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MachineShop-package MachineShop: Machine Learning Models and Tools

Description

Meta-package for statistical and machine learning with a unified interface for model fitting, predic-
tion, performance assessment, and presentation of results. Approaches for model fitting and pre-
diction of numerical, categorical, or censored time-to-event outcomes include traditional regression
models, regularization methods, tree-based methods, support vector machines, neural networks,
ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics
are provided for model assessment and can be estimated with independent test sets, split sampling,
cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster
processing and nested in cases of model tuning and selection. Modeling results can be summarized
with descriptive statistics; calibration curves; variable importance; partial dependence plots; confu-
sion matrices; and ROC, lift, and other performance curves.

Details

The following set of model fitting, prediction, and performance assessment functions are available
for MachineShop models.

Training:
fit Model fitting
resample Resample estimation of model performance
Tuning Grids:
expand_model Model expansion over tuning parameters
expand_modelgrid Model tuning grid expansion
expand_params Model parameters expansion
expand_steps Recipe step parameters expansion

Response Values:

response  Observed
predict Predicted

Performance Assessment:

calibration Model calibration
confusion Confusion matrix
dependence Parital dependence
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diff Model performance differences
lift Lift curves

performance metrics Model performance metrics
performance_curve Model performance curves
rfe Recursive feature elimination
varimp Variable importance

Methods for resample estimation include

BootControl Simple bootstrap
BootOptimismControl Optimism-corrected bootstrap
CVControl Repeated K-fold cross-validation
CVOptimismControl Optimism-corrected cross-validation
00BControl Out-of-bootstrap
SplitControl Split training-testing
TrainControl Training resubstitution

Graphical and tabular summaries of modeling results can be obtained with

plot
print
summary

Further information on package features is available with

metricinfo Performance metric information
modelinfo  Model information
settings Global settings

Custom metrics and models can be created with the MLMetric and MLModel constructors.

Author(s)

Maintainer: Brian J Smith <brian-j-smith@uiowa.edu>

See Also
Useful links:

e https://brian-j-smith.github.io/MachineShop/
* Report bugs at https://github.com/brian-j-smith/MachineShop/issues


https://brian-j-smith.github.io/MachineShop/
https://github.com/brian-j-smith/MachineShop/issues
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AdaBagModel Bagging with Classification Trees

Description

Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single classi-

fiers.
Usage
AdaBagModel (
mfinal = 100,

minsplit = 20,
minbucket = round(minsplit/3),

cp = 0.01,
maxcompete = 4,
maxsurrogate = 5,
usesurrogate = 2,
xval = 10,

surrogatestyle = 0,
maxdepth = 30

)
Arguments
mfinal number of trees to use.
minsplit minimum number of observations that must exist in a node in order for a split to
be attempted.
minbucket minimum number of observations in any terminal node.
cp complexity parameter.
maxcompete number of competitor splits retained in the output.

maxsurrogate  number of surrogate splits retained in the output.
usesurrogate how to use surrogates in the splitting process.
xval number of cross-validations.

surrogatestyle controls the selection of a best surrogate.

maxdepth maximum depth of any node of the final tree, with the root node counted as
depth 0.

Details

Response types: factor
Automatic tuning of grid parameters: mfinal, maxdepth

Further model details can be found in the source link below.
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Value

MLModel class object.

See Also

bagging, fit, resample

Examples

## Requires prior installation of suggested package adabag to run

fit(Species ~ ., data = iris, model = AdaBagModel(mfinal = 5))
AdaBoostModel Boosting with Classification Trees
Description

Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms
using classification trees as single classifiers.

Usage

AdaBoostModel (
boos = TRUE,
mfinal = 100,
coeflearn = c("Breiman”, "Freund", "Zhu"),
minsplit = 20,
minbucket = round(minsplit/3),

cp = 0.01,
maxcompete = 4,
maxsurrogate = 5,
usesurrogate = 2,
xval = 10,

surrogatestyle = 0,
maxdepth = 30

)
Arguments
boos if TRUE, then bootstrap samples are drawn from the training set using the obser-
vation weights at each iteration. If FALSE, then all observations are used with
their weights.
mfinal number of iterations for which boosting is run.

coeflearn learning algorithm.
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minsplit minimum number of observations that must exist in a node in order for a split to
be attempted.

minbucket minimum number of observations in any terminal node.
cp complexity parameter.
maxcompete number of competitor splits retained in the output.

maxsurrogate number of surrogate splits retained in the output.
usesurrogate  how to use surrogates in the splitting process.
xval number of cross-validations.

surrogatestyle controls the selection of a best surrogate.

maxdepth maximum depth of any node of the final tree, with the root node counted as
depth 0.

Details

Response types: factor
Automatic tuning of grid parameters: mfinal, maxdepth, coeflearn*
* excluded from grids by default

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

boosting, fit, resample

Examples

## Requires prior installation of suggested package adabag to run

fit(Species ~ ., data = iris, model = AdaBoostModel(mfinal = 5))
as.data.frame Coerce to a Data Frame
Description

Functions to coerce objects to data frames.
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Usage

## S3 method for class 'ModelFrame’
as.data.frame(x, ...)

## S3 method for class 'Resample’
as.data.frame(x, ...)

## S3 method for class 'TabularArray'

as.data.frame(x, ...)
Arguments
X ModelFrame, resample results, resampled performance estimates, model perfor-

mance differences, or t-test comparisons of the differences.

arguments passed to other methods.

Value

data. frame class object.

as.MLInput Coerce to an MLInput

Description

Function to coerce an object to MLInput.

Usage

as.MLInput(x, ...)

## S3 method for class 'MLModelFit'
as.MLInput(x, ...)

## S3 method for class 'ModelSpecification'

as.MLInput(x, ...)
Arguments
X model fit result or MachineShop model specification.

arguments passed to other methods.

Value

MLInput class object.
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as.MLModel Coerce to an MLModel

Description

Function to coerce an object to MLModel.

Usage

as.MLModel(x, ...)

## S3 method for class 'MLModelFit'
as.MModel(x, ...)

## S3 method for class 'ModelSpecification'
as.MLModel(x, ...)

## S3 method for class 'model_spec'

as.MLModel(x, ...)
Arguments
X model fit result, MachineShop model specification, or parsnip model specifi-
cation.

arguments passed to other methods.

Value

MLModel class object.

See Also

ParsnipModel

BARTMachineModel Bayesian Additive Regression Trees Model

Description

Builds a BART model for regression or classification.
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Usage

BARTMachineModel (
num_trees = 50,
num_burn = 250,
num_iter = 1000,
alpha = 0.95,
beta = 2,

k =2,

q=0.9,

nu = 3,

mh_prob_steps = ¢c(2.5, 2.5, 4)/9,
verbose = FALSE,

)
Arguments

num_trees number of trees to be grown in the sum-of-trees model.

num_burn number of MCMC samples to be discarded as "burn-in".

num_iter number of MCMC samples to draw from the posterior distribution.

alpha, beta base and power hyperparameters in tree prior for whether a node is nonterminal
or not.

k regression prior probability that E (Y| X) is contained in the interval (Y,in, Ymaz )
based on a normal distribution.

q quantile of the prior on the error variance at which the data-based estimate is
placed.

nu regression degrees of freedom for the inverse sigma? prior.

mh_prob_steps vector of prior probabilities for proposing changes to the tree structures: (GROW,
PRUNE, CHANGE).

verbose logical indicating whether to print progress information about the algorithm.

additional arguments to bartMachine.

Details

Response types: binary factor, numeric
Automatic tuning of grid parameters: alpha, beta, k, nu
Further model details can be found in the source link below.

In calls to varimp for BARTMachineModel, argument type may be specified as "splits” (default)
for the proportion of time each predictor is chosen for a splitting rule or as "trees” for the pro-
portion of times each predictor appears in a tree. Argument num_replicates is also available to
control the number of BART replicates used in estimating the inclusion proportions [default: 5].
Variable importance is automatically scaled to range from O to 100. To obtain unscaled importance
values, set scale = FALSE. See example below.



BARTModel 13

Value

MLModel class object.

See Also

bartMachine, fit, resample

Examples

## Not run:
## Requires prior installation of suggested package bartMachine, java, and
## setting of java options as shown below to run

if (packageVersion("bartMachine”) >= "1.4") {

options(
java.parameters = c(
"-Xmx20g", "--add-modules=jdk.incubator.vector”, "-XX:+UseZGC"
)
)
} else {
options(java.parameters = "-Xmx20g")
3
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = BARTMachineModel)

varimp(model_fit, method = "model”, type = "splits”, num_replicates = 20,
scale = FALSE)

## End(Not run)

BARTModel Bayesian Additive Regression Trees Model

Description

Flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event
outcomes.

Usage

BARTModel (
K = integer(),
sparse = FALSE,

theta = 0,
omega = 1,
a=20.5,
b=1,

rho = numeric(),



theta, omega
a, b

rho

augment
xinfo

usequants

sigest
sigdf
sigquant
lambda

k

power, base
tau.num
offset
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augment = FALSE,
xinfo = matrix(NA, 0, 0),
usequants = FALSE,
sigest = NA,
sigdf = 3,
sigquant = 0.9,
lambda = NA,
k =2,
power = 2,
base = 0.95,
tau.num = numeric(),
offset = numeric(),
ntree = integer(),
numcut = 100,
ndpost = 1000,
nskip = integer(),
keepevery = integer(),
printevery = 1000

)

Arguments
K if provided, then coarsen the times of survival responses per the quantiles 1 /K, 2/ K ...
to reduce computational burdern.
sparse logical indicating whether to perform variable selection based on a sparse Dirich-

let prior rather than simply uniform; see Linero 2016.
theta and omega parameters; zero means random.

sparse parameters for Beta(a,b) prior: 0.5 <= a <= 1 where lower values
induce more sparsity and typically b = 1.

sparse parameter: typically rho = p where p is the number of covariates under
consideration.

whether data augmentation is to be performed in sparse variable selection.
optional matrix whose rows are the covariates and columns their cutpoints.

whether covariate cutpoints are defined by uniform quantiles or generated uni-
formly.

normal error variance prior for numeric response variables.

degrees of freedom for error variance prior.

quantile at which a rough estimate of the error standard deviation is placed.
scale of the prior error variance.

number of standard deviations f(x) is away from +/-3 for categorical response
variables.

power and base parameters for tree prior.
numerator in the tau definition, i.e., tau = tau.num/(k * sqrt(ntree)).

override for the default of fset of F~1(mean(y)) in the multivariate response
probability P(y[j] = 1|z) = F(f(x)[j] + of fset[j]).

K/K
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ntree number of trees in the sum.
numcut number of possible covariate cutoff values.
ndpost number of posterior draws returned.
nskip number of MCMC iterations to be treated as burn in.
keepevery interval at which to keep posterior draws.
printevery interval at which to print MCMC progress.

Details

Response types: factor, numeric, Surv

Default argument values and further model details can be found in the source See Also links below.

Value

MLModel class object.

See Also

gbart, mbart, surv.bart, fit, resample

Examples

## Requires prior installation of suggested package BART to run

fit(sale_amount ~ ., data = ICHomes, model = BARTModel)
BlackBoostModel Gradient Boosting with Regression Trees
Description

Gradient boosting for optimizing arbitrary loss functions where regression trees are utilized as base-
learners.

Usage

BlackBoostModel (
family = NULL,
mstop = 100,
nu=2.1,
risk = c("inbag", "oobag"”, "none"),
stopintern = FALSE,
trace = FALSE,
teststat = c("quadratic”, "maximum"),
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testtype = c("Teststatistic”, "Univariate”, "Bonferroni”,
mincriterion =

BlackBoostModel

"MonteCarlo”),
o,

minsplit = 10,
minbucket = 4,

maxdepth =

saveinfo = FALSE,

Arguments

family

mstop
nu
risk

stopintern

trace

teststat
testtype

mincriterion

minsplit
minbucket
maxdepth

saveinfo

Details

Response types: binary factor,BinomialVariate, NegBinomialVariate, numeric, PoissonVariate,

Surv

optional Family object. Set automatically according to the class type of the
response variable.

number of initial boosting iterations.
step size or shrinkage parameter between 0 and 1.
method to use in computing the empirical risk for each boosting iteration.

logical inidicating whether the boosting algorithm stops internally when the out-
of-bag risk increases at a subsequent iteration.

logical indicating whether status information is printed during the fitting pro-
cess.

type of the test statistic to be applied for variable selection.
how to compute the distribution of the test statistic.

value of the test statistic or 1 - p-value that must be exceeded in order to imple-
ment a split.

minimum sum of weights in a node in order to be considered for splitting.
minimum sum of weights in a terminal node.
maximum depth of the tree.

logical indicating whether to store information about variable selection in info
slot of each partynode.

additional arguments to ctree_control.

Automatic tuning of grid parameters: mstop, maxdepth

Default argument values and further model details can be found in the source See Also links below.

Value

MLModel class object.

See Also

blackboost, Family, ctree_control, fit, resample
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## Requires prior installation of suggested packages mboost and partykit to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data

= Pima.tr, model = BlackBoostModel)

C50Model

C5.0 Decision Trees and Rule-Based Model

Description

Fit classification tree models or rule-based models using Quinlan’s C5.0 algorithm.

Usage
C5

OModel (
trials = 1,
rules = FALSE,
subset = TRUE,

= FALSE,

= FALSE,

TRUE

teger number of boosting iterations.
gical indicating whether to decompose the tree into a rule-based model.

gical indicating whether the model should evaluate groups of discrete predic-
rs for splits.

teger between 2 and 1000 specifying a number of bands into which to group

rules ordered by their affect on the error rate.

gical indicating use of predictor winnowing (i.e. feature selection).

gical indicating a final, global pruning step to simplify the tree.

number in (0, 1) for the confidence factor.

bands = 0,
winnow = FALSE,
noGlobalPruning
CF = 0.25,
minCases = 2,
fuzzyThreshold
sample = 0,
earlyStopping =

)

Arguments

trials in

rules lo

subset Io

to

bands in

winnow Io

noGlobalPruning

Io
CF
minCases in

teger for the smallest number of samples that must be put in at least two of the

splits.
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fuzzyThreshold logical indicating whether to evaluate possible advanced splits of the data.

sample value between (0, 0.999) that specifies the random proportion of data to use in
training the model.

earlyStopping logical indicating whether the internal method for stopping boosting should be
used.

Details
Response types: factor

Automatic tuning of grid parameters: trials, rules, winnow

Latter arguments are passed to C5.0Control. Further model details can be found in the source link
below.

In calls to varimp for C50Model, argument type may be specified as "usage” (default) for the
percentage of training set samples that fall into all terminal nodes after the split of each predictor
or as "splits” for the percentage of splits associated with each predictor. Variable importance is
automatically scaled to range from O to 100. To obtain unscaled importance values, set scale =
FALSE. See example below.

Value

MLModel class object.

See Also

C5.0, fit, resample

Examples

## Requires prior installation of suggested package C50 to run

model_fit <- fit(Species ~ ., data = iris, model = C50Model)
varimp(model_fit, method = "model”, type = "splits”, scale = FALSE)

calibration Model Calibration

Description

Calculate calibration estimates from observed and predicted responses.
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Usage
calibration(
X )
y = NULL,
weights = NULL,
breaks = 10,
span = 0.75,
distr = character(),
pool = FALSE,
na.rm = TRUE,
)
Arguments
X observed responses or resample result containing observed and predicted re-
sponses.
y predicted responses if not contained in x.
weights numeric vector of non-negative case weights for the observed x responses [de-
fault: equal weights].
breaks value defining the response variable bins within which to calculate observed
mean values. May be specified as a number of bins, a vector of breakpoints, or
NULL to fit smooth curves with splines for predicted survival probabilities and
with loess for others.
span numeric parameter controlling the degree of loess smoothing.
distr character string specifying a distribution with which to estimate the observed
survival mean. Possible values are "empirical” for the Kaplan-Meier estima-
tor, "exponential”, "extreme”, "gaussian”, "loggaussian”, "logistic”,
"loglogistic”, "lognormal”, "rayleigh”, "t", or "weibull”. Defaults to
the distribution that was used in predicting mean survival times.
pool logical indicating whether to compute a single calibration curve on predictions
pooled over all resampling iterations or to compute them for each iteration in-
dividually and return the mean calibration curve. Pooling can result in large
memory allocation errors when fitting smooth curves with breaks = NULL. The
current default is changed from versions <= 3.8.0 of the package which only
implemented pool = TRUE.
na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.
arguments passed to other methods.
Value

Calibration class object that inherits from data. frame.

See Also

c, plot
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Examples

case_weights

## Requires prior installation of suggested package gbm to run

library(survival)

control <- CVCont

rol() %>% set_predict(times = c(90, 180, 360))

res <- resample(Surv(time, status) ~ ., data = veteran, model = GBMModel,
control = control)
cal <- calibration(res)

plot(cal)

case_weights

Extract Case Weights

Description

Extract the case weights from an object.

Usage

case_weights(object, newdata = NULL)

Arguments

object

newdata

Examples

model fit result, ModelFrame, or recipe.

dataset from which to extract the weights if given; otherwise, object is used.
The dataset should be given as a ModelFrame or as a data frame if object con-
tains a ModelFrame or a recipe, respectively.

## Training and test sets

inds <- sample(nrow(ICHomes), nrow(ICHomes) * 2 / 3)
trainset <- ICHomes[inds, ]

testset <- ICHomes[-inds, ]

## ModelFrame case weights

trainmf <- ModelFrame(sale_amount ~ . - built, data = trainset, weights = built)
testmf <- ModelFrame(formula(trainmf), data = testset, weights = built)

mf_fit <- fit(trainmf, model = GLMModel)

rmse(response(mf_fit, testmf), predict(mf_fit, testmf),

case_weights

(mf_fit, testmf))

## Recipe case weights

library(recipes)

rec <- recipe(sale_amount ~ ., data

trainset) %>%

role_case(weight = built, replace = TRUE)
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rec_fit <- fit(rec, model = GLMModel)
rmse(response(rec_fit, testset), predict(rec_fit, testset),
case_weights(rec_fit, testset))

CForestModel Conditional Random Forest Model

Description

An implementation of the random forest and bagging ensemble algorithms utilizing conditional
inference trees as base learners.

Usage
CForestModel(
teststat = c("quad”, "max"),
testtype = c("Univariate”, "Teststatistic”, "Bonferroni”, "MonteCarlo"),
mincriterion = 0,
ntree = 500,
mtry = 5

replace = TRUE,
fraction = 0.632

)

Arguments
teststat character specifying the type of the test statistic to be applied.
testtype character specifying how to compute the distribution of the test statistic.

mincriterion value of the test statistic that must be exceeded in order to implement a split.

ntree number of trees to grow in a forest.

mtry number of input variables randomly sampled as candidates at each node for
random forest like algorithms.

replace logical indicating whether sampling of observations is done with or without re-
placement.

fraction fraction of number of observations to draw without replacement (only relevant

if replace = FALSE).

Details

Response types: factor, numeric, Surv
Automatic tuning of grid parameter: mtry

Supplied arguments are passed to cforest_control. Further model details can be found in the
source link below.
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Value

MLModel class object.

See Also

cforest, fit, resample

Examples

fit(sale_amount ~

., data = ICHomes, model = CForestModel)

combine

combine

Combine MachineShop Objects

Description

Combine one or more MachineShop objects of the same class.

Usage

#i

c(..

##

c(..

#it

c(..

##

c(..

#it

c(..

##

c(..

##

c(..

