Package ‘CausalQueries’

January 29, 2026

Type Package
Title Make, Update, and Query Binary Causal Models
Version 1.4.5
Description Users can declare causal models over binary nodes, update be-
liefs about causal types given data, and calculate arbitrary queries. Updating is imple-
mented in 'stan'. See Humphreys and Jacobs, 2023, Integrated Infer-
ences (<DOI:10.1017/9781316718636>) and Pearl, 2009 Causal-
ity (<DOI:10.1017/CB09780511803161>).
BugReports https://github.com/integrated-inferences/CausalQueries/issues
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.3.3
Depends methods, R (>=4.2.0)

Imports dplyr, dirmult (>= 0.1.3-4), stats (>=4.1.1), rlang (>=
0.2.0), rstan (>= 2.26.0), rstantools (>= 2.0.0), stringr (>=
1.4.0), knitr (>= 1.45), ggplot2 (>= 3.3.5), lifecycle (>=
1.0.1), ggraph (>=2.2.0), Rcpp (>=0.12.0)

LinkingTo Rcpp (>=0.12.0), ReppArmadillo, ReppEigen (>= 0.3.3.3.0),
rstan (>= 2.26.0), StanHeaders (>= 2.26.0), BH (>= 1.66.0)

Suggests testthat, rmarkdown, DeclareDesign, fabricatr, estimatr,
bayesplot, covr, curl

SystemRequirements GNU make
Biarch true

VignetteBuilder knitr

URL https://integrated-inferences.github.io/CausalQueries/
NeedsCompilation yes

Author Clara Bicalho [ctb],
Jasper Cooper [ctb],
Macartan Humphreys [aut] (ORCID:

https://doi.org/10.1017/9781316718636
https://doi.org/10.1017/CBO9780511803161
https://github.com/integrated-inferences/CausalQueries/issues
https://integrated-inferences.github.io/CausalQueries/

<https://orcid.org/0000-0001-7029-2326>),
Till Tietz [aut, cre] (ORCID: <https://orcid.org/0000-0002-2916-9059>),
Alan Jacobs [aut],
Merlin Heidemanns [ctb],
Lily Medina [aut] (ORCID: <https://orcid.org/0009-0004-2423-524X>),
Julio Solis [ctb],
Georgiy Syunyaev [aut] (ORCID: <https://orcid.org/0000-0002-4391-6313>),
Moritz Marbach [ctb] (ORCID: <https://orcid.org/0000-0002-7101-2821>)

Maintainer Till Tietz <ttietz2014@gmail.com>
Repository CRAN
Date/Publication 2026-01-29 12:20:08 UTC

Contents

CausalQueries-package L
data_helpers
democracy_data e
draw_causal_type e
get_all_data_types
get_event_probabilities Lo
GEL_QUETY_LYPES « . o v v v e e e e e e e e e e e e e e e e e e
INSPection
institutions_data e e e
INErPret_type . . . o v v v o e e e e e
lipids_data e
make model
parameter_Setting e e e e e e e
print.causal_model
print.model_queryo
PriOr_Setting e e e
query_distribution
query_helpers
query_model
realiSe_OUtCOMES i e e e e e e e
set_confound e
set_prior_distribution oL L e
SEt_TeStriCtIONS v v e e e e e e e e e e e e e
summary.causal_model oL
summary.model_query
update_model L

Index

Contents

https://orcid.org/0000-0001-7029-2326
https://orcid.org/0000-0002-2916-9059
https://orcid.org/0009-0004-2423-524X
https://orcid.org/0000-0002-4391-6313
https://orcid.org/0000-0002-7101-2821

CausalQueries-package 3

CausalQueries-package CausalQueries: Make, Update, and Query Binary Causal Models

Description

’CausalQueries’ is a package that lets users generate binary causal models, update over models
given data, and calculate arbitrary causal queries. Model definition makes use of dagitty type syntax.
Updating is implemented in ’stan’.

