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Abstract

In this vignette, we provide examples where we model non-Gaussian data using FRK version 2.x
and above. All of the functionality that FRK offers in a Gaussian setting extends to a non-Gaussian
setting: see the vignette “Introduction to FRK”, which describes how the BAUs and basis functions work;
inference over different spatial manifolds (such as the sphere); inference in a spatio-temporal setting; and
spatial change of support.
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1 Methodology

The statistical model used by FRK in a non-Gaussian setting is a spatial generalised linear mixed (GLMM)
model [Diggle et al., 1998], a hierarchical model consisting of two layers. In the process layer, we model
the conditional mean of the data as a transformation of a latent spatial process, where the spatial process
is modelled as a low-rank spatial random effects model; see Section 1.1. The process layer, which governs
the conditional mean of the data, retains many similarities to that in previous versions of the package, as
described by Zammit-Mangion and Cressie [2021] and in the vignette “FRK intro”. In the data layer, we use
a conditionally independent exponential-family model for the data; see Section 1.2. In Sections 1.3 and 1.4
we briefly discuss parameter estimation, and spatial prediction and uncertainty quantification.

1.1 The process layer

Denote the latent spatial process as Y (·) ≡ {Y (s) : s ∈ D}, where s indexes space in the spatial domain of
interest D. The model for Y (·) is the so-called spatial random effects (SRE) model [Cressie and Johannesson,
2008],

Y (s) = t(s)⊤α + ϕ(s)⊤η + ξ(s); s ∈ D, (1)

where t(·) are spatially referenced covariates with associated regression parameters α, ϕ(·) ≡ (ϕ1(·), . . . , ϕr(·))
⊤

is an r-dimensional vector of pre-specified spatial basis functions with associated random coefficients η, and
ξ(·) is a fine-scale random process that is ‘almost’ uncorrelated.
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FRK discretises the domain of interest D into N small, non-overlapping basic areal units (BAUs) {Ai :
i = 1, . . . , N} such that D = ∪N

i=1
Ai. BAUs are a key element of FRK, as they provide a framework that

allows one to use both point-referenced and areal data simultaneously, and one that facilitates the spatial
change-of-support problem. After discretisation via the BAUs, we obtain the vectorised version of (1),

Y = T α + Sη + ξ, (2)

where Y is an N -dimensional vector, T and S are known design matrices, and ξ is the vector associated
with the fine-scale process.

We model the fine-scale random effects as being independent and identically distributed Gaussian random
variables with variance σ2

ξ ; we model η as a mean-zero multivariate-Gaussian random variable, typically using
a sparse precision matrix parametrisation formualtion in a non-Gaussian setting.

Following standard generalised linear model theory [McCullagh and Nelder, 1989], FRK v.2 uses a link
function, g(·), to model Y (·) as a transformation of the mean process, µ(·):

g (µ(s)) = Y (s); s ∈ D.

The mean process evaluated over the BAUs is

µi = g−1(Yi), i = 1, . . . , N,

where g−1(·) is the inverse link function. An identity link function and a Gaussian data model yields the
standard Gaussian FRK model.

1.2 The data layer

Given m observations with footprints spanning one or more BAUs, we define the observation supports as
Bj ≡ ∪i∈cj

Ai for j = 1, . . . ,m, where cj is a non-empty set in the power set of {1, . . . , N}, and define
DO ≡ {Bj : j = 1, . . . ,m}. Let Zj ≡ Z(Bj), j = 1, . . . ,m. The vector of observations (the data vector) is
then Z ≡ (Z1, . . . , Zm)

⊤

.
Since each Bj ∈ DO is either a BAU or a union of BAUs, one can construct an m×N matrix

CZ ≡
(

wiI(Ai ⊂ Bj) : i = 1, . . . , N ; j = 1, . . . ,m
)

,

where I(·) is the indicator function, which creates a linear mapping from µ ≡ (µi : i = 1, . . . , N)⊤ to
evaluations of the mean process over the observation supports;

µZ ≡ CZµ. (3)

The normalise wts argument in SRE() controls whether the linear mapping of CZ corresponds to a weighted
sum or a weighted average; if normalise wts = TRUE, then the weights wi are normalised so that the rows
of CZ sum to one, and the mapping represents a weighted average.