##
el

S3 method
D)

S3 method
D)

S3 method
)

S3 method
D)

S3 method
D)

S3 method
D)

S3 method
D)

S4 method
+ e2

for

for

for

for

for

for

for

for

class 'Calibration'

class 'ConfusionList'

class 'ConfusionMatrix'

class 'LiftCurve'

class 'ListOf'

class 'PerformanceCurve'

class 'Resample’

signature 'SurvMatrix,SurvMatrix'



confusion

Arguments

el,e2

Value
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named or unnamed calibration, confusion, lift, performance curve, summary, or
resample results. Curves must have been generated with the same performance
metrics and resamples with the same resampling control.

objects.

Object of the same class as the arguments.

confusion

Confusion Matrix

Description

Calculate confusion matrices of predicted and observed responses.

Usage
confusion(
X y
y = NULL,

weights = NULL,
cutoff = MachineShop: :settings("cutoff"),

na.rm

ConfusionMatrix(data = NA, ordered = FALSE)

Arguments

X

y
weights

cutoff

na.rm

factor of observed responses or resample result containing observed and pre-
dicted responses.

predicted responses if not contained in x.

numeric vector of non-negative case weights for the observed x responses [de-
fault: equal weights].

numeric (0, 1) threshold above which binary factor probabilities are classified as
events and below which survival probabilities are classified. If NULL, then fac-
tor responses are summed directly over predicted class probabilities, whereas a
default cutoff of 0.5 is used for survival probabilities. Class probability sum-
mations and survival will appear as decimal numbers that can be interpreted as
expected counts.

logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.
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arguments passed to other methods.

data square matrix, or object that can be converted to one, of cross-classified pre-
dicted and observed values in the rows and columns, respectively.

ordered logical indicating whether the confusion matrix row and columns should be re-
garded as ordered.

Value

The return value is a ConfusionMatrix class object that inherits from table if x and y responses
are specified or a ConfusionList object that inherits from 1list if x is a Resample object.

See Also

c, plot, summary

Examples

## Requires prior installation of suggested package gbm to run

res <- resample(Species ~ ., data = iris, model = GBMModel)
(conf <- confusion(res))
plot(conf)
CoxModel Proportional Hazards Regression Model
Description

Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata,
multiple events per subject, and other extensions are incorporated using the counting process for-
mulation of Andersen and Gill.

Usage
CoxModel (ties = c("efron”, "breslow”, "exact”), ...)
CoxStepAICModel(
ties = c("efron”, "breslow”, "exact"),
direction = c("both”, "backward”, "forward"),
scope = list(),
k =2,
trace = FALSE,
steps = 1000
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Arguments
ties character string specifying the method for tie handling.
arguments passed to coxph.control.
direction mode of stepwise search, can be one of "both"” (default), "backward”, or "forward".
scope defines the range of models examined in the stepwise search. This should be a
list containing components upper and lower, both formulae.
k multiple of the number of degrees of freedom used for the penalty. Only k = 2
gives the genuine AIC; k = . (Log(nobs)) is sometimes referred to as BIC or
SBC.
trace if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.
steps maximum number of steps to be considered.
Details

Response types: Surv
Default argument values and further model details can be found in the source See Also links below.

In calls to varimp for CoxModel and CoxStepAICModel, numeric argument base may be specified
for the (negative) logarithmic transformation of p-values [defaul: exp(1)]. Transformed p-values
are automatically scaled in the calculation of variable importance to range from O to 100. To obtain
unscaled importance values, set scale = FALSE.

Value

MLModel class object.

See Also

coxph, coxph.control, stepAIC, fit, resample

Examples
library(survival)

fit(Surv(time, status) ~ ., data = veteran, model = CoxModel)
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dependence

dependence

Partial Dependence

Description

Calculate partial dependence of a response on select predictor variables.

Usage

dependence(
object,

data = NULL,

select = NULL,
interaction = FALSE,

n =10,

intervals = c("uniform”, "quantile"),

distr = character(),

method = character(),

stats = MachineShop::settings("stats.PartialDependence”),

na.rm = TRUE

Arguments

object
data

select

interaction
n

intervals

distr, method
stats

na.rm

Value

model fit result.

data frame containing all predictor variables. If not specified, the training data
will be used by default.

expression indicating predictor variables for which to compute partial depen-
dence (see subset for syntax) [default: all].

logical indicating whether to calculate dependence on the interacted predictors.
number of predictor values at which to perform calculations.

character string specifying whether the n values are spaced uniformly ("uniform™)
or according to variable quantiles ("quantile”).

arguments passed to predict.

function, function name, or vector of these with which to compute response
variable summary statistics over non-selected predictor variables.

logical indicating whether to exclude missing predicted response values from
the calculation of summary statistics.

PartialDependence class object that inherits from data. frame.

See Also
plot
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Examples

## Requires prior installation of suggested package gbm to run

27

gbm_fit <- fit(Species ~ ., data = iris, model = GBMModel)
(pd <- dependence(gbm_fit, select = c(Petal.Length, Petal.Width)))
plot(pd)
diff Model Performance Differences
Description

Pairwise model differences in resampled performance metrics.

Usage

## S3 method for class 'MLModel’

diff(x, ...)

## S3 method for class 'Performance’

diff(x, ...)

## S3 method for class 'Resample’

diff(x, ...)
Arguments

X model performance or resample result.

arguments passed to other methods.

Value

PerformanceDiff class object that inherits from Performance.

See Also

t.test, plot, summary
Examples
## Requires prior installation of suggested package gbm to run

## Survival response example
library(survival)

fo <- Surv(time, status) ~ .
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control <- CVControl()

gbm_res1 <- resample(fo, data = veteran, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, data = veteran, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, data = veteran, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)

summary (res_diff)

plot(res_diff)

DiscreteVariate Discrete Variate Constructors

Description

Create a variate of binomial counts, discrete numbers, negative binomial counts, or Poisson counts.

Usage

BinomialVariate(x = integer(), size = integer())

DiscreteVariate(x = integer(), min = -Inf, max = Inf)
NegBinomialVariate(x = integer())

PoissonVariate(x = integer())

Arguments

X numeric vector.

size number or numeric vector of binomial trials.

min, max minimum and maximum bounds for discrete numbers.
Value

BinomialVariate object class, DiscreteVariate that inherits from numeric, or NegBinomialVariate
or PoissonVariate that inherit from DiscreteVariate.

See Also

role_binom

Examples

BinomialVariate(rbinom(25, 10, 0.5), size = 10)
PoissonVariate(rpois(25, 10))
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EarthModel Multivariate Adaptive Regression Splines Model

Description

Build a regression model using the techniques in Friedman’s papers "Multivariate Adaptive Regres-
sion Splines" and "Fast MARS".

Usage
EarthModel(
pmethod = c("backward”, "none"”, "exhaustive"”, "forward”, "seqrep”, "cv"),
trace = 0,
degree = 1,
nprune = integer(),
nfold = 0,
ncross = 1,
stratify = TRUE
)
Arguments
pmethod pruning method.
trace level of execution information to display.
degree maximum degree of interaction.
nprune maximum number of terms (including intercept) in the pruned model.
nfold number of cross-validation folds.
ncross number of cross-validations if nfold > 1.
stratify logical indicating whether to stratify cross-validation samples by the response
levels.
Details

Response types: factor, numeric

Automatic tuning of grid parameters: nprune, degree*

* excluded from grids by default

Default argument values and further model details can be found in the source See Also link below.

In calls to varimp for EarthModel, argument type may be specified as "nsubsets” (default) for the
number of model subsets that include each predictor, as "gcv"” for the generalized cross-validation
decrease over all subsets that include each predictor, or as "rss” for the residual sums of squares
decrease. Variable importance is automatically scaled to range from O to 100. To obtain unscaled
importance values, set scale = FALSE. See example below.
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Value

MLModel class object.

See Also

earth, fit, resample

Examples

## Requires prior installation of suggested package earth to run

model_fit <- fit(Species ~ ., data = iris, model = EarthModel)
varimp(model_fit, method = "model”, type = "gcv", scale = FALSE)

expand_model Model Expansion Over Tuning Parameters

Description

Expand a model over all combinations of a grid of tuning parameters.

Usage
expand_model (object, ..., random = FALSE)
Arguments
object model function, function name, or object; or another object that can be coerced
to a model.
named vectors or factors or a list of these containing the parameter values over
which to expand object.
random number of points to be randomly sampled from the parameter grid or FALSE if
all points are to be returned.
Value

list of expanded models.

See Also

SelectedModel
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Examples
## Requires prior installation of suggested package gbm to run
data(Boston, package = "MASS")

models <- expand_model (GBMModel, n.trees = c(50, 100),
interaction.depth = 1:2)

fit(medv ~ ., data = Boston, model = SelectedModel(models))
expand_modelgrid Model Tuning Grid Expansion
Description

Expand a model grid of tuning parameter values.

Usage

expand_modelgrid(...)

## S3 method for class 'formula’
expand_modelgrid(formula, data, model, info = FALSE, ...)

## S3 method for class 'matrix'
expand_modelgrid(x, y, model, info = FALSE, ...)

## S3 method for class 'ModelFrame'’
expand_modelgrid(input, model, info = FALSE, ...)

## S3 method for class 'recipe’
expand_modelgrid(input, model, info = FALSE, ...)

## S3 method for class 'ModelSpecification’
expand_modelgrid(object, ...)

## S3 method for class 'MLModel’
expand_modelgrid(model, ...)

## S3 method for class 'MLModelFunction'
expand_modelgrid(model, ...)
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Arguments

formula, data

model

info

X’y
input

object

Details

expand_modelgrid

arguments passed from the generic function to its methods and from the MLModel
and MLModelFunction methods to others. The first argument of each expand_modelgrid
method is positional and, as such, must be given first in calls to them.

formula defining the model predictor and response variables and a data frame
containing them.

model function, function name, or object; or another object that can be coerced
to a model. A model can be given first followed by any of the variable specifi-
cations.

logical indicating whether to return model-defined grid construction information
rather than the grid values.

matrix and object containing predictor and response variables.
input object defining and containing the model predictor and response variables.

model specification.

The expand_modelgrid function enables manual extraction and viewing of grids created automat-
ically when a TunedModel is fit.

Value

A data frame of parameter values or NULL if data are required for construction of the grid but not

supplied.

See Also

TunedModel

Examples

expand_modelgrid(TunedModel (GBMModel, grid = 5))

## Requires prior installation of suggested package glmnet to run
expand_modelgrid(TunedModel (GLMNetModel, grid = c(alpha = 5, lambda = 10)),

sale_amount ~ ., data = ICHomes)

gbm_grid <- ParameterGrid(
n.trees = dials::trees(),
interaction.depth = dials::tree_depth(),

size = 5

)

expand_modelgrid(TunedModel (GBMModel, grid = gbm_grid))

rf_grid <- ParameterGrid(
mtry = dials::mtry(),
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nodesize = dials::max_nodes(),
size = c(3, 5)

)
expand_modelgrid(TunedModel (RandomForestModel, grid = rf_grid),
sale_amount ~ ., data = ICHomes)
expand_params Model Parameters Expansion
Description

Create a grid of parameter values from all combinations of supplied inputs.

Usage
expand_params(..., random = FALSE)
Arguments
named data frames or vectors or a list of these containing the parameter values
over which to create the grid.
random number of points to be randomly sampled from the parameter grid or FALSE if
all points are to be returned.
Value

A data frame containing one row for each combination of the supplied inputs.

See Also
TunedModel

Examples

## Requires prior installation of suggested package gbm to run
data(Boston, package = "MASS")
grid <- expand_params(

n.trees = c(50, 100),

interaction.depth = 1:2

)

fit(medv ~ ., data = Boston, model = TunedModel (GBMModel, grid = grid))
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expand_steps Recipe Step Parameters Expansion

Description

Create a grid of parameter values from all combinations of lists supplied for steps of a preprocessing

recipe.
Usage
expand_steps(..., random = FALSE)
Arguments
one or more lists containing parameter values over which to create the grid. For
each list an argument name should be given as the id of the recipe step to which
it corresponds.
random number of points to be randomly sampled from the parameter grid or FALSE if
all points are to be returned.
Value

RecipeGrid class object that inherits from data. frame.

See Also

TunedInput

Examples

library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
step_corr(all_numeric_predictors(), id = "corr") %>%
step_pca(all_numeric_predictors(), id = "pca")

expand_steps(
corr = list(threshold = c(0.8, 0.9),
method = c("pearson”, "spearman")),
pca = list(num_comp = 1:3)

)
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extract

Extract Elements of an Object

Description

Operators acting on data structures to extract elements.

Usage

## S3 method
x[i, 3, ...,

## S4 method
x[i]

## S4 method
x[i]

## S4 method
x[i, 3, ...,

## S4 method
xCi, 3, ...,

## S4 method
x[i, 3, ...,

## S4 method
xCi, 3, ...,

## S4 method
x[i, j, ...,

## S4 method
x[i, 3, ...,

## S4 method
x[i, 3, ...,

## S4 method
x[i, 3, ...,

## S4 method
x[i, 3, ...,

## S4 method
x[i]

for class 'BinomialVariate'

drop = FALSE]

for signature

for signature

for signature

drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature
drop = FALSE]

for signature

'DiscreteVariate,ANY,missing,missing

[

'ListOf,ANY,missing,missing

'ModelFrame, ANY,ANY, ANY'

'ModelFrame,ANY,missing, ANY'

'ModelFrame,missing, ANY,ANY'

'ModelFrame,missing,missing, ANY'

'RecipeGrid, ANY,ANY,ANY'

'Resample, ANY,ANY, ANY'

'Resample, ANY,missing, ANY'

'Resample,missing,missing, ANY'

'SurvMatrix, ANY,ANY,ANY'

'SurvTimes,ANY,missing,missing'
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Arguments
X object from which to extract elements.
i, j, ... indices specifying elements to extract.
drop logical indicating that the result be returned as an object coerced to the lowest
dimension possible if TRUE or with the original dimensions and class otherwise.
FDAModel Flexible and Penalized Discriminant Analysis Models
Description

Performs flexible discriminant analysis.

Usage

FDAModel (
theta = matrix(NA, 0, 0),
dimension = integer(),
eps = .Machine$double.eps,
method = .(mda::polyreg),

)
PDAModel (lambda = 1, df = numeric(), ...)
Arguments

theta optional matrix of class scores, typically with number of columns less than one
minus the number of classes.

dimension dimension of the discriminant subspace, less than the number of classes, to use
for prediction.

eps numeric threshold for small singular values for excluding discriminant variables.

method regression function used in optimal scaling. The default of linear regression
is provided by polyreg from the mda package. For penalized discriminant
analysis, gen.ridge is appropriate. Other possibilities are mars for multivari-
ate adaptive regression splines and bruto for adaptive backfitting of additive
splines. Use the . operator to quote specified functions.
additional arguments to method for FDAModel and to FDAModel for PDAModel.

lambda shrinkage penalty coefficient.

df alternative specification of 1lambda in terms of equivalent degrees of freedom.
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Details

Response types: factor

Automatic tuning of grid parameters: ¢ FDAModel: nprune, degree*
* PDAModel: 1ambda

* excluded from grids by default

The predict function for this model additionally accepts the following argument.
prior prior class membership probabilities for prediction data if different from the training set.

Default argument values and further model details can be found in the source See Also links below.

Value

MLModel class object.

See Also

fda, predict.fda, fit, resample

Examples

## Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = FDAModel)

## Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = PDAModel)
fit Model Fitting
Description

Fit a model to estimate its parameters from a data set.

Usage
fit(...)

## S3 method for class 'formula'
fit(formula, data, model, ...)

## S3 method for class 'matrix'
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fit(x, y, model, ...)
## S3 method for class 'ModelFrame’
fit(input, model, ...)
## S3 method for class 'recipe’
fit(input, model, ...)
## S3 method for class 'ModelSpecification'
fit(object, verbose = FALSE, ...)
## S3 method for class 'MLModel'’
fit(model,
## S3 method for class 'MLModelFunction'
fit(model,
Arguments
arguments passed from the generic function to its methods, from the MLModel
and MLModelFunction methods to first arguments of others, and from others to
the ModelSpecification method. The first argument of each fit method is
positional and, as such, must be given first in calls to them.
formula, data formula defining the model predictor and response variables and a data frame
containing them.
model model function, function name, or object; or another object that can be coerced
to a model. A model can be given first followed by any of the variable specifi-
cations.
X,y matrix and object containing predictor and response variables.
input input object defining and containing the model predictor and response variables.
object model specification.
verbose logical indicating whether to display printed output generated by some model-
specific fit functions to aid in monitoring progress and diagnosing errors.
Details
User-specified case weights may be specified for ModelFrames upon creation with the weights
argument in its constructor.
Variables in recipe specifications may be designated as case weights with the role_case function.
Value
MLModelFit class object.
See Also

as.MLModel, response, predict, varimp



GAMBoostModel 39

Examples
## Requires prior installation of suggested package gbm to run
## Survival response example
library(survival)
gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
varimp(gbm_fit)

GAMBoostModel Gradient Boosting with Additive Models

Description

Gradient boosting for optimizing arbitrary loss functions, where component-wise arbitrary base-
learners, e.g., smoothing procedures, are utilized as additive base-learners.

Usage

GAMBoostModel (

family = NULL,

baselearner = c("bbs”, "bols"”, "btree", "bss”, "bns"),
dfbase = 4,

mstop = 100,

nu=29.1,

risk = c("inbag"”, "oobag", "none"),

stopintern = FALSE,

trace = FALSE

)
Arguments

family optional Family object. Set automatically according to the class type of the
response variable.

baselearner character specifying the component-wise base learner to be used.

dfbase gobal degrees of freedom for P-spline base learners ("bbs").

mstop number of initial boosting iterations.

nu step size or shrinkage parameter between 0 and 1.

risk method to use in computing the empirical risk for each boosting iteration.

stopintern logical inidicating whether the boosting algorithm stops internally when the out-
of-bag risk increases at a subsequent iteration.

trace logical indicating whether status information is printed during the fitting pro-

CESS.
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Details

Response types: binary factor,BinomialVariate, NegBinomialVariate, numeric, PoissonVariate,
Surv

Automatic tuning of grid parameter: mstop

Default argument values and further model details can be found in the source See Also links below.

Value

MLModel class object.

See Also

gamboost, Family, baselearners, fit, resample

Examples
## Requires prior installation of suggested package mboost to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GAMBoostModel)
GBMModel Generalized Boosted Regression Model
Description

Fits generalized boosted regression models.

Usage

GBMModel (
distribution = character(),
n.trees = 100,
interaction.depth = 1,
n.minobsinnode = 10,
shrinkage = 0.1,
bag.fraction = 0.5
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Arguments

distribution optional character string specifying the name of the distribution to use or list
with a component name specifying the distribution and any additional parame-
ters needed. Set automatically according to the class type of the response vari-
able.

n.trees total number of trees to fit.
interaction.depth
maximum depth of variable interactions.

n.minobsinnode minimum number of observations in the trees terminal nodes.
shrinkage shrinkage parameter applied to each tree in the expansion.

bag.fraction  fraction of the training set observations randomly selected to propose the next
tree in the expansion.
Details

Response types: factor, numeric, PoissonVariate, Surv
Automatic tuning of grid parameters: n.trees, interaction.depth, shrinkage*, n.minobsinnode*
* excluded from grids by default

Default argument values and further model details can be found in the source See Also link below.

Value

MLModel class object.