Author(s)

Maintainer: Till Tietz <ttietz2014@gmail.com> (ORCID)

Authors:

* Macartan Humphreys <macartan@gmail . com> (ORCID)
* Alan Jacobs <alan. jacobs@ubc.ca>
e Lily Medina <1ilymiru@gmail.com> (ORCID)

* Georgiy Syunyaev <georgiy.syunyaev@vanderbilt.edu> (ORCID)

Other contributors:

Clara Bicalho <clarabmcorreia@gmail.com> [contributor]
* Jasper Cooper <jjc2247@columbia.edu> [contributor]

¢ Merlin Heidemanns <mnh2123@columbia.edu> [contributor]
* Julio Solis <juliosolisar@gmail.com> [contributor]

e Moritz Marbach <m.marbach@ucl. ac.uk> (ORCID) [contributor]

See Also

Useful links:

e https://integrated-inferences.github.io/CausalQueries/

* Report bugs at https://github.com/integrated-inferences/CausalQueries/issues

https://orcid.org/0000-0002-2916-9059
https://orcid.org/0000-0001-7029-2326
https://orcid.org/0009-0004-2423-524X
https://orcid.org/0000-0002-4391-6313
https://orcid.org/0000-0002-7101-2821
https://integrated-inferences.github.io/CausalQueries/
https://github.com/integrated-inferences/CausalQueries/issues

4 data_helpers

data_helpers Data helpers

Description

Various helpers to simulate data and to manipulate data types between compact and long forms.
collapse_data can be used to convert long form data to compact form data,

expand_data can be used to convert compact form data (one row per data type) to long form data
(one row per observation).

make_data generates a dataset with one row per observation.

make_events generates a dataset with one row for each data type. Draws full data only. To generate
various types of incomplete data see make_data.

Usage

collapse_data(
data,
model,
drop_NA = TRUE,
drop_family = FALSE,
summary = FALSE

)

expand_data(data_events = NULL, model)

make_data(
model,
n = NULL,
parameters = NULL,
param_type = NULL,

nodes = NULL,
n_steps = NULL,
probs = NULL,

subsets = TRUE,
complete_data = NULL,
given = NULL,

verbose = FALSE,

)

make_events(
model,
n=1,
w = NULL,
P NULL,

data_helpers

A = NULL,
parameters
param_type

NULL,
NULL,

include_strategy = FALSE,

Arguments

data

model

drop_NA

drop_family

summary

data_events

n

parameters

param_type

nodes

n_steps
probs

subsets

complete_data
given

verbose

A data.frame. Data of nodes that can take three values: 0, 1, and NA. In long
form as generated by make_events

A causal_model. A model object generated by make_model.

Logical. Whether to exclude strategy families that contain no observed data. Ex-
ceptionally if no data is provided, minimal data on data on first node is returned.
Defaults to “TRUE*

Logical. Whether to remove column strategy from the output. Defaults to
‘FALSE".

Logical. Whether to return summary of the data. See details. Defaults to

‘FALSE".

A ’compact’ data. frame with one row per data type. Must be compatible with
nodes in model. The default columns are event, strategy and count.

An integer. Number of observations.

A vector of real numbers in [0,1]. Values of parameters to specify (optional). By

default, parameters is drawn from the parameters data. frame. See inspect(model,

"parameters_df").

A character. String specifying type of parameters to make "flat’, *prior_mean’,
"posterior_mean’, ’prior_draw’, ’posterior_draw’, ’define. With param_type
set to define use arguments to be passed to make_priors; otherwise flat
sets equal probabilities on each nodal type in each parameter set; prior_mean,
prior_draw, posterior_mean, posterior_draw take parameters as the means
or as draws from the prior or posterior.

A list. Which nodes to be observed at each step. If NULL all nodes are
observed.

A list. Number of observations to be observed at each step
A list. Observation probabilities at each step

A list. Strata within which observations are to be observed at each step. TRUE
for all, otherwise an expression that evaluates to a logical condition.

A data.frame. Dataset with complete observations. Optional.

A string specifying known values on nodes, e.g. "X==1 & Y==1"
Logical. If TRUE prints step schedule.

Arguments to be passed to make_priors if param_type == define

A numeric matrix. A ‘n_parameters X 1° matrix of event probabilities with
named rows.

