Package ‘Rserve’

February 2, 2026

Version 1.8-17
Title Versatile R Server

Author Simon Urbanek [aut, cre, cph] (https://urbanek.org, ORCID:
<https://orcid.org/0000-0003-2297-1732>)

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>
Depends R (>=1.5.0)

Suggests RSclient

SystemRequirements 1ibR, GNU make

Description Rserve is a versatile, scalable server enabling the
efficient use of R from other applications through
variety of protocols including QAP, WebSockets, HTTP
and HTTPS. It acts as a server (TCP/IP or local sockets)
which allows binary requests to be sent to R. Every
connection has a separate workspace and working
directory. Client-side implementations are available
for many popular languages allowing applications
to use facilities of R without the need of linking to
the R binary. Rserve supports remote connections,
user authentication and file transfer. A simple R client
is included in this package as well. It also supports
OCAP mode for secure remote procedure calls,
including support for full event loop, asynchronous
results/graphics and console I/O.

License GPL-2 | file LICENSE
URL https://www.rforge.net/Rserve/

BugReports https://github.com/s-u/Rserve/issues/
Biarch true

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-02-02 08:42:17 UTC

https://orcid.org/0000-0003-2297-1732
https://www.rforge.net/Rserve/
https://github.com/s-u/Rserve/issues/

2 ocap

Contents
OCAD & v v o e e e e e e e e e e e e e e e 2
Rserve e e e 3
Rserve.eval e 4
Rserve.http.add.static L 6
run.Rserve e e e e 7
= 8
ulog . .o 9

Index 11

ocap Object Capability (OCAP) Functions
Description

The following functions are only meaningful when used by code that is run inside Rserve in object-
capability (OCAP) mode. See Rserve Wiki for details.

ocap registers a function as a capability and returns the reference.
resolve.ocap takes a capability reference and returns the function representing the capability.

Rserve.context retrieves or sets the current context for out-of-band (OOB) messages (see also
Rserve.eval for specifying contexts during evaluation).

Usage

ocap(fun, name = deparse(substitute(fun)))
resolve.ocap(ocap)
Rserve.context(what)

Arguments
fun function to register
name description of the function, only for informational and logging purposes
ocap reference previously obtained by a call to ocap
what if present, sets the context to the supplied value. If missing, the function returns
the current context
Value

ocap returns the new capability reference, it will be an object of the class "OCref™”.

resolve.ocap returns the function corresponding to the reference or NULL if the reference does not
exist. It will raise an error if ocap is not a valid "OCref"” object.

Rserve.context returns the current context

Author(s)

Simon Urbanek

https://github.com/s-u/Rserve/wiki/OCAP-mode

Rserve

Rserve

Server providing R functionality to applications via TCP/IP or local
unix sockets

Description

Starts Rserve in daemon mode (unix only). Any additional parameters not related to Rserve will be
passed straight to the underlying R. For configuration, usage and command line parameters please
consult the online documentation at http://www.rforge.net/Rserve. Use R CMD Rserve --help for a

brief help.

The Rserve function is provided for convenience only.

On Windows the Rserve () function sets up the PATH to include the current R.DLL so that Rserve

can be run.

Usage

R CMD Rserve [<parameters>]

Rserve(debug = FALSE, port, args = NULL, quote=(length(args) > 1), wait, ...)
Arguments
debug determines whether regular Rserve or debug version of Rserve (Rserve.dbg)
should be started.
port port used by Rserve to listen for connections. If not specified, it will be taken
from the configuration file (if present) or default to 6311
args further arguments passed to Rserve (as a string that will be passed to the system
command - see quote below).
quote logical, if TRUE then arguments are quoted, otherwise they are just joined with
spaces
wait wait argument for the system call. It defaults to FALSE on Windows and TRUE
elsewhere.
other arguments to be passes to system.
Details

Rserve is not just a package, but an application. It is provided as a R package for convenience only.
For details see http://www.rforge.net/Rserve

Note

R CMD Rserve will only work on unix when installed from sources and with sufficient permissions
to have write-rights in $R_HOME/bin. Binary installations have no way to write in $R_HOME/bin
and thus Rserve() function described above is the only reliable way to start Rserve in that case.

4 Rserve.eval

Java developers may want to see the StartRserve class in java/Rserve/test examples for easy
way to start Rserve from Java.

Rserve can be compiled with TLS/SSL support based on OpenSSL. Therefore the following state-
ments may be true if Rserve binaries are shipped together with OpenSSL: This product includes
software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).
This product includes cryptographic software written by Eric Young (eay @cryptsoft.com). This
product includes software written by Tim Hudson (tjh@cryptsoft.com). They are not true other-
wise.

