
Package ‘RNAmf’
January 29, 2026

Type Package

Title Recursive Non-Additive Emulator for Multi-Fidelity Data

Version 1.1.3

Maintainer Junoh Heo <heojunoh@msu.edu>

Description Performs RNA emulation and active learning pro-
posed by Heo and Sung (2025) <doi:10.1080/00401706.2024.2376173> for multi-fidelity com-
puter experiments. The RNA emulator is particularly useful when the simulations with differ-
ent fidelity level are nonlinearly correlated. The hyperparameters in the model are esti-
mated by maximum likelihood estimation.

License GPL-3

Encoding UTF-8

Imports plgp, stats, methods, lhs, doParallel, foreach, doRNG, fields,
mvtnorm

Suggests knitr, rmarkdown

RoxygenNote 7.3.3

NeedsCompilation no

Author Junoh Heo [aut, cre],
Chih-Li Sung [aut]

Repository CRAN

Date/Publication 2026-01-29 20:40:08 UTC

Contents
AL_RNAmf . 2
closed_form_RNA . 6
imputer_RNA . 7
NestedX . 8
predict.RNAmf . 9
RNAmf . 12

Index 16

1

https://doi.org/10.1080/00401706.2024.2376173

2 AL_RNAmf

AL_RNAmf Active Learning for Recursive Non-Additive Emulator

Description

The function acquires the new point and fidelity level by maximizing one of the four active learning
criteria: ALM, ALC, ALD, or ALMC.

• ALM (Active Learning MacKay): It calculates the ALM criterion σ∗2
l (x)∑l
j=1 Cj

, where σ∗2
l (x) is

the posterior predictive variance at each fidelity level l and Cj is the simulation cost at level j.

• ALD (Active Learning Decomposition): It calculates the ALD criterion Vl(x)∑l
j=1 Cj

, where Vl(x)

is the variance contribution of GP emulator at each fidelity level l and Cj is the simulation cost
at level j.

• ALC (Active Learning Cohn): It calculates the ALC criterion ∆σ2
L(l,x)∑l
j=1 Cj

=
∫
Ω
σ∗2
L (ξ)−σ̃∗2

L (ξ;l,x)dξ∑l
j=1 Cj

,

where fL is the highest-fidelity simulation code, σ∗2
L (ξ) is the posterior variance of fL(ξ), Cj

is the simulation cost at fidelity level j, and σ̃∗2
L (ξ; l,x) is the posterior variance based on

the augmented design combining the current design and a new input location x at each fi-
delity level lower than or equal to l. The integration is approximated by MC integration using
uniform reference samples.

• ALMC (Active Learning MacKay-Cohn): A hybrid approach. It finds the optimal input lo-
cation x∗ by maximizing σ∗2

L (x), the posterior predictive variance at the highest-fidelity level
L. After selecting x∗, it finds the optimal fidelity level by maximizing ALC criterion at x∗,
argmaxl∈{1,...,L}

∆σ2
L(l,x∗)∑l
j=1 Cj

, where Cj is the simulation cost at level j.

A new point is acquired on Xcand. If Xcand=NULL and Xref=NULL, a new point is acquired on unit
hypercube [0, 1]d.

For details, see Heo and Sung (2025, <doi:10.1080/00401706.2024.2376173>).

Usage

AL_RNAmf(criterion = c("ALM", "ALC", "ALD", "ALMC"), fit,
Xref = NULL, Xcand = NULL, MC = FALSE, mc.sample = 100, cost = NULL,
use_optim = TRUE, parallel = FALSE, ncore = 1, trace = TRUE)

Arguments

criterion character string specifying the active learning criterion to use. Must be one of
"ALM", "ALD", "ALC", or "ALMC". Default is "ALM".

fit object of class RNAmf.

Xref vector or matrix of reference locations to approximate the integral of ALC. If
Xref=NULL, 100×d points from 0 to 1 are generated by Latin hypercube design.
Only used when criterion="ALC" or "ALMC". Default is NULL.

https://doi.org/10.1080/00401706.2024.2376173

AL_RNAmf 3

Xcand vector or matrix of the candidate set for grid-based search. If use_optim=FALSE,
the criterion is evaluated and optimized only on this set. If Xcand=NULL, 100×d
points from 0 to 1 generated by Latin hypercube design (or Xref for ALC and
ALMC) are used. Default is NULL.