6 data_helpers

P A data. frame. Parameter matrix. Not required but may be provided to avoid re-
peated computation for simulations. See inspect(model, "parameter_matrix").

A A data.frame. Ambiguities matrix. Not required but may be provided to avoid
repeated computation for simulations. inspect(model, "ambiguities_matrix")

include_strategy
Logical. Whether to include a ’strategy’ vector. Defaults to FALSE. Strategy
vector does not vary with full data but expected by some functions.

Details

Note that default behavior is not to take account of whether a node has already been observed when
determining whether to select or not. One can however specifically request observation of nodes
that have not been previously observed.

Value

A vector of data events

If summary = TRUE ‘collapse_data‘ returns a list containing the following components:

data_events A compact data.frame of event types and strategies.
observed_events

A vector of character strings specifying the events observed in the data
unobserved_events

A vector of character strings specifying the events not observed in the data

A data. frame with rows as data observation
A data. frame with simulated data.

A data. frame of events

See Also

Other data_generation: get_all_data_types(), make_data_single(), observe_data()
Other data_generation: get_all_data_types(), make_data_single(), observe_data()

Examples

model <- make_model('X -> Y')

df <- data.frame(X = c(0,1,NA), Y = c(0,0,1))
df |> collapse_data(model)

Illustrating options

df |> collapse_data(model, drop_NA = FALSE)

df |> collapse_data(model, drop_family = TRUE)

data_helpers

df |> collapse_data(model, summary = TRUE)
Appropriate behavior given restricted models

model <- make_model('X -> Y') [|>
set_restrictions('X[]==1")

df <- make_data(model, n = 10)

dff1,1] <= "'

df |> collapse_data(model)

df <- data.frame(X = 0:1)
df |> collapse_data(model)

model <- make_model('X->M->Y"')

make_events(model, n = 5) |>
expand_data(model)

make_events(model, n = @) |>
expand_data(model)

Simple draws

model <- make_model("X -> M -> Y")

make_data(model)

make_data(model, n = 3, nodes = c("X","Y"))

make_data(model, n = 3, param_type = "prior_draw")
make_data(model, n = 10, param_type = "define”, parameters = 0:9)

Data Strategies
A strategy in which X, Y are observed for sure and M is observed
with 50% probability for X=1, Y=0 cases

model <- make_model("X -> M -> Y")
make_data(
model,
n =238,
nodes = list(c("X", "Y"), "M"),
probs = list(1, .5),
subsets = 1ist(TRUE, "X==1 & Y==0"))

n not provided but inferred from largest n_step (not from sum of n_steps)
make_data(

model,

nodes = list(c("X", "Y"), "M"),

n_steps = list(5, 2))

Wide then deep
make_data(
model,

n =238,

8 democracy_data

nodes = list(c("X", "Y"), "M"),
subsets = 1list(TRUE, "!is.na(X) & !is.na(Y)"),
n_steps = 1list(6, 2))

make_data(
model,
n =38,
nodes = list(c("X", "Y"), c("X", "M")),
subsets = list(TRUE, "is.na(X)"),
n_steps = 1list(3, 2))

Example with probabilities at each step

make_data(
model,
n =38,
nodes = list(c("X", "Y"), c("X", "M")),
subsets = list(TRUE, "is.na(X)"),
probs = list(.5, .2))

Example with given data
make_data(model, given = "X==1 & Y==1", n = 5)

model <- make_model('X -> Y')

make_events(model = model)

make_events(model = model, param_type = 'prior_draw')
make_events(model = model, include_strategy = TRUE)

democracy_data Development and Democratization: Data for replication of analysis
in *Integrated Inferences*

Description
A dataset containing information on inequality, democracy, mobilization, and international pressure.
Made by devtools: :use_data(democracy_data, CausalQueries)

Usage

democracy_data

Format
A data frame with 84 rows and 5 nodes:

Case Case

D Democracy

draw_causal_type 9

I Inequality
P International Pressure

M Mobilization

Source

https://www.cambridge.org/core/journals/american-political-science-review/article/
inequality-and-regime-change-democratic-transitions-and-the-stability-of-democratic-rule/
C39AAF4CF274445555FF41F7CC896AE3#fndtn-supplementary-materials/

draw_causal_type Draw a single causal type given a parameter vector

Description

Output is a parameter data frame recording both parameters (case level priors) and the case level
causal type.