See Also

gbm, fit, resample

Examples

## Requires prior installation of suggested package gbm to run

fit(Species ~ ., data = iris, model = GBMModel)
GLMBoostModel Gradient Boosting with Linear Models
Description

Gradient boosting for optimizing arbitrary loss functions where component-wise linear models are
utilized as base-learners.
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Usage

GLMBoostModel (
family = NULL,
mstop = 100,
nu=2.1,
risk = c("inbag"”, "oobag”, "none"),
stopintern = FALSE,
trace = FALSE

)
Arguments
family optional Family object. Set automatically according to the class type of the
response variable.
mstop number of initial boosting iterations.
nu step size or shrinkage parameter between 0 and 1.
risk method to use in computing the empirical risk for each boosting iteration.
stopintern logical inidicating whether the boosting algorithm stops internally when the out-
of-bag risk increases at a subsequent iteration.
trace logical indicating whether status information is printed during the fitting pro-
cess.
Details

Response types: binary factor,BinomialVariate, NegBinomialVariate, numeric, PoissonVariate,
Surv

Automatic tuning of grid parameter: mstop

Default argument values and further model details can be found in the source See Also links below.

Value

MLModel class object.

See Also

glmboost, Family, fit, resample

Examples
## Requires prior installation of suggested package mboost to run
data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GLMBoostModel)



GLMModel 43

GLMModel Generalized Linear Model

Description

Fits generalized linear models, specified by giving a symbolic description of the linear predictor
and a description of the error distribution.

Usage
GLMModel (family = NULL, quasi = FALSE, ...)

GLMStepAICModel(
family = NULL,
quasi = FALSE,

L

direction = c("both”, "backward”, "forward"),

scope = list(),
k =2,
trace = FALSE,
steps = 1000
)
Arguments
family optional error distribution and link function to be used in the model. Set auto-
matically according to the class type of the response variable.
quasi logical indicator for over-dispersion of binomial and Poisson families; i.e., dis-
persion parameters not fixed at one.
arguments passed to glm.control.
direction mode of stepwise search, can be one of "both” (default), "backward”, or "forward".
scope defines the range of models examined in the stepwise search. This should be a
list containing components upper and lower, both formulae.
k multiple of the number of degrees of freedom used for the penalty. Only k = 2
gives the genuine AIC; k = . (Log(nobs)) is sometimes referred to as BIC or
SBC.
trace if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.
steps maximum number of steps to be considered.
Details

GLMModel Response types: BinomialVariate, factor,matrix, NegBinomialVariate, numeric,
PoissonVariate
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GLMStepAICModel Response types: binary factor, BinomialVariate, NegBinomialVariate,
numeric, PoissonVariate

Default argument values and further model details can be found in the source See Also links below.

In calls to varimp for GLMModel and GLMStepAICModel, numeric argument base may be specified
for the (negative) logarithmic transformation of p-values [defaul: exp(1)]. Transformed p-values
are automatically scaled in the calculation of variable importance to range from O to 100. To obtain
unscaled importance values, set scale = FALSE.

Value

MLModel class object.

See Also

glm, glm.control, stepAIC, fit, resample

Examples
fit(sale_amount ~ ., data = ICHomes, model = GLMModel)
GLMNetModel GLM Lasso or Elasticnet Model
Description

Fit a generalized linear model via penalized maximum likelihood.

Usage
GLMNetModel (
family = NULL,
alpha = 1,
lambda = 0,

standardize = TRUE,

intercept = logical(),
penalty.factor = .(rep(1, nvars)),
standardize.response = FALSE,
thresh = 1e-07,

maxit = le+@5,

type.gaussian = .(if (nvars < 500) "covariance" else "naive"),
type.logistic = c(”"Newton”, "modified.Newton"),
type.multinomial = c("ungrouped”, "grouped")
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Arguments

family
alpha

lambda

standardize

intercept
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optional response type. Set automatically according to the class type of the
response variable.

elasticnet mixing parameter.

regularization parameter. The default value lambda = @ performs no regular-
ization and should be increased to avoid model fitting issues if the number of
predictor variables is greater than the number of observations.

logical flag for predictor variable standardization, prior to model fitting.

logical indicating whether to fit intercepts.

penalty.factor vector of penalty factors to be applied to each coefficient.

standardize.response

thresh
maxit
type.gaussian

type.logistic

logical indicating whether to standardize "mgaussian” response variables.
convergence threshold for coordinate descent.

maximum number of passes over the data for all lambda values.

algorithm type for guassian models.

algorithm type for logistic models.

type.multinomial

Details

algorithm type for multinomial models.

Response types: BinomialVariate, factor, matrix, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: lambda, alpha

Default argument values and further model details can be found in the source See Also link below.

Value

MLModel class object.

See Also

glmnet, fit, resample

Examples

## Requires prior installation of suggested package glmnet to run

fit(sale_amount ~

., data = ICHomes, model = GLMNetModel(lambda = 0.01))
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ICHomes

ICHomes lowa City Home Sales Dataset

Description

Characteristics of homes sold in Iowa City, IA from 2005 to 2008 as reported by the county asses-

sor’s office.

Usage

ICHomes

Format

A data frame with 753 observations of 17 variables:

sale_amount sale amount in dollars.
sale_year sale year.

sale_month sale month.

built year in which the home was built.
style home stlye (Home/Condo)
construction home construction type.

base_size base foundation size in sq ft.

add_size size of additions made to the base foundation in sq ft.

garagel_size attached garage size in sq ft.
garage2_size detached garage size in sq ft.
lot_size total lot size in sq ft.

bedrooms number of bedrooms.

basement presence of a basement (No/Yes).

ac presence of central air conditioning (No/Yes).
attic presence of a finished attic (No/Yes).

lon,Jat home longitude/latitude coordinates.
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inputs Model Inputs

Description

Model inputs are the predictor and response variables whose relationship is determined by a model
fit. Input specifications supported by MachineShop are summarized in the table below.

formula Traditional model formula

matrix Design matrix of predictors
ModelFrame Model frame

ModelSpecification Model specification

recipe Preprocessing recipe roles and steps

Response variable types in the input specifications are defined by the user with the functions and
recipe roles:

Response Functions BinomialVariate
DiscreteVariate
factor
matrix
NegBinomialVariate
numeric
ordered
PoissonVariate
Surv

Recipe Roles role_binom
role_surv

Inputs may be combined, selected, or tuned with the following meta-input functions.

ModelSpecification Model specification
SelectedInput Input selection from a candidate set
TunedInput Input tuning over a parameter grid

See Also

fit, resample
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KNNModel Weighted k-Nearest Neighbor Model

Description

Fit a k-nearest neighbor model for which the k nearest training set vectors (according to Minkowski
distance) are found for each row of the test set, and prediction is done via the maximum of summed
kernel densities.

Usage
KNNModel (
k =7,
distance = 2,
scale = TRUE,
kernel = c("optimal”, "biweight"”, "cos", "epanechnikov"”, "gaussian”, "inv", "rank"”,
"rectangular”, "triangular”, "triweight")
)
Arguments
k numer of neigbors considered.
distance Minkowski distance parameter.
scale logical indicating whether to scale predictors to have equal standard deviations.
kernel kernel to use.
Details

Response types: factor, numeric, ordinal

Automatic tuning of grid parameters: k, distance*, kernel*

* excluded from grids by default

Further model details can be found in the source link below.
Value

MLModel class object.

See Also

kknn, fit, resample

Examples

## Requires prior installation of suggested package kknn to run

fit(Species ~ ., data = iris, model = KNNModel)
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LARSModel Least Angle Regression, Lasso and Infinitesimal Forward Stagewise
Models

Description

Fit variants of Lasso, and provide the entire sequence of coefficients and fits, starting from zero to
the least squares fit.

Usage

LARSModel (
type = c("lasso”, "lar", "forward.stagewise”, "stepwise"),
trace = FALSE,
normalize = TRUE,
intercept = TRUE,
step = numeric(),
use.Gram = TRUE

)
Arguments
type model type.
trace logical indicating whether status information is printed during the fitting pro-
cess.
normalize whether to standardize each variable to have unit L2 norm.
intercept whether to include an intercept in the model.
step algorithm step number to use for prediction. May be a decimal number indicat-
ing a fractional distance between steps. If specified, the maximum number of
algorithm steps will be ceiling(step); otherwise, step will be set equal to the
source package default maximum [default: max. steps].
use.Gram whether to precompute the Gram matrix.
Details

Response types: numeric
Automatic tuning of grid parameter: step

Default argument values and further model details can be found in the source See Also link below.

Value

MLModel class object.

See Also

lars, fit, resample
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Examples

## Requires prior installation of suggested package lars to run

fit(sale_amount ~ ., data = ICHomes, model = LARSModel)
LDAModel Linear Discriminant Analysis Model
Description

Performs linear discriminant analysis.

Usage
LDAModel (
prior = numeric(),
tol = 1e-04,
method = c("moment”, "mle”, "mve”, "t"),
nu =25,
dimen = integer(),
use = c("plug-in", "debiased", "predictive")
)
Arguments
prior prior probabilities of class membership if specified or the class proportions in
the training set otherwise.
tol tolerance for the determination of singular matrices.
method type of mean and variance estimator.
nu degrees of freedom for method = "t".
dimen dimension of the space to use for prediction.
use type of parameter estimation to use for prediction.
Details

Response types: factor
Automatic tuning of grid parameter: dimen

The predict function for this model additionally accepts the following argument.
prior prior class membership probabilities for prediction data if different from the training set.

Default argument values and further model details can be found in the source See Also links below.
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Value
MLModel class object.
See Also
lda, predict.1lda, fit, resample
Examples
fit(Species ~ ., data = iris, model = LDAModel)
lift Model Lift Curves
Description
Calculate lift curves from observed and predicted responses.
Usage
lift(x, y = NULL, weights = NULL, na.rm = TRUE, )
Arguments
X observed responses or resample result containing observed and predicted re-
sponses.
y predicted responses if not contained in x.
weights numeric vector of non-negative case weights for the observed x responses [de-
fault: equal weights].
na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.
arguments passed to other methods.
Value

LiftCurve class object that inherits from PerformanceCurve.

See Also

c, plot, summary
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Examples

## Requires prior installation of suggested package gbm to run

data(Pima.tr, package = "MASS")

res <- resample(type ~ ., data = Pima.tr, model = GBMModel)
1f <- lift(res)
plot(1f)
LMModel Linear Models
Description

Fits linear models.

Usage

LMModel ()

Details

Response types: factor, matrix, numeric
Further model details can be found in the source link below.

In calls to varimp for LModel, numeric argument base may be specified for the (negative) logarith-
mic transformation of p-values [defaul: exp(1)]. Transformed p-values are automatically scaled
in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance
values, set scale = FALSE.

Value

MLModel class object.

See Also

Im, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = LMModel)
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MDAModel

Mixture Discriminant Analysis Model

Description

Performs mixture discriminant analysis.

Usage
MDAModel (

subclasses =

3,

sub.df = numeric(),
tot.df = numeric(),

dimension

sum(subclasses) - 1,

eps = .Machine$double.eps,

iter

:5,
method =

.(mda: :polyreg),

trace = FALSE,

Arguments

subclasses
sub.df

tot.df
dimension
eps

iter
method

trace

Details

numeric value or vector of subclasses per class.

effective degrees of freedom of the centroids per class if subclass centroid shrink-
age is performed.

specification of the total degrees of freedom as an alternative to sub.df.
dimension of the discriminant subspace to use for prediction.

numeric threshold for automatically truncating the dimension.

limit on the total number of iterations.

regression function used in optimal scaling. The default of linear regression is
provided by polyreg from the mda package. For penalized mixture discrimi-
nant models, gen.ridge is appropriate. Other possibilities are mars for multi-
variate adaptive regression splines and bruto for adaptive backfitting of additive
splines. Use the . operator to quote specified functions.

logical indicating whether iteration information is printed.
additional arguments to mda. start and method.

Response types: factor

Automatic tuning of grid parameter: subclasses

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default argument values and further model details can be found in the source See Also links below.
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Value

MLModel class object.

See Also

mda, predict.mda, fit, resample

Examples

## Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = MDAModel)
metricinfo Display Performance Metric Information
Description

Display information about metrics provided by the MachineShop package.

Usage

metricinfo(...)

Arguments
metric functions or function names; observed responses; observed and predicted
responses; confusion or resample results for which to display information. If
none are specified, information is returned on all available metrics by default.
Value

List of named metric elements each containing the following components:

label character descriptor for the metric.

maximize logical indicating whether higher values of the metric correspond to better predictive
performance.

arguments closure with the argument names and corresponding default values of the metric func-
tion.

response_types data frame of the observed and predicted response variable types supported by the
metric.
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Examples

## All metrics
metricinfo()

## Metrics by observed and predicted response types
names(metricinfo(factor(0)))
names(metricinfo(factor (@), factor(@)))
names(metricinfo(factor(@), matrix(0)))
names(metricinfo(factor (@), numeric(@)))

## Metric-specific information
metricinfo(auc)
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metrics Performance Metrics

Description

Compute measures of agreement between observed and predicted responses.

Usage

accuracy(

observed,

predicted = NULL,

weights = NULL,

cutoff = MachineShop::settings("cutoff"),

auc(

observed,

predicted = NULL,

weights = NULL,

multiclass = c("pairs”, "all"),

metrics = c(MachineShop::tpr, MachineShop::fpr),
stat = MachineShop::settings(”stat.Curve”),

brier(observed, predicted = NULL, weights = NULL,

cindex(observed, predicted = NULL, weights = NULL,

cross_entropy(observed, predicted = NULL, weights

)
)

= NULL,

)



56

f_score(

observed,
predicted = NULL,
weights = NULL,

cutoff = MachineShop:

beta = 1,
)
fnr(
observed,

)

predicted = NULL,
weights = NULL,

cutoff = MachineShop:

fpr(

)

observed,
predicted = NULL,
weights = NULL,

cutoff = MachineShop:

kappa2(

)

observed,
predicted = NULL,
weights = NULL,

cutoff = MachineShop:

npv(

)

observed,
predicted = NULL,
weights = NULL,

cutoff = MachineShop:

ppr(

observed,
predicted = NULL,
weights = NULL,

cutoff = MachineShop:

:settings("cutoff"),

:settings(”"cutoff"),

:settings("cutoff"),

:settings("cutoff"),

:settings("cutoff"),

:settings(”"cutoff"),

metrics
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ppv(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop: :settings("cutoff"),

)

pr_auc(
observed,
predicted = NULL,
weights = NULL,
multiclass = c("pairs”, "all"),

)

precision(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop: :settings("cutoff"),

)

recall(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop: :settings("cutoff"),

)

roc_auc(
observed,
predicted = NULL,
weights = NULL,
multiclass = c("pairs”, "all"),

)

roc_index(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
fun = function(sensitivity, specificity) (sensitivity + specificity)/2,

57



58

)

sensitivity(

)

observed,

predicted = NULL,
weights = NULL,
cutoff = MachineShop:

specificity(

)

observed,

predicted = NULL,
weights = NULL,
cutoff = MachineShop:

tnr(

)

observed,

predicted = NULL,
weights = NULL,
cutoff = MachineShop:

tpr(

)

weighted_kappa2(observed, predicted = NULL, weights

observed,

predicted = NULL,
weights = NULL,
cutoff = MachineShop:

:settings("cutoff"),

:settings("cutoff"),

:settings(”"cutoff"),

:settings("cutoff"),

gini(observed, predicted = NULL, weights =

mae (observed, predicted

mse (observed, predicted

= NULL, weights

= NULL, weights

msle(observed, predicted = NULL, weights =

r2(

observed,
predicted = NULL,
weights = NULL,

NULL,

NULL,

)
)

NULL, power

metrics
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method = c("mse"”, "pearson”, "spearman"),
distr = character(),

)

rmse(observed, predicted = NULL, weights = NULL, ...)

rmsle(observed, predicted = NULL, weights = NULL, ...)

Arguments

observed observed responses; or confusion, performance curve, or resample result con-
taining observed and predicted responses.

predicted predicted responses if not contained in observed.

weights numeric vector of non-negative case weights for the observed responses [default:
equal weights].

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified
as events and below which survival probabilities are classified. If NULL, then
confusion matrix-based metrics are computed on predicted class probabilities if
given.
arguments passed to or from other methods.

multiclass character string specifying the method for computing generalized area under
the performance curve for multiclass factor responses. Options are to average
over areas for each pair of classes ("pairs”) or for each class versus all others
( n al 1 II).

metrics vector of two metric functions or function names that define a curve under which
to calculate area [default: ROC metrics].

stat function or character string naming a function to compute a summary statistic
at each cutoff value of resampled metrics in performance curves, or NULL for
resample-specific metrics.

beta relative importance of recall to precision in the calculation of f_score [default:
F1 score].

fun function to calculate a desired sensitivity-specificity tradeoff.

power power to which positional distances of off-diagonals from the main diagonal in
confusion matrices are raised to calculate weighted_kappa2.

method character string specifying whether to compute r2 as the coefficient of determi-
nation ("mse") or as the square of "pearson” or "spearman” correlation.

distr character string specifying a distribution with which to estimate the observed

survival mean in the total sum of square component of r2. Possible values

are "empirical” for the Kaplan-Meier estimator, "exponential”, "extreme”,
"gaussian", "loggaussian”, "logistic”, "loglogistic”, "lognormal”, "rayleigh"”,
"t", or "weibull”. Defaults to the distribution that was used in predicting mean

survival times.
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References

Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for
multiple class classification problems. Machine Learning, 45, 171-186.

See Also

metricinfo, performance

MLControl Resampling Controls

Description

Structures to define and control sampling methods for estimation of model predictive performance
in the MachineShop package.

Usage

BootControl(
samples = 25,
weights = TRUE,
seed = sample(.Machine$integer.max, 1)

)

BootOptimismControl(
samples = 25,
weights = TRUE,
seed = sample(.Machine$integer.max, 1)

)

CVControl(
folds = 10,
repeats = 1,
weights = TRUE,
seed = sample(.Machine$integer.max, 1)

)

CVOptimismControl(
folds = 10,
repeats = 1,
weights = TRUE,
seed = sample(.Machine$integer.max, 1)

)

00BControl(
samples = 25,
weights = TRUE,
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seed = sample(.Machine$integer.max, 1)

)

SplitControl(
prop = 2/3,
weights = TRUE,
seed = sample(.Machine$integer.max, 1)

)

TrainControl(weights = TRUE, seed = sample(.Machine$integer.max, 1))

Arguments
samples number of bootstrap samples.
weights logical indicating whether to return case weights in resampled output for the
calculation of performance metrics.
seed integer to set the seed at the start of resampling.
folds number of cross-validation folds (K).
repeats number of repeats of the K-fold partitioning.
prop proportion of cases to include in the training set (@ < prop < 1).
Details

BootControl constructs an MLControl object for simple bootstrap resampling in which models are
fit with bootstrap resampled training sets and used to predict the full data set (Efron and Tibshirani
1993).

BootOptimismControl constructs an MLControl object for optimism-corrected bootstrap resam-
pling (Efron and Gong 1983, Harrell et al. 1996).

CVControl constructs an MLControl object for repeated K-fold cross-validation (Kohavi 1995).
In this procedure, the full data set is repeatedly partitioned into K-folds. Within a partitioning,
prediction is performed on each of the K folds with models fit on all remaining folds.

CVOptimismControl constructs an MLControl object for optimism-corrected cross-validation re-
sampling (Davison and Hinkley 1997, eq. 6.48).

00BControl constructs an MLControl object for out-of-bootstrap resampling in which models are
fit with bootstrap resampled training sets and used to predict the unsampled cases.

SplitControl constructs an MLControl object for splitting data into a separate training and test set
(Hastie et al. 2009).

TrainControl constructs an MLControl object for training and performance evaluation to be per-
formed on the same training set (Efron 1986).

Value

Object that inherits from the MLControl class.
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References

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall/CRC.

Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation.
The American Statistician, 37(1), 36-48.

Harrell, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: Issues in devel-
oping models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics
in Medicine, 15(4), 361-387.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model
selection. In IJCAI’95: Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (vol. 2, pp. 1137-1143). Morgan Kaufmann Publishers Inc.

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge
University Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining,
inference, and prediction (2nd ed.). Springer.

Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American
Statistical Association, 81(394), 461-70.

See Also
set_monitor, set_predict, set_strata, resample, SelectedInput, SelectedModel, TunedInput,

TunedModel

Examples

## Bootstrapping with 100 samples
BootControl (samples = 100)

## Optimism-corrected bootstrapping with 100 samples
BootOptimismControl (samples = 100)

## Cross-validation with 5 repeats of 10 folds
CVControl(folds = 10, repeats = 5)

## Optimism-corrected cross-validation with 5 repeats of 10 folds
CVOptimismControl(folds = 10, repeats = 5)

## Out-of-bootstrap validation with 100 samples
00BControl(samples = 100)

## Split sample validation with 2/3 training and 1/3 testing
SplitControl(prop = 2/3)

## Training set evaluation
TrainControl()
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MLMetric MLMetric Class Constructor

Description

Create a performance metric for use with the MachineShop package.

Usage

MLMetric(object, name = "MLMetric"”, label = name, maximize = TRUE)

MLMetric(object) <- value

Arguments
object function to compute the metric, defined to accept observed and predicted as
the first two arguments and with an ellipsis (. . .) to accommodate others.
name character name of the object to which the metric is assigned.
label optional character descriptor for the model.
maximize logical indicating whether higher values of the metric correspond to better pre-
dictive performance.
value list of arguments to pass to the MLMetric constructor.
Value

MLMetric class object.

See Also

metrics

Examples

f2_score <- MLMetric(

function(observed, predicted, ...) {
f_score(observed, predicted, beta = 2, ...)

}?

name = "f2_score"”,

label = "F Score (beta = 2)",
maximize = TRUE
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MLModel MLModel and MLModelFunction Class Constructors

Description

Create a model or model function for use with the MachineShop package.

Usage
MLModel(
name = "MLModel”,
label = name,
packages = character(),
response_types = character(),
weights = FALSE,
predictor_encoding = c(NA, "model.frame”, "model.matrix"),
na.rm = FALSE,
params = list(),
gridinfo = tibble::tibble(param = character(), get_values = list(), default =
logical()),
fit = function(formula, data, weights, ...) stop(”"No fit function."),
predict = function(object, newdata, times, ...) stop(”"No predict function.”),
varimp = function(object, ...) NULL,
)
MLModelFunction(object, ...)
Arguments
name character name of the object to which the model is assigned.
label optional character descriptor for the model.
packages character vector of package names upon which the model depends. Each name
may be optionally followed by a comment in parentheses specifying a version
requirement. The comment should contain a comparison operator, whitespace
and a valid version number, e.g. "xgboost (>=1.3.0)".
response_types character vector of response variable types to which the model can be fit. Sup-
ported types are "binary”, "BinomialVariate”, "DiscreteVariate”, "factor”,
"matrix”, "NegBinomialVariate”, "numeric”, "ordered"”, "PoissonVariate”,
and "Surv”.
weights logical value or vector of the same length as response_types indicating whether
case weights are supported for the responses.
predictor_encoding

character string indicating whether the model is fit with predictor variables en-
coded as a "model.frame”, a "model.matrix", or unspecified (default).
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na.rm character string or logical specifying removal of "all” (TRUE) cases with miss-
ing values from model fitting and prediction, "none” (FALSE), or only those
whose missing values are in the "response” variable.

params list of user-specified model parameters to be passed to the fit function.

gridinfo tibble of information for construction of tuning grids consisting of a character
column param with the names of parameters in the grid, a list column get_values
with functions to generate grid points for the corresponding parameters, and an
optional logical column default indicating which parameters to include by de-
fault in regular grids. Values functions may optionally include arguments n and
data for the number of grid points to generate and a ModelFrame of the model
fit data and formula, respectively; and must include an ellipsis (. . .).

fit model fitting function whose arguments are a formula, a ModelFrame named
data, case weights, and an ellipsis.

predict model prediction function whose arguments are the object returned by fit, a
ModelFrame named newdata of predictor variables, optional vector of times at
which to predict survival, and an ellipsis.

varimp variable importance function whose arguments are the object returned by fit,
optional arguments passed from calls to varimp, and an ellipsis.

arguments passed to other methods.

object function that returns an MLModel object when called without any supplied argu-
ment values.

Details
If supplied, the grid function should return a list whose elements are named after and contain values
of parameters to include in a tuning grid to be constructed automatically by the package.

Arguments data and newdata in the fit and predict functions may be converted to data frames
with as.data. frame() if needed for their operation. The fit function should return the object re-
sulting from the model fit. Values returned by the predict functions should be formatted according
to the response variable types below.

factor matrix whose columns contain the probabilities for multi-level factors or vector of probabil-
ities for the second level of binary factors.

matrix matrix of predicted responses.

numeric vector or column matrix of predicted responses.

Surv matrix whose columns contain survival probabilities at times if supplied or a vector of pre-
dicted survival means otherwise.

The varimp function should return a vector of importance values named after the predictor variables

or a matrix or data frame whose rows are named after the predictors.

The predict and varimp functions are additionally passed a list named .MachineShop containing
the input and model from fit. This argument may be included in the function definitions as needed
for their implementations. Otherwise, it will be captured by the ellipsis.

Value

An MLModel or MLModelFunction class object.
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See Also

models, fit, resample

Examples

## Logistic regression model
LogisticModel <- MLModel(

ModelFrame

name = "LogisticModel”,
response_types = "binary”,
weights = TRUE,
fit = function(formula, data, weights, ...) {
glm(formula, data = as.data.frame(data), weights = weights,
family = binomial, ...)
i
predict = function(object, newdata, ...) {
predict(object, newdata = as.data.frame(newdata), type = "response”)
h
varimp = function(object, ...) {
pchisq(coef(object)*2 / diag(vcov(object)), 1)
}
)
data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = LogisticModel)
summary(res)
ModelFrame ModelFrame Class
Description

Class for storing data, formulas, and other attributes for MachineShop model fitting.

Usage
ModelFrame(...)

## S3 method for class 'formula’

ModelFrame(
formula,
data,
groups = NULL,
strata = NULL,
weights = NULL,
na.rm = TRUE,
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## S3 method for class 'matrix'

ModelFrame(
X,
y = NULL,

offsets = NULL,
groups = NULL,
strata = NULL,
weights = NULL,

na.rm = TRUE,

Arguments

formula, data

groups

strata

weights

na.rm

X?y
offsets

Value

arguments passed from the generic function to its methods. The first argument
of each ModelFrame method is positional and, as such, must be given first in
calls to them.

formula defining the model predictor and response variables and a data frame
containing them. In the associated method, arguments groups, strata, and
weights will be evaluated as expressions, whose objects are searched for first in
the accompanying data environment and, if not found there, next in the calling
environment.

vector of values defining groupings of case observations, such as repeated mea-
surements, to keep together during resampling [default: none].

vector of values to use in conducting stratified resample estimation of model
performance [default: none].

numeric vector of non-negative case weights for the y response variable [default:
equal weights].

character string or logical specifying removal of "all” (TRUE) cases with miss-
ing values, "none"” (FALSE), or only those whose missing values are in the
"response” variable.

matrix and object containing predictor and response variables.

numeric vector, matrix, or data frame of values to be added with a fixed coeffi-
cient of 1 to linear predictors in compatible regression models.

ModelFrame class object that inherits from data. frame.

See Also

fit, resample, response, SelectedInput

Examples

## Requires prior installation of suggested package gbm to run
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mf <- ModelFrame(ncases / (ncases + ncontrols) ~ agegp + tobgp + alcgp,
data = esoph, weights = ncases + ncontrols)

gbm_fit <- fit(mf, model = GBMModel)

varimp(gbm_fit)

modelinfo Display Model Information

Description

Display information about models supplied by the MachineShop package.

Usage

modelinfo(...)

Arguments
model functions, function names, or objects; observed responses for which to
display information. If none are specified, information is returned on all avail-
able models by default.

Value

List of named model elements each containing the following components:

label character descriptor for the model.

packages character vector of source packages required to use the model. These need only be
installed with the install.packages function or by equivalent means; but need not be loaded
with, for example, the library function.

response_types character vector of response variable types supported by the model.

weights logical value or vector of the same length as response_types indicating whether case
weights are supported for the responses.

arguments closure with the argument names and corresponding default values of the model func-
tion.

grid logical indicating whether automatic generation of tuning parameter grids is implemented for
the model.

varimp logical indicating whether model-specific variable importance is defined.
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Examples

## All models
modelinfo()

## Models by response types
names(modelinfo(factor(0)))
names(modelinfo(factor (@), numeric(@)))

## Model-specific information
modelinfo(GBMModel)

models Models

Description

Model constructor functions supplied by MachineShop are summarized in the table below accord-
ing to the types of response variables with which each can be used.

Function Categorical Continuous Survival
AdaBagModel f
AdaBoostModel f
BARTModel f n S
BARTMachineModel b n
BlackBoostModel b n S
C50Model f
CForestModel f n S
CoxModel S
CoxStepAICModel S
EarthModel f n
FDAModel f
GAMBoostModel b n S
GBMModel f n S
GLMBoostModel b n S
GLMModel f m,n
GLMStepAICModel b n
GLMNetModel f m,n S
KNNModel f,o n
LARSModel n
LDAModel f
LMModel f m,n
MDAModel f
NaiveBayesModel f
NNetModel f n
ParsnipModel f m,n S
PDAModel f
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PLSModel
POLRModel
QDAModel
RandomForestModel
RangerModel
RFSRCModel
RFSRCFastModel
RPartModel
SurvRegModel
SurvRegStepAICModel
SVMModel
SVMANOVAModel
SVMBesselModel
SVMLaplaceModel
SVMLinearModel
SVMPolyModel
SVMRadialModel
SVMSplineModel
SVMTanhModel
TreeModel
XGBModel
XGBDARTModel
XGBLinearModel
XGBTreeModel

m,n
m,n

—h =h =h —h =h =h O —h
=

N nwnvnunvnunvnwn

—h =h mh h =h =h —h —h =h Hh —h =h —h —h
S B B BB BB BB B BB BB

»nnwnnwnwn

Categorical: b = binary, f = factor, o = ordered
Continuous: m = matrix, n = numeric
Survival: S = Surv

ModelSpecification

Models may be combined, tuned, or selected with the following meta-model functions.

See Also

ModelSpecification
StackedModel
SuperModel
SelectedModel
TunedModel

modelinfo, fit, resample

Model specification

Stacked regression

Super learner

Model selection from a candidate set
Model tuning over a parameter grid

ModelSpecification

Model Specification
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Description

71

Specification of a relationship between response and predictor variables and a model to define a
relationship between them.

Usage

ModelSpecification(...)

## Default S3 method:
ModelSpecification(

input,
model,

control = MachineShop::settings(”control”),

metrics = NULL,

cutoff = MachineShop: :settings("cutoff"),

stat = MachineShop::settings(”stat.TrainingParams”),

)

## S3 method for class 'formula’
ModelSpecification(formula, data, model, ...)

## S3 method for class 'matrix'
ModelSpecification(x, y, model, ...)

## S3 method for class 'ModelFrame’
ModelSpecification(input, model, ...)

## S3 method for class 'recipe'
ModelSpecification(input, model, ...)

Arguments

input

model

control

arguments passed from the generic function to its methods. The first argument
of each ModelSpecification method is positional and, as such, must be given
first in calls to them.

input object defining and containing the model predictor and response variables.

model function, function name, or object; or another object that can be coerced
to a model.

control function, function name, or object defining the resampling method to be
employed. If NULL or if the model specification contains any SelectedInput
or SelectedModel objects, then object-specific control structures and training
parameters are used for selection and tuning, as usual, and objects are trained
sequentially with nested resampling. Otherwise,

* tuning of input and model objects is performed simultaneously over a global
grid of their parameter values, and
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* the specified control method and training parameters below override those
of any included TunedInput or TunedModel.

metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Model selection is based on the first calculated metric.

cutoff argument passed to the metrics functions.

stat function or character string naming a function to compute a summary statistic
on resampled metric values for model tuning.

formula, data formula defining the model predictor and response variables and a data frame
containing them.

X,y matrix and object containing predictor and response variables.

Value

ModelSpecification class object.

See Also

fit, resample, set_monitor, set_optim

Examples

## Requires prior installation of suggested package gbm to run

modelspec <- ModelSpecification(

sale_amount ~ ., data = ICHomes, model = GBMModel
)
fit(modelspec)
NaiveBayesModel Naive Bayes Classifier Model
Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent
predictor variables using Bayes rule.

Usage

NaiveBayesModel (laplace = 0)

Arguments

laplace positive numeric controlling Laplace smoothing.
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Details

Response types: factor

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

naiveBayes, fit, resample

Examples

## Requires prior installation of suggested package €1071 to run

fit(Species ~ ., data = iris, model = NaiveBayesModel)
NNetModel Neural Network Model
Description

Fit single-hidden-layer neural network, possibly with skip-layer connections.

Usage

NNetModel (
size = 1,
linout = logical(),
entropy = logical(),
softmax = logical(),
censored = FALSE,

skip = FALSE,
rang = 0.7,
decay = 0,
maxit = 100,

trace = FALSE,
MaxNWts = 1000,
abstol = 1e-04,
reltol = 1e-08
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Arguments
size number of units in the hidden layer.
linout switch for linear output units. Set automatically according to the class type of
the response variable [numeric: TRUE, other: FALSE].
entropy switch for entropy (= maximum conditional likelihood) fitting.
softmax switch for softmax (log-linear model) and maximum conditional likelihood fit-
ting.
censored a variant on softmax, in which non-zero targets mean possible classes.
skip switch to add skip-layer connections from input to output.
rang Initial random weights on [-rang, rang].
decay parameter for weight decay.
maxit maximum number of iterations.
trace switch for tracing optimization.
MaxNWts maximum allowable number of weights.
abstol stop if the fit criterion falls below abstol, indicating an essentially perfect fit.
reltol stop if the optimizer is unable to reduce the fit criterion by a factor of at least 1
- reltol.
Details

Response types: factor, numeric
Automatic tuning of grid parameters: size, decay

Default argument values and further model details can be found in the source See Also link below.

Value

MLModel class object.

See Also

nnet, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = NNetModel)
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ParameterGrid Tuning Parameters Grid

Description

Defines a tuning grid from a set of parameters.

Usage

ParameterGrid(...)

## S3 method for class 'param'
ParameterGrid(..., size = 3, random = FALSE)

## S3 method for class 'list'
ParameterGrid(object, size = 3, random = FALSE, ...)

## S3 method for class 'parameters'
ParameterGrid(object, size = 3, random = FALSE, ...)

Arguments

named param objects as defined in the dials package.

size single integer or vector of integers whose positions or names match the given
parameters and which specify the number of values used to construct the grid.

random number of unique points to sample at random from the grid defined by size, or
FALSE for all points.

object list of named param objects or a parameters object. This is a positional argu-

ment that must be given first in calls to its methods.

Value

ParameterGrid class object that inherits from parameters and TuningGrid.

See Also
TunedModel

Examples

## GBMModel tuning parameters

grid <- ParameterGrid(
n.trees = dials::trees(),
interaction.depth = dials::tree_depth(),
random = 5

)
TunedModel (GBMModel, grid = grid)



76 ParsnipModel

ParsnipModel Parsnip Model

Description

Convert a model specification from the parsnip package to one that can be used with the Machi-
neShop package.

Usage
ParsnipModel (object, ...)
Arguments
object model specification from the parsnip package.
tuning parameters with which to update object.
Value

ParsnipModel class object that inherits from MLModel.

See Also

as.MLModel, fit, resample

Examples
## Requires prior installation of suggested package parsnip to run
prsp_model <- parsnip::linear_reg(engine = "glmnet")

model <- ParsnipModel(prsp_model, penalty = 1, mixture = 1)
model

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit)
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performance Model Performance Metrics

Description

Compute measures of model performance.

Usage

performance(x, ...)

## S3 method for class 'BinomialVariate'
performance(
X)
Y,
weights = NULL,
metrics = MachineShop::settings("metrics.numeric”),
na.rm = TRUE,

)

## S3 method for class 'factor'
performance(
X,
Y,
weights = NULL,
metrics = MachineShop: :settings("metrics.factor"”),
cutoff = MachineShop::settings("cutoff"),
na.rm = TRUE,

)

## S3 method for class 'matrix'
performance(
X,
Y,
weights = NULL,
metrics = MachineShop::settings("metrics.matrix"),
na.rm = TRUE,

)

## S3 method for class 'numeric'
performance(

X,

Y,

weights = NULL,
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performance
metrics = MachineShop::settings("metrics.numeric”),
na.rm = TRUE,
)
## S3 method for class 'Surv'
performance(
X)
Y,

weights = NULL,

metrics = MachineShop::settings("metrics.Surv"),
cutoff = MachineShop::settings("cutoff"),

na.rm = TRUE,

)

## S3 method for class 'ConfusionList'
performance(x, ...)

## S3 method for class 'ConfusionMatrix'
performance(x, metrics = MachineShop::settings("metrics.ConfusionMatrix”), ...)

## S3 method for class 'MLModel'
performance(x, ...)

## S3 method for class 'Resample’
performance(x, ...)

## S3 method for class 'TrainingStep'

performance(x, ...)
Arguments
X observed responses; or confusion, trained model fit, resample, or rfe result.

arguments passed from the Resample method to the response type-specific meth-
ods or from the method for ConfusionList to ConfusionMatrix. Elliptical ar-
guments in the response type-specific methods are passed to metrics supplied
as a single MLMetric function and are ignored otherwise.

y predicted responses if not contained in x.

weights numeric vector of non-negative case weights for the observed x responses [de-
fault: equal weights].

metrics metric function, function name, or vector of these with which to calculate per-
formance.

na.rm logical indicating whether to remove observed or predicted responses that are

NA when calculating metrics.

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as
events and below which survival probabilities are classified.
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See Also

plot, summary

Examples

## Requires prior installation of
res <- resample(Species ~ ., data
(perf <- performance(res))

summary (perf)
plot(perf)

## Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status)
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suggested package gbm to run

= iris, model = GBMModel)

~ ., data = veteran, model = GBMModel)

obs <- response(gbm_fit, newdata = veteran)
pred <- predict(gbm_fit, newdata = veteran)
performance(obs, pred)

performance_curve Model Performance Curves

Description

Calculate curves for the analysis of tradeoffs between metrics for assessing performance in clas-
sifying binary outcomes over the range of possible cutoff probabilities. Available curves include
receiver operating characteristic (ROC) and precision recall.

Usage

performance_curve(x, ...)

## Default S3 method:
performance_curve(

X)

Y,

weights = NULL,

metrics = c(MachineShop::tpr, MachineShop::fpr),

na.rm = TRUE,

## S3 method for class 'Resample'’

performance_curve(
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X ’
metrics = c(MachineShop::tpr, MachineShop::fpr),
na.rm = TRUE,
)
Arguments
X observed responses or resample result containing observed and predicted re-
sponses.
arguments passed to other methods.
y predicted responses if not contained in x.
weights numeric vector of non-negative case weights for the observed x responses [de-
fault: equal weights].
metrics list of two performance metrics for the analysis [default: ROC metrics]. Preci-
sion recall curves can be obtained with c(precision, recall).
na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.
Value

PerformanceCurve class object that inherits from data. frame.