MC logical indicating whether to use Monte Carlo approximation to impute the pos-
terior variance (for ALC/ALMC). If FALSE, posterior means are used. Default
is FALSE.

mc.sample a number of MC samples generated for the imputation through MC approxima-
tion. Default is 100.

cost vector of the costs for each level of fidelity. If cost=NULL, total costs at all levels
would be 1. cost is encouraged to have an ascending order of positive values.
Default is NULL.

use_optim logical indicating whether to optimize the criterion using optim’s gradient-based
L-BFGS-B method. If TRUE, 5 × d starting points are generated by Latin hyper-
cube design for optimization. If FALSE, the point is selected from Xcand. Default
is TRUE.

parallel logical indicating whether to use parallel computation. Default is FALSE.
ncore integer specifying the number of cores for parallel computation. Used only if

parallel=TRUE. Default is 1.
trace logical indicating whether to print the computational progress and time. Default

is TRUE.

Details

For "ALC", or "ALMC", Xref plays a role of ξ to approximate the integration. To impute the posterior
variance based on the augmented design σ̃∗2

L (ξ; l,x), MC approximation is used. Due to the nested
assumption, imputing y

[s]
ns+1 for each 1 ≤ s ≤ l by drawing samples from the posterior distribution

of fs(x
[s]
ns+1) based on the current design allows to compute σ̃∗2

L (ξ; l,x). Inverse of covariance
matrix is computed by the Sherman-Morrison formula.

To search for the next acquisition x∗ by maximizing AL criterion, the gradient-based optimization
can be used by optim=TRUE. Firstly, σ̃∗2

L (ξ; l,x) is computed at 5× d number of points. After that,
the point minimizing σ̃∗2

L (ξ; l,x) serves as a starting point of optimization by L-BFGS-B method.
Otherwise, when optim=FALSE, AL criterion is optimized only on Xcand.

The point is selected by maximizing the ALC criterion: argmaxl∈{1,...,L};x∈Ω
∆σ2

L(l,x)∑l
j=1 Cj

.

Value

A list containing:

• AL: The values of the selected criterion at the candidate points (if use_optim=FALSE) or the
optimized value (if use_optim=TRUE). For ALMC, it returns the ALC scores for each level at
the chosen point.

• cost: A copy of the cost argument.
• Xcand: A copy of the Xcand argument used.
• chosen: A list containing the chosen fidelity level and the new input location Xnext.
• time: The computation time in seconds.

4 AL_RNAmf

Examples

simulation costs
cost <- c(1, 3)

1-d Perdikaris function in Perdikaris, et al. (2017)
low-fidelity function
f1 <- function(x) {

sin(8 * pi * x)
}

high-fidelity function
f2 <- function(x) {

(x - sqrt(2)) * (sin(8 * pi * x))^2
}

training data
n1 <- 13
n2 <- 8

fix seed to reproduce the result
set.seed(1)

generate initial nested design
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]

y1 <- f1(X1)
y2 <- f2(X2)

n=100 uniform test data
x <- seq(0, 1, length.out = 100)

fit an RNAmf
fit.RNAmf <- RNAmf(list(X1, X2), list(y1, y2), kernel = "sqex", constant=TRUE)

1. ALM Criterion
alm.RNAmf <- AL_RNAmf(criterion="ALM",

Xcand = x, fit=fit.RNAmf, cost = cost,
use_optim = FALSE, parallel = TRUE, ncore = 2)

print(alm.RNAmf$chosen)

visualize ALM
oldpar <- par(mfrow = c(1, 2))
plot(x, alm.RNAmfALALM1,

type = "l", lty = 2,
xlab = "x", ylab = "ALM criterion at the low-fidelity level",
ylim = c(min(c(alm.RNAmfALALM1, alm.RNAmfALALM2)),

max(c(alm.RNAmfALALM1, alm.RNAmfALALM2))))
points(alm.RNAmf$chosen$Xnext,

alm.RNAmfALALM1[which(x == drop(alm.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red")

AL_RNAmf 5

plot(x, alm.RNAmfALALM2,
type = "l", lty = 2,
xlab = "x", ylab = "ALM criterion at the high-fidelity level",
ylim = c(min(c(alm.RNAmfALALM1, alm.RNAmfALALM2)),

max(c(alm.RNAmfALALM1, alm.RNAmfALALM2))))
par(oldpar)