Usage
draw_causal_type(model, ...)
Arguments
model A causal_model. A model object generated by make_model.
Arguments passed to set_parameters
Examples

Simple draw using model's parameter vector
make_model ("X -> M -> Y") |>
draw_causal_type()

Draw parameters from priors and draw type from parameters
make_model ("X -> M -> Y") |>
draw_causal_type(, param_type = "prior_draw")

Draw type given specified parameters
make_model ("X -> M -> Y") |>
draw_causal_type(parameters = 1:10)

https://www.cambridge.org/core/journals/american-political-science-review/article/inequality-and-regime-change-democratic-transitions-and-the-stability-of-democratic-rule/C39AAF4CF274445555FF41F7CC896AE3#fndtn-supplementary-materials/
https://www.cambridge.org/core/journals/american-political-science-review/article/inequality-and-regime-change-democratic-transitions-and-the-stability-of-democratic-rule/C39AAF4CF274445555FF41F7CC896AE3#fndtn-supplementary-materials/
https://www.cambridge.org/core/journals/american-political-science-review/article/inequality-and-regime-change-democratic-transitions-and-the-stability-of-democratic-rule/C39AAF4CF274445555FF41F7CC896AE3#fndtn-supplementary-materials/

10 get_all_data_types

get_all_data_types Get all data types

Description

Creates data frame with all data types (including NA types) that are possible from a model.

Usage

get_all_data_types(
model,
complete_data = FALSE,
possible_data = FALSE,
given = NULL

)

Arguments

model A causal_model. A model object generated by make_model.

complete_data Logical. If “TRUE® returns only complete data types (no NAs). Defaults to
‘FALSE".

possible_data Logical. If ‘TRUE returns only complete data types (no NAs) that are *possi-
ble* given model restrictions. Note that in principle an intervention could make
observationally impossible data types arise. Defaults to ‘FALSE®.

given A character. A quoted statement that evaluates to logical. Data conditional on
specific values.

Value

A data. frame with all data types (including NA types) that are possible from a model.

See Also

Other data_generation: data_helpers, make_data_single(), observe_data()

Examples

make_model('X -> Y') |> get_all_data_types()

model <- make_model('X -> Y') |>
set_restrictions(labels = list(Y = '00'), keep = TRUE)
get_all_data_types(model)
get_all_data_types(model, complete_data = TRUE)
get_all_data_types(model, possible_data = TRUE)
get_all_data_types(model, given = 'X==1")
get_all_data_types(model, given = 'X==1 & Y==1")

get_event_probabilities 11

get_event_probabilities
Draw event probabilities

Description

‘get_event_probabilities* draws event probability vector ‘w* given a single realization of parameters

Usage
get_event_probabilities(
model,
parameters = NULL,
A = NULL,
P = NULL,
given = NULL
)
Arguments
model A causal_model. A model object generated by make_model.
parameters A vector of real numbers in [0,1]. Values of parameters to specify (optional). By
default, parameters is drawn from the parameters data. frame. See inspect(model,
"parameters_df").
A A data.frame. Ambiguities matrix. Not required but may be provided to avoid
repeated computation for simulations. inspect(model, "ambiguities_matrix")
P A data.frame. Parameter matrix. Not required but may be provided to avoid re-
peated computation for simulations. See inspect(model, "parameter_matrix").
given A string specifying known values on nodes, e.g. "X==1 & Y==1"
Value

An array of event probabilities

Examples

model <- make_model('X ->Y')

get_event_probabilities(model = model)
get_event_probabilities(model = model, given = "X==1")
get_event_probabilities(model = model, parameters = rep(1, 6))
get_event_probabilities(model = model, parameters = 1:6)

12 get_query_types

get_query_types Look up query types

Description

Find which nodal or causal types are satisfied by a query.