We assume that [Zj | µ(·), ψ] = [Zj | µZ,j , ψ], where ψ is a (nuisance) dispersion parameter and, for a
generic random quantities A and B, [A | B] denotes the probability distribution of A given B. That is, a
given observation depends only on the value of the mean process at the corresponding observation support,
rather than on the process over the whole domain. As a result, conditional on the latent spatial process, all
observations are conditionally independent:

[Z | µ(·), ψ] =

m
∏

j=1

[Zj | µZ,j , ψ].

We model the conditional distribution [Zj | µZ,j , ψ] as a member of the exponential family [McCullagh and

Nelder, 1989, Sec. 2.2.2], with conditional expectation µ(Bj) ≡ E
{

Zj | µZ,j , ψ
}

.
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The model employed by FRK v.2 can be summarised as follows.

Zj | µZ,j , ψ
ind
∼ EF(µZ,j , ψ), j = 1, . . . ,m, (4)

µZ = CZµ, (5)

g(µ) = Y , (6)

Y = T α + Sη + ξ, (7)

η | ϑ ∼ Gau(0,Q−1), (8)

ξ | σ2

ξ ∼ Gau(0, σ2

ξ V ). (9)

where V is a known diagonal matrix with positive entries on the diagonal and σ2

ξ is either unknown and
estimated, or provided by the user.

1.3 Estimation

The complete-data likelihood function for our model is

L(θ; Z,η, ξ) ≡ [Z,η, ξ] = [Z | µZ , ψ][η | ϑ][ξ | σ2

ξ ], (10)

where θ ≡ (α⊤,ϑ⊤, σ2

ξ , ψ)⊤ and ϑ are variance components, and its logarithm is

l(θ; Z,η, ξ) ≡ lnL(θ; Z,η, ξ) = ln [Z | µZ , ψ] + ln [η | ϑ] + ln [ξ | σ2

ξ ]. (11)

Under our modelling assumptions, the conditional density functions [η | ϑ] and [ξ | σ2

ξ ] are invariant to the
specified link function and assumed distribution of the response variable. Of course, this invariance does
not hold for [Z | µZ , ψ]. As we only consider data models in the exponential family, ln [Z | µZ , ψ] may be
expressed as

ln [Z | µZ , ψ] =
m

∑

j=1

{

Zjλ(µZ,j) − b(λ(µZ,j))

a(ψ)
+ c(Zj , ψ)

}

, (12)

where a(·), b(·), and c(·, ·) are deterministic functions specific to the exponential family member, and λ(·) is
the canonical parameter.

The marginal likelihood, which does not depend on the random effects, is given by

L∗(θ; Z) ≡

∫

Rp

L(θ; Z,u)du, (13)

where u ≡ (η⊤, ξ⊤)⊤ ∈ R
p, and p is the total number of random effects in the model. When the data are

non-Gaussian, the integral in (13) is typically intractable and must be approximated either numerically or
analytically. In FRK, we use the Laplace approximation, implemented using the R package TMB [Kristensen
et al., 2016].

Given as input a C++ template function which defines the complete-data log-likelihood function (11),
TMB [Kristensen et al., 2016] computes the Laplace approximation of the marginal log-likelihood, and auto-
matically computes its derivatives, which are then called from within FRK by an optimising function specified
by the user (nlminb() is used by default). TMB uses CppAD [Bell, 2005] for automatic differentiation, and
the linear algebra libraries Eigen [Guennebaud et al., 2010] and Matrix [Bates et al., 2019] for vector and
matrix operations in C++ and R, respectively; use of these packages yields good computational efficiency.
TMB’s implementation of automatic differentiation is a key reason why we can cater for a variety of response
distributions and link functions, as we do not need to consider each combination on a case-by-case basis.

1.4 Prediction and uncertainty quantification

There are three primary quantities of interest in this framework: The latent process Y (·), the mean process
µ(·), and the noisy data process. To produce predictions and associated uncertainties, we need to determine
the posterior distribution of these quantities.
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It can be shown that the Laplace approximation implies that the posterior distribution of the random
effects, u | Z,θ is approximated to be Gaussian. This, in turn, implies that the posterior distribution of Y

is also approximated to be Gaussian, and hence inference on Y (·) can be done using closed form solutions.
However, the posterior distribution of non-linear functions of Y (·) (e.g., the mean process) are typically not
available in closed form, and in this case some form of approximation is required. Hence, we choose to use
a Monte Carlo (MC) framework.