See Also

auc, ¢, plot, summary

Examples
## Requires prior installation of suggested package gbm to run
data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = GBMModel)

## ROC curve

roc <- performance_curve(res)
plot(roc)

auc(roc)
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plot Model Performance Plots

Description

Plot measures of model performance and predictor variable importance.

Usage

## S3 method for class 'Calibration'
plot(x, type = c("line”, "point"), se = FALSE, ...)

## S3 method for class 'ConfusionList'
plot(x, ...)

## S3 method for class 'ConfusionMatrix'
plot(x, ...)

## S3 method for class 'LiftCurve'
plot(
X,
find = numeric(),
diagonal = TRUE,
stat = MachineShop::settings("stat.Curve”),

)

## S3 method for class 'MLModel’
plot(
X,
metrics = NULL,
stat = MachineShop::settings(”stat.TrainingParams”),
type = c("boxplot”, "density"”, "errorbar”, "line"”, "violin"),

)

## S3 method for class 'PartialDependence'’
plot(x, stats = NULL, ...)

## S3 method for class 'Performance'’
plot(
X,
metrics = NULL,
stat = MachineShop::settings("stat.Resample”),
type = c("boxplot”, "density", "errorbar”, "violin"),
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plot

## S3 method for class 'PerformanceCurve'

plot(
X7

type =

c("tradeoffs", "cutoffs"),

diagonal = FALSE,
stat = MachineShop: :settings("stat.Curve”),

## S3 method for class 'Resample’

plot(
X’

metrics

NULL,

stat = MachineShop::settings(”stat.Resample”),

type =

c("boxplot”, "density", "errorbar”, "violin"),

## S3 method for class 'TrainingStep'

plot(
X)

metrics

NULL,

stat = MachineShop::settings(”"stat.TrainingParams”),
type = c("boxplot”, "density"”, "errorbar”, "line"”, "violin"),

## S3 method for class 'VariableImportance'
plot(x, n = Inf, ...)

Arguments

X

type
se

find

diagonal
stat

metrics

calibration, confusion, lift, trained model fit, partial dependence, performance,
performance curve, resample, rfe, or variable importance result.

type of plot to construct.
logical indicating whether to include standard error bars.
arguments passed to other methods.

numeric true positive rate at which to display reference lines identifying the
corresponding rates of positive predictions.

logical indicating whether to include a diagonal reference line.

function or character string naming a function to compute a summary statistic on
resampled metrics for trained MLModel line plots and Resample model ordering.
The original ordering is preserved if a value of NULL is given. For LiftCurve
and PerformanceCurve classes, plots are of resampled metrics aggregated by
the statistic if given or of resample-specific metrics if NULL.

vector of numeric indexes or character names of performance metrics to plot.
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stats vector of numeric indexes or character names of partial dependence summary
statistics to plot.
n number of most important variables to include in the plot.
Examples

## Requires prior installation of suggested package gbm to run
## Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_fit <- fit(fo, data = iris, model = GBMModel, control = control)
plot(varimp(gbm_fit))

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 5@), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
plot(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
plot(res)

PLSModel Fartial Least Squares Model

Description

Function to perform partial least squares regression.

Usage

PLSModel (ncomp = 1, scale = FALSE)

Arguments
ncomp number of components to include in the model.
scale logical indicating whether to scale the predictors by the sample standard devia-
tion.
Details

Response types: factor, numeric
Automatic tuning of grid parameters: ncomp

Further model details can be found in the source link below.
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Value

MLModel class object.

See Also

mvr, fit, resample

Examples

## Requires prior installation of suggested package pls to run

fit(sale_amount ~ ., data = ICHomes, model = PLSModel)
POLRModel Ordered Logistic or Probit Regression Model
Description

Fit a logistic or probit regression model to an ordered factor response.

Usage
POLRModel (method = c("logistic”, "probit”, "loglog", "cloglog”, "cauchit"))

Arguments
method logistic or probit or (complementary) log-log or cauchit (corresponding to a
Cauchy latent variable).
Details

Response types: ordered

Further model details can be found in the source link below.

In calls to varimp for POLRModel, numeric argument base may be specified for the (negative) loga-
rithmic transformation of p-values [defaul: exp(1)]. Transformed p-values are automatically scaled
in the calculation of variable importance to range from O to 100. To obtain unscaled importance val-
ues, set scale = FALSE.

Value

MLModel class object.

See Also

polr, fit, resample
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Examples
data(Boston, package = "MASS")
df <- within(Boston,
medv <- cut(medv,
breaks = c(0, 10, 15, 20, 25, 50),
ordered = TRUE))
fit(medv ~ ., data = df, model = POLRModel)
predict Model Prediction
Description
Predict outcomes with a fitted model.
Usage
## S3 method for class 'MLModelFit'
predict(
object,
newdata = NULL,
times = numeric(),
type = c("response”, "raw", "numeric”, "prob"”, "default"),
cutoff = MachineShop: :settings("cutoff"),
distr = character(),
method = character(),
verbose = FALSE,
)
## S4 method for signature 'MLModelFit'
predict(object, ...)
Arguments
object model fit result.
newdata optional data frame with which to obtain predictions. If not specified, the train-
ing data will be used by default.
times numeric vector of follow-up times at which to predict survival events/probabilities
or NULL for predicted survival means.
type specifies prediction on the original outcome ("response”), numeric ("numeric"),

or probability ("prob") scale; or the "raw” predictions returned by the model.
Option "default” is deprecated and will be removed in the future; use "raw"
instead.
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cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as
events and below which survival probabilities are classified.

distr character string specifying distributional approximations to estimated survival
curves. Possible values are "empirical”, "exponential”, "rayleigh”, or
"weibull”; with defaults of "empirical” for predicted survival events/probabilities
and "weibull” for predicted survival means.

method character string specifying the empirical method of estimating baseline survival
curves for Cox proportional hazards-based models. Choices are "breslow” or
"efron” (default).

verbose logical indicating whether to display printed output generated by some model-
specific predict functions to aid in monitoring progress and diagnosing errors.

arguments passed from the S4 to the S3 method.

See Also

confusion, performance, metrics

Examples

## Requires prior installation of suggested package gbm to run

## Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
predict(gbm_fit, newdata = veteran, times = c(90, 180, 360), type = "prob")

print Print MachineShop Objects

Description

Print methods for objects defined in the MachineShop package.

Usage
## S3 method for class 'BinomialVariate'

print(x, n = MachineShop::settings("print_max"), ...)

## S3 method for class 'Calibration'
print(x, n = MachineShop::settings("print_max"), ...)

## S3 method for class 'DiscreteVariate’
print(x, n = MachineShop::settings("print_max"), ...)
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## S3 method for class 'ListOf'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'MLControl'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'MLMetric'
print(x, ...)

## S3 method for class 'MLModel’
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'MLModelFunction'
print(x, ...)

## S3 method for class 'ModelFrame’
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'ModelRecipe’
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'ModelSpecification'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'Performance'’
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'PerformanceCurve'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'RecipeGrid'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'Resample’
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'SurvMatrix'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'SurvTimes'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'TrainingStep'
print(x, n = MachineShop::settings("print_max"),

## S3 method for class 'VariableImportance'
print(x, n = MachineShop::settings("print_max"),

id

id

id

id

FALSE,

FALSE,

FALSE,

FALSE,

data

data

TRUE,

TRUE,
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.2

)
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Arguments
X object to print.
n integer number of models or data frame rows to show.
arguments passed to other methods, including the one described below.
level =0 current nesting level of the corresponding object in recursive calls to
print. The amount of information displayed decreases and increases with
positive and negative levels, respectively.
id logical indicating whether to show object identifiers.
data logical indicating whether to show model data.
QDAModel Quadratic Discriminant Analysis Model
Description

Performs quadratic discriminant analysis.

Usage
QDAModel (
prior = numeric(),
method = c("moment”, "mle"”, "mve”, "t"),
nu =25,
use = c("plug-in", "predictive"”, "debiased”, "looCV")
)
Arguments
prior prior probabilities of class membership if specified or the class proportions in
the training set otherwise.
method type of mean and variance estimator.
nu degrees of freedom for method = "t".
use type of parameter estimation to use for prediction.
Details

Response types: factor

The predict function for this model additionally accepts the following argument.
prior prior class membership probabilities for prediction data if different from the training set.

Default argument values and further model details can be found in the source See Also links below.

Value

MLModel class object.
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See Also

qda, predict.qda, fit, resample

Examples
fit(Species ~ ., data = iris, model = QDAModel)
quote Quote Operator
Description

Shorthand notation for the quote function. The quote operator simply returns its argument uneval-
uated and can be applied to any R expression.

Usage

. (expr)

Arguments

expr any syntactically valid R expression.

Details

Useful for calling model functions with quoted parameter values defined in terms of one or more of
the following variables.

nobs number of observations in data to be fit.
nvars number of predictor variables.

y the response variable.

Value

The quoted (unevaluated) expression.

See Also

quote

Examples

## Stepwise variable selection with BIC
glm_fit <- fit(sale_amount ~ ., ICHomes, GLMStepAICModel(k = .(log(nobs))))
varimp(glm_fit)
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RandomForestModel Random Forest Model

Description

Implementation of Breiman’s random forest algorithm (based on Breiman and Cutler’s original
Fortran code) for classification and regression.

Usage

RandomForestModel (
ntree = 500,
mtry = .(if (is.factor(y)) floor(sqgrt(nvars)) else max(floor(nvars/3), 1)),
replace = TRUE,
nodesize = .(if (is.factor(y)) 1 else 5),
maxnodes = integer()

)
Arguments
ntree number of trees to grow.
mtry number of variables randomly sampled as candidates at each split.
replace should sampling of cases be done with or without replacement?
nodesize minimum size of terminal nodes.
maxnodes maximum number of terminal nodes trees in the forest can have.
Details

Response types: factor, numeric
Automatic tuning of grid parameters: mtry, nodesize*

* excluded from grids by default
Default argument values and further model details can be found in the source See Also link below.

Value

MLModel class object.

See Also

randomForest, fit, resample

Examples

## Requires prior installation of suggested package randomForest to run

fit(sale_amount ~ ., data = ICHomes, model = RandomForestModel)



RangerModel 91

RangerModel Fast Random Forest Model

Description

Fast implementation of random forests or recursive partitioning.

Usage

RangerModel (
num. trees = 500,
mtry = integer(),
importance = c("impurity"”, "impurity_corrected”, "permutation”),
min.node.size = integer(),
replace = TRUE,
sample.fraction = if (replace) 1 else 0.632,
splitrule = character(),
num.random.splits = 1,
alpha = 0.5,
minprop = 0.1,
split.select.weights = numeric(),
always.split.variables = character(),
respect.unordered. factors = character(),
scale.permutation.importance = FALSE,
verbose = FALSE

)
Arguments
num. trees number of trees.
mtry number of variables to possibly split at in each node.
importance variable importance mode.

min.node.size minimum node size.

replace logical indicating whether to sample with replacement.
sample.fraction
fraction of observations to sample.
splitrule splitting rule.
num.random.splits

number of random splits to consider for each candidate splitting variable in the
"extratrees” rule.

alpha significance threshold to allow splitting in the "maxstat” rule.

minprop lower quantile of covariate distribution to be considered for splitting in the
"maxstat” rule.
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split.select.weights
numeric vector with weights between 0 and 1, representing the probability to
select variables for splitting.

always.split.variables
character vector with variable names to be always selected in addition to the
mtry variables tried for splitting.

respect.unordered. factors
handling of unordered factor covariates.

scale.permutation.importance
scale permutation importance by standard error.

verbose show computation status and estimated runtime.

Details

Response types: factor, numeric, Surv
Automatic tuning of grid parameters: mtry, min.node.size*, splitrule*
* excluded from grids by default

Default argument values and further model details can be found in the source See Also link below.

Value

MLModel class object.

See Also

ranger, fit, resample

Examples

## Requires prior installation of suggested package ranger to run

fit(Species ~ ., data = iris, model = RangerModel)
recipe_roles Set Recipe Roles
Description

Add to or replace the roles of variables in a preprocessing recipe.
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Usage
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role_binom(recipe, x, size)

role_case(recipe, group, stratum, weight, replace = FALSE)

role_pred(recipe, offset, replace = FALSE)

role_surv(recipe, time, event)

Arguments

recipe

X, size
group
stratum

weight
replace
offset

time, event

Value

existing recipe object.

number of counts and trials for the specification of a BinomialVariate out-
come.

variable defining groupings of case observations, such as repeated measure-
ments, to keep together during resampling [default: none].

variable to use in conducting stratified resample estimation of model perfor-
mance.

numeric variable of case weights for model fitting.
logical indicating whether to replace existing roles.

numeric variable to be added to a linear predictor, such as in a generalized linear
model, with known coefficient 1 rather than an estimated coefficient.

numeric follow up time and 0-1 numeric or logical event indicator for specifica-
tion of a Surv outcome. If the event indicator is omitted, all cases are assumed
to have events.

An updated recipe object.

See Also

recipe

Examples

library(survival)
library(recipes)

df <- within(vete
y <- Surv(time,

ran, {
status)

remove(time, status)

b

rec <- recipe(y ~

., data = df) %>%

role_case(stratum = y)

(res <- resample(
summary(res)

rec, model = CoxModel))
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resample Resample Estimation of Model Performance
Description
Estimation of the predictive performance of a model estimated and evaluated on training and test
samples generated from an observed data set.
Usage
resample(...)
## S3 method for class 'formula’
resample(formula, data, model, ...)
## S3 method for class 'matrix'
resample(x, y, model, ...)
## S3 method for class 'ModelFrame’
resample(input, model, ...)
## S3 method for class 'recipe’
resample(input, model, ...)
## S3 method for class 'ModelSpecification’
resample(object, control = MachineShop::settings("control”),
## S3 method for class 'MLModel’
resample(model, ...)
## S3 method for class 'MLModelFunction'
resample(model, ...)
Arguments

arguments passed from the generic function to its methods, from the MLModel
and MLModelFunction methods to first arguments of others, and from others to
the ModelSpecification method. The first argument of each fit method is

positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame

containing them.

model model function, function name, or object; or another object that can be coerced
to a model. A model can be given first followed by any of the variable specifi-
cations.

X,y matrix and object containing predictor and response variables.

input input object defining and containing the model predictor and response variables.
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object model input or specification.
control control function, function name, or object defining the resampling method to be
employed.
Details

Stratified resampling is performed automatically for the formula and matrix methods according
to the type of response variable. In general, strata are constructed from numeric proportions for
BinomialVariate; original values for character, factor, logical, and ordered; first columns
of values for matrix; original values for numeric; and numeric times within event statuses for Surv.
Numeric values are stratified into quantile bins and categorical values into factor levels defined by
MLControl.

Resampling stratification variables may be specified manually for ModelFrames upon creation with
the strata argument in their constructor. Resampling of this class is unstratified by default.

Stratification variables may be designated in recipe specifications with the role_case function.
Resampling will be unstratified otherwise.

Value

Resample class object.

See Also

c, metrics, performance, plot, summary

Examples

## Requires prior installation of suggested package gbm to run
## Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)

summary (gbm_res1)
plot(gbm_res1)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
plot(res)
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response
response Extract Response Variable
Description
Extract the response variable from an object.
Usage
response(object, ...)
## S3 method for class 'MLModelFit'
response(object, newdata = NULL, ...)
## S3 method for class 'ModelFrame’
response(object, newdata = NULL, ...)
## S3 method for class 'ModelSpecification'
response(object, newdata = NULL, ...)
## S3 method for class 'recipe'
response(object, newdata = NULL, ...)
Arguments
object model fit, input, or specification containing predictor and response variables.
arguments passed to other methods.
newdata data frame from which to extract the response variable values if given; other-

wise, object is used.

Examples

## Survival response example

library(survival)

mf <- ModelFrame(Surv(time, status) ~

response(mf)

., data =
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rfe Recursive Feature Elimination

Description

A wrapper method of backward feature selection in which a given model is fit to nested subsets of
most important predictor variables in order to select the subset whose resampled predictive perfor-
mance is optimal.

Usage
rfe(...)

## S3 method for class 'formula'
rfe(formula, data, model, ...)

## S3 method for class 'matrix'
rfe(x, y, model, ...)

## S3 method for class 'ModelFrame’
rfe(input, model, ...)

## S3 method for class 'recipe'
rfe(input, model, ...)

## S3 method for class 'ModelSpecification'
rfe(
object,
select = NULL,
control = MachineShop::settings(”control”),
props = 4,
sizes = integer(),
random = FALSE,
recompute = TRUE,
optimize = c("global”, "local"),
samples = c(rfe = 1, varimp = 1),
metrics = NULL,
stat = c(resample = MachineShop::settings(”stat.Resample”), permute =
MachineShop::settings("stat.TrainingParams”)),
progress = FALSE,

)

## S3 method for class 'MLModel'
rfe(model, ...)

## S3 method for class 'MLModelFunction'
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rfe(model,

Arguments

formula, data
model

X?y

input

object
select
control
props

sizes

random

recompute

optimize

samples

metrics

stat

progress

rfe

arguments passed from the generic function to its methods, from the MLModel
and MLModelFunction methods to first arguments of others, and from others to
the ModelSpecification method. The first argument of each fit method is
positional and, as such, must be given first in calls to them.

formula defining the model predictor and response variables and a data frame
containing them.

model function, function name, or object; or another object that can be coerced
to a model. A model can be given first followed by any of the variable specifi-
cations.

matrix and object containing predictor and response variables.
input object defining and containing the model predictor and response variables.
model input or specification.

expression indicating predictor variables that can be eliminated (see subset for
syntax) [default: all].

control function, function name, or object defining the resampling method to be
employed.

numeric vector of the proportions of most important predictor variables to retain
in fitted models or an integer number of equal spaced proportions to generate
automatically; ignored if sizes are given.

integer vector of the set sizes of most important predictor variables to retain.

logical indicating whether to eliminate variables at random with probabilities
proportional to their importance.

logical indicating whether to recompute variable importance after eliminating
each set of variables.

character string specifying a search through all props to identify the globally
optimal model ("global") or a search that stops after identifying the first locally
optimal model ("local").

numeric vector or list giving the number of permutation samples for each of
the rfe and varimp algorithms. One or both of the values may be specified as
named arguments or in the order in which their defaults appear. Larger numbers
of samples decrease variability in estimated model performances and variable
importances at the expense of increased computation time. Samples are more
expensive computationally for rfe than for varimp.

metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used.

functions or character strings naming functions to compute summary statistics
on resampled metric values and permuted samples. One or both of the values
may be specified as named arguments or in the order in which their defaults
appear.

logical indicating whether to display iterative progress during elimination.



RFSRCModel 99

Value

TrainingStep class object containing a summary of the numbers of predictor variables retained
(size), their names (terms), logical indicators for the optimal model selected (selected), and associ-
ated performance metrics (metrics).

See Also

performance, plot, summary, varimp

Examples

## Requires prior installation of suggested package gbm to run

(res <- rfe(sale_amount ~ ., data = ICHomes, model = GBMModel))
summary(res)

summary (performance(res))

plot(res, type = "line")

RFSRCModel Fast Random Forest (SRC) Model

Description

Fast OpenMP computing of Breiman’s random forest for a variety of data settings including right-
censored survival, regression, and classification.