Usage
get_query_types(model, query, map = "causal_type”, join_by = "|")
Arguments
model A causal_model. A model object generated by make_model.
query A character string. An expression defining nodal types to interrogate. An ex-
pression of the form "Y[X=1]" asks for the value of Y when X is set to 1
map Types in query. Either nodal_type or causal_type. Default is causal_type.
join_by A logical operator. Used to connect causal statements: AND (&’) or OR (’I’).
Defaults to ’I’.
Value

A list containing some of the following elements

types A named vector with logical values indicating whether a nodal_type or a causal_type
satisfy ‘query’

query A character string as specified by the user

expanded_query A character string with the expanded query. Only differs from ‘query‘ if this
contains wildcard >’

evaluated_nodes
Value that the nodes take given a query

node A character string of the node whose nodal types are being queried
type_list List of causal types satisfied by a query
Examples

model <- make_model('X -> M ->Y; X->Y')
query <- '(Y[X=0] > Y[X=11)'

get_query_types(model, query, map="nodal_type")
get_query_types(model, query, map="causal_type")
get_query_types(model, query)

Examples with map = "nodal_type”

query <- '"(Y[X=0, M = .1 > Y[X=1, M = 0])'

inspection 13

get_query_types(model, query, map="nodal_type")

query <- '(Y[] == 1)"'
get_query_types(model, query, map="nodal_type")
get_query_types(model, query, map="nodal_type"”, join_by = '&")

Root nodes specified with []
get_query_types(model, '(X[] == 1)', map="nodal_type")

query <- '"(M[X=1] == M[X=01)'
get_query_types(model, query, map="nodal_type")

Nested do operations

get_query_types(

model = make_model('A ->B ->C ->D"),

query = '(D[C=C[B=B[A=1]], A=0] > D[C=C[B=B[A=01], A=01)")

Helpers

model <- make_model('M->Y; X->Y')

query <- complements('X', 'M', 'Y")
get_query_types(model, query, map="nodal_type")

Examples with map = "causal_type"”

model <- make_model('X -> M ->Y; X->Y')
query <- 'Y[M=M[X=0], X=11==1'
get_query_types(model, query, map= "causal_type")

query <- '(YIX =1, M=1]1> Y[X=0, M=1]) &
(Y[IX=1,M=0]> Y[X=20, M= 0]
get_query_types(model, query, "causal_type")

query <- 'Y[X=1] == Y[X=0]'
get_query_types(model, query, "causal_type")

query <- '(X == 1) & (M==1) & (Y ==1) & (Y[XZ@] ==1)"
get_query_types(model, query, "causal_type")

query <- '"(Y[X = .]1==1)"
get_query_types(model, query, "causal_type")

inspection Helpers for inspecting causal models

Description

Various helpers to inspect or access internal objects generated or used by Causal Models

Returns specified elements from a causal_model and prints summary. Users can use inspect
to extract model’s components or objects implied by the model structure including nodal types,

14 inspection

causal types, parameter priors, parameter posteriors, type priors, type posteriors, and other relevant
elements. See argument what for other options.

Returns specified elements from a causal_model. Users can use inspect to extract model’s com-
ponents or objects implied by the model structure including nodal types, causal types, parameter
priors, parameter posteriors, type priors, type posteriors, and other relevant elements. See argument
what for other options.

Usage
inspect(model, what = NULL, ...)
grab(model, what = NULL, ...)
Arguments
model A causal_model. A model object generated by make_model.
what A character string specifying the component to retrieve. Available options are:

* "statement" a character string describing causal relations using dagitty
syntax,
* "nodes" A list containing the nodes in the model,

* "parents_df" A table listing nodes, whether they are root nodes or not,
and the number and names of parents they have,

* "parameters" A vector of ’true’ parameters,

* "parameter_names" A vector of names of parameters,

* "parameter_mapping" A matrix mapping from parameters into data types,

* "parameter_matrix" A matrix mapping from parameters into causal types,

* "parameters_df" A data frame containing parameter information,

* "causal_types" A data frame listing causal types and the nodal types that
produce them,

