
Package ‘PowRPriori’
January 28, 2026

Title Power Analysis via Data Simulation for (Generalized) Linear
Mixed Effects Models

Version 0.1.2

Description Conduct a priori power analyses via Monte-Carlo style data simulation for linear and gen-
eralized linear mixed-effects models (LMMs/GLMMs). Provides a user-friendly work-
flow with helper functions to easily define fixed and random effects as well as diagnostic func-
tions to evaluate the adequacy of the results of the power analysis.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports dplyr, doFuture, foreach, future, ggplot2, lme4, lmerTest,
magrittr, MASS, purrr, rlang, scales, stats, tidyr, tidyselect,
utils, tibble

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

URL https://github.com/mirgll/PowRPriori

BugReports https://github.com/mirgll/PowRPriori/issues

Config/testthat/edition 3

NeedsCompilation no

Author Markus Grill [aut, cre]

Maintainer Markus Grill <markus.grill@uni-wh.de>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2026-01-28 12:30:09 UTC

Contents
.create_design_matrix . 2
.plot_data . 3

1

https://github.com/mirgll/PowRPriori
https://github.com/mirgll/PowRPriori/issues

2 .create_design_matrix

.simulate_outcome . 4

.to_factor_safely . 4
define_design . 5
fixed_effects_from_average_outcome . 6
get_fixed_effects_structure . 7
get_random_effects_structure . 8
plot_sim_model . 8
power_sim . 11
summary.PowRPriori . 14

Index 15

.create_design_matrix Create the Design Matrix for a Simulation

Description

An internal helper function that takes the design specification and a sample size to generate a single
data frame representing all observations for one simulation run. It handles within-, between-, nested,
and crossed factors.

Usage

.create_design_matrix(design, current_n, n_is_total = TRUE)

Arguments

design A PowRPriori_design object from define_design().

current_n The sample size for which the design matrix should be generated.

n_is_total A boolean that controls how current_n is interpreted. TRUE assumes that the
whole sample used for the simulation should be size current_n, FALSE assumes
that current_n specifies the size of each cell as defined by design.

Value

A tibble (data frame) with predictor variables.

.plot_data 3

.plot_data Internal Data Plotting Engine

Description

An internal helper function containing the logic to "intelligently" create plots from simulated data.
It automatically chooses between spaghetti plots and jitter/point-range plots depending on the spec-
ified design and model family.It derives sensible defaults for plot aesthetics from the design, if they
are not supplied directly via the plot_sim_model function.

Usage

.plot_data(
data,
design,
formula,
family,
x_var,
group_var,
color_var,
facet_var,
n_data_points

)

Arguments

data The data frame to plot.

design The PowRPriori_design object.

formula An lme4-style formula (e.g. outcome ~ predictor1 * predictor2 + (1 | subject))

family The model family. Defaults to "gaussian", other possible values are "binomial"
or "poisson".

x_var, group_var, color_var, facet_var
Strings specifying variables for plot aesthetics.

n_data_points The maximum number of trajectories in spaghetti plots.

Value

A ggplot object.

4 .to_factor_safely

.simulate_outcome Simulate the Outcome Variable

Description

An internal helper function that takes a complete design matrix and simulates the dependent variable
based on the specified fixed and random effects.

Usage

.simulate_outcome(
design_df,
formula,
fixed_effects,
sds_random,
family = "gaussian"

)

Arguments

design_df The data frame from .create_design_matrix.

formula The model formula.

fixed_effects A list of the fixed effects coefficients.

sds_random A list of the random effects’ standard deviations and correlations.

family A string indicating the model family.

Value

The input design_df with an added column for the outcome variable.

.to_factor_safely Safely Convert Character Vectors to Factors

Description

An internal helper function that converts a character vector to a factor, ensuring the level order is
based on the first appearance of each element. If the input is not a character vector, it’s returned
unchanged.

Usage

.to_factor_safely(x)

define_design 5

Arguments

x A vector from a design specification.

Value

A factor with levels in order of appearance, or the original object.

define_design Define the Experimental Structure of an Experimental Design

Description

This is the primary setup function for any power simulation. It creates a special PowRPriori_design
object that contains all the necessary information about the variables and structure of your study.