For each quantity, we use the posterior expectation as our predictor. A commonly used metric for
uncertainty quantification is the root-mean-squared prediction error (RMSPE). In a non-Gaussian setting,
it can be difficult to interpret the RMSPE, and it is often more intuitive to quantify uncertainty through
the width of the posterior predictive intervals. Hence, in FRK, we also provide the user with user-specified
percentiles of the posterior predictive distribution. These quantities can be computed straightforwardly using
MC sampling.

1.4.1 Arbitrary prediction regions

Often, one does not wish to predict over a single BAU, but over regions spanning multiple BAUs. Define
the set of prediction regions as DP ≡ {B̃k : k = 1, . . . , NP }, where B̃k ≡ ∪i∈ck

Ai, and where ck is some
non-empty set in the power set of {1, . . . , N}. Like the data, the prediction regions {B̃k} may overlap. In
practice, B̃k may not include entire BAUs; in this case, we assume that a prediction region contains a BAU
if and only if there is at least some overlap between the BAU and the prediction region. Prediction over DP

requires some form of aggregation across relevant BAUs. Since in the non-Gaussian setting aggregation must
be done on the original scale, we restrict prediction over arbitrary regions to the mean (or the noisy data
process). Therefore, predictions of the latent process Y (·) are not allowed over arbitrary prediction regions.

Consider the predictions {µP (B̃k) : k = 1, . . . , NP }, where µP (·) ≡ µ(· | Z,θ). These predictions are
weighted sums of the predictions over the associated BAUs. Specifically,

µP,k ≡ µP (B̃k) =

N
∑

i=1

w̃iI(Ai ⊂ B̃k)µi; i = 1, . . . , N ; k = 1, . . . , NP ; B̃k ∈ DP ,

where, in a similar fashion to the incidence matrix CZ , the weights {w̃i} are optionally provided by the user
in the wts field of the BAU object, and may be normalised if normalise wts = TRUE. If wts is NULL, the
BAUs are assumed to be equally weighted. Define µP ≡ (µP,k : k = 1, . . . , NP )⊤. Since each element in DP

is the union of subsets of DG, one can construct a matrix,

CP ≡ (w̃i : i = 1, . . . , N ; k = 1, . . . , NP ) ,

such that µP = CP µ. Again, we use MC sampling to predict µP .

2 Example: Simulated Non-Gaussian, point-referenced spatial data

First, load the required packages.

library("FRK") # for carrying out FRK

library("sp") # for defining points/polygons

library("dplyr") # for easy data manipulation

library("ggplot2") # for plotting

Now, simulate some Poisson distributed spatial data.

m <- 250 # Sample size

RNGversion("3.6.0"); set.seed(1) # Fix seed

zdf <- data.frame(x = runif(m), y= runif(m)) # Generate random locs

zdf$Y <- 3 + sin(7 * zdf$x) + cos(9 * zdf$y) # Latent process

zdf$z <- rpois(m, lambda = exp(zdf$Y)) # Simulate data

coordinates(zdf) = ˜x+y # Turn into sp object
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Figure 1: (Left) Simulated Poisson spatial data. (Centre) Prediction of the mean process. (Right) Uncer-
tainty quantification of predictions; specifically the width of the 90% posterior predictive interval.

There is an ‘expert’ way of using FRK that involves using the functions auto BAUs() and auto basis()

to automatically construct BAUs and basis functions from the data, and SRE() and SRE.fit() to initialise
and fit the SRE model object. This ‘expert’ way is documented in the vignette “FRK intro”. Alternatively,
there is a ‘simple’ way of using FRK that uses the high-level wrapper function FRK() that calls these functions
under-the-hood; in this vignette, we will use the ‘simple’ way.