* "nodal_types" A list with the nodal types of the model,

* "data_types" A list with all data types consistent with the model; for op-
tions see ?get_all_data_types,

* "ambiguities_matrix" A matrix mapping from causal types into data
types,

* "prior_hyperparameters" A vector of alpha values used to parameter-
ize Dirichlet prior distributions; optionally provide node names to reduce
output, e.g., inspect(prior_hyperparameters, nodes=c('M', 'Y")),

e "prior_distribution" A data frame of the parameter prior distribution,

* "posterior_distribution" A data frame of the parameter posterior dis-
tribution,

* "type_prior" A matrix of type probabilities using priors,

* "type_posterior" A matrix of type probabilities using posteriors,

* "prior_event_probabilities" A vector of data (event) probabilities given
a single realization of parameters; for options see ?get_event_probabilities,

* "posterior_event_probabilities" A sample of data (event) probabili-
ties from the posterior,

inspection 15

* "data" A data frame with data that was provided to update the model,
e stan_summary" A ‘stanfit’ summary with processed parameter names,
e "stanfit" An (unprocessed) stanfit object as generated by Stan, with
raw parameter names,
* "stan_warnings" Messages generated during the generation of a stanfit
object.
Other arguments passed to helper "get_*" functions: get_all_data_types, get_event_probabilities,
get_priors, Any such additional arguments must be named.

Value

Objects that can be derived from a causal_model, with summary.

Quiet return of objects that can be derived from a causal_model.

Examples

model <- make_model("X -> Y")
data <- make_data(model, n = 4)

inspect(model, what = "statement"”)
inspect(model, what = "parameters”)
inspect(model, what = "nodes")
inspect(model, what = "parents_df")
inspect(model, what = "parameters_df")
inspect(model, what = "causal_types")
inspect(model, what = "prior_distribution”)

inspect(model, what = "prior_hyperparameters”, nodes = "Y")
inspect(model, what = "prior_event_probabilities"”, parameters =c(.1, .9, .25, .25, 0, .5))
inspect(model, what = "prior_event_probabilities”, given = "Y==1")

inspect(model, what = "data_types"”, complete_data = TRUE)
inspect(model, what = "data_types", complete_data = FALSE)

model <- update_model(model,
data = data,
keep_fit = TRUE,
keep_event_probabilities = TRUE)

inspect(model, what = "posterior_distribution”)
inspect(model, what = "posterior_event_probabilities"”)
inspect(model, what = "type_posterior")

inspect(model, what = "data”)

inspect(model, what = "stan_warnings")

inspect(model, what = "stanfit")

model <- make_model("X -> Y")

x <- grab(model, what = "statement”)
X

16 interpret_type

institutions_data Institutions and growth: Data for replication of analysis in *Integrated
Inferences*

Description

A dataset containing dichotomized versions of variables in Rodrik, Subramanian, and Trebbi (2004).

Usage

institutions_data

Format
A data frame with 79 rows and 5 columns:
Y Income (GDP PPP 1995), dichotomized
R Institutions, (based on Kaufmann, Kraay, and Zoido-Lobaton (2002)) dichotomized
D Distance from the equator (in degrees), dichotomized

M Settler mortality (from Acemoglu, Johnson, and Robinson), dichotomized

country Country

Source

https://drodrik.scholars.harvard.edu/publications/institutions-rule-primacy-institutions-over-geogr

interpret_type Interpret or find position in nodal type

Description

Interprets the position of one or more digits (specified by position) in a nodal type. Alternatively
returns nodal type digit positions that correspond to one or more given condition.