2. ALD Criterion
ald.RNAmf <- AL_RNAmf(criterion="ALD",

Xcand = x, fit=fit.RNAmf, cost = cost,
use_optim = FALSE, parallel = TRUE, ncore = 2)

print(ald.RNAmf$chosen)

visualize ALD
oldpar <- par(mfrow = c(1, 2))
plot(x, ald.RNAmfALALD1,

type = "l", lty = 2,
xlab = "x", ylab = "ALD criterion at the low-fidelity level",
ylim = c(min(c(ald.RNAmfALALD1, ald.RNAmfALALD2)),

max(c(ald.RNAmfALALD1, ald.RNAmfALALD2))))
points(ald.RNAmf$chosen$Xnext,

ald.RNAmfALALD1[which(x == drop(ald.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red")

plot(x, ald.RNAmfALALD2,
type = "l", lty = 2,
xlab = "x", ylab = "ALD criterion at the high-fidelity level",
ylim = c(min(c(ald.RNAmfALALD1, ald.RNAmfALALD2)),

max(c(ald.RNAmfALALD1, ald.RNAmfALALD2))))
par(oldpar)

3. ALC Criterion
alc.RNAmf <- AL_RNAmf(criterion="ALC",

Xref = x, Xcand = x, fit=fit.RNAmf, cost = cost,
use_optim = FALSE, parallel = TRUE, ncore = 2)

print(alc.RNAmf$chosen)

visualize ALC
oldpar <- par(mfrow = c(1, 2))
plot(x, alc.RNAmfALALC1,

type = "l", lty = 2,
xlab = "x", ylab = "ALC criterion augmented at the low-fidelity level",
ylim = c(min(c(alc.RNAmfALALC1, alc.RNAmfALALC2)),

max(c(alc.RNAmfALALC1, alc.RNAmfALALC2))))
points(alc.RNAmf$chosen$Xnext,

alc.RNAmfALALC1[which(x == drop(alc.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red")

plot(x, alc.RNAmfALALC2,
type = "l", lty = 2,
xlab = "x", ylab = "ALC criterion augmented at the high-fidelity level",
ylim = c(min(c(alc.RNAmfALALC1, alc.RNAmfALALC2)),

max(c(alc.RNAmfALALC1, alc.RNAmfALALC2))))

6 closed_form_RNA

par(oldpar)

4. ALMC Criterion
almc.RNAmf <- AL_RNAmf(criterion="ALMC",

Xref = x, Xcand = x, fit=fit.RNAmf, cost = cost,
use_optim = FALSE, parallel = TRUE, ncore = 2)

print(almc.RNAmf$chosen)

closed_form_RNA Closed-form prediction for RNAmf model

Description

The function computes the closed-form posterior mean and variance for the RNAmf model both at
the fidelity levels used in model fitting using the chosen kernel.

Usage

closed_form_RNA(fits, x, kernel, XX = NULL, pseudo_yy = NULL)

Arguments

fits A fitted GP object from RNAmf.

x A vector or matrix of new input locations to predict.

kernel A character specifying the kernel type to be used. Choices are "sqex"(squared
exponential kernel), "matern1.5"(Matern kernel with ν = 1.5), or "matern2.5"(Matern
kernel with ν = 2.5). Default is "sqex".

XX A list containing a pseudo-complete inputs X_star({X ∗
l }

L
l=1), an original in-

puts X_list({Xl}Ll=1), and a pseudo inputs X_tilde(
{
X̃l

}L

l=1
) for non-nested

design.

pseudo_yy A list containing a pseudo-complete outputs y_star({y∗
l }

L
l=1), an original out-

puts y_list({yl}Ll=1), and a pseudo outputs y_tilde({ỹl}Ll=1) imputed by imputer_RNA.

Value

A list of predictive posterior mean and variance for each level containing:

• mu: A list of predictive posterior mean at each fidelity level.

• sig2: A list of predictive posterior variance at each fidelity level.

imputer_RNA 7

imputer_RNA Imputation step in stochastic EM for the non-nested RNA Model

Description

The function performs the imputation step of the stochastic EM algorithm for the RNA model when
the design is not nested. The function generates pseudo outputs ỹl at pseudo inputs X̃l.

Usage

imputer_RNA(XX, yy, kernel=kernel, pred1, fits)

Arguments

XX A list of design sets for all fidelity levels, containing X_star, X_list, and
X_tilde.

yy A list of current observed and pseudo-responses, containing y_star, y_list,
and y_tilde.

kernel A character specifying the kernel type to be used. Choices are "sqex"(squared
exponential), "matern1.5", or "matern2.5".

pred1 Predictive results for the lowest fidelity level f1. It should include cov obtained
by setting cov.out=TRUE.

fits A fitted GP object from RNAmf.