S <- FRK(f = z ˜ 1, # Formula to FRK

list(zdf), # All datasets are supplied in list

nres = 2, # Low-rank model to reduce run-time

response = "poisson", # data model

link = "log", # link function

nonconvex_hull = FALSE) # convex hull

pred <- predict(S) # prediction stage

FRK includes two plotting methods, plot() and plot spatial or ST(); the former takes an SRE
object and the result of a call to predict, and returns a list of ‘ggplot’ objects containing the predic-
tions and uncertainty quantification of those predictions, while the latter is a general-purpose function for
‘Spatial*DataFrame’ and ‘STFDF’ objects.

plot_list <- plot(S, pred$newdata)

plot_list <- c(plot_list, plot_spatial_or_ST(zdf, "z"))

This list of plot objects can then be arranged using one of the many functions for arranging ‘ggplot’
objects: See Figure 1.

3 Example: Lognormally distributed soil data, point and block-

level predictions

Between 1954 and 1963, nuclear devices were detonated at Area 13 of the Nevada Test Site in the United
States, contaminating the surrounding soil with the radioactive element americium (Am). In 1971, the
Nevada Applied Ecology Group measured Am concentrations in a region surrounding Ground Zero (GZ),
the location where the devices were detonated [Paul and Cressie, 2011]. The total number of measurements
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Figure 2: Americium soil data and blocking scheme.

(including some that are collocated) is 212. In the following, we load this data set (supplied by FRK), and
define GZ.

data("Am_data")

coordinates(Am_data) = ˜ Easting + Northing # convert to sp object

GZ_df <- data.frame("Easting" = 219868.09, "Northing" = 285320.8)

The left and centre panels of Figure 2 shows the data on the original scale and on the log scale, respec-
tively. Paul and Cressie [2011] note that these Am concentrations are lognormally distributed, and that soil
remediation is often made by averaging the contaminant over pre-specified spatial regions of D called blocks.
Hence, this application requires lognormal prediction over blocks, a task well suited to FRK. The right panel
of Figure 2 shows a blocking scheme containing five blocks that we will predict over, which is centred on GZ.

Following Paul and Cressie [2011], we use a piecewise linear trend, where observations within a distance
of 30.48m from GZ follow a different trend to those observations beyond 30.48m from GZ. In FRK, covariates
must be defined at the BAU level.

BAUs <- auto_BAUs(manifold = plane(),

type = "grid",

data = Am_data,

nonconvex_hull = FALSE)

## Add covariates to the BAUs

d_cutoff <- 30.48

d_BAU <- distR(coordinates(BAUs), GZ_df)

BAUs$x1 <- as.numeric(d_BAU < d_cutoff)

BAUs$x2 <- d_BAU * BAUs$x1

BAUs$x3 <- as.numeric(d_BAU >= d_cutoff)

BAUs$x4 <- d_BAU * (BAUs$x3)

In the following, we indicate that a scalar covariance matrix should be used for the fine-scale variation
term (implicit when allowing FRK() to construct that BAUs), and we replicate lognormal kriging by fixing
the measurement-error standard deviation to a small value. Then, we run FRK() as usual, set est error =

FALSE so that the measurement-error standard deviation is not estimated.

BAUs$fs <- 1

Am_data$std <- 1
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Figure 3: Americium point predictions.

S <- FRK(f = Am ˜ -1 + x1 + x2 + x3 + x4, data = list(Am_data),

response = "gaussian",

link = "log",

BAUs = BAUs,

nres = 2,

est_error = FALSE)

By predicting over the BAUs, one may generate predictions over the entire spatial domain. In predict(),
we set type = c("link", "mean") to obtain predictions for both the latent process Y (·), and the mean
process µ(·). Figure 3 shows BAU level predictions and uncertainty using FRK.

pred <- predict(S, type = c("link", "mean"))

plot_list <- plot(S, pred$newdata)

Alternatively, by passing a ‘SpatialPolygonsDataFrame’ object into the newdata argument of predict(),
one may straightforwardly generate block-level predictions. When predicting over arbitrary spatial regions,
FRK is limited to prediction of the mean process.

pred <- predict(S, newdata = blocks)

These block level predictions may be plotted with the help of SpatialPolygonsDataFrame to df(); see
Figure 4.
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Figure 4: Americium block level predictions.
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