Usage

RFSRCModel(
ntree = 1000,
mtry = integer(),
nodesize = integer(),
nodedepth = integer(),
splitrule = character(),
nsplit = 10,
block.size = integer(),
samptype = c("swor”, "swr"),
membership = FALSE,
sampsize = if (samptype == "swor") function(x) 0.632 * x else function(x) x,
nimpute = 1,
ntime = integer(),
proximity = c(FALSE, TRUE, "inbag", "oob", "all"),
distance = c(FALSE, TRUE, "inbag"”, "oob"”, "all"),
forest.wt = c(FALSE, TRUE, "inbag", "oob", "all"),
xvar.wt = numeric(),



100

split.wt
var.used

RFSRCModel

numeric(),
c(FALSE, "all.trees", "by.tree"),

split.depth = c(FALSE, "all.trees"”, "by.tree"),
do.trace = FALSE,

statistic

S

FALSE

RFSRCFastModel (

ntree
sampsize
ntime

Arguments

ntree
mtry
nodesize
nodedepth
splitrule
nsplit

block.size
samptype
membership
sampsize
nimpute

ntime

proximity

distance

forest.wt

xvar.wt

split.wt

var.used

split.depth

50,
terminal.qualts

500,

function(x) min(0.632 * x, max(x*@.75, 150)),

FALSE,

number of trees.

number of variables randomly selected as candidates for splitting a node.
minumum size of terminal nodes.

maximum depth to which a tree should be grown.

splitting rule (see rfsrc).

non-negative integer value for number of random splits to consider for each
candidate splitting variable.

interval number of trees at which to compute the cumulative error rate.
whether bootstrap sampling is with or without replacement.

logical indicating whether to return terminal node membership.
function specifying the bootstrap size.

number of iterations of the missing data imputation algorithm.

integer number of time points to constrain ensemble calculations for survival
outcomes.

whether and how to return proximity of cases as measured by the frequency of
sharing the same terminal nodes.

whether and how to return distance between cases as measured by the ratio of
the sum of edges from each case to the root node.

whether and how to return the forest weight matrix.

vector of non-negative weights representing the probability of selecting a vari-
able for splitting.

vector of non-negative weights used for multiplying the split statistic for a vari-
able.

whether and how to return variables used for splitting.

whether and how to return minimal depth for each variable.



RPartModel 101

do.trace number of seconds between updates to the user on approximate time to comple-
tion.
statistics logical indicating whether to return split statistics.

terminal.qualts
logical indicating whether to return terminal node membership information.

arguments passed to RFSRCModel.

Details

Response types: factor, matrix, numeric, Surv
Automatic tuning of grid parameters: mtry, nodesize
Default argument values and further model details can be found in the source See Also links below.

In calls to varimp for RFSRCModel, argument type may be specified as "anti” (default) for cases
assigned to the split opposite of the random assignments, as "permute” for permutation of OOB
cases, or as "random” for permutation replaced with random assignment. Variable importance is
automatically scaled to range from O to 100. To obtain unscaled importance values, set scale =
FALSE. See example below.

Value

MLModel class object.

See Also

rfsrc, rfsrc.fast, fit, resample

Examples
## Requires prior installation of suggested package randomForestSRC to run

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = RFSRCModel)
varimp(model_fit, method = "model”, type = "random”, scale = TRUE)

RPartModel Recursive Partitioning and Regression Tree Models

Description

Fit an rpart model.
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Usage

RPartModel (
minsplit = 20,
minbucket = round(minsplit/3),

cp = 0.01,
maxcompete = 4,
maxsurrogate = 5,
usesurrogate = 2,
xval = 10,

surrogatestyle = 0,
maxdepth = 30

)
Arguments
minsplit minimum number of observations that must exist in a node in order for a split to
be attempted.
minbucket minimum number of observations in any terminal node.
cp complexity parameter.
maxcompete number of competitor splits retained in the output.

maxsurrogate number of surrogate splits retained in the output.
usesurrogate how to use surrogates in the splitting process.
xval number of cross-validations.

surrogatestyle controls the selection of a best surrogate.

maxdepth maximum depth of any node of the final tree, with the root node counted as
depth 0.

Details

Response types: factor, numeric, Surv
Automatic tuning of grid parameter: cp

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

rpart, fit, resample

Examples

## Requires prior installation of suggested packages rpart and partykit to run

fit(Species ~ ., data = iris, model = RPartModel)
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SelectedInput Selected Model Inputs

Description

Formula, design matrix, model frame, or recipe selection from a candidate set.

Usage

SelectedInput(...)

## S3 method for class 'formula’
SelectedInput(

data,

control = MachineShop::settings(”control”),

metrics = NULL,

cutoff = MachineShop: :settings("cutoff"),

stat = MachineShop::settings(”stat.TrainingParams”)

)

## S3 method for class 'matrix'
SelectedInput(
Y,
control = MachineShop::settings(”control”),
metrics = NULL,
cutoff = MachineShop: :settings("cutoff"),
stat = MachineShop::settings(”"stat.TrainingParams")

)

## S3 method for class 'ModelFrame'’
SelectedInput(
control = MachineShop::settings(”control”),
metrics = NULL,
cutoff = MachineShop: :settings("cutoff"),
stat = MachineShop::settings(”stat.TrainingParams”)

)

## S3 method for class 'recipe'
SelectedInput(
control = MachineShop::settings(”control”),
metrics = NULL,
cutoff = MachineShop: :settings("cutoff"),
stat = MachineShop::settings(”stat.TrainingParams”)
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## S3 method for class 'ModelSpecification’
SelectedInput(

control = MachineShop::settings(”control”),

metrics = NULL,

cutoff = MachineShop::settings("cutoff"),

stat = MachineShop::settings(”stat.TrainingParams”)

)

## S3 method for class 'list'

SelectedInput(x, ...)
Arguments

inputs defining relationships between model predictor and response variables.
Supplied inputs must all be of the same type and may be named or unnamed.

data data frame containing predictor and response variables.

control control function, function name, or object defining the resampling method to be
employed.

metrics metric function, function name, or vector of these with which to calculate per-

formance. If not specified, default metrics defined in the performance functions
are used. Recipe selection is based on the first calculated metric.

cutoff argument passed to the metrics functions.

stat function or character string naming a function to compute a summary statistic
on resampled metric values for recipe selection.

y response variable.

list of inputs followed by arguments passed to their method function.

Value

SelectedModelFrame, SelectedModelRecipe, or SelectedModelSpecification class object that
inherits from SelectedInput and ModelFrame, recipe, or ModelSpecification, respectively.

See Also

fit, resample

Examples

## Selected model frame

sel_mf <- SelectedInput(
sale_amount ~ sale_year + built + style + construction,
sale_amount ~ sale_year + base_size + bedrooms + basement,
data = ICHomes
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fit(sel_mf, model = GLMModel)

## Selected recipe
library(recipes)
data(Boston, package = "MASS")

recl <- recipe(medv ~ crim + zn + indus + chas + nox + rm, data = Boston)
rec2 <- recipe(medv ~ chas + nox + rm + age + dis + rad + tax, data = Boston)

sel_rec <- SelectedInput(recl, rec2)

fit(sel_rec, model = GLMModel)

SelectedModel Selected Model

Description

Model selection from a candidate set.

Usage

SelectedModel(...)

## Default S3 method:
SelectedModel (
control = MachineShop::settings(”control”),
metrics = NULL,
cutoff = MachineShop: :settings("cutoff"),
stat = MachineShop::settings(”stat.TrainingParams")

## S3 method for class 'ModelSpecification'
SelectedModel(

control = MachineShop::settings(”"control”),

metrics = NULL,

cutoff = MachineShop: :settings("cutoff"),

stat = MachineShop::settings(”stat.TrainingParams”)

## S3 method for class 'list'
SelectedModel(x, ...)
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Arguments
model functions, function names, objects; other objects that can be coerced to
models; vectors of these to serve as the candidate set from which to select, such
as that returned by expand_model; or model specifications.
control control function, function name, or object defining the resampling method to be
employed.
metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Model selection is based on the first calculated metric.
cutoff argument passed to the metrics functions.
stat function or character string naming a function to compute a summary statistic
on resampled metric values for model selection.
X list of models followed by arguments passed to their method function.
Details

Response types: factor, numeric, ordered, Surv

Value

SelectedModel or SelectedModelSpecification class object that inherits from MLModel or ModelSpecification,
respectively.

See Also

fit, resample

Examples
## Requires prior installation of suggested package gbm and glmnet to run

model _fit <- fit(
sale_amount ~ ., data = ICHomes,
model = SelectedModel (GBMModel, GLMNetModel, SVMRadialModel)
)
(selected_model <- as.MLModel(model_fit))
summary (selected_model)
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settings MachineShop Settings

Description
Allow the user to view or change global settings which affect default behaviors of functions in the
MachineShop package.

Usage

settings(...)

Arguments
character names of settings to view, name = value pairs giving the values of
settings to change, a vector of these, "reset” to restore all package defaults, or
no arguments to view all settings. Partial matching of setting names is supported.
Value

The setting value if only one is specified to view. Otherwise, a list of the values of specified settings
as they existed prior to any requested changes. Such a list can be passed as an argument to settings
to restore their values.

Settings

control function, function name, or object defining a default resampling method [default: "CVControl™].

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as events
and below which survival probabilities are classified [default: 0.5].

distr.SurvMeans character string specifying distributional approximations to estimated survival
curves for predicting survival means. Choices are "empirical” for the Kaplan-Meier estima-
tor, "exponential”, "rayleigh”, or "weibull” (default).

distr.SurvProbs character string specifying distributional approximations to estimated survival
curves for predicting survival events/probabilities. Choices are "empirical” (default) for the
Kaplan-Meier estimator, "exponential”, "rayleigh”, or "weibull”.

grid size argument to TuningGrid indicating the number of parameter-specific values to generate
automatically for tuning of models that have pre-defined grids or a TuningGrid function,
function name, or object [default: 3].

method.EmpiricalSurv character string specifying the empirical method of estimating baseline
survival curves for Cox proportional hazards-based models. Choices are "breslow” or "efron”
(default).

metrics.ConfusionMatrix function, function name, or vector of these with which to calculate
performance metrics for confusion matrices [default: c(Accuracy = "accuracy”, Kappa =
"kappa2"”, “Weighted Kappa™ = "weighted_kappa2"”, Sensitivity = "sensitivity", Specificity
="specificity")].
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metrics.factor function, function name, or vector of these with which to calculate performance

metrics for factor responses [default: c(Brier = "brier”, Accuracy = "accuracy”, Kappa
"kappa2"”, “Weighted Kappa™ = "weighted_kappa2"”, "ROC AUC™ = "roc_auc”, Sensitivity
"sensitivity”, Specificity = "specificity")].

metrics.matrix function, function name, or vector of these with which to calculate performance
metrics for matrix responses [default: c(RMSE = "rmse”, R2 = "r2", MAE = "mae")].

metrics.numeric function, function name, or vector of these with which to calculate performance
metrics for numeric responses [default: c(RMSE = "rmse"”, R2 = "r2", MAE = "mae")].

metrics.Surv function, function name, or vector of these with which to calculate performance
metrics for survival responses [default: c(*C-Index” = "cindex"”, Brier = "brier”, “ROC
AUC™ ="roc_auc", Accuracy = "accuracy")].

print_max number of models or data rows to show with print methods or Inf to show all [default:
10].

require names of installed packages to load during parallel execution of resampling algorithms
[default: "MachineShop"].

reset character names of settings to reset to their default values.

RHS.formula non-modifiable character vector of operators and functions allowed in traditional
formula specifications.

stat.Curve function or character string naming a function to compute one summary statistic at
each cutoff value of resampled metrics in performance curves, or NULL for resample-specific
metrics [default: "base: :mean”].

stat.Resample function or character string naming a function to compute one summary statistic
to control the ordering of models in plots [default: "base: :mean”].

stat.TrainingParams function or character string naming a function to compute one summary
statistic on resampled performance metrics for input selection or tuning or for model selection
or tuning [default: "base: :mean”].

stats.PartialDependence function, function name, or vector of these with which to compute
partial dependence summary statistics [default: c(Mean = "base: :mean")].

stats.Resample function, function name, or vector of these with which to compute summary
statistics on resampled performance metrics [default: c(Mean = "base: :mean”, Median = "stats: :median”,
SD = "stats::sd"”, Min = "base::min", Max = "base: :max")].

Examples

## View all current settings
settings()

## Change settings
presets <- settings(control = "BootControl”, grid = 10)

## View one setting
settings("control”)

## View multiple settings
settings("control”, "grid")



set_monitor 109

## Restore the previous settings
settings(presets)

set_monitor Training Parameters Monitoring Control

Description

Set parameters that control the monitoring of resample estimation of model performance and of
tuning parameter optimization.

Usage
set_monitor(object, ...)

## S3 method for class 'MLControl'’
set_monitor(object, progress = TRUE, verbose = FALSE, ...)

## S3 method for class 'MLOptimization'
set_monitor(object, progress = FALSE, verbose = FALSE, ...)

## S3 method for class 'ModelSpecification'

set_monitor(object, which = c(”all”, "control”, "optim"), ...)
Arguments
object resampling control, tuning parameter optimization, or model specification ob-
ject.

arguments passed from the ModelSpecification method to the others.

progress logical indicating whether to display iterative progress during resampling or op-
timization. In the case of resampling, a progress bar will be displayed if a com-
puting cluster is not registered or is registered with the doSNOW package.

verbose numeric or logical value specifying the level of progress detail to print, with 0
(FALSE) indicating none and 1 (TRUE) or higher indicating increasing amounts
of detail.

which character string specifying the monitoring parameters to set as "all”, "control”,

or optimization ("optim").

Value

Argument object updated with the supplied parameters.

See Also

resample, set_optim, set_predict, set_strata
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Examples

CVControl() %>% set_monitor(verbose = TRUE)

set_optim

set_optim Tuning Parameter Optimization

Description

Set the optimization method and control parameters for tuning of model parameters.

Usage

set_optim_bayes(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bayes(

object,

num_init = 5,

times = 10,

each = 1,

acquisition = c("uch”, "ei"”, "eips"”, "poi"),
kappa = stats::gnorm(conf),

conf = 0.995,

epsilon = 0,

control = list(),

packages = c("ParBayesianOptimization”, "rBayesianOptimization"),
random = FALSE,

progress = verbose,

verbose = 0,

set_optim_bfgs(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bfgs(

object,

times = 10,

control = list(),

random = FALSE,

progress = FALSE,

verbose = 0,

set_optim_grid(object, ...)
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## S3 method for class
set_optim_grid(object,

## S3 method for class
set_optim_grid(object,

## S3 method for class
set_optim_grid(object,

## S3 method for class
set_optim_grid(object,

set_optim_pso(object,

## S3 method for class
set_optim_pso(
object,
times = 10,
each = NULL,
control = list(),
random = FALSE,
progress = FALSE,
verbose = 0,

)

set_optim_sann(object,

## S3 method for class
set_optim_sann(
object,
times = 10,
control = 1list(),
random = FALSE,
progress = FALSE,
verbose = 0,

)

'TrainingParams'
random = FALSE, progress = FALSE,

'ModelSpecification'’

.2

'TunedInput'
L)

'"TunedModel"'
L)

)

'ModelSpecification'

.2

'ModelSpecification'’

set_optim_method(object, ...)

## S3 method for class
set_optim_method(
object,
fun,

'ModelSpecification’

label = "Optimization Function”,
packages = character(),

)
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params = list(),
random = FALSE,

progress = FALSE,
verbose = FALSE,

Arguments

object input or model object.

arguments passed to the TrainingParams method of set_optim_grid from its
other methods.

num_init number of grid points to sample for the initialization of Bayesian optimization.

times maximum number of times to repeat the optimization step. Multiple sets of
model parameters are evaluated automatically at each step of the BFGS algo-
rithm to compute a finite-difference approximation to the gradient.

each number of times to sample and evaluate model parameters at each optimization
step. This is the swarm size in particle swarm optimization, which defaults to
floor (10 + 2 x sqrt(length(bounds))).

acquisition character string specifying the acquisition function as "ucb” (upper confidence
bound), "ei” (expected improvement), "eips” (expected improvement per sec-
ond), or "poi” (probability of improvement).

kappa, conf upper confidence bound ("ucb") quantile or its probability to balance exploita-
tion against exploration. Argument kappa takes precedence if both are given
and multiplies the predictive standard deviation added to the predictive mean
in the acquisition function. Larger values encourage exploration of the model
parameter space.

epsilon improvement methods ("ei”, "eips”, and "poi") parameter to balance ex-
ploitation against exploration. Values should be between -0.1 and 0.1 with larger
ones encouraging exploration.

control list of control parameters passed to bayesOpt by set_optim_bayes with pack-
age "ParBayesianOptimization”, toBayesianOptimizationby set_optim_bayes
with package "rBayesianOptimization”, to optim by set_optim_bfgs and
set_optim_sann, and to psoptim by set_optim_pso.

packages R package or packages to use for the optimization method, or an empty vec-
tor if none are needed. The first package in set_optim_bayes is used unless
otherwise specified by the user.

random number of points to sample for a random grid search, or FALSE for an exhaustive
grid search. Used when a grid search is specified or as the fallback method for
non-numeric model parameters present during other optimization methods.

progress logical indicating whether to display iterative progress during optimization.

verbose numeric or logical value specifying the level of progress detail to print, with 0
(FALSE) indicating none and 1 (TRUE) or higher indicating increasing amounts
of detail.
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fun user-defined optimization function to which the arguments below are passed in
order. An ellipsis can be included in the function definition when using only
a subset of the arguments and ignoring others. A tibble returned by the func-
tion with the same number of rows as model evaluations will be included in
a TrainingStep summary of optimization results; other types of return values
will be ignored.

optim function that takes a numeric vector or list of named model parameters
as the first argument, optionally accepts the maximum number of iterations
as argument max_iter, and returns a scalar measure of performance to be
maximized. Parameter names are available from the grid and bounds ar-
guments described below. If the function cannot be evaluated at a given set
of parameter values, then -Inf is returned.

grid data frame containing a tuning grid of all model parameters.

bounds named list of lower and upper bounds for each finite numeric model
parameter in grid. The types (integer or double) of the original parameter
values are preserved in the bounds.

params list of optimization parameters as supplied to set_optim_method.
monitor list of the progress and verbose values.

label character descriptor for the optimization method.
params list of user-specified model parameters to be passed to fun.
Details

The optimization functions implement the following methods.

set_optim_bayes Bayesian optimization with a Gaussian process model (Snoek et al. 2012).

set_optim_bfgs limited-memory modification of quasi-Newton BFGS optimization (Byrd et al.
1995).

set_optim_grid exhaustive or random grid search.

set_optim_pso particle swarm optimization (Bratton and Kennedy 2007, Zambrano-Bigiarini et
al. 2013).

set_optim_sann simulated annealing (Belisle 1992). This method depends critically on the con-
trol parameter settings. It is not a general-purpose method but can be very useful in getting to
good parameter values on a very rough optimization surface.

set_optim_method user-defined optimization function.

The package-defined optimization functions evaluate and return values of the tuning parameters
that are of same type (e.g. integer, double, character) as given in the object grid. Sequential
optimization of numeric tuning parameters is performed over a hypercube defined by their minimum
and maximum grid values. Non-numeric parameters are optimized with grid searches.

Value

Argument object updated with the specified optimization method and control parameters.
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References
Belisle, C. J. P. (1992). Convergence theorems for a class of simulated annealing algorithms on Rd.
Journal of Applied Probability, 29, 885-895.

Bratton, D. & Kennedy, J. (2007), Defining a standard for particle swarm optimization. In /EEE
Swarm Intelligence Symposium, 2007 (pp. 120-127).

Byrd, R. H., Lu, P, Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing, 16, 1190-1208.

Snoek, J., Larochelle, H., & Adams, R.P. (2012). Practical Bayesian Optimization of Machine
Learning Algorithms. arXiv:1206.2944 [stat. ML].