Details

The imputer_RNA function then imputes the corresponding pseudo outputs ỹl = fl(X̃l) by drawing
samples from the conditional normal distribution, given fixed parameter estimates and previous-
level outputs Y ∗(m−1)

l for each l, at the m-th iteration of the EM algorithm.

Value

An updated yy list containing:

• y_star: An updated pseudo-complete outputs y∗
l .

• y_list: An original outputs yl.

• y_tilde: A newly imputed pseudo outputs ỹl.

8 NestedX

NestedX Constructing nested design sets for the RNA model.

Description

The function constructs nested design sets with multiple fidelity levels Xl ⊆ · · · ⊆ X1 for use in
RNAmf.

Usage

NestedX(n, d)

Arguments

n A vector specifying the number of design points at each fidelity level l. Thus,
the vector must have a positive value n1, . . . , nl where n1 > · · · > nl.

d A positive integer specifying the dimension of the design.

Details

The procedure replace the points of lower level design Xl−1 with the closest points from higher
level design Xl. For details, see "NestedDesign".

Value

A list containing the nested design sets at each level, i.e., X1, . . . ,Xl.

References

L. Le Gratiet and J. Garnier (2014). Recursive co-kriging model for design of computer experiments
with multiple levels of fidelity. International Journal for Uncertainty Quantification, 4(5), 365-386;
doi:10.1615/Int.J.UncertaintyQuantification.2014006914

Examples

number of design points
n1 <- 30
n2 <- 15

dimension of the design
d <- 2

fix seed to reproduce the result
set.seed(1)

generate the nested design
NX <- NestedX(c(n1, n2), d)

visualize nested design

https://github.com/cran/MuFiCokriging
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914

predict.RNAmf 9

plot(NX[[1]], col="red", pch=1, xlab="x1", ylab="x2")
points(NX[[2]], col="blue", pch=4)

predict.RNAmf prediction of the RNAmf emulator with multiple fidelity levels.

Description

The function computes the posterior mean and variance of RNA models with multiple fidelity levels
by fitted model from RNAmf.

Usage

S3 method for class 'RNAmf'
predict(object, x = NULL, nimpute = 50, ...)

Arguments

object An object of class RNAmf fitted by RNAmf.

x A vector or matrix of new input locations for prediction.

nimpute Number of imputations for non-nested designs. Default is 50.

... Additional arguments for compatibility with generic method predict.

Details

The predict.RNAmf function internally calls closed_form_RNA to recursively compute the closed-
form posterior mean and variance at each level.

From the fitted model from RNAmf, the posterior mean and variance are calculated based on the
closed-form expression derived by a recursive fashion. The formulas depend on its kernel choices.
For further details, see Heo and Sung (2025, <doi:10.1080/00401706.2024.2376173>).

Value

• mu: A list of vectors containing the predictive posterior mean at each fidelity level.

• sig2: A list of vectors containing the predictive posterior variance at each fidelity level.

• time: A scalar indicating the computation time.

See Also

RNAmf for model fitting.

https://doi.org/10.1080/00401706.2024.2376173

10 predict.RNAmf

Examples

two levels example

Perdikaris function
f1 <- function(x) {

sin(8 * pi * x)
}

f2 <- function(x) {
(x - sqrt(2)) * (sin(8 * pi * x))^2

}

training data
n1 <- 13
n2 <- 8

fix seed to reproduce the result
set.seed(1)

generate initial nested design
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]

y1 <- f1(X1)
y2 <- f2(X2)

n=100 uniform test data
x <- seq(0, 1, length.out = 100)

fit an RNAmf
fit.RNAmf <- RNAmf(list(X1, X2), list(y1, y2), kernel = "sqex", constant=TRUE)

predict
predy <- predict(fit.RNAmf, x)$mu[[2]]
predsig2 <- predict(fit.RNAmf, x)$sig2[[2]]

RMSE
print(sqrt(mean((predy - f2(x))^2)))

visualize the emulation performance
plot(x, predy,

type = "l", lwd = 2, col = 3, # emulator and confidence interval
ylim = c(-2, 1)

)
lines(x, predy + 1.96 * sqrt(predsig2 * length(y2) / (length(y2) - 2)), col = 3, lty = 2)
lines(x, predy - 1.96 * sqrt(predsig2 * length(y2) / (length(y2) - 2)), col = 3, lty = 2)

curve(f2(x), add = TRUE, col = 1, lwd = 2, lty = 2) # high fidelity function

points(X1, y1, pch = 1, col = "red") # low-fidelity design
points(X2, y2, pch = 4, col = "blue") # high-fidelity design

predict.RNAmf 11

three levels example
Branin function
branin <- function(xx, l){

x1 <- xx[1]
x2 <- xx[2]
if(l == 1){
10*sqrt((-1.275*(1.2*x1+0.4)^2/pi^2+5*(1.2*x1+0.4)/pi+(1.2*x2+0.4)-6)^2 +

