negative adjacencies, all 3 version give the same result.

A brief note on terminology: the original article by Nowick et al use the name "weighted TO" or
wTO; since all of the topological overlap versions calculated in this function are weighted, we use
the name signed to indicate that this TOM keeps track of the sign of the underlying correlation.

The "2" versions of all 3 adjacency types have a somewhat different form in which the adjacency
and the product are normalized separately. Thus, the "unsigned 2" version is

TOM
(2)
ij =

1

2

[
aij +

∑
k ̸=i,j aikakj

f(ki, kj)− aij

]
.

At present the relative weight of the adjacency and the normalized product term are equal and fixed;
in the future a user-specified or automatically determined weight may be implemented. The "signed
Nowick 2" and "signed 2" are defined analogously to their original versions. The adjacency is
assumed to be signed, and the expression for "signed Nowick 2" TOM is

TOM
(2)
ij =

1

2

[
aij +

∑
k ̸=i,j aikakj

f(ki, kj)− |aij |

]
.

Analogously to "signed" TOM, "signed 2" differs from "signed Nowick 2" TOM only in taking the
absolute value of the result.

At present the "2" versions should all be considered experimental and are subject to change.

Value

A matrix holding the topological overlap.

transposeBigData 403

Author(s)

Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

TOMsimilarity

transposeBigData Transpose a big matrix or data frame

Description

This transpose command partitions a big matrix (or data frame) into blocks and applies the t()
function to each block separately.

Usage

transposeBigData(x, blocksize = 20000)

Arguments

x a matrix or data frame

blocksize a positive integer larger than 1, which determines the block size. Default is 20k.

Details

Assume you have a very large matrix with say 500k columns. In this case, the standard transpose
function of R t() can take a long time. Solution: Split the original matrix into sub-matrices by
dividing the columns into blocks. Next apply t() to each sub-matrix. The same holds if the large
matrix contains a large number of rows. The function transposeBigData automatically checks
whether the large matrix contains more rows or more columns. If the number of columns is larger
than or equal to the number of rows then the block wise splitting will be applied to columns other-
wise to the rows.

Value

A matrix or data frame (depending on the input x) which is the transpose of x.

Note

This function can be considered a wrapper of t()

404 TrueTrait

Author(s)

Steve Horvath, UCLA

References

Any linear algebra book will explain the transpose.

See Also

The standard function t .

Examples

x=data.frame(matrix(1:10000,nrow=4,ncol=2500))
dimnames(x)[[2]]=paste("Y",1:2500,sep="")
xTranspose=transposeBigData(x)
x[1:4,1:4]
xTranspose[1:4,1:4]

TrueTrait Estimate the true trait underlying a list of surrogate markers.

Description

Assume an imprecisely measured trait y that is related to the true, unobserved trait yTRUE as fol-
lows yTRUE=y+noise where noise is assumed to have mean zero and a constant variance. Assume
you have 1 or more surrogate markers for yTRUE corresponding to the columns of datX. The func-
tion implements several approaches for estimating yTRUE based on the inputs y and/or datX.

Usage

TrueTrait(datX, y, datXtest=NULL,
corFnc = "bicor", corOptions = "use = 'pairwise.complete.obs'",
LeaveOneOut.CV=FALSE, skipMissingVariables=TRUE,
addLinearModel=FALSE)

Arguments

datX is a vector or data frame whose columns correspond to the surrogate markers
(variables) for the true underlying trait. The number of rows of datX equals the
number of observations, i.e. it should equal the length of y

y is a numeric vector which specifies the observed trait.

datXtest can be set as a matrix or data frame of a second, independent test data set. Its
columns should correspond to those of datX, i.e. the two data sets should have
the same number of columns but the number or rows (test set observations) can
be different.

TrueTrait 405

corFnc Character string specifying the correlation function to be used in the calcula-
tions. Recomended values are the default Pearson correlation "cor" or biweight
mid-correlation "bicor". Additional arguments to the correlation function can
be specified using corOptions.

corOptions Character string giving additional arguments to the function specified in corFnc.

LeaveOneOut.CV logical. If TRUE then leave one out cross validation estimates will be calculated
for y.true1 and y.true2 based on datX.

skipMissingVariables

logical. If TRUE then variables whose values are missing for a given observa-
tion will be skipped when estimating the true trait of that particular observation.
Thus, the estimate of a particular observation are determined by all the variables
whose values are non-missing.

addLinearModel logical. If TRUE then the function also estimates the true trait based on the
predictions of the linear model lm(y~., data=datX)

Details

This R function implements formulas described in Klemera and Doubal (2006). The assumptions
underlying these formulas are described in Klemera et al. But briefly, the function provides several
estimates of the true underlying trait under the following assumptions: 1) There is a true underlying
trait that affects y and a list of surrogate markers corresponding to the columns of datX. 2) There is
a linear relationship between the true underlying trait and y and the surrogate markers. 3) yTRUE
=y +Noise where the Noise term has a mean of zero and a fixed variance. 4) Weighted least squares
estimation is used to relate the surrogate markers to the underlying trait where the weights are
proportional to 1/ssq.j where ssq.j is the noise variance of the j-th marker.

Specifically, output y.true1 corresponds to formula 31, y.true2 corresponds to formula 25, and
y.true3 corresponds to formula 34.

Although the true underlying trait yTRUE is not known, one can estimate the standard deviation
between the estimate y.true2 and yTRUE using formula 33. Similarly, one can estimate the SD
for the estimate y.true3 using formula 42. These estimated SDs correspond to output components
2 and 3, respectively. These SDs are valuable since they provide a sense of how accurate the measure
is.

To estimate the correlations between y and the surrogate markers, one can specify different corre-
lation measures. The default method is based on the Person correlation but one can also specify the
biweight midcorrelation by choosing "bicor", see help(bicor) to learn more.

When the datX is comprised of observations measured in different strata (e.g. different batches or
independent data sets) then one can obtain stratum specific estimates by specifying the strata using
the argument Strata. In this case, the estimation focuses on one stratum at a time.

Value

A list with the following components.

datEstimates is a data frame whose columns corresponds to estimates of the true underlying
trait. The number of rows equals the number of observations, i.e. the length of y.
The first column y.true1 is the average value of standardized columns of datX
where standardization subtracts out the intercept term and divides by the slope

406 TrueTrait

of the linear regression model lm(marker~y). Since this estimate ignores the fact
that the surrogate markers have different correlations with y, it is typically infe-
rior to y.true2. The second column y.true2 equals the weighted average value
of standardized columns of datX. The standardization is described in section 2.4
of Klemera et al. The weights are proportional to r^2/(1+r^2) where r denotes
the correlation between the surrogate marker and y. Since this estimate does not
include y as additional surrogate marker, it may be slightly inferior to y.true3.
Having said this, the difference between y.true2 and y.true3 is often negli-
gible. An additional column called y.lm is added if addLinearModel=TRUE.
In this case, y.lm reports the linear model predictions. Finally, the column
y.true3 is very similar to y.true2 but it includes y as additional surrogate
marker. It is expected to be the best estimate of the underlying true trait (see
Klemera et al 2006).

datEstimatestest

is output only if a test data set has been specified in the argument datXtest.
In this case, it contains a data frame with columns ytrue1 and ytrue2. The
number of rows equals the number of test set observations, i.e the number of
rows of datXtest. Since the value of y is not known in case of a test data
set, one cannot calculate y.true3. An additional column with linear model
predictions y.lm is added if addLinearModel=TRUE.

datEstimates.LeaveOneOut.CV

is output only if the argument LeaveOneOut.CV has been set to TRUE. In this
case, it contains a data frame with leave-one-out cross validation estimates of
ytrue1 and ytrue2. The number of rows equals the length of y. Since the value
of y is not known in case of a test data set, one cannot calculate y.true3

SD.ytrue2 is a scalar. This is an estimate of the standard deviation between the estimate
y.true2 and the true (unobserved) yTRUE. It corresponds to formula 33.

SD.ytrue3 is a scalar. This is an estimate of the standard deviation between y.true3 and
the true (unobserved) yTRUE. It corresponds to formula 42.

datVariableInfo

is a data frame that reports information for each variable (column of datX) when
it comes to the definition of y.true2. The rows correspond to the number of
variables. Columns report the variable name, the center (intercept that is sub-
tracted to scale each variable), the scale (i.e. the slope that is used in the denom-
inator), and finally the weights used in the weighted sum of the scaled variables.

datEstimatesByStratum

a data frame that will only be output if Strata is different from NULL. In this
case, it is has the same dimensions as datEstimates but the estimates were
calculated separately for each level of Strata.

SD.ytrue2ByStratum

a vector of length equal to the different levels of Strata. Each component
reports the estimate of SD.ytrue2 for observations in the stratum specified by
unique(Strata).

datVariableInfoByStratum

a list whose components are matrices with variable information. Each list com-
ponent reports the variable information in the stratum specified by unique(Strata).

unsignedAdjacency 407

Author(s)

Steve Horvath

References

Klemera P, Doubal S (2006) A new approach to the concept and computation of biological age.
Mechanisms of Ageing and Development 127 (2006) 240-248

Choa IH, Parka KS, Limb CJ (2010) An Empirical Comparative Study on Validation of Biological
Age Estimation Algorithms with an Application of Work Ability Index. Mechanisms of Ageing and
Development Volume 131, Issue 2, February 2010, Pages 69-78

Examples

observed trait
y=rnorm(1000,mean=50,sd=20)
unobserved, true trait
yTRUE =y +rnorm(100,sd=10)
now we simulate surrogate markers around the true trait
datX=simulateModule(yTRUE,nGenes=20, minCor=.4,maxCor=.9,geneMeans=rnorm(20,50,30))
True1=TrueTrait(datX=datX,y=y)
datTrue=True1$datEstimates
par(mfrow=c(2,2))
for (i in 1:dim(datTrue)[[2]]){

meanAbsDev= mean(abs(yTRUE-datTrue[,i]))
verboseScatterplot(datTrue[,i],yTRUE,xlab=names(datTrue)[i],

main=paste(i, "MeanAbsDev=", signif(meanAbsDev,3)));
abline(0,1)

}
#compare the estimated standard deviation of y.true2
True1[[2]]
with the true SD
sqrt(var(yTRUE-datTrue$y.true2))
#compare the estimated standard deviation of y.true3
True1[[3]]
with the true SD
sqrt(var(yTRUE-datTrue$y.true3))

unsignedAdjacency Calculation of unsigned adjacency

Description

Calculation of the unsigned network adjacency from expression data. The restricted set of parame-
ters for this function should allow a faster and less memory-hungry calculation.