Zambrano-Bigiarini, M., Clerc, M., & Rojas, R. (2013). Standard particle swarm optimisation
2011 at CEC-2013: A baseline for future PSO improvements. In IEEE Congress on Evolutionary
Computation, 2013 (pp. 2337-2344).

See Also

BayesianOptimization, bayesOpt, optim, psoptim, set_monitor, set_predict, set_strata

Examples
ModelSpecification(
sale_amount ~ ., data = ICHomes,
model = TunedModel (GBMModel)
) %>% set_optim_bayes(package = "rBayesianOptimization")
set_predict Resampling Prediction Control
Description

Set parameters that control prediction during resample estimation of model performance.

Usage

set_predict(
object,
times = numeric(),
distr = character(),
method = character(),

Arguments

object control object.
times, distr, method
arguments passed to predict.

arguments passed to other methods.
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Value

Argument object updated with the supplied parameters.

See Also

resample, set_monitor, set_optim, set_strata

Examples

CVControl() %>% set_predict(times = 1:3)

set_strata Resampling Stratification Control

Description

Set parameters that control the construction of strata during resample estimation of model perfor-

mance.
Usage
set_strata(object, breaks = 4, nunique = 5, prop = 0.1, size = 20, ...)
Arguments
object control object.
breaks number of quantile bins desired for stratification of numeric data during resam-
pling.
nunique number of unique values at or below which numeric data are stratified as cate-
gorical.
prop minimum proportion of data in each strata.
size minimum number of values in each strata.
arguments passed to other methods.
Details

The arguments control resampling strata which are constructed from numeric proportions for BinomialVariate;
original values for character, factor, logical, numeric, and ordered; first columns of values

for matrix; and numeric times within event statuses for Surv. Stratification of survival data by

event status only can be achieved by setting breaks = 1. Numeric values are stratified into quantile

bins and categorical values into factor levels. The number of bins will be the largest integer less than

or equal to breaks satisfying the prop and size control argument thresholds. Categorical levels

below the thresholds will be pooled iteratively by reassigning values in the smallest nominal level

to the remaining ones at random and by combining the smallest adjacent ordinal levels. Missing

values are replaced with non-missing values sampled at random with replacement.
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Value

Argument object updated with the supplied parameters.

See Also

resample, set_monitor, set_optim, set_predict

Examples

CVControl() %>% set_strata(breaks = 3)

StackedModel Stacked Regression Model

Description

Fit a stacked regression model from multiple base learners.

Usage
StackedModel (

control = MachineShop::settings(”control”),
weights = numeric()

)
Arguments
model functions, function names, objects; other objects that can be coerced to
models; or vector of these to serve as base learners.
control control function, function name, or object defining the resampling method to be
employed for the estimation of base learner weights.
weights optional fixed base learner weights.
Details

Response types: factor, numeric, ordered, Surv

Value

StackedModel class object that inherits from MLModel.

References

Breiman, L. (1996). Stacked regression. Machine Learning, 24, 49-64.
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See Also

fit, resample

Examples

## Requires prior installation of suggested packages gbm and glmnet to run

model <- StackedModel (GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)

step_kmeans K-Means Clustering Variable Reduction

Description

Creates a specification of a recipe step that will convert numeric variables into one or more by
averaging within k-means clusters.

Usage
step_kmeans(
recipe,
k =5,
center = TRUE,
scale = TRUE,

algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
max_iter = 10,

num_start = 1,

replace = TRUE,

prefix = "KMeans"”,

role = "predictor”,

skip = FALSE,

id = recipes::rand_id("kmeans")

## S3 method for class 'step_kmeans'
tidy(x, ...)

## S3 method for class 'step_kmeans'
tunable(x, ...)
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Arguments

recipe

center, scale

algorithm
max_iter

num_start

replace

prefix

role

skip

id

Details

step_kmeans

recipe object to which the step will be added.

one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

number of k-means clusterings of the variables. The value of k is constrained to
be between 1 and one less than the number of original variables.

logicals indicating whether to mean center and standard deviation scale the orig-
inal variables prior to deriving components, or functions or names of functions
for the centering and scaling.

character string specifying the clustering algorithm to use.
maximum number of algorithm iterations allowed.

number of random cluster centers generated for starting the Hartigan-Wong al-
gorithm.

logical indicating whether to replace the original variables.

character string prefix added to a sequence of zero-padded integers to generate
names for the resulting new variables.

analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

unique character string to identify the step.

step_kmeans object.

K-means clustering partitions variables into k groups such that the sum of squares between the
variables and their assigned cluster means is minimized. Variables within each cluster are then
averaged to derive a new set of k variables.

Value

Function step_kmeans creates a new step whose class is of the same name and inherits from
step_lincomp, adds it to the sequence of existing steps (if any) in the recipe, and returns the
updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected),
cluster assignments, sqdist (squared distance from cluster centers), and name of the new variable

names.

References

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics, 21, 768-769.
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Hartigan, J. A., & Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics, 28,

100-108.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory,

28(2), 129-137.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In
L. M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley Symposium on Mathematical

Statistics and Probability (vol. 1, pp. 281-297). University of California Press.

See Also

kmeans, recipe, prep, bake

Examples
library(recipes)
rec <- recipe(rating ~ ., data = attitude)

kmeans_rec <- rec %>%
step_kmeans(all_predictors(), k = 3)

kmeans_prep <- prep(kmeans_rec, training = attitude)
kmeans_data <- bake(kmeans_prep, attitude)

pairs(kmeans_data, lower.panel = NULL)

tidy(kmeans_rec, number = 1)
tidy(kmeans_prep, number = 1)

step_kmedoids K-Medoids Clustering Variable Selection

Description

Creates a specification of a recipe step that will partition numeric variables according to k-medoids

clustering and select the cluster medoids.

Usage
step_kmedoids(
recipe,
k =5,
center = TRUE,
scale = TRUE,
method = c("pam”, "clara”),
metric = "euclidean”,

optimize = FALSE,
num_samp = 50,
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samp_size =

step_kmedoids

40 + 2 * Kk,
replace = TRUE,
prefix = "KMedoids"”,

role = "predictor”,
skip = FALSE,
id = recipes::rand_id("kmedoids")
)
## S3 method for class 'step_kmedoids'
tunable(x, ...)
Arguments
recipe recipe object to which the step will be added.
one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.
k number of k-medoids clusterings of the variables. The value of k is constrained

center, scale

method

metric

optimize

num_samp
samp_size
replace
prefix

role

skip

id

to be between 1 and one less than the number of original variables.

logicals indicating whether to mean center and median absolute deviation scale
the original variables prior to cluster partitioning, or functions or names of func-
tions for the centering and scaling; not applied to selected variables.

character string specifying one of the clustering methods provided by the cluster
package. The clara (clustering large applications) method is an extension of
pam (partitioning around medoids) designed to handle large datasets.

character string specifying the distance metric for calculating dissimilarities
between observations as "euclidean”, "manhattan”, or "jaccard” (clara
only).

logical indicator or 0:5 integer level specifying optimization for the pam cluster-
ing method.

number of sub-datasets to sample for the clara clustering method.
number of cases to include in each sub-dataset.
logical indicating whether to replace the original variables.

if the original variables are not replaced, the selected variables are added to
the dataset with the character string prefix added to their names; otherwise, the
original variable names are retained.

analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

unique character string to identify the step.

step_kmedoids object.
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Details

K-medoids clustering partitions variables into k groups such that the dissimilarity between the vari-
ables and their assigned cluster medoids is minimized. Cluster medoids are then returned as a set
of k variables.

Value

Function step_kmedoids creates a new step whose class is of the same name and inherits from
step_sbf, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated
recipe. For the tidy method, a tibble with columns terms (selectors or variables selected), cluster
assignments, selected (logical indicator of selected cluster medoids), silhouette (silhouette val-
ues), and name of the selected variable names.

References

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analy-
sis. Wiley.

Reynolds, A., Richards, G., de la Iglesia, B., & Rayward-Smith, V. (1992). Clustering rules: A com-
parison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling
and Algorithms, 5, 475-504.

See Also

pam, clara, recipe, prep, bake

Examples
## Requires prior installation of suggested package cluster to run
library(recipes)
rec <- recipe(rating ~ ., data = attitude)
kmedoids_rec <- rec %>%
step_kmedoids(all_predictors(), k = 3)
kmedoids_prep <- prep(kmedoids_rec, training = attitude)
kmedoids_data <- bake(kmedoids_prep, attitude)

pairs(kmedoids_data, lower.panel = NULL)

tidy(kmedoids_rec, number = 1)
tidy(kmedoids_prep, number = 1)
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step_lincomp

step_lincomp

Linear Components Variable Reduction

Description

Creates a specification of a recipe step that will compute one or more linear combinations of a set
of numeric variables according to a user-specified transformation matrix.

Usage

step_lincomp(

recipe,

L

transform,
num_comp = 5,
options = list(),
center = TRUE,

scale = TRUE,
replace = TRUE,
prefix = "LinComp”,
role = "predictor”,
skip = FALSE,

id = recipes::rand_id("lincomp")

## S3 method for class 'step_lincomp'

tidy(x,

## S3 method for class 'step_lincomp'

tunable(x,

Arguments

recipe

transform

num_comp

recipe object to which the step will be added.

one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

function whose first argument x is a matrix of variables with which to compute
linear combinations and second argument step is the current step. The func-
tion should return a transformation matrix or Matrix of variable weights in its
columns, or return a list with element ~weights™ containing the transformation
matrix and possibly with other elements to be included as attributes in output
from the tidy method.

number of components to derive. The value of num_comp will be constrained to
a minimum of 1 and maximum of the number of original variables when prep
is run.
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options
center, scale
replace
prefix

role

skip

id

Value
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list of elements to be added to the step object for use in the transform function.

logicals indicating whether to mean center and standard deviation scale the orig-
inal variables prior to deriving components, or functions or names of functions
for the centering and scaling.

logical indicating whether to replace the original variables.

character string prefix added to a sequence of zero-padded integers to generate
names for the resulting new variables.

analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

unique character string to identify the step.

step_lincomp object.

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (selectors or variables selected), weight of each
variable in the linear transformations, and name of the new variable names.

See Also

recipe, prep, bake

Examples

library(recipes)

pca_mat <- function(x, step) {
prcomp(x)$rotation[, 1:step$num_comp, drop = FALSE]

}

rec <- recipe(rating ~ ., data = attitude)
lincomp_rec <- rec %>%
step_lincomp(all_numeric_predictors(),

transform = pca_mat, num_comp = 3, prefix = "PCA")

lincomp_prep <- prep(lincomp_rec, training = attitude)
lincomp_data <- bake(lincomp_prep, attitude)

pairs(lincomp_data, lower.panel = NULL)

tidy(lincomp_rec, number = 1)
tidy(lincomp_prep, number = 1)
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step_sbf

step_sbf

Variable Selection by Filtering

Description

Creates a specification of a recipe step that will select variables from a candidate set according to a
user-specified filtering function.

Usage
step_sbf(
recipe,
filter,
multivariate

= FALSE,

options = list(),
replace = TRUE,
prefix = "SBF",
role = "predictor”,

skip = FALSE,
id = recipes:

srand_id("sbf")

## S3 method for class 'step_sbf"

tidy(x, ...)

Arguments

recipe

filter

multivariate

options

replace

recipe object to which the step will be added.

one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

function whose first argument x is a univariate vector or a multivariate data
frame of candidate variables from which to select, second argument y is the
response variable as defined in preceding recipe steps, and third argument step
is the current step. The function should return a logical value or vector of length
equal the number of variables in x indicating whether to select the corresponding
variable, or return a list or data frame with element ~selected™ containing the
logical(s) and possibly with other elements of the same length to be included in
output from the tidy method.

logical indicating that candidate variables be passed to the x argument of the
filter function separately as univariate vectors if FALSE, or altogether in one
multivariate data frame if TRUE.

list of elements to be added to the step object for use in the filter function.

logical indicating whether to replace the original variables.
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prefix

role

skip

id

Value
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if the original variables are not replaced, the selected variables are added to
the dataset with the character string prefix added to their names; otherwise, the
original variable names are retained.

analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

unique character string to identify the step.

step_sbf object.

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns terms (selectors or variables selected), selected (logical
indicator of selected variables), and name of the selected variable names.

See Also

recipe, prep, bake

Examples

library(recipes)

glm_filter <- function(x, y, step) {
model_fit <- glm(y ~ ., data = data.frame(y, x))
p_value <- dropl(model_fit, test = "F")[-1, "Pr(>F)"]
p_value < step$threshold

}

rec <- recipe(rating ~ ., data = attitude)
sbf_rec <- rec %>%
step_sbf(all_numeric_predictors(),

filter

= glm_filter, options = list(threshold = 0.05))

sbf_prep <- prep(sbf_rec, training = attitude)
sbf_data <- bake(sbf_prep, attitude)

pairs(sbf_data, lower.panel = NULL)

tidy(sbf_rec, number = 1)
tidy(sbf_prep, number = 1)
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step_spca

step_spca

Sparse Principal Components Analysis Variable Reduction

Description

Creates a specification of a recipe step that will derive sparse principal components from one or
more numeric variables.

Usage
step_spca(
recipe,
num_comp = 5,
sparsity = 0,

num_var = integer(),
shrinkage = 1e-06,
center = TRUE,

scale = TRUE,

max_iter = 200,

tol = 0.001,

replace = TRUE,
prefix = "SPCA",
role = "predictor”,

skip = FALSE,
id = recipes:

:rand_id("spca")

## S3 method for class 'step_spca'

tunable(x, ...)

Arguments

recipe

num_comp

recipe object to which the step will be added.

one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

number of components to derive. The value of num_comp will be constrained to
a minimum of 1 and maximum of the number of original variables when prep
is run.

sparsity, num_var

sparsity (L1 norm) penalty for each component or number of variables with non-
zero component loadings. Larger sparsity values produce more zero loadings.
Argument sparsity is ignored if num_var is given. The argument value may
be a single number applied to all components or a vector of component-specific
numbers.
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shrinkage

center, scale

max_iter

tol

replace

prefix

role

skip

id

Details
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numeric shrinkage (quadratic) penalty for the components to improve condition-
ing; larger values produce more shrinkage of component loadings toward zero.

logicals indicating whether to mean center and standard deviation scale the orig-
inal variables prior to deriving components, or functions or names of functions
for the centering and scaling.

maximum number of algorithm iterations allowed.
numeric tolerance for the convergence criterion.
logical indicating whether to replace the original variables.

character string prefix added to a sequence of zero-padded integers to generate
names for the resulting new variables.

analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

unique character string to identify the step.

step_spca object.

Sparse principal components analysis (SPCA) is a variant of PCA in which the original variables
may have zero loadings in the linear combinations that form the components.

Value

Function step_spca creates a new step whose class is of the same name and inherits from step_lincomp,

adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the
tidy method, a tibble with columns terms (selectors or variables selected), weight of each variable
loading in the components, and name of the new variable names; and with attribute pev containing
the proportions of explained variation.

References

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15(2), 265-286.

See Also

spca, recipe, prep, bake

Examples

## Requires prior installation of suggested package elasticnet to run

library(recipes)
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rec <- recipe(rating ~ ., data = attitude)
spca_rec <- rec %>%

step_spca(all_predictors(), num_comp = 5, sparsity = 1)
spca_prep <- prep(spca_rec, training = attitude)
spca_data <- bake(spca_prep, attitude)

pairs(spca_data, lower.panel = NULL)

tidy(spca_rec, number = 1)
tidy(spca_prep, number = 1)

sumimary

summary Model Performance Summaries

Description

Summary statistics for resampled model performance metrics.

Usage

## S3 method for class 'ConfusionList'
summary (object, ...)

## S3 method for class 'ConfusionMatrix'
summary (object, ...)

## S3 method for class 'MLModel’

summary (
object,
stats = MachineShop::settings("stats.Resample”),
na.rm = TRUE,

)

## S3 method for class 'MLModelFit'

summary(object, .type = c("default”, "glance"”, "tidy"),

## S3 method for class 'Performance'

summary (
object,
stats = MachineShop::settings("”stats.Resample”),
na.rm = TRUE,

)

## S3 method for class 'PerformanceCurve'
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summary (object,
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stat = MachineShop::settings(”stat.Curve”), ...)

## S3 method for class 'Resample’

summary (
object,

stats = MachineShop::settings("stats.Resample”),

na.rm = TRUE,

## S3 method for class 'TrainingStep'

summary (object,

Arguments

object

stats

na.rm

.type

stat

Value

)

confusion, lift, trained model fit, performance, performance curve, resample, or
rfe result.

arguments passed to other methods.

function, function name, or vector of these with which to compute summary
statistics.

logical indicating whether to exclude missing values.

character string specifying that unMLModelFit (object) be passed to summary
("default”), glance, or tidy.

function or character string naming a function to compute a summary statistic
at each cutoff value of resampled metrics in PerformanceCurve, or NULL for
resample-specific metrics.

An object of summmary statistics.

Examples

## Requires prior installation of suggested package gbm to run

## Factor response example

fo <- Species ~ .

control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)

gbm_res2 <- resample(fo, iris, GBMModel(n.trees

50), control)

gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)

summary (gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3

summary(res)

gbm_res3)
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SuperModel Super Learner Model

Description

Fit a super learner model to predictions from multiple base learners.

Usage
SuperModel(
model = GBMModel,

control = MachineShop::settings(”control”),
all_vars = FALSE

)
Arguments
model functions, function names, objects; other objects that can be coerced to
models; or vector of these to serve as base learners.
model model function, function name, or object defining the super model; or another
object that can be coerced to the model.
control control function, function name, or object defining the resampling method to be
employed for the estimation of base learner weights.
all_vars logical indicating whether to include the original predictor variables in the super
model.
Details

Response types: factor, numeric, ordered, Surv

Value

SuperModel class object that inherits from MLModel.

References
van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner. Statistical Applications
in Genetics and Molecular Biology, 6(1).

See Also

fit, resample
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Examples
## Requires prior installation of suggested packages gbm and glmnet to run
model <- SuperModel (GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)

SurvMatrix SurvMatrix Class Constructors

Description

Create a matrix of survival events or probabilites.

Usage
SurvEvents(data = NA, times = numeric(), distr = character())

SurvProbs(data = NA, times = numeric(), distr = character())

Arguments
data matrix, or object that can be coerced to one, with survival events or probabilities
at points in time in the columns and cases in the rows.
times numeric vector of survival times for the columns.
distr character string specifying the survival distribution from which the matrix values
were derived.
Value

Object that is of the same class as the constructor name and inherits from SurvMatrix. Examples
of these are predicted survival events and probabilities returned by the predict function.

See Also

performance, metrics
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SurvRegModel Parametric Survival Model

Description

Fits the accelerated failure time family of parametric survival models.

Usage

SurvRegModel (
dist = c("weibull”, "exponential”, "gaussian"”, "logistic”, "lognormal”,
"logloglogistic"),
scale = 0,
parms = list(),

)

SurvRegStepAICModel (
dist = c("weibull”, "exponential”, "gaussian"”, "logistic”, "lognormal”,
"logloglogistic"),
scale = 0,
parms = list(),

L

direction = c("both”, "backward”, "forward"),

scope = list(),
k=2,
trace = FALSE,
steps = 1000
)
Arguments
dist assumed distribution for y variable.
scale optional fixed value for the scale.
parms list of fixed parameters.
arguments passed to survreg.control.
direction mode of stepwise search, can be one of "both” (default), "backward”, or "forward".
scope defines the range of models examined in the stepwise search. This should be a
list containing components upper and lower, both formulae.
k multiple of the number of degrees of freedom used for the penalty. Only k = 2
gives the genuine AIC; k = . (Log(nobs)) is sometimes referred to as BIC or
SBC.
trace if positive, information is printed during the running of stepAIC. Larger values

may give more information on the fitting process.

steps maximum number of steps to be considered.
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Details

Response types: Surv

Default argument values and further model details can be found in the source See Also links below.