Author(s)

Simon Urbanek

See Also

run.Rserve

Rserve.eval Evaluate expressions in a REPL-like fashion

Description

Rserve.eval evaluates a given expression in a way that is very close to the behavior on the console
Read/Evaluate/Print Loop (REPL). Among other things this means printing the result of each ex-
pression if visible. The function is guaranteed to not raise an error and in case of an error it returns
an object of class Rserve-eval-error with details including the error and the stack trace.

Usage

Rserve.eval(what, where = .GlobalEnv, last.value = FALSE, exp.value = FALSE,
context = NULL, handlers = list(error=.save.condition))

Arguments

what expressions to evaluate

where environment to evaluate in

last.value logical, if TRUE then the result of the evaluation is returned, otherwise the eval-
uation is only performed for its side-efects and returns TRUE instead.

exp.value logical, it TRUE then an error object will include the actual expression that trig-
gered the error, otherwise it will only store the index of the expression in what.

context optional object that will be used as the Rserve context for the duration of the
evaluation (see Rserve.context).

handlers optional named list of calling handlers to register for the duration of the evalua-

tion. The default is to register an error handlers which stores the error condition
so it can be reported in the result - see below.

Rserve.eval 5

Details

If what contains one or more expressions, they are evaluated one by one while printing the result of
each if visible. Upon error subsequent expressions are not evaluated. If what is not an expression
then the only a single evaluation of what is performed and the result is not printed.

The main purpose of this function is to implement console front-ends where the front-end uses
parse() + Rserve.eval() to simulate the action of a GUI. Because the function returns in all
circumstances it allows clients to rely on a well-define messaging behavior.

Value

If the evaluation triggered an error, the result is an object of class Rserve-eval-error with com-

ponents:

error character, error message

traceback list of contexts in the traceback

expression if what contains multiple expressions then this will be either an index to the
expression that caused the error (exp.value=FALSE) or the actual expression
(otherwise).

context current Rserve context, NULL if none has been set

condition if any condition has been saved via .save.condition (which is the default)

then on error the captured condition object is stored here, NULL otherwise

If the evaluation finished without an error then the result is either TRUE if 1ast.value=FALSE or the
value of the last expression otherwise.

Note

Rserve versions up to 1.8-10 did not include the condition component, no calling handlers were
registered and there was no condition component in the result. To replicate that behavior or if you
don’t need that information, you can set handlers=NULL which removes the overhead of adding
calling handlers.

No error checking is performed on the handlers parameter, so make sure it is avalid, named list of
functions, otherwise an error will occur at evaluation time.

Author(s)

Simon Urbanek

Examples

g <- function() stop("foo")

f <= function() g()

(Rserve.eval (expression(f())))
(Rserve.eval (parse(text="1:5\n1+1")))
(Rserve.eval(quote(1+1), last.value=TRUE))

error_with_condition = function(object = NULL) {
cond = errorCondition("this is a custom error with condition”,

6 Rserve.http.add.static

object = object,
class = "CustomError")
stop(cond)
}

str(Rserve.eval(quote(error_with_condition("hello”)), last.value = TRUE))

Rserve.http.add.static
Add static file handler to HTTP/HTTPS server

Description

Rserve.http.add.static installs a new static handler to be used by the HTTP/HTTPS servers.
It will trigger only if the path prefix matches prefix and will map the subsequent portion of the
path in the request URL to a file system location specified by path. If the resulting item in the file
system is a directory, then index (if set) will be appended to the path and served instead (if it is a
file).

Rserve.http.rm.all.statics removes all static handlers from the current R session.

Usage

Rserve.http.add.static(prefix, path, index = NULL, last = FALSE)
Rserve.http.rm.all.statics()

Arguments
prefix string, path prefix for which this handler will be used
path string, path in the filesystem used as root to serve the content
index optional string, will be appended to the file system path if the target is a directory
(typical value is "index.html").
last logical, if FALSE then processing continues to other handlers if the target does
not exist. If TRUE then all requests for the prefix will be handled only by this
handler, possible resulting in "404 not found" result if the reqeusted file does
not exist.
Details

The HTTP/HTTPS server supports both static and dynamic handlers. The typical use is to invoke
.http.request function in R for dynamic handling, but it also supports static maps of URL paths
to file system locations. The static handlers are checked first.

Rserve.http.add.static installs a new static handler, adding it to the list of handlers. The han-
dlers are consulted in the order that they are added.

The static handler supports conditional GETs and relies on the file system modification times to
determine if a file has been modified.

run.Rserve 7

Value
The return value is considered experimental and may change in the future: Integer, number of active
handlers (which is the same as the index of this handler).

Author(s)

Simon Urbanek

See Also

run.Rserve

Examples

standard handler serving all files in the current working directory
and consults index.html in directories if no file is specified.
Rserve.http.add.static("/", getwd(), "index.html”, TRUE)

start the server with:
run.Rserve(http.port=8080, gap=FALSE)

run.Rserve Start Rserve within the current R process.