408 unsignedAdjacency

Usage

unsignedAdjacency(
datExpr,
datExpr2 = NULL,
power = 6,
corFnc = "cor", corOptions = "use = 'p'")

Arguments

datExpr expression data. A data frame in which columns are genes and rows ar samples.
Missing values are ignored.

datExpr2 optional specification of a second set of expression data. See details.

power soft-thresholding power for network construction.

corFnc character string giving the correlation function to be used for the adjacency cal-
culation. Recommended choices are "cor" and "bicor", but other functions
can be used as well.

corOptions character string giving further options to be passed to the correlation function

Details

The correlation function will be called with arguments datExpr, datExpr2 plus any extra argu-
ments given in corOptions. If datExpr2 is NULL, the standard correlation functions will calculate
the corelation of columns in datExpr.

Value

Adjacency matrix of dimensions n*n, where n is the number of genes in datExpr.

Author(s)

Steve Horvath and Peter Langfelder

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

adjacency

userListEnrichment 409

userListEnrichment Measure enrichment between inputted and user-defined lists

Description

This function measures list enrichment between inputted lists of genes and files containing user-
defined lists of genes. Significant enrichment is measured using a hypergeometric test. A pre-made
collection of brain-related lists can also be loaded. The function writes the significant enrichments
to a file, but also returns all overlapping genes across all comparisons.

Usage

userListEnrichment(
geneR, labelR,
fnIn = NULL, catNmIn = fnIn,
nameOut = "enrichment.csv",
useBrainLists = FALSE, useBloodAtlases = FALSE, omitCategories = "grey",
outputCorrectedPvalues = TRUE, useStemCellLists = FALSE,
outputGenes = FALSE,
minGenesInCategory = 1,
useBrainRegionMarkers = FALSE, useImmunePathwayLists = FALSE,
usePalazzoloWang = FALSE)

Arguments

geneR A vector of gene (or other) identifiers. This vector should include ALL genes
in your analysis (i.e., the genes correspoding to your labeled lists AND the re-
maining background reference genes).

labelR A vector of labels (for example, module assignments) corresponding to the
geneR list. NOTE: For all background reference genes that have no correspond-
ing label, use the label "background" (or any label included in the omitCate-
gories parameter).

fnIn A vector of file names containing user-defined lists. These files must be in one
of three specific formats (see details section). The default (NULL) may only be
used if one of the "use_____" parameters is TRUE.

catNmIn A vector of category names corresponding to each fnIn. This name will be
appended to each overlap corresponding to that filename. The default sets the
category names as the corresponding file names.

nameOut Name of the file where the output enrichment information will be written. (Note
that this file includes only a subset of what is returned by the function.) If NULL
(or zero-length), no output will be written out.

useBrainLists If TRUE, a pre-made set of brain-derived enrichment lists will be added to any
user-defined lists for enrichment comparison. The default is FALSE. See refer-
ences section for related references.

410 userListEnrichment

useBloodAtlases

If TRUE, a pre-made set of blood-derived enrichment lists will be added to
any user-defined lists for enrichment comparison. The default is FALSE. See
references section for related references.

omitCategories Any labelR entries corresponding to these categories will be ignored. The de-
fault ("grey") will ignore unassigned genes in a standard WGCNA network.

outputCorrectedPvalues

If TRUE (default) only pvalues that are significant after correcting for multiple
comparisons (using Bonferroni method) will be outputted to nameOut. Other-
wise the uncorrected p-values will be outputted to the file. Note that both sets of
p-values for all comparisons are reported in the returned "pValues" parameter.

useStemCellLists

If TRUE, a pre-made set of stem cell (SC)-derived enrichment lists will be added
to any user-defined lists for enrichment comparison. The default is FALSE. See
references section for related references.

outputGenes If TRUE, will output a list of all genes in each returned category, as well as a
count of the number of genes in each category. The default is FALSE.

minGenesInCategory

Will omit all significant categories with fewer than minGenesInCategory genes
(default is 1).

useBrainRegionMarkers

If TRUE, a pre-made set of enrichment lists for human brain regions will be
added to any user-defined lists for enrichment comparison. The default is FALSE.
These lists are derived from data from the Allen Human Brain Atlas (https://human.brain-
map.org/). See references section for more details.

useImmunePathwayLists

If TRUE, a pre-made set of enrichment lists for immune system pathways will
be added to any user-defined lists for enrichment comparison. The default is
FALSE. These lists are derived from the lab of Daniel R Saloman. See refer-
ences section for more details.

usePalazzoloWang

If TRUE, a pre-made set of enrichment lists compiled by Mike Palazzolo and
Jim Wang from CHDI will be added to any user-defined lists for enrichment
comparison. The default is FALSE. See references section for more details.

Details

User-inputted files for fnIn can be in one of three formats:

1) Text files (must end in ".txt") with one list per file, where the first line is the list descriptor and
the remaining lines are gene names corresponding to that list, with one gene per line. For example
Ribosome RPS4 RPS8 ...

2) Gene / category files (must be csv files), where the first line is the column headers corresponding
to Genes and Lists, and the remaining lines correspond to the genes in each list, for any number
of genes and lists. For example: Gene, Category RPS4, Ribosome RPS8, Ribosome ... NDUF1,
Mitohcondria NDUF3, Mitochondria ... MAPT, AlzheimersDisease PSEN1, AlzheimersDisease
PSEN2, AlzheimersDisease ...

userListEnrichment 411

3) Module membership (kME) table in csv format. Currently, the module assignment is the only
thing that is used, so as long as the Gene column is 2nd and the Module column is 3rd, it doesn’t
matter what is in the other columns. For example, PSID, Gene, Module, <other columns> <psid>,
RPS4, blue, <other columns> <psid>, NDUF1, red, <other columns> <psid>, RPS8, blue, <other
columns> <psid>, NDUF3, red, <other columns> <psid>, MAPT, green, <other columns> ...

Value

pValues A data frame showing, for each comparison, the input category, user defined
category, type, the number of overlapping genes and both the uncorrected and
Bonferroni corrected p-values for every pair of list overlaps tested.

ovGenes A list of character vectors corresponding to the overlapping genes for every
pair of list overlaps tested. Specific overlaps can be found by typing <variable-
Name>$ovGenes$’<labelR> – <comparisonCategory>’. See example below.

sigOverlaps Identical information that is written to nameOut. A data frame ith columns giv-
ing the input category, user defined category, type, and P-values (corrected or
uncorrected, depending on outputCorrectedPvalues) corresponding to all signif-
icant enrichments.

Author(s)

Jeremy Miller

References

The primary reference for this function is: Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian
SM, Salomon DR, Horvath S. (2011) Strategies for aggregating gene expression data: the col-
lapseRows R function. BMC Bioinformatics 12:322.

If you have any suggestions for lists to add to this function, please e-mail Jeremy Miller at jere-
myinla@gmail.com

————————————- References for the pre-defined brain lists (useBrainLists=TRUE, in
alphabetical order by category descriptor) are as follows:

ABA ==> Cell type markers from: Lein ES, et al. (2007) Genome-wide atlas of gene expression in
the adult mouse brain. Nature 445:168-176.

ADvsCT_inCA1 ==> Lists of genes found to be increasing or decreasing with Alzheimer’s disease
in 3 studies: 1. Blalock => Blalock E, Geddes J, Chen K, Porter N, Markesbery W, Landfield
P (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcrip-
tional and tumor suppressor responses. PNAS 101:2173-2178. 2. Colangelo => Colangelo V,
Schurr J, Ball M, Pelaez R, Bazan N, Lukiw W (2002) Gene expression profiling of 12633 genes
in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-
regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70:462-473. 3. Liang =>
Liang WS, et al (2008) Altered neuronal gene expression in brain regions differentially affected by
Alzheimer’s disease: a reference data set. Physiological genomics 33:240-56.

Bayes ==> Postsynaptic Density Proteins from: Bayes A, et al. (2011) Characterization of the
proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci. 14(1):19-21.

412 userListEnrichment

Blalock_AD ==> Modules from a network using the data from: Blalock E, Geddes J, Chen K,
Porter N, Markesbery W, Landfield P (2004) Incipient Alzheimer’s disease: microarray correlation
analyses reveal major transcriptional and tumor suppressor responses. PNAS 101:2173-2178.

CA1vsCA3 ==> Lists of genes enriched in CA1 and CA3 relative to other each and to other areas
of the brain, from several studies: 1. Ginsberg => Ginsberg SD, Che S (2005) Expression profile
analysis within the human hippocampus: comparison of CA1 and CA3 pyramidal neurons. J Comp
Neurol 487:107-118. 2. Lein => Lein E, Zhao X, Gage F (2004) Defining a molecular atlas of
the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci
24:3879-3889. 3. Newrzella => Newrzella D, et al (2007) The functional genome of CA1 and CA3
neurons under native conditions and in response to ischemia. BMC Genomics 8:370. 4. Torres =>
Torres-Munoz JE, Van Waveren C, Keegan MG, Bookman RJ, Petito CK (2004) Gene expression
profiles in microdissected neurons from human hippocampal subregions. Brain Res Mol Brain Res
127:105-114. 5. GorLorT => In either Ginsberg or Lein or Torres list.