Usage

interpret_type(
model,
condition = NULL,
position = NULL,
nodes = model$parents_df[!model$parents_df$root, 1]

https://drodrik.scholars.harvard.edu/publications/institutions-rule-primacy-institutions-over-geography-and-integration

lipids_data 17

Arguments
model A causal_model. A model object generated by make_model.
condition A vector of characters. Strings specifying the child node, followed by ’I’ (given)
and the values of its parent nodes in model.
position A named list of integers. The name is the name of the child node in model, and
its value a vector of digit positions in that node’s nodal type to be interpreted.
See ‘Details".
nodes A vector of names of nodes. Can be used to limit interpretation to selected
nodes. By default limited to non root nodes.
Details

A node for a child node X with k parents has a nodal type represented by X followed by 2k digits.
Argument position allows user to interpret the meaning of one or more digit positions in any nodal
type. For example position = 1list(X = 1:3) will return the interpretation of the first three digits
in causal types for X. Argument condition allows users to query the digit position in the nodal
type by providing instead the values of the parent nodes of a given child. For example, condition
= 'X | Z=0 & R=1" returns the digit position that corresponds to values X takes when Z =0 and R =
1.

Value

A named 1list with interpretation of positions of the digits in a nodal type

Examples

model <- make_model('R -> X; Z -> X; X ->Y")

Return interpretation of all digit positions of all nodes
interpret_type(model)

Example using digit position
interpret_type(model, position = list(X
interpret_type(model, position = list(R
Example using condition
interpret_type(model, condition = c('X | Z=0 & R=1', 'X | Z=0 & R=0"))
Example using node names

interpret_type(model, nodes = c("Y", "R"))

c(3,4), Y =1)
D))

lipids_data Lipids: Data for Chickering and Pearl replication

Description

A compact dataset containing information on an encouragement, (Z, cholestyramine prescription), a
treatment (X, usage), and an outcome (Y, cholesterol). From David Maxwell Chickering and Judea
Pearl: "A Clinician’s Tool for Analyzing Non-compliance", AAAI-96 Proceedings. Chickering and
Pearl in turn draw the data from Efron, Bradley, and David Feldman. "Compliance as an explanatory
variable in clinical trials." Journal of the American Statistical Association 86.413 (1991): 9-17.

18 make_model

Usage

lipids_data

Format
A data frame with 8 rows and 3 columns:
event The data type

strategy For which nodes is data available

count Number of units with this data type

Source

https://cdn.aaai.org/AAAI/1996/AAAI96-188.pdf

make_model Make a model

Description

make_model uses causal statements encoded as strings to specify the nodes and edges of a graph.
Implied causal types are calculated and default priors are provided under the assumption of no
confounding. Models can be updated with specification of a parameter matrix, P, by providing
restrictions on causal types, and/or by providing informative priors on parameters.

Usage

make_model (statement = "X -> Y", add_causal_types = TRUE, nodal_types = NULL)

Arguments

statement character string. Statement describing causal relations between nodes. Directed
relations can be specified using ’->’ or ’<-’ and can be combined. For instance
"X->Y","Y <-X"or "X1->Y <-X2; X1 ->X2". Confounded relations can
be specified using a double headed arrow, "X <-> Y", to indicate unobserved
confounding between X and Y.

add_causal_types
Logical. Whether to create and attach causal types to model. Defaults to “TRUE‘.

nodal_types List of nodal types associated with model nodes

https://cdn.aaai.org/AAAI/1996/AAAI96-188.pdf

make_model 19

Value

An object of class causal_model.

An object of class "causal_model” is a list containing at least the following components:

statement A character vector of the statement that defines the model

dag A data. frame with columns ‘parent‘and ‘children indicating how nodes relate
to each other.

nodes A named list with the nodes in the model

parents_df A data. frame listing nodes, whether they are root nodes or not, and the number

of parents they have

nodal_types Optional: A named list with the nodal types in the model. List should be
ordered according to the causal ordering of nodes. If NULL nodal types are
generated. If FALSE, a parameters data frame is not generated.

parameters_df A data.frame with descriptive information of the parameters in the model

causal_types A data. frame listing causal types and the nodal types that produce them

By default a causal model has flat (uniform) priors and parameters that put equal weight on each
parameter within each parameter set. The parameter ranges (range of the nodal types) can be ad-
justed with set_restrictions. The priors can be adjusted with set_priors. Specific parameter
values can be adjusted with set_parameters.