Value

MLModel class object.

See Also

psm, survreg, survreg.control, stepAIC, fit, resample

stepAIC, fit, resample

Examples

## Requires prior installation of suggested packages rms and Hmisc to run

library(survival)
fit(Surv(time, status) ~ ., data = veteran, model = SurvRegModel)
SVMModel Support Vector Machine Models
Description

Fits the well known C-svc, nu-svc, (classification) one-class-svc (novelty) eps-svr, nu-svr (re-
gression) formulations along with native multi-class classification formulations and the bound-
constraint SVM formulations.

Usage

SVMModel (
scaled = TRUE,
type = character(),
kernel = c("rbfdot"”, "polydot"”, "vanilladot”, "tanhdot"”, "laplacedot”, "besseldot”,
"anovadot”, "splinedot”),
kpar = "automatic”,
c=1,
nu= 0.2,
epsilon = 0.1,
prob.model = FALSE,
cache = 40,
tol = 0.001,
shrinking = TRUE
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)

SVMANOVAModel (sigma = 1, degree = 1, ...)

SVMBesselModel(sigma = 1, order = 1, degree =1, ...)

SVMLaplaceModel(sigma = numeric(), ...)

SVMLinearModel(...)

SVMPolyModel (degree = 1, scale = 1, offset =1, ...)

SVMRadialModel (sigma = numeric(), ...)

SVMSplineModel(...)

SVMTanhModel (scale = 1, offset =1, ...)

Arguments

scaled logical vector indicating the variables to be scaled.

type type of support vector machine.

kernel kernel function used in training and predicting.

kpar list of hyper-parameters (kernel parameters).

C cost of constraints violation defined as the regularization term in the Lagrange
formulation.

nu parameter needed for nu-svc, one-svc, and nu-svr.

epsilon parameter in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm.

prob.model logical indicating whether to calculate the scaling parameter of the Laplacian
distribution fitted on the residuals of numeric response variables. Ignored in the
case of a factor response variable.

cache cache memory in MB.

tol tolerance of termination criterion.

shrinking whether to use the shrinking-heuristics.

sigma inverse kernel width used by the ANOVA, Bessel, and Laplacian kernels.

degree degree of the ANOVA, Bessel, and polynomial kernel functions.
arguments passed to SVMModel from the other constructors.

order order of the Bessel function to be used as a kernel.

scale scaling parameter of the polynomial and hyperbolic tangent kernels as a conve-
nient way of normalizing patterns without the need to modify the data itself.

offset offset used in polynomial and hyperbolic tangent kernels.
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Details

Response types: factor, numeric
Automatic tuning of grid parameters: * SVMModel: NULL
¢ SVMANOVAMOodel: C, degree
¢ SVMBesselModel: C, order, degree
¢ SVMLaplaceModel: C, sigma
¢ SVMLinearModel: C
SVMPolyModel: C, degree, scale
SVMRadialModel: C, sigma
The kernel-specific constructor functions SVMANOVAModel, SVMBesselModel, SVMLaplaceModel,
SVMLinearModel, SVMPolyModel, SVMRadialModel, SVMSplineModel, and SVMTanhModel are spe-

cial cases of SVMModel which automatically set its kernel and kpar arguments. These are called
directly in typical usage unless SVMModel is needed to specify a more general model.

L]

Default argument values and further model details can be found in the source See Also link below.

Value

MLModel class object.

See Also

ksvm, fit, resample

Examples
fit(sale_amount ~ ., data = ICHomes, model = SVMRadialModel)
t.test Faired t-Tests for Model Comparisons
Description

Paired t-test comparisons of resampled performance metrics from different models.

Usage
## S3 method for class 'PerformanceDiff"’
t.test(x, adjust = "holm”, ...)
Arguments
X performance difference result.
adjust method of p-value adjustment for multiple statistical comparisons as imple-

mented by p.adjust.

arguments passed to other methods.
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Details

The t-test statistic for pairwise model differences of R resampled performance metric values is
calculated as
TR

\/Fsﬁ;i/R7

where Zr and s% are the sample mean and variance. Statistical testing for a mean difference is
then performed by comparing ¢ to a tz_; null distribution. The sample variance in the t statistic
is known to underestimate the true variances of cross-validation mean estimators. Underestimation
of these variances will lead to increased probabilities of false-positive statistical conclusions. Thus,
an additional factor F' is included in the t statistic to allow for variance corrections. A correction
of F =1+ K/(K — 1) was found by Nadeau and Bengio (2003) to be a good choice for cross-
validation with K folds and is thus used for that resampling method. The extension of this correction
by Bouchaert and Frank (2004) to F = 1+ T K /(K — 1) is used for cross-validation with K folds
repeated 7" times. For other resampling methods F' = 1.

Value

PerformanceDiffTest class object that inherits from array. p-values and mean differences are
contained in the lower and upper triangular portions, respectively, of the first two dimensions.
Model pairs are contained in the third dimension.

References

Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52,
239-81.

Bouckaert, R. R., & Frank, E. (2004). Evaluating the replicability of significance tests for compar-
ing learning algorithms. In H. Dai, R. Srikant, & C. Zhang (Eds.), Advances in knowledge discovery
and data mining (pp. 3—-12). Springer.

Examples

## Requires prior installation of suggested package gbm to run

## Numeric response example
fo <- sale_amount ~ .
control <- CVControl()

gbm_res1 <- resample(fo, ICHomes, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, ICHomes, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, ICHomes, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
t.test(res_diff)
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TreeModel Classification and Regression Tree Models

Description

A tree is grown by binary recursive partitioning using the response in the specified formula and
choosing splits from the terms of the right-hand-side.

Usage

TreeModel (
mincut = 5,
minsize = 10,
mindev = 0.01,
split = c("deviance”, "gini"),
k = numeric(),
best = integer(),

method = c("deviance”, "misclass”)
)
Arguments
mincut minimum number of observations to include in either child node.
minsize smallest allowed node size: a weighted quantity.
mindev within-node deviance must be at least this times that of the root node for the
node to be split.
split splitting criterion to use.
k scalar cost-complexity parameter defining a subtree to return.
best integer alternative to k requesting the number of terminal nodes of a subtree in
the cost-complexity sequence to return.
method character string denoting the measure of node heterogeneity used to guide cost-
complexity pruning.
Details

Response types: factor, numeric

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

tree, prune.tree, fit, resample
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Examples

## Requires prior installation of suggested package tree to run

fit(Species ~ ., data = iris, model = TreeModel)
TunedInput Tuned Model Inputs
Description

Recipe tuning over a grid of parameter values.

Usage

TunedInput(object, ...)

## S3 method for class 'recipe’
TunedInput(
object,
grid = expand_steps(),
control = MachineShop::settings(”control”),
metrics = NULL,
cutoff = MachineShop::settings("cutoff"),
stat = MachineShop::settings(”"stat.TrainingParams”),

)
Arguments

object untrained recipe.
arguments passed to other methods.

grid RecipeGrid containing parameter values at which to evaluate a recipe, such as
those returned by expand_steps.

control control function, function name, or object defining the resampling method to be
employed.

metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Recipe selection is based on the first calculated metric.

cutoff argument passed to the metrics functions.

stat function or character string naming a function to compute a summary statistic

on resampled metric values for recipe tuning.
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Value

TunedModelRecipe class object that inherits from TunedInput and recipe.

See Also

fit, resample, set_optim

Examples

library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
step_pca(all_numeric_predictors(), id = "pca")

grid <- expand_steps(
pca = list(num_comp = 1:2)

)

fit(TunedInput(rec, grid = grid), model = GLMModel)

TunedModel Tuned Model

Description

Model tuning over a grid of parameter values.

Usage

TunedModel (
object,
grid = MachineShop::settings("grid"),
control = MachineShop::settings(”control”),
metrics = NULL,
cutoff = MachineShop: :settings("cutoff"),
stat = MachineShop::settings(”stat.TrainingParams”)

)
Arguments
object model function, function name, or object defining the model to be tuned.
grid single integer or vector of integers whose positions or names match the param-

eters in the model’s pre-defined tuning grid if one exists and which specify the
number of values used to construct the grid; TuningGrid function, function
name, or object; ParameterGrid object; or data frame containing parameter
values at which to evaluate the model, such as that returned by expand_params.
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control control function, function name, or object defining the resampling method to be
employed.
metrics metric function, function name, or vector of these with which to calculate per-

formance. If not specified, default metrics defined in the performance functions
are used. Model selection is based on the first calculated metric.

cutoff argument passed to the metrics functions.

stat function or character string naming a function to compute a summary statistic
on resampled metric values for model tuning.

Details

The expand_modelgrid function enables manual extraction and viewing of grids created automat-
ically when a TunedModel is fit.

Response types: factor, numeric, ordered, Surv

Value

TunedModel class object that inherits from MLModel.

See Also

fit, resample, set_optim

Examples

## Requires prior installation of suggested package gbm to run
## May require a long runtime

# Automatically generated grid

model_fit <- fit(sale_amount ~ ., data = ICHomes,
model = TunedModel (GBMModel))

varimp(model_fit)

(tuned_model <- as.MLModel(model_fit))

summary (tuned_model)

plot(tuned_model, type = "1")

# Randomly sampled grid points
fit(sale_amount ~ ., data = ICHomes,
model = TunedModel(
GBMModel,
grid = TuningGrid(size = 1000, random = 5)
D)

# User-specified grid
fit(sale_amount ~ ., data = ICHomes,
model = TunedModel(
GBMModel,
grid = expand_params(
n.trees = c(50, 100),
interaction.depth = 1:2,



TuningGrid 141
n.minobsinnode = c(5, 10)
)
)
TuningGrid Tuning Grid Control
Description
Defines control parameters for a tuning grid.
Usage
TuningGrid(size = 3, random = FALSE)
Arguments
size single integer or vector of integers whose positions or names match the param-
eters in a model’s tuning grid and which specify the number of values used to
construct the grid.
random number of unique points to sample at random from the grid defined by size. If
size is a single unnamed integer, then random = Inf will include all values of
all grid parameters in the constructed grid, whereas random = FALSE will include
all values of default grid parameters.
Details

Returned TuningGrid objects may be supplied to TunedModel for automated construction of model
tuning grids. These grids can be extracted manually and viewed with the expand_modelgrid func-

tion.

Value

TuningGrid class object.

See Also

TunedModel, expand_modelgrid

Examples

TunedModel (XGBTreeModel, grid = TuningGrid(10, random = 5))



142 varimp

unMLModelFit Revert an MLModelFit Object

Description

Function to revert an MLModelFit object to its original class.

Usage

unMLModelFit(object)
Arguments

object model fit result.
Value

The supplied object with its MLModelFit classes and fields removed.

varimp Variable Importance

Description

Calculate measures of relative importance for model predictor variables.

Usage
varimp(
object,
method = c("permute”, "model”),
scale = TRUE,
sort = c("decreasing”, "increasing"”, "asis"),
)
Arguments
object model fit result.
method character string specifying the calculation of variable importance as permutation-

base ("permute”) or model-specific ("model"”). If model-specific importance is
specified but not defined, the permutation-based method will be used instead
with its default values (below). Permutation-based variable importance is de-
fined as the relative change in model predictive performances between datasets
with and without permuted values for the associated variable (Fisher et al. 2019).
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scale logical value or vector indicating whether importance values are scaled to a max-
imum of 100.

sort character string specifying the sort order of importance values to be "decreasing”,
"increasing”, or as predictors appear in the model formula ("asis").

arguments passed to model-specific or permutation-based variable importance
functions. These include the following arguments and default values for method
= "permute”.

select = NULL expression indicating predictor variables for which to compute
variable importance (see subset for syntax) [default: all].

samples =1 number of times to permute the values of each variable. Larger
numbers of samples decrease variability in the estimates at the expense of
increased computation time.

prop = numeric() proportion of observations to sample without replacement
at each round of variable permutations [default: all]. Subsampling of ob-
servations can decrease computation time.

size = integer() number of observations to sample at each round of permu-
tations [default: all].

times = numeric() numeric vector of follow-up times at which to predict sur-
vival probabilities or NULL for predicted survival means.

metric = NULL metric function or function name with which to calculate per-
formance. If not specified, the first applicable default metric from the per-
formance functions is used.

compare = c("-", "/") character specifying the relative change to compute in
comparing model predictive performances between datasets with and with-
out permuted values. The choices are difference ("-") and ratio ("/").

stats =MachineShop::settings(”stat.TrainingParams”) function, func-
tion name, or vector of these with which to compute summary statistics on
the set of variable importance values from the permuted datasets.

na.rm = TRUE logical indicating whether to exclude missing variable impor-
tance values from the calculation of summary statistics.

progress = TRUE logical indicating whether to display iterative progress during
computation.

Details

The varimp function supports calculation of variable importance with the permutation-based method
of Fisher et al. (2019) or with model-based methods where defined. Permutation-based importance
is the default and has the advantages of being available for any model, any performance metric
defined for the associated response variable type, and any predictor variable in the original training
dataset. Conversely, model-specific importance is not defined for some models and will fall back
to the permutation method in such cases; is generally limited to metrics implemented in the source
packages of models; and may be computed on derived, rather than original, predictor variables.
These disadvantages can make comparisons of model-specific importance across different classes
of models infeasible. A downside of the permutation-based approach is increased computation
time. To counter this, the permutation algorithm can be run in parallel simply by loading a parallel
backend for the foreach package %dopar% function, such as doParallel or doSNOW.
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Permutation variable importance is interpreted as the contribution of a predictor variable to the
predictive performance of a model as measured by the performance metric used in the calculation.
Importance of a predictor is conditional on and, with the default scaling, relative to the values of all

other predictors in the analysis.

Value

VariableImportance class object.

References

Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning
a variable’s importance by studying an entire class of prediction models simultaneously. Journal of

Machine Learning Research, 20, 1-81.

See Also

plot

Examples

## Requires prior installation of suggested package gbm to run

## Survival response example

library(survival)

gbm_fit <- fit(Surv(time, status) ~

(vi <= varimp(gbm_fit))
plot(vi)

XGBModel

Extreme Gradient Boosting Models

Description

Fits models with an efficient implementation of the gradient boosting framework from Chen &

Guestrin.
Usage
XGBModel (
nrounds = 100,
objective = character(),

aft_loss_distribution

o,

base_score
verbose

0.5,

"normal”,

., data = veteran, model = GBMModel)
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)

print_every_n = 1

XGBDARTModel(

)

eta = 0.3,

gamma = 0,

max_depth = 6,
min_child_weight = 1,
max_delta_step = .(0.7 * is(y,
subsample = 1,
colsample_bytree = 1,
colsample_bylevel = 1,
colsample_bynode = 1,

alpha = 0,
lambda = 1,
tree_method = "auto”,

scale_pos_weight = 1,
refresh_leaf = 1,
grow_policy = "depthwise”,
max_leaves = 0,

max_bin = 256,
num_parallel_tree = 1,
sample_type = "uniform”,
normalize_type = "tree",
rate_drop = 0,

one_drop = 0,

skip_drop = 0,

XGBLinearModel(

)

alpha = 0,

lambda = 0,

updater = "shotgun”,
feature_selector = "cyclic”,
top_k = 0,

XGBTreeModel (

eta = 0.3,

gamma = 0,

max_depth = 6,
min_child_weight = 1,
max_delta_step = .(0.7 * is(y,
subsample = 1,
colsample_bytree = 1,
colsample_bylevel = 1,

"PoissonVariate")),

"PoissonVariate")),

145
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colsample_bynode = 1,

alpha = 0,
lambda = 1,
tree_method = "auto”,

scale_pos_weight = 1,
refresh_leaf = 1,
grow_policy = "depthwise”,
max_leaves = 0,

max_bin = 256,
num_parallel_tree = 1,

)
Arguments
nrounds number of boosting iterations.
model parameters as described below and in the XGBoost documentation and
arguments passed to XGBModel from the other constructors.
objective optional character string defining the learning task and objective. Set automat-

ically if not specified according to the following values available for supported
response variable types.

factor: "multi:softprob”, "binary:logistic” (2 levels only)

n on n n n on

numeric: "reg:squarederror”, "reg:logistic”, "reg:gamma”,

n o n n o n

"rank:pairwise”, "rank:ndcg”, "rank:map"”

reg:tweedie”,

PoissonVariate: "count:poisson”

non

Surv: "survival:aft”, "survival:cox"

The first values listed are the defaults for the corresponding response types.
aft_loss_distribution

character string specifying a distribution for the accelerated failure time objec-
tive ("survival:aft"”) as "extreme”, "logistic"”, or "normal”.

base_score initial prediction score of all observations, global bias.

verbose numeric value controlling the amount of output printed during model fitting,
such that 0 = none, 1 = performance information, and 2 = additional information.

print_every_n numeric value designating the fitting iterations at at which to print output when

verbose > 0.
eta shrinkage of variable weights at each iteration to prevent overfitting.
gamma minimum loss reduction required to split a tree node.
max_depth maximum tree depth.

min_child_weight

minimum sum of observation weights required of nodes.
max_delta_step, tree_method, scale_pos_weight, updater, refresh_leaf,
grow_policy, max_leaves, max_bin, num_parallel_tree

other tree booster parameters.

subsample subsample ratio of the training observations.


https://xgboost.readthedocs.io/en/latest/parameter.html
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colsample_bytree, colsample_bylevel, colsample_bynode

subsample ratio of variables for each tree, level, or split.
alpha, lambda L1 and L2 regularization terms for variable weights.
sample_type, normalize_type

type of sampling and normalization algorithms.

rate_drop rate at which to drop trees during the dropout procedure.
one_drop integer indicating whether to drop at least one tree during the dropout procedure.
skip_drop probability of skipping the dropout procedure during a boosting iteration.

feature_selector, top_k
character string specifying the feature selection and ordering method, and num-
ber of top variables to select in the "greedy” and "thrifty” feature selectors.

Details

Response types: factor, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: * XGBModel: NULL

¢ XGBDARTModel: nrounds, eta*, gamma*, max_depth, min_child_weight*, subsample*,
colsample_bytree*, rate_drop*, skip_drop*

¢ XGBLinearModel: nrounds, alpha, lambda

¢ XGBTreeModel: nrounds, eta*, gamma*, max_depth, min_child_weight*, subsample*,
colsample_bytree*

* excluded from grids by default

The booster-specific constructor functions XGBDARTModel, XGBLinearModel, and XGBTreeModel
are special cases of XGBModel which automatically set the XGBoost booster parameter. These are
called directly in typical usage unless XGBModel is needed to specify a more general model.

Default argument values and further model details can be found in the source See Also link below.

In calls to varimp for XGBTreeModel, argument type may be specified as "Gain" (default) for the
fractional contribution of each predictor to the total gain of its splits, as "Cover" for the number of
observations related to each predictor, or as "Frequency” for the percentage of times each predictor
is used in the trees. Variable importance is automatically scaled to range from 0 to 100. To obtain
unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

xgboost, fit, resample

Examples

## Requires prior installation of suggested package xgboost to run

model_fit <- fit(
Species ~ ., data = iris, model = XGBTreeModel(nthread = 1)


https://xgboost.readthedocs.io/en/latest/parameter.html
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)
varimp(model_fit, method = "model”, type = "Frequency"”, scale = FALSE)
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