Cahoy ==> Definite (10+ fold) and probable (1.5+ fold) enrichment from: Cahoy JD, et al. (2008)
A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for under-
standing brain development and function. J Neurosci 28:264-278.

CTX ==> Modules from the CTX (cortex) network from: Oldham MC, et al. (2008) Functional
organization of the transcriptome in human brain. Nat Neurosci 11:1271-1282.

DiseaseGenes ==> Probable (C or better rating as of 16 Mar 2011) and possible (all genes in
database as of ~2008) genetics-based disease genes from: http://www.alzforum.org/

EarlyAD ==> Genes whose expression is related to cognitive markers of early Alzheimer’s disease
vs. non-demented controls with AD pathology, from: Parachikova, A., et al (2007) Inflammatory
changes parallel the early stages of Alzheimer disease. Neurobiology of Aging 28:1821-1833.

HumanChimp ==> Modules showing region-specificity in both human and chimp from: Oldham
MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks
in human and chimpanzee brains. Proc Natl Acad Sci USA 103: 17973-17978.

HumanMeta ==> Modules from the human network from: Miller J, Horvath S, Geschwind D (2010)
Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc
Natl Acad Sci 107:12698-12703.

JAXdiseaseGene ==> Genes where mutations in mouse and/or human are known to cause any
disease. WARNING: this list represents an oversimplification of data! This list was created from
the Jackson Laboratory: Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA; Mouse Genome
Database Group (2008) The Mouse Genome Database (MGD): Mouse biology and model systems.
Nucleic Acids Res 36 (database issue):D724-D728.

Lu_Aging ==> Modules from a network using the data from: Lu T, Pan Y, Kao S-Y, Li C, Kohane
I, Chan J, Yankner B (2004) Gene regulation and DNA damage in the ageing human brain. Nature
429:883-891.

MicroglialMarkers ==> Markers for microglia and macrophages from several studies: 1. GSE772
=> Gan L, et al. (2004) Identification of cathepsin B as a mediator of neuronal death induced by
Abeta-activated microglial cells using a functional genomics approach. J Biol Chem 279:5565-
5572. 2. GSE1910 => Albright AV, Gonzalez-Scarano F (2004) Microarray analysis of acti-
vated mixed glial (microglia) and monocyte-derived macrophage gene expression. J Neuroimmunol
157:27-38. 3. AitGhezala => Ait-Ghezala G, Mathura VS, Laporte V, Quadros A, Paris D, Patel
N, et al. Genomic regulation after CD40 stimulation in microglia: relevance to Alzheimer’s dis-
ease. Brain Res Mol Brain Res 2005;140(1-2):73-85. 4. 3treatments_Thomas => Thomas, DM,

userListEnrichment 413

Francescutti-Verbeem, DM, Kuhn, DM (2006) Gene expression profile of activated microglia under
conditions associated with dopamine neuronal damage. The FASEB Journal 20:515-517.

MitochondrialType ==> Mitochondrial genes from the somatic vs. synaptic fraction of mouse cells
from: Winden KD, et al. (2009) The organization of the transcriptional network in specific neuronal
classes. Mol Syst Biol 5:291.

MO ==> Markers for many different things provided to my by Mike Oldham. These were originally
from several sources: 1. 2+_26Mar08 => Genetics-based disease genes in two or more studies
from http://www.alzforum.org/ (compiled by Mike Oldham). 2. Bachoo => Bachoo, R.M. et al.
(2004) Molecular diversity of astrocytes with implications for neurological disorders. PNAS 101,
8384-8389. 3. Foster => Foster, LJ, de Hoog, CL, Zhang, Y, Zhang, Y, Xie, X, Mootha, VK,
Mann, M. (2006) A Mammalian Organelle Map by Protein Correlation Profiling. Cell 125(1): 187-
199. 4. Morciano => Morciano, M. et al. Immunoisolation of two synaptic vesicle pools from
synaptosomes: a proteomics analysis. J. Neurochem. 95, 1732-1745 (2005). 5. Sugino => Sugino,
K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci.
9, 99-107 (2006).

MouseMeta ==> Modules from the mouse network from: Miller J, Horvath S, Geschwind D (2010)
Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc
Natl Acad Sci 107:12698-12703.

Sugino/Winden ==> Conservative list of genes in modules from the network from: Winden K,
Oldham M, Mirnics K, Ebert P, Swan C, Levitt P, Rubenstein J, Horvath S, Geschwind D (2009).
The organization of the transcriptional network in specific neuronal classes. Molecular systems
biology 5. NOTE: Original data came from this neuronal-cell-type-selection experiment in mouse:
Sugino K, Hempel C, Miller M, Hattox A, Shapiro P, Wu C, Huang J, Nelson S (2006). Molecular
taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9:99-107

Voineagu ==> Several Autism-related gene categories from: Voineagu I, Wang X, Johnston P, Lowe
JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH. (2011). Transcriptomic
analysis of autistic brain reveals convergent molecular pathology. Nature 474(7351):380-4

————————————- References for the pre-defined blood atlases (useBloodAtlases=TRUE,
in alphabetical order by category descriptor) are as follows:

Blood(composite) ==> Lists for blood cell types with this label are made from combining marker
genes from the following three publications: 1. Abbas AB, Baldwin D, Ma Y, Ouyang W, Gur-
ney A, et al. (2005). Immune response in silico (IRIS): immune-specific genes identified from a
compendium of microarray expression data. Genes Immun. 6(4):319-31. 2. Grigoryev YA, Kurian
SM, Avnur Z, Borie D, Deng J, et al. (2010). Deconvoluting post-transplant immunity: cell subset-
specific mapping reveals pathways for activation and expansion of memory T, monocytes and B
cells. PLoS One. 5(10):e13358. 3. Watkins NA, Gusnanto A, de Bono B, De S, Miranda-Saavedra
D, et al. (2009). A HaemAtlas: characterizing gene expression in differentiated human blood cells.
Blood. 113(19):e1-9.

Gnatenko ==> Top 50 marker genes for platelets from: Gnatenko DV, et al. (2009) Transcript pro-
filing of human platelets using microarray and serial analysis of gene expression (SAGE). Methods
Mol Biol. 496:245-72.

Gnatenko2 ==> Platelet-specific genes on a custom microarray from: Gnatenko DV, et al. (2010)
Class prediction models of thrombocytosis using genetic biomarkers. Blood. 115(1):7-14.

Kabanova ==> Red blood cell markers from: Kabanova S, et al. (2009) Gene expression analysis
of human red blood cells. Int J Med Sci. 6(4):156-9.

414 userListEnrichment

Whitney ==> Genes corresponding to individual variation in blood from: Whitney AR, et al. (2003)
Individuality and variation in gene expression patterns in human blood. PNAS. 100(4):1896-1901.

————————————- References for the pre-defined stem cell (SC) lists (useStemCell-
Lists=TRUE, in alphabetical order by category descriptor) are as follows:

Cui ==> genes differentiating erythrocyte precursors (CD36+ cells) from multipotent human pri-
mary hematopoietic stem cells/progenitor cells (CD133+ cells), from: Cui K, Zang C, Roh TY,
Schones DE, Childs RW, Peng W, Zhao K. (2009). Chromatin signatures in multipotent human
hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell
4:80-93

Lee ==> gene lists related to Polycomb proteins in human embryonic SCs, from (a highly-cited pa-
per!): Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone
SE, Cole MF, Isono K, et al. (2006) Control of developmental regulators by polycomb in human
embryonic stem cells. Cell 125:301-313

————————————- References and more information for the pre-defined human brain
region lists (useBrainRegionMarkers=TRUE):

HBA ==> Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al.
(2012) An Anatomically Comprehensive Atlas of the Adult Human Brain Transcriptome. Nature (in
press) Three categories of marker genes are presented: 1. globalMarker(top200) = top 200 global
marker genes for 22 large brain structures. Genes are ranked based on fold change enrichment
(expression in region vs. expression in rest of brain) and the ranks are averaged between brains
2001 and 2002 (human.brain-map.org). 2. localMarker(top200) = top 200 local marker genes for
90 large brain structures. Same as 1, except fold change is defined as expression in region vs.
expression in larger region (format: <region>_IN_<largerRegion>). For example, enrichment in
CA1 is relative to other subcompartments of the hippocampus. 3. localMarker(FC>2) = same as
#2, but only local marker genes with fold change > 2 in both brains are included. Regions with <10
marker genes are omitted.

————————————- More information for the pre-defined immune pathways lists (useIm-
munePathwayLists=TRUE):

ImmunePathway ==> These lists were created by Brian Modena (a member of Daniel R Salomon’s
lab at Scripps Research Institute), with input from Sunil M Kurian and Dr. Salomon, using Ingenu-
ity, WikiPathways and literature search to assemble them. They reflect knowledge-based immune
pathways and were in part informed by Dr. Salomon and colleague’s work in expression profiling
of biopsies and peripheral blood but not in some highly organized process. These lists are not from
any particular publication, but are culled to include only genes of reasonably high confidence.

————————————- References for the pre-defined lists from CHDI (usePalazzoloWang=TRUE,
in alphabetical order by category descriptor) are as follows:

Biocyc NCBI Biosystems ==> Several gene sets from the "Biocyc" component of NCBI Biosys-
tems: Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010)
The NCBI BioSystems database. Nucleic Acids Res. 38(Database issue):D492-6.

Kegg NCBI Biosystems ==> Several gene sets from the "Kegg" component of NCBI Biosystems:
Geer LY et al 2010 (full citation above).

Palazzolo and Wang ==> These gene sets were compiled from a variety of sources by Mike Palaz-
zolo and Jim Wang at CHDI.