Usage

define_design(id, between = NULL, within = NULL, nesting_vars = NULL)

Arguments

id A string specifying the name of the lowest-level unit of observation (e.g., "subject",
"pupil", plot_of_land).

between A list of between-subject factors. Can be a simple list (for individual assign-
ment) or a nested list (e.g., list(class = list(group = ...))) for group-level
assignment.

within A list of within-subject factors. Each id will be measured at every level of these
factors.

nesting_vars A list of variables that are only used for grouping in the random effects structure
(e.g., (1|school/class)).

Details

Variables can be specified as different types. Nominal scale variables (e.g. group with levels "con-
trol" and "treatment") can be specified as factors (group = factor(c("control", "treatment")))
or as character vectors (c("control", "treatment")), in which case they are automatically con-
verted to factors later on. Continuous variables can be specified via mean and standard deviation
(test_score = list(mean = 10, sd = 5)). Additionally, variables can also be defined as numerical
vectors (predictor = 1:4).

The between argument offers a degree of flexibility. For simple designs, you can provide a "flat"
list of factors. For complex designs like cluster-randomized trials, you can provide a hierarchical
list to specify the level of assignment (see examples). For a full tutorial, see the package vignette:
vignette("Workflow-Example", package = "PowRPriori")

Value

A PowRPriori_design object, which is a list containing the design specifications.

6 fixed_effects_from_average_outcome

Examples

Simple 2x2 mixed design
simple_design <- define_design(

id = "subject",
between = list(group = c("Control", "Treatment")),
within = list(time = c("pre", "post"))

)

A nested (cluster-randomized) design where the intervention
is assigned at the class level.
nested_design <- define_design(

id = "pupil",
between = list(
class = list(intervention = c("yes", "no"))

),
nesting_vars = list(class = factor(1:10))

)

fixed_effects_from_average_outcome

Calculate Fixed-Effects Coefficients from Mean Outcomes

Description

A user-friendly helper function to translate expected outcomes (e.g., cell means, probabilities, or
rates) into the regression coefficients required by the simulation. This is often more intuitive than
specifying coefficients directly.

Usage

fixed_effects_from_average_outcome(formula, outcome, family = "gaussian")

Arguments

formula The fixed-effects part of the model formula (e.g., y ~ group * time).

outcome A data frame containing columns for all predictor variables and exactly one
column for the expected outcome values.

family The model family ("gaussian", "binomial", "poisson"). The outcome values
should be means for gaussian, probabilities (0-1) for binomial, and non-negative
rates/counts for poisson.

Value

A named list of coefficients suitable for the fixed_effects argument in power_sim().

get_fixed_effects_structure 7

Examples

outcome_means <- tidyr::expand_grid(
group = c("Control", "Treatment"),
time = c("pre", "post")

)
outcome_means$mean <- c(10, 10, 12, 15) # Specify expected means

fixed_effects_from_average_outcome(
formula = score ~ group * time,
outcome = outcome_means

)

get_fixed_effects_structure

Get the Expected Fixed-Effects Structure

Description

Analyzes a model formula and a design object to generate a template for the fixed_effects pa-
rameter. This is a helper function designed to prevent typos and ensure all necessary coefficients
are specified. By default, this function prints a copy-paste-able code snippet to the console, where
the user only needs to fill in placeholders (...) for the values.

Usage

get_fixed_effects_structure(formula, design)

Arguments

formula An lme4-style model formula (e.g. outcome ~ predictor1 * predictor2 + (1
| id)). Since this function only uses the fixed-effects part of the model, speci-
fying the random effects is optional here.

design A PowRPriori_design object created with define_design().

Value

Invisibly returns a named list with placeholders, which can be used as a template for the fixed_effects
argument in power_sim().

Examples

design <- define_design(
id = "subject",
between = list(group = c("Control", "Treatment")),
within = list(time = c("pre", "post"))

)
get_fixed_effects_structure(y ~ group * time, design)

8 plot_sim_model

get_random_effects_structure

Get the Expected Random-Effects Structure

Description

Analyzes the random effects terms in a model formula and generates a template for the specified
random_effects parameters. This helps in specifying the required standard deviations and correla-
tions correctly. By default, this function prints a copy-paste-able code snippet to the console, where
the user only needs to fill in placeholders (...) for the values.

Usage

get_random_effects_structure(formula, design, family = "gaussian")

Arguments

formula An lme4-style model formula (e.g. outcome ~ predictor1 * predictor2 + (1
| id)).

design A PowRPriori_design object created with define_design().

family The model family ("gaussian", "binomial", "poisson"). Determines if sd_resid
should be included in the template.

Value

Invisibly returns a nested list with placeholders, serving as a template for the random_effects
argument in power_sim().