Description

run.Rserve makes the current R process into an Rserve instance. Rserve takes over until it is shut
down or receives a user interrupt signal. The main difference between Rserve and run.Rserve is
that Rserve starts a new process, whereas run.Rserve turns the current R session into Rserve. This
is only possible if there are no Ul elements or other parts that could interfere with the prepation of
Rserve.

stop.Rserve stops currently running background servers. This only applies to servers started using
background=TRUE.

Usage

run.Rserve(..., config.file = "/etc/Rserve.conf”, background = FALSE)
stop.Rserve()

Arguments

all named arguments are treated as entries that would be otherwise present in
the configuration file. So argument foo="bar" has the same meaning as foo
bar in the configuration file. The only exception is that logical values can be
used instead of enable/disable. Some settings such as uid are not relevant
and thus ignored.

8 self

config.file path of the configuration file to load in the Rserve. It will be loaded before the
above settings and is optional, i.e. if the file is not present or readable it will be
ignored.

background logical, the default FALSE starts the server and does not return until all servers
have been shut down - typically in response to an interrupt. If this argument is
set to TRUE then the server is started in teh background of this R session and
control is returned immediately (currently not supported on Windows). In that
case requests will be only processed if no other computation is running in R, but
the R console can be still used to modify the session. Such background servers
can be stopped with the stop.Rserve function.

Value

Returns TRUE after the Rserve was shut down.

Author(s)

Simon Urbanek

See Also

Rserve

self Functions usable for R code run inside Rserve

Description

The following functions can only be used inside Rserve, they cannot be used in stand-alone R. They
interact with special features of Rserve. All commands below will succeed only if Rserve has been
started with r-control enable configuration setting for security reasons.

self.ctrlEval issues a control command to the Rserve parent instance that evaluates the given
expression in the server. The expression is only queued for evaluation which will happen asyn-
chronously in the server (see RSserverEval in RSclient package for details). Note that the current
session is unaffected by the command.

self.ctrlSource issues a control command to the Rserve parent instance to source the given file
in the server, see RSserverSource in the RSclient package for details.

self.oobSend sends a out-of-band (OOB) message with the encoded content of what to the client
connected to this session. The OOB facility must be enabled in the Rserve configuration (using oob
enable) and the client must support OOB messages for this to be meaningful. This facility is not
used by Rserve itself, it is offered to specialized applications (e.g. Cairo supports asynchronous
notification of web clients using WebSockets-QAP1 tunnel to dynamically update graphics on the
web during evaluation).

self.oobMessage is like self.oobSend except that it waits for a response and returns the response.

ulog 9

Usage

self.ctrlEval (expr)
self.ctrlSource(file)
self.oobSend(what, code = QL)
self.oobMessage(what, code = 0L)

Arguments
expr R expression to evaluate remotely
file path to a file that will be sourced into the main instance
what object to include as the payload fo the message
code user-defined message code that will be ORed with the 00B_SEND/OOB_MSG mes-
sage code
Value

oobMessage returns data contained in the response message.

All other functions return TRUE (invisibly).

Author(s)

Simon Urbanek

Examples

Not run:
self.ctrlEval(”a <- rnorm(10)")
self.oobSend(list("url”,"http://foo/bar"))

End(Not run)

ulog Micro Logging

Description

ulog logs the supplied message using the ulog facility which typically corresponsed to syslog. See
ulog Rserve configuration for the various endpoints supported by ulog (local, UDP/TCP remote,

)

This function is guaranteed to be silent regardless of the ulog setting and is intended to have minimal
performance impact.

Note: if Rserve is compiled with ~-DULOG_STDERR (also implied in the debug build) then ulog mes-
sages are also emitted on stderr with "ULOG: " prefix.

Please note that this ulog function is governed by the Rserve settings, and NOT the ulog package

settings. The latter is a general port of the ulog logging facility to R, while Rserve: :ulog is
specific to to the Rserve process.

10 ulog

Usage

ulog(...)

Arguments

message to log

Value

The logged string constructed from the message, invisibly

Author(s)

Simon Urbanek

Examples

ulog("INFO: My application started”)

Index

x interface
ocap, 2
Rserve, 3
Rserve.http.add.static, 6
run.Rserve, 7
self, 8
ulog, 9
* manip
Rserve.eval, 4

ocap, 2

resolve.ocap (ocap), 2

Rserve, 3,7, 8

Rserve.context, 4

Rserve.context (ocap), 2

Rserve.eval, 2,4

Rserve.http.add.static, 6

Rserve.http.rm.all.statics
(Rserve.http.add.static), 6

run.Rserve, 4, 7,7

self, 8
stop.Rserve (run.Rserve), 7
system, 3

ulog, 9

11

	ocap
	Rserve
	Rserve.eval
	Rserve.http.add.static
	run.Rserve
	self
	ulog
	Index