(10-5/(4*pi))*cos((1.2*x1+0.4))+ 10) + 2*(1.2*x1+1.9) - 3*(3*(1.2*x2+2.4)-1) - 1 - 3*x2 + 1
}else if(l == 2){

10*sqrt((-1.275*(x1+2)^2/pi^2+5*(x1+2)/pi+(x2+2)-6)^2 +
(10-5/(4*pi))*cos((x1+2))+ 10) + 2*(x1-0.5) - 3*(3*x2-1) - 1

}else if(l == 3){
(-1.275*x1^2/pi^2+5*x1/pi+x2-6)^2 + (10-5/(4*pi))*cos(x1)+ 10

}
}

output.branin <- function(x, l){
factor_range <- list("x1" = c(-5, 10), "x2" = c(0, 15))

for(i in 1:length(factor_range)) x[i] <- factor_range[[i]][1] + x[i] * diff(factor_range[[i]])
branin(x[1:2], l)

}

training data
n1 <- 20; n2 <- 15; n3 <- 10

fix seed to reproduce the result
set.seed(1)

generate initial nested design
X <- NestedX(c(n1, n2, n3), 2)
X1 <- X[[1]]
X2 <- X[[2]]
X3 <- X[[3]]

y1 <- apply(X1,1,output.branin, l=1)
y2 <- apply(X2,1,output.branin, l=2)
y3 <- apply(X3,1,output.branin, l=3)

n=10000 grid test data
x <- as.matrix(expand.grid(seq(0, 1, length.out = 100),seq(0, 1, length.out = 100)))

fit an RNAmf
fit.RNAmf <- RNAmf(list(X1, X2, X3), list(y1, y2, y3), kernel = "sqex", constant=TRUE)

predict
pred.RNAmf <- predict(fit.RNAmf, x)
predy <- pred.RNAmf$mu[[3]]
predsig2 <- pred.RNAmf$sig2[[3]]

RMSE
print(sqrt(mean((predy - apply(x,1,output.branin, l=3))^2)))

12 RNAmf

visualize the emulation performance
x1 <- x2 <- seq(0, 1, length.out = 100)
oldpar <- par(mfrow=c(1,2))
image(x1, x2, matrix(apply(x,1,output.branin, l=3), ncol=100),
zlim=c(0,310), main="Branin function")
image(x1, x2, matrix(predy, ncol=100),
zlim=c(0,310), main="RNAmf prediction")
par(oldpar)

predictive variance
print(predsig2)

RNAmf Fitting the Recursive Non-Additive model with multiple fidelity levels

Description

The function fits RNA models with designs of multiple fidelity levels. The estimation method is
based on MLE. Available kernel choices include the squared exponential kernel, and the Matern
kernel with smoothness parameter 1.5 and 2.5. The function returns the fitted model at each level
1, . . . , l, the number of fidelity levels l, the kernel choice, whether constant mean or not, and the
computation time.

Usage

RNAmf(X_list, y_list, kernel = "sqex", constant = TRUE,
init = NULL, n.iter = 50, burn.ratio = 0.75, trace = TRUE, ...)

Arguments

X_list A list of the matrices of input locations for all fidelity levels.

y_list A list of the vectors or matrices of response values for all fidelity levels.

kernel A character specifying the kernel type to be used. Choices are "sqex"(squared
exponential), "matern1.5", or "matern2.5". Default is "sqex".

constant A logical indicating for constant mean of GP (constant=TRUE) or zero mean
(constant=FALSE). Default is TRUE.

init Optional vector of initial parameter values for optimization. Default is NULL.

n.iter Number of iterations for the stochastic EM algorithm for non-nested designs.
Default is 50.

burn.ratio Fraction of iterations to discard as burn-in. Default is 0.75.

trace A logical indicating to print progress of iterations if TRUE, or not if FALSE. De-
fault is TRUE.

... Additional arguments for compatibility with optim.