Examples

design <- define_design(
id = "subject",
within = list(time = c("pre", "post"))

)
get_random_effects_structure(y ~ time + (time|subject), design)

plot_sim_model Visualize Simulation Data or Power Simulation Results

plot_sim_model 9

Description

Generic plotting function with methods for different objects.

• When used on an lme4-style formula, it simulates and plots a single plausible dataset.

• When used on a PowRPriori object, it plots either a power curve from the object or a dataset
from the simulation.

The plotting of the dataset is designed to aid in evaluating whether the simulated data is plausible in
the context of the desired study design and model specifications. It can help determine whether the
chosen parameters are sensible or might need some adapting. The power curve, plotted from the
resulting PowRPriori object of the power_sim function visualizes the iterations of the simulation
across the different sample sizes for which the power was calculated during simulation.

Usage

plot_sim_model(
object,
type,
design,
fixed_effects,
random_effects,
family,
n,
x_var,
group_var,
color_var,
facet_var,
n_data_points,
...

)

S3 method for class 'formula'
plot_sim_model(
object,
type = "data",
design,
fixed_effects,
random_effects,
family = "gaussian",
n,
x_var = NULL,
group_var = NULL,
color_var = NULL,
facet_var = NULL,
n_data_points = 10,
...

)

S3 method for class 'PowRPriori'

10 plot_sim_model

plot_sim_model(
object,
type = "power_curve",
design = NULL,
fixed_effects = NULL,
random_effects = NULL,
family = NULL,
n = NULL,
x_var = NULL,
group_var = NULL,
color_var = NULL,
facet_var = NULL,
n_data_points = 10,
...

)

Arguments

object The object to base the plot on. Can be either a PowRPriori object or an lme4-
style formula

type The type of plot to create: "power_curve" (default) or "data" (to visualize the
sample data from the simulation).

design A PowRPriori_design object.
fixed_effects, random_effects

Lists of effect parameters.

family The model family. Defaults to "gaussian", other possible values are "binomial"
or "poisson".

n The total sample size to simulate for the plot.
x_var, group_var, color_var, facet_var

Strings specifying variables for plot aesthetics.

n_data_points The maximum number of trajectories in spaghetti plots.

... Additional arguments (not used).

Details

The parameters x_var, group_var, color_var and facet_var are NULL by default. If left NULL,
they are automatically extracted from the PowRPriori object or the design object.

Value

A ggplot object.

Examples

1. Plot prior to simulation to check data plausibility
design <- define_design(

id = "subject",

power_sim 11

between = list(group = c("Control", "Treatment")),
within = list(time = c("pre", "post"))

)

fixed_effects <- list(
`(Intercept)` = 10,
groupTreatment = 2,
timepost = 1,
`groupTreatment:timepost` = 3

)

random_effects <- list(
subject = list(`(Intercept)` = 3),
sd_resid = 3

)

plot_sim_model(
y ~ group * time + (1|subject),
design = design,
fixed_effects = fixed_effects,
random_effects = random_effects,
n = 30

)

2. Plot from PowRPriori object after simulation
power_results <- power_sim(

formula = y ~ group * time + (1|subject),
design = design,
fixed_effects = fixed_effects,
random_effects = random_effects,
test_parameter = "groupTreatment:timepost",
n_start = 20,
n_increment = 5,
n_sims = 100, # Using a smaller n_sims for a quick example
parallel_plan = "multisession"

)

Power curve
plot_sim_model(power_results, type = "power_curve")

Plot sample data with automated aesthetics extraction
plot_sim_model(power_results, type = "data")

power_sim Perform a Power Analysis for (Generalized) Linear Mixed-Effects
Models via Data Simulation

12 power_sim

Description

This is the main function of the PowRPriori package. It iteratively simulates datasets for increasing
sample sizes to determine the required sample size to achieve a desired level of statistical power for
specific model parameters.