Pathway Interaction Database NCBI Biosystems ==> Several gene sets from the "Pathway Interac-
tion Database" component of NCBI Biosystems: Geer LY et al 2010 (full citation above).

userListEnrichment 415

PMID 17500595 Kaltenbach 2007 ==> Several gene sets from: Kaltenbach LS, Romero E, Becklin
RR, Chettier R, Bell R, Phansalkar A, et al. (2007) Huntingtin interacting proteins are genetic
modifiers of neurodegeneration. PLoS Genet. 3(5):e82

PMID 22348130 Schaefer 2012 ==> Several gene sets from: Schaefer MH, Fontaine JF, Vinayagam
A, Porras P, Wanker EE, Andrade-Navarro MA (2012) HIPPIE: Integrating protein interaction net-
works with experiment based quality scores. PLoS One. 7(2):e31826

PMID 22556411 Culver 2012 ==> Several gene sets from: Culver BP, Savas JN, Park SK, Choi JH,
Zheng S, Zeitlin SO, Yates JR 3rd, Tanese N. (2012) Proteomic analysis of wild-type and mutant
huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in
protein synthesis. J Biol Chem. 287(26):21599-614

PMID 22578497 Cajigas 2012 ==> Several gene sets from: Cajigas IJ, Tushev G, Will TJ, tom
Dieck S, Fuerst N, Schuman EM. (2012) The local transcriptome in the synaptic neuropil revealed
by deep sequencing and high-resolution imaging. Neuron. 74(3):453-66

Reactome NCBI Biosystems ==> Several gene sets from the "Reactome" component of NCBI
Biosystems: Geer LY et al 2010 (full citation above).

Wiki Pathways NCBI Biosystems ==> Several gene sets from the "Wiki Pathways" component of
NCBI Biosystems: Geer LY et al 2010 (full citation above).

Yang ==> These gene sets were compiled from a variety of sources by Mike Palazzolo and Jim
Wang at CHDI.

Examples

Example: first, read in some gene names and split them into categories
data(BrainLists);
listGenes = unique(as.character(BrainLists[,1]))
set.seed(100)
geneR = sort(sample(listGenes,2000))
categories = sort(rep(standardColors(10),200))
categories[sample(1:2000,200)] = "grey"
file1 = tempfile();
file2 = tempfile();
write(c("TESTLIST1",geneR[300:400], sep="\n"), file1)
write(c("TESTLIST2",geneR[800:1000],sep="\n"), file2)

Now run the function!
testResults = userListEnrichment(

geneR, labelR=categories,
fnIn=c(file1, file2),
catNmIn=c("TEST1","TEST2"),
nameOut = NULL, useBrainLists=TRUE, omitCategories ="grey")

To see a list of all significant enrichments type:
testResults$sigOverlaps

To see all of the overlapping genes between two categories
#(whether or not the p-value is significant), type
#restResults$ovGenes$'<labelR> -- <comparisonCategory>'. For example:

testResults$ovGenes$"black -- TESTLIST1__TEST1"

416 vectorTOM

testResults$ovGenes$"red -- salmon_M12_Ribosome__HumanMeta"

More detailed overlap information is in the pValue output. For example:
head(testResults$pValue)

Clean up the temporary files
unlink(file1);
unlink(file2)

vectorizeMatrix Turn a matrix into a vector of non-redundant components

Description

A convenient function to turn a matrix into a vector of non-redundant components. If the matrix
is non-symmetric, returns a vector containing all entries of the matrix. If the matrix is symmetric,
only returns the upper triangle and optionally the diagonal.

Usage

vectorizeMatrix(M, diag = FALSE)

Arguments

M the matrix or data frame to be vectorized.

diag logical: should the diagonal be included in the output?

Value

A vector containing the non-redundant entries of the input matrix.

Author(s)

Steve Horvath

vectorTOM Topological overlap for a subset of the whole set of genes

Description

This function calculates topological overlap of a small set of vectors with respect to a whole data
set.

vectorTOM 417

Usage

vectorTOM(
datExpr,
vect,
subtract1 = FALSE,
blockSize = 2000,
corFnc = "cor", corOptions = "use = 'p'",
networkType = "unsigned",
power = 6,
verbose = 1, indent = 0)

Arguments

datExpr a data frame containing the expression data of the whole set, with rows corre-
sponding to samples and columns to genes.

vect a single vector or a matrix-like object containing vectors whose topological over-
lap is to be calculated.

subtract1 logical: should calculation be corrected for self-correlation? Set this to TRUE if
vect contains a subset of datExpr.

blockSize maximum block size for correlation calculations. Only important if vect con-
tains a large number of columns.

corFnc character string giving the correlation function to be used for the adjacency cal-
culation. Recommended choices are "cor" and "bicor", but other functions
can be used as well.

corOptions character string giving further options to be passed to the correlation function.

networkType character string giving network type. Allowed values are (unique abbreviations
of) "unsigned", "signed", "signed hybrid". See adjacency.

power soft-thresholding power for network construction.

verbose integer level of verbosity. Zero means silent, higher values make the output
progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds
two spaces.

Details

Topological overlap can be viewed as the normalized count of shared neighbors encoded in an
adjacency matrix. In this case, the adjacency matrix is calculated between the columns of vect and
datExpr and the topological overlap of vectors in vect measures the number of shared neighbors
in datExpr that vectors of vect share.

Value

A matrix of dimensions n*n, where n is the number of columns in vect.

Author(s)

Peter Langfelder

418 verboseBarplot

References

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

TOMsimilarity for standard calculation of topological overlap.

verboseBarplot Barplot with error bars, annotated by Kruskal-Wallis or ANOVA p-
value

Description

Produce a barplot with error bars, annotated by Kruskal-Wallis or ANOVA p-value.

Usage

verboseBarplot(x, g,
main = "", xlab = NA, ylab = NA,
cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,
color = "grey", numberStandardErrors = 1,
KruskalTest = TRUE, AnovaTest = FALSE, two.sided = TRUE,
addCellCounts=FALSE, horiz = FALSE, ylim = NULL, ...,
addScatterplot = FALSE,
pt.cex = 0.8, pch = 21, pt.col = "blue", pt.bg = "skyblue",
randomSeed = 31425, jitter = 0.6,
pointLabels = NULL,
label.cex = 0.8,
label.offs = 0.06,
adjustYLim = TRUE)

Arguments

x numerical or binary vector of data whose group means are to be plotted

g a factor or a an object coercible to a factor giving the groups whose means are
to be calculated.

main main title for the plot.

xlab label for the x-axis.

ylab label for the y-axis.

cex character expansion factor for plot annotations.

cex.axis character expansion factor for axis annotations.

cex.lab character expansion factor for axis labels.

verboseBarplot 419

cex.main character expansion factor for the main title.

color a vector giving the colors of the bars in the barplot.
numberStandardErrors

size of the error bars in terms of standard errors. See details.

KruskalTest logical: should Kruskal-Wallis test be performed? See details.

AnovaTest logical: should ANOVA be performed? See details.

two.sided logical: should the printed p-value be two-sided? See details.

addCellCounts logical: should counts be printed above each bar?

horiz logical: should the bars be drawn horizontally?

ylim optional specification of the limits for the y axis. If not given, they will be
determined automatically.

... other parameters to function barplot.

addScatterplot logical: should a scatterplot of the data be overlaid?

pt.cex character expansion factor for the points.

pch shape code for the points.

pt.col color for the points.

pt.bg background color for the points.

randomSeed integer random seed to make plots reproducible.

jitter amount of random jitter to add to the position of the points along the x axis.

pointLabels Optional text labels for the points displayed using the scatterplot. If given,
should be a character vector of the same length as x. See labelPoints.

label.cex Character expansion (size) factor for pointLabels.

label.offs Offset for pointLabels, as a fraction of the plot width.

adjustYLim logical: should the limits of the y axis be set so as to accomodate the indi-
vidual points? The adjustment is only carried out if input ylim is NULL and
addScatterplot is TRUE. In particular, if the user supplies ylim, it is not touched.

Details

This function creates a barplot of a numeric variable (input x) across the levels of a grouping vari-
able (input g). The height of the bars equals the mean value of x across the observations with a
given level of g. By default, the barplot also shows plus/minus one standard error. If you want only
plus one standard error (not minus) choose two.sided=TRUE. But the number of standard errors can
be determined with the input numberStandardErrors. For example, if you want a 95% confidence
interval around the mean, choose numberStandardErrors=2. If you don’t want any standard er-
rors set numberStandardErrors=-1. The function also outputs the p-value of a Kruskal Wallis test
(Fisher test for binary input data), which is a non-parametric multi group comparison test. Alterna-
tively, one can use Analysis of Variance (Anova) to compute a p-value by setting AnovaTest=TRUE.
Anova is a generalization of the Student t-test to multiple groups. In case of two groups, the Anova
p-value equals the Student t-test p-value. Anova should only be used if x follows a normal distri-
bution. Anova also assumes homoscedasticity (equal variances). The Kruskal Wallis test is often
advantageous since it makes no distributional assumptions. Since the Kruskal Wallis test is based
on the ranks of x, it is more robust with regard to outliers. All p-values are two-sided.

420 verboseBoxplot

Value

None.

Author(s)

Steve Horvath, with contributions from Zhijin (Jean) Wu and Peter Langfelder

See Also

barplot

Examples

group=sample(c(1,2),100,replace=TRUE)

height=rnorm(100,mean=group)

par(mfrow=c(2,2))
verboseBarplot(height,group, main="1 SE, Kruskal Test")

verboseBarplot(height,group,numberStandardErrors=2,
main="2 SE, Kruskal Test")

verboseBarplot(height,group,numberStandardErrors=2,AnovaTest=TRUE,
main="2 SE, Anova")

verboseBarplot(height,group,numberStandardErrors=2,AnovaTest=TRUE,
main="2 SE, Anova, only plus SE", two.sided=FALSE)

verboseBoxplot Boxplot annotated by a Kruskal-Wallis p-value

Description

Plot a boxplot annotated by the Kruskal-Wallis p-value. Uses the function boxplot for the actual
drawing.