RNAmf 13

Details

Consider the model

{
f1(x) = W1(x),

fl(x) = Wl(x, fl−1(x)) for l ≥ 2,
where fl is the simulation code at

fidelity level l, and Wl(x) ∼ GP (αl, τ
2
l Kl(x,x

′)) is GP model. Hyperparameters (αl, τ
2
l ,θl)

are estimated by maximizing the log-likelihood via an optimization algorithm "L-BFGS-B". For
constant=FALSE, αl = 0.

Covariance kernel is defined as: Kl(x,x
′) =

∏d
j=1 ϕ(xj , x

′
j ; θlj) with ϕ(x, x′; θ) = exp

(
− (x−x′)

2

θ

)
for squared exponential kernel; kernel="sqex", ϕ(x, x′; θ) =

(
1 +

√
3|x−x′|

θ

)
exp

(
−

√
3|x−x′|

θ

)
for Matern kernel with the smoothness parameter of 1.5; kernel="matern1.5" and ϕ(x, x′; θ) =(
1 +

√
5|x−x′|

θ + 5(x−x′)2

3θ2

)
exp

(
−

√
5|x−x′|

θ

)
for Matern kernel with the smoothness parameter of

2.5; kernel="matern2.5".

For further details, see Heo and Sung (2025, <doi:10.1080/00401706.2024.2376173>).

Value

A list of class RNAmf with:

• fits: A list of fitted Gaussian process models fl(x) at each level 1, . . . , l. Each element

contains:

{
f1 for (X1, y1),

fl for ((Xl, fl−1(Xl)), yl),
.

• level: The number of fidelity levels l.

• kernel: A copy of kernel.

• constant: A copy of constant.

• nested: A logical indicating whether the design is nested.

• time: A scalar indicating the computation time.

See Also

predict.RNAmf for prediction.

Examples

two levels example

Perdikaris function
f1 <- function(x) {

sin(8 * pi * x)
}

f2 <- function(x) {
(x - sqrt(2)) * (sin(8 * pi * x))^2

}

training data
n1 <- 13

https://doi.org/10.1080/00401706.2024.2376173

14 RNAmf

n2 <- 8

fix seed to reproduce the result
set.seed(1)

generate initial nested design
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]

y1 <- f1(X1)
y2 <- f2(X2)

fit an RNAmf
fit.RNAmf <- RNAmf(list(X1, X2), list(y1, y2), kernel = "sqex", constant=TRUE)

three levels example

Branin function
branin <- function(xx, l){

x1 <- xx[1]
x2 <- xx[2]
if(l == 1){
10*sqrt((-1.275*(1.2*x1+0.4)^2/pi^2+5*(1.2*x1+0.4)/pi+(1.2*x2+0.4)-6)^2 +

(10-5/(4*pi))*cos((1.2*x1+0.4))+ 10) +
2*(1.2*x1+1.9) - 3*(3*(1.2*x2+2.4)-1) - 1 - 3*x2 + 1

}else if(l == 2){
10*sqrt((-1.275*(x1+2)^2/pi^2+5*(x1+2)/pi+(x2+2)-6)^2 +

(10-5/(4*pi))*cos((x1+2))+ 10) + 2*(x1-0.5) - 3*(3*x2-1) - 1
}else if(l == 3){

(-1.275*x1^2/pi^2+5*x1/pi+x2-6)^2 + (10-5/(4*pi))*cos(x1)+ 10
}

}

output.branin <- function(x, l){
factor_range <- list("x1" = c(-5, 10), "x2" = c(0, 15))

for(i in 1:length(factor_range)) x[i] <- factor_range[[i]][1] + x[i] * diff(factor_range[[i]])
branin(x[1:2], l)

}

training data
n1 <- 20; n2 <- 15; n3 <- 10

fix seed to reproduce the result
set.seed(1)

generate initial nested design
X <- NestedX(c(n1, n2, n3), 2)
X1 <- X[[1]]
X2 <- X[[2]]
X3 <- X[[3]]

RNAmf 15

y1 <- apply(X1,1,output.branin, l=1)
y2 <- apply(X2,1,output.branin, l=2)
y3 <- apply(X3,1,output.branin, l=3)

fit an RNAmf
fit.RNAmf <- RNAmf(list(X1, X2, X3), list(y1, y2, y3), kernel = "sqex", constant=TRUE)

Index

AL_RNAmf, 2

closed_form_RNA, 6, 9

imputer_RNA, 6, 7

NestedX, 8

predict.RNAmf, 9, 13

RNAmf, 8, 9, 12

16

	AL_RNAmf
	closed_form_RNA
	imputer_RNA
	NestedX
	predict.RNAmf
	RNAmf
	Index