Usage

power_sim(
formula,
design,
test_parameter = NULL,
fixed_effects,
random_effects = NULL,
icc_specs = NULL,
overall_variance = NULL,
family = "gaussian",
power_crit = 0.8,
n_start,
n_increment,
max_simulation_steps = 100,
n_issue_stop_prop = 0.2,
n_is_total = TRUE,
n_sims = 2000,
alpha = 0.05,
parallel_plan = "multisession"

)

Arguments

formula An lme4-style model formula (e.g. outcome ~ predictor1 * predictor2 + (1
| id)).

design A PowRPriori_design object created by define_design().

test_parameter A character vector of the variable names to test for power. If NULL (default),
power is calculated for all fixed effects except the intercept. Note: The parame-
ter names need to comply with the names expected by the model. Correctly nam-
ing of the variables is aided by the output of the get_fixed_effects_structure()
helper function.

fixed_effects A named list of the fixed-effects coefficients. It is highly recommended to gener-
ate this using get_fixed_effects_structure() or fixed_effects_from_average_outcome().

random_effects A named, nested list specifying the standard deviations (SDs) and (if applica-
ble) correlations of the random effects. It is highly recommended to generate
this using get_random_effects_structure(). If this parameter is not used,
icc_specs and overall_variance need to be supplied.

icc_specs Optional. A named list of Intraclass Correlation Coefficients for defining simple
random-intercept models. Must be used with overall_variance.

overall_variance

The total variance of the outcome, required when icc_specs is used.

power_sim 13

family The model family: "gaussian" (for LMMs), "binomial" (for logistic GLMMs),
or "poisson" (for poisson GLMMs).

power_crit The desired statistical power level (e.g., 0.80 for 80%).

n_start The starting sample size for the simulation.

n_increment The step size for increasing the sample size in each iteration.
max_simulation_steps

A hard stop for the simulation, limiting the number of sample size steps to pre-
vent infinite loops. Defaults to 100 steps.

n_issue_stop_prop

The proportion of model issues (e.g., singular fits, non-convergence) at which
the simulation will be automatically canceled. Defaults to a proportion of 20%.

n_is_total Boolean that controls how sample sizes are interpreted. If TRUE (default), n_start
refers to the total sample size. If FALSE, it refers to the sample size per cell (see
define_design() for details on nested designs).

n_sims The number of simulations to run for each sample size step. Defaults to 2000.

alpha The significance level (alpha) for the power calculation. Defaults to 0.05.

parallel_plan A string specifying the future plan for parallel processing. Defaults to "multisession"
to enable parallel computing. Use "sequential" for debugging.

Details

The function supports parallel computation using future. Simple linear models (i.e. regression
models) can also be analyzed using this function. In this case, no specification of the random_effects
or icc_specs parameter is necessary.icc_specs should only be used when simulating a model
containing only random intercepts and no random slopes. Refer to the vignette for a more detailed
description of the complete workflow for using this function.

Value

An object of class PowRPriori, which is a list containing the power table, a sample dataset, all
simulation parameters, and detailed results from all runs (coefficients and random effect estimates).

Examples

design <- define_design(
id = "subject",
between = list(group = c("Control", "Treatment")),
within = list(time = c("pre", "post"))

)

fixed_effects <- list(
`(Intercept)` = 10,
groupTreatment = 2,
timepost = 1,
`groupTreatment:timepost` = 1.5

)

random_effects <- list(

14 summary.PowRPriori

subject = list(`(Intercept)` = 3),
sd_resid = 5

)

power_results <- power_sim(
formula = y ~ group * time + (1|subject),
design = design,
fixed_effects = fixed_effects,
random_effects = random_effects,
test_parameter = "groupTreatment:timepost",
n_start = 20,
n_increment = 5,
n_sims = 100, # Use low n_sims for quick examples
parallel_plan = "multisession"

)

summary(power_results)
plot_sim_model(power_results)

summary.PowRPriori Summarize a Power Simulation Result

Description

Provides a detailed and context-aware summary of a PowRPriori object. The output includes the
power table, parameter recovery diagnostics for fixed and random effects, and (if applicable) calcu-
lated Intra-Class Correlations (ICCs). The output is tailored for different model types (LM, LMM,
GLMM).

Usage

S3 method for class 'PowRPriori'
summary(object, ...)

Arguments

object An object of class PowRPriori returned by power_sim().

... Additional arguments (not used).

Value

Prints a formatted summary to the console.

Index

.create_design_matrix, 2

.plot_data, 3

.simulate_outcome, 4

.to_factor_safely, 4

define_design, 5

fixed_effects_from_average_outcome, 6

get_fixed_effects_structure, 7
get_random_effects_structure, 8

plot_sim_model, 8
power_sim, 11

summary.PowRPriori, 14

15

	.create_design_matrix
	.plot_data
	.simulate_outcome
	.to_factor_safely
	define_design
	fixed_effects_from_average_outcome
	get_fixed_effects_structure
	get_random_effects_structure
	plot_sim_model
	power_sim
	summary.PowRPriori
	Index