Usage

verboseBoxplot(x, g, main = "", xlab = NA, ylab = NA,
cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,
notch = TRUE, varwidth = TRUE, ...,
addScatterplot = FALSE,
pt.cex = 0.8, pch = 21, pt.col = "blue", pt.bg = "skyblue",
randomSeed = 31425, jitter = 0.6)

verboseBoxplot 421

Arguments

x numerical vector of data whose group means are to be plotted

g a factor or a an object coercible to a factor giving the groups that will go into
each box.

main main title for the plot.

xlab label for the x-axis.

ylab label for the y-axis.

cex character expansion factor for plot annotations.

cex.axis character expansion factor for axis annotations.

cex.lab character expansion factor for axis labels.

cex.main character expansion factor for the main title.

notch logical: should the notches be drawn? See boxplot and boxplot.stats for
details.

varwidth logical: if TRUE, the boxes are drawn with widths proportional to the square-
roots of the number of observations in the groups.

... other arguments to the function boxplot. Of note is the argument las that spec-
ifies label orientation. Value las=1 will result in horizontal labels (the default),
while las=2 will result in vertical labels, useful when the labels are long.

addScatterplot logical: should a scatterplot of the data be overlaid?

pt.cex character expansion factor for the points.

pch shape code for the points.

pt.col color for the points.

pt.bg background color for the points.

randomSeed integer random seed to make plots reproducible.

jitter amount of random jitter to add to the position of the points along the x axis.

Value

Returns the value returned by the function boxplot.

Author(s)

Steve Horvath, with contributions from Zhijin (Jean) Wu and Peter Langfelder

See Also

boxplot

422 verboseIplot

verboseIplot Scatterplot with density

Description

Produce a scatterplot that shows density with color and is annotated by the correlation, MSE, and
regression line.

Usage

verboseIplot(
x, y,
xlim = NA, ylim = NA,
nBinsX = 150, nBinsY = 150,
ztransf = function(x) {x}, gamma = 1,
sample = NULL, corFnc = "cor", corOptions = "use = 'p'",
main = "", xlab = NA, ylab = NA, cex = 1,
cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,
abline = FALSE, abline.color = 1, abline.lty = 1,
corLabel = corFnc, showMSE = TRUE, ...)

Arguments

x numerical vector to be plotted along the x axis.

y numerical vector to be plotted along the y axis.

xlim define the range in x axis

ylim define the range in y axis

nBinsX number of bins along the x axis

nBinsY number of bins along the y axis

ztransf Function to transform the number of counts per pixel, which will be mapped by
the function in colramp to well defined colors. The user has to make sure that
the transformed density lies in the range [0,zmax], where zmax is any positive
number (>=2).

gamma color correction power

sample either a number of points to be sampled or a vector of indices input x and y for
points to be plotted. Useful when the input vectors are large and plotting all
points is not practical.

corFnc character string giving the correlation function to annotate the plot.

corOptions character string giving further options to the correlation function.

main main title for the plot.

xlab label for the x-axis.

ylab label for the y-axis.

cex character expansion factor for plot annotations.

verboseScatterplot 423

cex.axis character expansion factor for axis annotations.

cex.lab character expansion factor for axis labels.

cex.main character expansion factor for the main title.

abline logical: should the linear regression fit line be plotted?

abline.color color specification for the fit line.

abline.lty line type for the fit line.

corLabel character string to be used as the label for the correlation value printed in the
main title.

showMSE logical: should the MSE be added to the main title?

... other arguments to the function plot.

Details

Irrespective of the specified correlation function, the MSE is always calculated based on the resid-
uals of a linear model.

Value

If sample above is given, the indices of the plotted points are returned invisibly.

Note

This funtion is based on verboseScatterplot (Steve Horvath and Peter Langfelder), iplot (Andreas
Ruckstuhl, Rene Locher) and greenWhiteRed(Peter Langfelder)

Author(s)

Chaochao Cai, Steve Horvath

See Also

image for more parameters

verboseScatterplot Scatterplot annotated by regression line and p-value

Description

Produce a scatterplot annotated by the correlation, p-value, and regression line.

424 verboseScatterplot

Usage

verboseScatterplot(x, y,
sample = NULL,
corFnc = "cor", corOptions = "use = 'p'",
main = "", xlab = NA, ylab = NA,
cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,
abline = FALSE, abline.color = 1, abline.lty = 1,
corLabel = corFnc,
displayAsZero = 1e-5,
col = 1, bg = 0, pch = 1,
lmFnc = lm,
plotPriority = NULL,
showPValue = TRUE,
...)

Arguments

x numerical vector to be plotted along the x axis.

y numerical vector to be plotted along the y axis.

sample determines whether x and y should be sampled for plotting, useful to keep the
plot manageable when x and y are large vectors. The default NULL value implies
no sampling. A single numeric value will be interpreted as the number of points
to sample randomly. If a vector is given, it will be interpreted as the indices of
the entries in x and y that should be plotted. In either case, the correlation and p
value will be determined from the full vectors x and y.

corFnc character string giving the correlation function to annotate the plot.

corOptions character string giving further options to the correlation function.

main main title for the plot.

xlab label for the x-axis.

ylab label for the y-axis.

cex character expansion factor for plot annotations, recycled as necessary.

cex.axis character expansion factor for axis annotations.

cex.lab character expansion factor for axis labels.

cex.main character expansion factor for the main title.

abline logical: should the linear regression fit line be plotted?

abline.color color specification for the fit line.

abline.lty line type for the fit line.

corLabel character string to be used as the label for the correlation value printed in the
main title.

displayAsZero Correlations whose absolute value is smaller than this number will be displayed
as zero. This can result in a more intuitive display (for example, cor=0 instead
of cor=2.6e-17).

col color of the plotted symbols. Recycled as necessary.

votingLinearPredictor 425

bg fill color of the plotted symbols (used for certain symbols). Recycled as neces-
sary.

pch Integer code for plotted symbols (see link{plot.default}). Recycled as nec-
essary.

lmFnc linear model fit function. Used to calculate the linear model fit line if 'abline'
is TRUE. For example, robust linear models are implemented in the function rlm.

plotPriority Optional numeric vector of same length as x. Points with higher plot priority
will be plotted later, making them more visible if points overlap.

showPValue Logical: should the p-value corresponding to the correlation be added to the
title?

... other arguments to the function plot.

Details

Irrespective of the specified correlation function, the p-value is always calculated for pearson cor-
relation.

Value

If sample above is given, the indices of the plotted points are returned invisibly.

Author(s)

Steve Horvath and Peter Langfelder

See Also

plot.default for standard scatterplots

votingLinearPredictor Voting linear predictor

Description

Predictor based on univariate regression on all or selected given features that pools all predictions
using weights derived from the univariate linear models.

Usage

votingLinearPredictor(
x, y, xtest = NULL,
classify = FALSE,
CVfold = 0,
randomSeed = 12345,
assocFnc = "cor", assocOptions = "use = 'p'",
featureWeightPowers = NULL, priorWeights = NULL,

426 votingLinearPredictor

weighByPrediction = 0,
nFeatures.hi = NULL, nFeatures.lo = NULL,
dropUnusedDimensions = TRUE,
verbose = 2, indent = 0)

Arguments

x Training features (predictive variables). Each column corresponds to a feature
and each row to an observation.

y The response variable. Can be a single vector or a matrix with arbitrary many
columns. Number of rows (observations) must equal to the number of rows
(observations) in x.

xtest Optional test set data. A matrix of the same number of columns (i.e., features)
as x. If test set data are not given, only the prediction on training data will be
returned.

classify Should the response be treated as a categorical variable? Classification really
only works with two classes. (The function will run for multiclass problems as
well, but the results will be sub-optimal.)

CVfold Optional specification of cross-validation fold. If 0 (the default), no cross-
validation is performed.

randomSeed Random seed, used for observation selection for cross-validation. If NULL, the
random generator is not reset.

assocFnc Function to measure association. Usually a measure of correlation, for example
Pearson correlation or bicor.

assocOptions Character string specifying the options to be passed to the association function.
featureWeightPowers

Powers to which to raise the result of assocFnc to obtain weights. Can be a
single number or a vector of arbitrary length; the returned value will contain one
prediction per power.

priorWeights Prior weights for the features. If given, must be either (1) a vector of the same
length as the number of features (columns in x); (2) a matrix of dimensions
length(featureWeightPowers)x(number of features); or (3) array of dimensions
(number of response variables)xlength(featureWeightPowers)x(number of fea-
tures).

weighByPrediction

(Optional) power to downweigh features that are not well predicted between
training and test sets. See details.

nFeatures.hi Optional restriction of the number of features to use. If given, this many fea-
tures with the highest association and lowest association (if nFeatures.lo is
not given) will be used for prediction.

nFeatures.lo Optional restriction of the number of lowest (i.e., most negatively) associated
features to use. Only used if nFeatures.hi is also non-NULL.

dropUnusedDimensions

Logical: should unused dimensions be dropped from the result?

votingLinearPredictor 427

verbose Integer controling how verbose the diagnostic messages should be. Zero means
silent.

indent Indentation for the diagnostic messages. Zero means no indentation, each unit
adds two spaces.

Details

The predictor calculates the association of each (selected) feature with the response and uses the as-
sociation to calculate the weight of the feature as sign(association) * (association)^featureWeightPower.
Optionally, this weight is multiplied by priorWeights. Further, a feature prediction weight can be
used to downweigh features that are not well predicted by other features (see below).

For classification, the (continuous) result of the above calculation is turned into ordinal values
essentially by rounding.

If features exhibit non-trivial correlations among themselves (such as, for example, in gene expres-
sion data), one can attempt to down-weigh features that do not exhibit the same correlation in the
test set. This is done by using essentially the same predictor to predict _features_ from all other
features in the test data (using the training data to train the feature predictor). Because test features
are known, the prediction accuracy can be evaluated. If a feature is predicted badly (meaning the
error in the test set is much larger than the error in the cross-validation prediction in training data),
it may mean that its quality in the training or test data is low (for example, due to excessive noise or
outliers). Such features can be downweighed using the argument weighByPrediction. The extra
factor is min(1, (root mean square prediction error in test set)/(root mean square cross-validation
prediction error in the trainig data)^weighByPrediction), that is it is never bigger than 1.

Value

A list with the following components:

predicted The back-substitution prediction on the training data. Normally an array of di-
mensions (number of observations) x (number of response variables) x length(featureWeightPowers),
but unused are dropped unless dropUnusedDimensions = FALSE.

weightBase Absolute value of the associations of each feature with each response.
variableImportance

The weight of each feature in the prediction (including the sign).

predictedTest If input xtest is non-NULL, the predicted test response, in format analogous to
predicted above.

CVpredicted If input CVfold is non-zero, cross-validation prediction on the training data.

Note

It makes little practical sense to supply neither xtest nor CVfold since the prediction accuracy on
training data will be highly biased.

Author(s)

Peter Langfelder

428 votingLinearPredictor

See Also

bicor for robust correlation that can be used as an association measure

Index

∗ cluster
consensusProjectiveKMeans, 105
moduleNumber, 232
projectiveKMeans, 320
sizeRestrictedClusterMerge, 380

∗ color
blueWhiteRed, 64
greenBlackRed, 155
greenWhiteRed, 156
labels2colors, 208
redWhiteGreen, 344
rgcolors.func, 350
standardColors, 384

∗ datasets
BloodLists, 63
BrainLists, 65
BrainRegionMarkers, 66
ImmunePathwayLists, 186
PWLists, 330
SCsLists, 358

∗ graphics
verboseIplot, 422

∗ hplot
addErrorBars, 9
addGrid, 10
addGuideLines, 11
labeledBarplot, 197
labeledHeatmap, 198
plotClusterTreeSamples, 295
plotColorUnderTree, 297
plotCor, 300
plotDendroAndColors, 301
plotEigengeneNetworks, 303
plotMat, 306
plotMEpairs, 307
plotModuleSignificance, 308
plotNetworkHeatmap, 310
verboseScatterplot, 423

∗ misc

accuracyMeasures, 7
addTraitToMEs, 12
adjacency, 13
adjacency.polyReg, 15
adjacency.splineReg, 16
AFcorMI, 18
alignExpr, 19
allocateJobs, 20
allowWGCNAThreads, 21
automaticNetworkScreening, 22
automaticNetworkScreeningGS, 23
BD.getData, 25
bicovWeights, 30
binarizeCategoricalColumns, 32
binarizeCategoricalVariable, 35
blockSize, 38
blockwiseConsensusModules, 39
blockwiseIndividualTOMs, 50
blockwiseModules, 55
branchEigengeneDissim, 67
branchSplit, 69
branchSplit.dissim, 70
branchSplitFromStabilityLabels, 71
checkAdjMat, 73
checkSets, 74
chooseOneHubInEachModule, 75
chooseTopHubInEachModule, 76
clusterCoef, 77
coClustering, 78
coClustering.permutationTest, 79
collapseRows, 81
collapseRowsUsingKME, 86
colQuantileC, 88
conformityBasedNetworkConcepts, 89
conformityDecomposition, 91
consensusCalculation, 93
consensusDissTOMandTree, 96
consensusKME, 98
consensusMEDissimilarity, 103

429

430 INDEX

consensusOrderMEs, 104
consensusRepresentatives, 107
consensusTOM, 111
consensusTreeInputs, 118
convertNumericColumnsToNumeric,

119
cor, 120
corPredictionSuccess, 124
corPvalueFisher, 125
corPvalueStudent, 126
correlationPreservation, 126
coxRegressionResiduals, 127
cutreeStatic, 129
cutreeStaticColor, 130
displayColors, 131
dynamicMergeCut, 132
exportNetworkToCytoscape, 138
exportNetworkToVisANT, 139
factorizeNonNumericColumns, 140
fixDataStructure, 141
formatLabels, 142
fundamentalNetworkConcepts, 144
GOenrichmentAnalysis, 145
goodGenes, 146
goodGenesMS, 147
goodSamples, 149
goodSamplesGenes, 151
goodSamplesGenesMS, 152
goodSamplesMS, 154
GTOMdist, 157
hierarchicalConsensusCalculation,

158
hierarchicalConsensusKME, 161
hierarchicalConsensusMEDissimilarity,

169
hierarchicalConsensusModules, 170
hierarchicalConsensusTOM, 178
hierarchicalMergeCloseModules, 182
hubGeneSignificance, 185
imputeByModule, 186
individualTOMs, 187
Inline display of progress, 190
intramodularConnectivity, 192
isMultiData, 193
keepCommonProbes, 194
kMEcomparisonScatterplot, 195
labeledHeatmap.multiPage, 204
list2multiData, 209

lowerTri2matrix, 210
matchLabels, 211
matrixToNetwork, 212
mergeCloseModules, 214
metaAnalysis, 217
metaZfunction, 222
modifiedBisquareWeights, 224
moduleColor.getMEprefix, 226
moduleEigengenes, 227
moduleMergeUsingKME, 230
modulePreservation, 233
mtd.apply, 238
mtd.mapply, 241
mtd.rbindSelf, 243
mtd.setAttr, 244
mtd.setColnames, 244
mtd.simplify, 245
mtd.subset, 246
multiData, 248
multiData.eigengeneSignificance,

249
multiGSub, 250
multiSetMEs, 252
multiUnion, 255
mutualInfoAdjacency, 256
nearestCentroidPredictor, 259
nearestNeighborConnectivity, 263
nearestNeighborConnectivityMS, 264
networkConcepts, 265
networkScreening, 269
networkScreeningGS, 270
newBlockInformation, 271
newBlockwiseData, 272
newConsensusOptions, 274
newConsensusTree, 275
newCorrelationOptions, 276
newNetworkOptions, 278
normalizeLabels, 279
nPresent, 280
nSets, 281
numbers2colors, 281
orderBranchesUsingHubGenes, 283
orderMEs, 285
orderMEsByHierarchicalConsensus,

287
overlapTable, 288
overlapTableUsingKME, 289
pickHardThreshold, 291

INDEX 431

pickSoftThreshold, 293
plotClusterTreeSamples, 295
plotModuleSignificance, 308
plotMultiHist, 309
populationMeansInAdmixture, 312
pquantile, 314
prepComma, 316
prependZeros, 317
preservationNetworkConnectivity,

318
proportionsInAdmixture, 322
propVarExplained, 324
pruneAndMergeConsensusModules, 325
pruneConsensusModules, 328
qvalue, 330
qvalue.restricted, 332
randIndex, 333
rankPvalue, 333
recutBlockwiseTrees, 336
recutConsensusTrees, 340
relativeCorPredictionSuccess, 345
removeGreyME, 346
removePrincipalComponents, 346
replaceMissing, 347
returnGeneSetsAsList, 348
sampledBlockwiseModules, 351
sampledHierarchicalConsensusModules,

353
scaleFreeFitIndex, 356
scaleFreePlot, 356
selectFewestConsensusMissing, 358
setCorrelationPreservation, 360
shortenStrings, 361
sigmoidAdjacencyFunction, 362
signedKME, 363
signifNumeric, 364
signumAdjacencyFunction, 365
simpleConsensusCalculation, 366
simpleHierarchicalConsensusCalculation,

367
simulateDatExpr, 368
simulateDatExpr5Modules, 371
simulateEigengeneNetwork, 373
simulateModule, 374
simulateMultiExpr, 375
simulateSmallLayer, 378
sizeGrWindow, 380
softConnectivity, 382

spaste, 383
standardColors, 384
standardScreeningBinaryTrait, 385
standardScreeningCensoredTime, 387
standardScreeningNumericTrait, 390
stdErr, 391
stratifiedBarplot, 391
subsetTOM, 393
swapTwoBranches, 395
TOMplot, 397
TOMsimilarity, 398
TOMsimilarityFromExpr, 400
transposeBigData, 403
TrueTrait, 404
unsignedAdjacency, 407
userListEnrichment, 409
vectorizeMatrix, 416
vectorTOM, 416
verboseBarplot, 418
verboseBoxplot, 420
votingLinearPredictor, 425

∗ models
empiricalBayesLM, 133

∗ plot
labelPoints, 206

∗ regression
empiricalBayesLM, 133

∗ robust
bicor, 26

∗ stats
bicorAndPvalue, 29
corAndPvalue, 123
minWhichMin, 223

∗ utilities
collectGarbage, 87

abline, 296, 303
accuracyMeasures, 7
addBlockToBlockwiseData, 26
addBlockToBlockwiseData

(newBlockwiseData), 272
addErrorBars, 9
addGrid, 10
addGuideLines, 11
addTraitToMEs, 12
adjacency, 13, 43, 50, 52, 59, 63, 73, 106,

109, 114, 193, 234, 238, 258, 264,
265, 278, 294, 295, 311, 320, 321,

432 INDEX

337, 341, 352, 366, 383, 394, 400,
408, 417

adjacency.polyReg, 15
adjacency.splineReg, 16
AFcorMI, 18
alignExpr, 19
allocateJobs, 20, 205, 206
allowWGCNAThreads, 21
automaticNetworkScreening, 22
automaticNetworkScreeningGS, 23, 271

barplot, 197, 309, 393, 419, 420
BD.actualFileNames, 274
BD.actualFileNames (BD.getData), 25
BD.blockLengths, 274
BD.blockLengths (BD.getData), 25
BD.checkAndDeleteFiles, 274
BD.checkAndDeleteFiles (BD.getData), 25
BD.getData, 25, 274
BD.getMetaData, 274
BD.getMetaData (BD.getData), 25
BD.nBlocks, 274
BD.nBlocks (BD.getData), 25
bicor, 21, 26, 29, 30, 32, 43, 52, 58, 109, 113,

218, 234, 277, 390, 401, 426, 428
bicorAndPvalue, 29, 103, 168
bicovWeightFactors (bicovWeights), 30
bicovWeights, 30, 135, 138
bicovWeightsFromFactors (bicovWeights),

30
binarizeCategoricalColumns, 32
binarizeCategoricalVariable, 35, 35
BlockInformation, 190
BlockInformation (newBlockInformation),

271
blockSize, 38
blockwiseConsensusModules, 39, 54, 55, 72,

97, 106, 340, 343, 344
BlockwiseData, 25, 26, 94, 95, 159, 189, 190,

367
BlockwiseData (newBlockwiseData), 272
blockwiseIndividualTOMs, 42, 50, 114, 118
blockwiseModules, 22, 55, 72, 178, 238, 336,

339, 340, 352, 353
BloodLists, 63
blueWhiteRed, 64, 156, 157
boxplot, 309, 420, 421
boxplot.stats, 421
BrainLists, 65

BrainRegionMarkers, 66
branchEigengeneDissim, 67
branchEigengeneSimilarity

(branchEigengeneDissim), 67
branchSplit, 69
branchSplit.dissim, 70
branchSplitFromStabilityLabels, 46, 60,

71, 174

checkAdjMat, 73
checkSets, 12, 42, 51, 74, 103, 104, 106, 112,

127, 141, 148, 153, 154, 162, 172,
179, 188, 194, 195, 215, 218, 234,
249, 252, 281, 286, 304, 318, 326,
328, 341, 346, 354

checkSimilarity (checkAdjMat), 73
chooseOneHubInEachModule, 75
chooseTopHubInEachModule, 76
clusterCoef, 77
coClustering, 78, 81
coClustering.permutationTest, 79, 79
collapseRows, 81, 87, 109, 110
collapseRowsUsingKME, 86
collectGarbage, 87
colors, 202, 350
colQuantileC, 88
conformityBasedNetworkConcepts, 89, 93,

145, 268
conformityDecomposition, 91
consensusCalculation, 93, 160, 367
consensusDissTOMandTree, 96
consensusKME, 98
consensusMEDissimilarity, 103
ConsensusOptions (newConsensusOptions),

274
consensusOrderMEs, 104, 286
consensusProjectiveKMeans, 47, 53, 105,

116, 189, 190
consensusRepresentatives, 107
consensusTOM, 45, 111
ConsensusTree, 68, 118, 326, 329
ConsensusTree (newConsensusTree), 275
consensusTreeInputs, 118
convertNumericColumnsToNumeric, 119
cor, 21, 28, 120, 120, 121–124, 218, 235, 238,

260, 300, 307
cor.test, 29, 30, 123, 124
cor1 (cor), 120
corAndPvalue, 103, 123, 168

INDEX 433

corFast (cor), 120
corPredictionSuccess, 124, 345
corPvalueFisher, 125
corPvalueStudent, 126
CorrelationOptions

(newCorrelationOptions), 276
correlationPreservation, 126
coxRegressionResiduals, 127
cutree, 129–131, 233
cutreeDynamic, 23, 24, 45, 46, 50, 59, 60, 63,

173–175, 299, 337, 338, 340–342,
344

cutreeHybrid, 177
cutreeStatic, 129, 130, 131
cutreeStaticColor, 130

disableWGCNAThreads
(allowWGCNAThreads), 21

displayColors, 131
dist, 14, 49, 192, 193, 297
dynamicMergeCut, 132

empiricalBayesLM, 133
enableWGCNAThreads, 236, 294
enableWGCNAThreads (allowWGCNAThreads),

21
exportNetworkToCytoscape, 138
exportNetworkToVisANT, 139, 139

factorizeNonNumericColumns, 140
fisher.test, 289
fixDataStructure, 141
formatLabels, 142, 362
fundamentalNetworkConcepts, 90, 144, 269

glm, 16, 18
GOenrichmentAnalysis, 145
goodGenes, 146, 149, 152, 154, 155
goodGenesMS, 147, 154, 155
goodSamples, 147, 149, 149, 150, 152, 154,

155
goodSamplesGenes, 63, 147, 149, 150, 151,

154, 155, 271, 272, 337
goodSamplesGenesMS, 50, 54, 117, 149, 152,

155, 236, 238, 271, 272, 341
goodSamplesMS, 149, 154, 154
greenBlackRed, 155
greenWhiteRed, 156
gregexpr, 362

grep, 251
grepl, 251
gsub, 251
GTOMdist, 157

hclust, 11, 50, 63, 129–131, 177, 233, 297,
298, 301, 306

heat.colors, 200, 304
heatmap, 202, 397, 398
hierarchicalBranchEigengeneDissim

(branchEigengeneDissim), 67
hierarchicalConsensusCalculation, 68,

158, 169, 170, 181, 276, 368
hierarchicalConsensusKME, 161
hierarchicalConsensusMEDissimilarity,

169, 185, 287
hierarchicalConsensusModules, 72, 170,

355
hierarchicalConsensusTOM, 173, 175–177,

178
hierarchicalMergeCloseModules, 182, 327
hist, 310
hubGeneSignificance, 23, 24, 185

image, 300, 307, 350, 423
ImmunePathwayLists, 186
impute.knn, 172, 183, 186–188, 326, 328
imputeByModule, 183, 186
individualTOMs, 180, 181, 187
initProgInd (Inline display of

progress), 190
Inline display of progress, 190
intersect, 255, 256
intramodularConnectivity, 192
is.numeric, 35
isMultiData, 193, 241

kappa, 324
keepCommonProbes, 194
kMEcomparisonScatterplot, 195

labeledBarplot, 197, 306
labeledHeatmap, 198, 205, 206, 305, 306
labeledHeatmap.multiPage, 204
labelPoints, 206, 419
labels2colors, 176, 208, 282
lapply, 238
layout, 397
length, 25, 273

434 INDEX

list2multiData, 209, 248
lm, 134, 324, 347
load, 45, 59, 115
lowerTri2matrix, 210

mapply, 241
matchLabels, 211, 289
matrixToNetwork, 212
mean, 315
median, 315
mergeBlockwiseData, 26
mergeBlockwiseData (newBlockwiseData),

272
mergeCloseModules, 48, 50, 62, 63, 132, 176,

177, 214, 339, 340, 343, 344
metaAnalysis, 217
metaZfunction, 222
minWhichMin, 223
model.matrix, 34
modifiedBisquareWeights, 224
moduleColor.getMEprefix, 226
moduleEigengenes, 12, 46, 61, 105, 132, 175,

183, 215, 226, 227, 253, 255, 286,
325, 327, 329, 338, 342

moduleMergeUsingKME, 230
moduleNumber, 232
modulePreservation, 79, 81, 233
mtd.apply, 238, 248
mtd.applyToSubset, 241, 248
mtd.applyToSubset (mtd.apply), 238
mtd.branchEigengeneDissim

(branchEigengeneDissim), 67
mtd.colnames (mtd.setColnames), 244
mtd.mapply, 241, 241, 248
mtd.rbindSelf, 243
mtd.setAttr, 244
mtd.setColnames, 244
mtd.simplify, 245
mtd.subset, 246
multiData, 94, 108, 110, 159, 169, 172, 180,

183, 189, 190, 241, 243–247, 248,
287, 326, 329, 354, 358–360, 366,
367

multiData.eigengeneSignificance, 249
multiData2list, 246, 248
multiData2list (list2multiData), 209
multiGrep (multiGSub), 250
multiGrepl (multiGSub), 250
multiGSub, 250

multiIntersect (multiUnion), 255
multiSetMEs, 49, 105, 127, 176, 185, 252,

286, 343, 361
multiSub (multiGSub), 250
multiUnion, 255
mutualInfoAdjacency, 18, 19, 256

nearestCentroidPredictor, 259
nearestNeighborConnectivity, 263, 265
nearestNeighborConnectivityMS, 264
networkConcepts, 90, 145, 265
NetworkOptions, 68, 169, 172, 180, 183, 189,

190, 287, 326, 329, 354
NetworkOptions (newNetworkOptions), 278
networkScreening, 23, 24, 269, 271
networkScreeningGS, 24, 270
newBlockInformation, 271
newBlockwiseData, 26, 272
newConsensusOptions, 94, 160, 169, 274,

276, 366, 367
newConsensusTree, 119, 164, 168, 183, 185,

275, 287
newCorrelationOptions, 276, 278, 279
newNetworkOptions, 278
normalize.quantiles, 47, 95, 96, 116
normalizeLabels, 233, 279
nPresent, 280
ns, 17, 18
nSets, 281
numbers2colors, 65, 156, 157, 281

orderBranchesUsingHubGenes, 283
orderMEs, 104, 105, 285
orderMEsByHierarchicalConsensus, 287
overlapTable, 212, 288, 290
overlapTableUsingKME, 289

pairs, 307, 308
par, 10, 11, 143, 200, 206, 296, 299, 300, 304,

306, 350
paste, 383, 384
pdf, 305
pickHardThreshold, 291
pickSoftThreshold, 293
plot, 308, 425
plot.default, 207, 425
plot.hclust, 296, 303
plotClusterTreeSamples, 295
plotColorUnderTree, 297, 303

INDEX 435

plotCor, 300, 307, 350
plotDendroAndColors, 297, 299, 301
plotEigengeneNetworks, 303, 361
plotMat, 300, 306, 350
plotMEpairs, 307
plotModuleSignificance, 308
plotMultiHist, 309
plotNetworkHeatmap, 310
plotOrderedColors (plotColorUnderTree),

297
pmean (pquantile), 314
pmedian (pquantile), 314
pminWhich.fromList (pquantile), 314
poly, 16
populationMeansInAdmixture, 312
postscript, 305
pquantile, 88, 314
prepComma, 316
prependZeros, 317
preservationNetworkConnectivity, 318
projectiveKMeans, 61, 107, 320, 381
proportionsInAdmixture, 322
propVarExplained, 324
pruneAndMergeConsensusModules, 325
pruneConsensusModules, 327, 328
PWLists, 330

quantile, 88, 315
qvalue, 330, 332, 336
qvalue.restricted, 332

randIndex, 333
rank, 334, 336
rankPvalue, 99, 101, 163, 167, 218, 219, 333
rbind, 243
rcorr.cens, 221, 386
recutBlockwiseTrees, 336
recutConsensusTrees, 340
redWhiteGreen, 304, 344
reflectBranch (swapTwoBranches), 395
relativeCorPredictionSuccess, 125, 345
removeGreyME, 346
removePrincipalComponents, 346
replaceMissing, 347
returnGeneSetsAsList, 348
rgb, 300, 307, 350
rgcolors.func, 300, 307, 350
rlm, 134, 425
round, 364, 365

rowQuantileC (colQuantileC), 88

sampledBlockwiseModules, 351, 355
sampledHierarchicalConsensusModules,

353, 353
scaleFreeFitIndex, 356
scaleFreePlot, 356
SCsLists, 358
selectBranch (swapTwoBranches), 395
selectFewestConsensusMissing, 358
set.seed, 261
setCorrelationPreservation, 360
shortenStrings, 361
sigmoidAdjacencyFunction, 362
signedKME, 103, 168, 363
signif, 364, 365
signifNumeric, 364
signumAdjacencyFunction, 292, 365
simpleConsensusCalculation, 366, 368
simpleHierarchicalConsensusCalculation,

367
simulateDatExpr, 368, 372, 375, 377–379
simulateDatExpr5Modules, 371, 371, 375,

378
simulateEigengeneNetwork, 371, 373, 375,

378
simulateModule, 371, 372, 374, 378, 379
simulateMultiExpr, 371, 375, 375
simulateSmallLayer, 378
sizeGrWindow, 380
sizeRestrictedClusterMerge, 322, 380
softConnectivity, 264, 265, 295, 357, 382
spaste, 383
standardColors, 130, 131, 212, 384
standardScreeningBinaryTrait, 217, 220,

222, 385, 391
standardScreeningCensoredTime, 387, 391
standardScreeningNumericTrait, 217, 220,

222, 390
stdErr, 391
stratifiedBarplot, 391
strsplit, 143
strwidth, 143
sub, 251
subsetTOM, 393
svd, 230, 347
swapTwoBranches, 395

t, 403, 404

436 INDEX

t.test, 218
table, 7
text, 200, 201, 206, 207
TOMdist (TOMsimilarity), 398
TOMplot, 397
TOMsimilarity, 50, 63, 311, 394, 398, 403,

418
TOMsimilarityFromExpr, 43, 53, 59, 114,

190, 279, 398, 399, 400
transposeBigData, 403
TrueTrait, 404

union, 255, 256
unsignedAdjacency, 407
updateProgInd (Inline display of

progress), 190
userListEnrichment, 64, 66, 186, 330, 358,

409

vectorizeMatrix, 416
vectorTOM, 416
verboseBarplot, 393, 418
verboseBoxplot, 420
verboseIplot, 422
verboseScatterplot, 423
votingLinearPredictor, 262, 425

WGCNAnThreads (allowWGCNAThreads), 21

	accuracyMeasures
	addErrorBars
	addGrid
	addGuideLines
	addTraitToMEs
	adjacency
	adjacency.polyReg
	adjacency.splineReg
	AFcorMI
	alignExpr
	allocateJobs
	allowWGCNAThreads
	automaticNetworkScreening
	automaticNetworkScreeningGS
	BD.getData
	bicor
	bicorAndPvalue
	bicovWeights
	binarizeCategoricalColumns
	binarizeCategoricalVariable
	blockSize
	blockwiseConsensusModules
	blockwiseIndividualTOMs
	blockwiseModules
	BloodLists
	blueWhiteRed
	BrainLists
	BrainRegionMarkers
	branchEigengeneDissim
	branchSplit
	branchSplit.dissim
	branchSplitFromStabilityLabels
	checkAdjMat
	checkSets
	chooseOneHubInEachModule
	chooseTopHubInEachModule
	clusterCoef
	coClustering
	coClustering.permutationTest
	collapseRows
	collapseRowsUsingKME
	collectGarbage
	colQuantileC
	conformityBasedNetworkConcepts
	conformityDecomposition
	consensusCalculation
	consensusDissTOMandTree
	consensusKME
	consensusMEDissimilarity
	consensusOrderMEs
	consensusProjectiveKMeans
	consensusRepresentatives
	consensusTOM
	consensusTreeInputs
	convertNumericColumnsToNumeric
	cor
	corAndPvalue
	corPredictionSuccess
	corPvalueFisher
	corPvalueStudent
	correlationPreservation
	coxRegressionResiduals
	cutreeStatic
	cutreeStaticColor
	displayColors
	dynamicMergeCut
	empiricalBayesLM
	exportNetworkToCytoscape
	exportNetworkToVisANT
	factorizeNonNumericColumns
	fixDataStructure
	formatLabels
	fundamentalNetworkConcepts
	GOenrichmentAnalysis
	goodGenes
	goodGenesMS
	goodSamples
	goodSamplesGenes
	goodSamplesGenesMS
	goodSamplesMS
	greenBlackRed
	greenWhiteRed
	GTOMdist
	hierarchicalConsensusCalculation
	hierarchicalConsensusKME
	hierarchicalConsensusMEDissimilarity
	hierarchicalConsensusModules
	hierarchicalConsensusTOM
	hierarchicalMergeCloseModules
	hubGeneSignificance
	ImmunePathwayLists
	imputeByModule
	individualTOMs
	Inline display of progress
	intramodularConnectivity
	isMultiData
	keepCommonProbes
	kMEcomparisonScatterplot
	labeledBarplot
	labeledHeatmap
	labeledHeatmap.multiPage
	labelPoints
	labels2colors
	list2multiData
	lowerTri2matrix
	matchLabels
	matrixToNetwork
	mergeCloseModules
	metaAnalysis
	metaZfunction
	minWhichMin
	modifiedBisquareWeights
	moduleColor.getMEprefix
	moduleEigengenes
	moduleMergeUsingKME
	moduleNumber
	modulePreservation
	mtd.apply
	mtd.mapply
	mtd.rbindSelf
	mtd.setAttr
	mtd.setColnames
	mtd.simplify
	mtd.subset
	multiData
	multiData.eigengeneSignificance
	multiGSub
	multiSetMEs
	multiUnion
	mutualInfoAdjacency
	nearestCentroidPredictor
	nearestNeighborConnectivity
	nearestNeighborConnectivityMS
	networkConcepts
	networkScreening
	networkScreeningGS
	newBlockInformation
	newBlockwiseData
	newConsensusOptions
	newConsensusTree
	newCorrelationOptions
	newNetworkOptions
	normalizeLabels
	nPresent
	nSets
	numbers2colors
	orderBranchesUsingHubGenes
	orderMEs
	orderMEsByHierarchicalConsensus
	overlapTable
	overlapTableUsingKME
	pickHardThreshold
	pickSoftThreshold
	plotClusterTreeSamples
	plotColorUnderTree
	plotCor
	plotDendroAndColors
	plotEigengeneNetworks
	plotMat
	plotMEpairs
	plotModuleSignificance
	plotMultiHist
	plotNetworkHeatmap
	populationMeansInAdmixture
	pquantile
	prepComma
	prependZeros
	preservationNetworkConnectivity
	projectiveKMeans
	proportionsInAdmixture
	propVarExplained
	pruneAndMergeConsensusModules
	pruneConsensusModules
	PWLists
	qvalue
	qvalue.restricted
	randIndex
	rankPvalue
	recutBlockwiseTrees
	recutConsensusTrees
	redWhiteGreen
	relativeCorPredictionSuccess
	removeGreyME
	removePrincipalComponents
	replaceMissing
	returnGeneSetsAsList
	rgcolors.func
	sampledBlockwiseModules
	sampledHierarchicalConsensusModules
	scaleFreeFitIndex
	scaleFreePlot
	SCsLists
	selectFewestConsensusMissing
	setCorrelationPreservation
	shortenStrings
	sigmoidAdjacencyFunction
	signedKME
	signifNumeric
	signumAdjacencyFunction
	simpleConsensusCalculation
	simpleHierarchicalConsensusCalculation
	simulateDatExpr
	simulateDatExpr5Modules
	simulateEigengeneNetwork
	simulateModule
	simulateMultiExpr
	simulateSmallLayer
	sizeGrWindow
	sizeRestrictedClusterMerge
	softConnectivity
	spaste
	standardColors
	standardScreeningBinaryTrait
	standardScreeningCensoredTime
	standardScreeningNumericTrait
	stdErr
	stratifiedBarplot
	subsetTOM
	swapTwoBranches
	TOMplot
	TOMsimilarity
	TOMsimilarityFromExpr
	transposeBigData
	TrueTrait
	unsignedAdjacency
	userListEnrichment
	vectorizeMatrix
	vectorTOM
	verboseBarplot
	verboseBoxplot
	verboseIplot
	verboseScatterplot
	votingLinearPredictor
	Index