See Also

summary . causal_model provides summary method for output objects of class causal_model

Examples

make_model (statement = "X -> Y")
modelXKY <- make_model("X -> K ->Y; X -> Y")

Example where a cyclical dag is attempted
Not run:
modelXKX <- make_model("X -> K -> X")

End(Not run)

Examples with confounding

model <- make_model ("X->Y; X <-> Y")

inspect(model, "parameter_matrix")

model <- make_model("Y2 <- X -> Y1; X <-> Y1; X <-> Y2")
dim(inspect(model, "parameter_matrix"))

inspect(model, "parameter_matrix")

model <- make_model("X1 -> Y <= X2; X1 <->VY; X2 <->Y")
dim(inspect(model, "parameter_matrix"))

inspect(model, "parameters_df")

A single node graph is also possible
model <- make_model ("X")

20 parameter_setting

Unconnected nodes not allowed
Not run:
model <- make_model("X <-> Y")

End(Not run)

nodal_types <-
list(
A= c("0","1"),
B = C(Hell,llflll)’

C=c("0","1"),
D = c("0","1"),
E=c("0","1"),
Y = ¢(

"00000000000000000000000000000000" ,
"01010101010101010101010101010101",
"00110011001100110011001100110011",
"00001111000011110000111100001111",
"00000000111111110000000011111111",
"00000000000000001111111111111111",
"I 1I111111111111111117)

make_model("A -> Y; B ->Y; C->Y; D->Y; E->Y",
nodal_types = nodal_types) |>
inspect("parameters_df")

nodal_types = list(Y = c("01", "10"), Z = c("0", "1"))
make_model ("Z -> Y", nodal_types = nodal_types) |>
inspect("parameters_df")

parameter_setting Setting parameters

Description

Functionality for altering parameters:
A vector of “true’ parameters; possibly drawn from prior or posterior.

Add a true parameter vector to a model. Parameters can be created using arguments passed to
make_parameters and make_priors.

Extracts parameters as a named vector

Usage

make_parameters(
model,
parameters = NULL,
param_type = NULL,
warning = TRUE,

parameter_setting 21

normalize = TRUE,

set_parameters(
model,
parameters = NULL,
param_type = NULL,
warning = FALSE,

get_parameters(model, param_type = NULL)

Arguments
model A causal_model. A model object generated by make_model.
parameters A vector of real numbers in [0,1]. Values of parameters to specify (optional). By
default, parameters is drawn from the parameters data. frame. See inspect(model,
"parameters_df").
param_type A character. String specifying type of parameters to make "flat", "prior_mean",
"posterior_mean", "prior_draw", "posterior_draw", "define". With param_type
set to define use arguments to be passed to make_priors; otherwise flat
sets equal probabilities on each nodal type in each parameter set; prior_mean,
prior_draw, posterior_mean, posterior_draw take parameters as the means
or as draws from the prior or posterior.
warning Logical. Whether to warn about parameter renormalization.
normalize Logical. If parameter given for a subset of a family the residual elements are
normalized so that parameters in param_set sum to 1 and provided params are
unaltered.
Options passed onto make_priors.
Value

A vector of draws from the prior or distribution of parameters

An object of class causal_model. It essentially returns a list containing the elements comprising a
model (e.g. 'statement’, "nodal_types’ and 'DAG’) with true vector of parameters attached to it.

A vector of draws from the prior or distribution of parameters

Examples

make_parameters examples:

Simple examples

model <- make_model('X -> Y')

data <- make_data(model, n = 2)

model <- update_model(model, data)

make_parameters(model, parameters = c(.25, .75, 1.25,.25, .25, .25))

22

parameter_setting

make_parameters(model, param_type = 'flat')
make_parameters(model, param_type = 'prior_draw')
make_parameters(model, param_type = 'prior_mean')
make_parameters(model, param_type = 'posterior_draw')
make_parameters(model, param_type = 'posterior_mean')

#altering values using \code{alter_at}
make_model ("X -> Y") |> make_parameters(parameters = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('00','01')")

#altering values using \code{param_names}
make_model ("X -> Y") |> make_parameters(parameters
param_names = c("Y.10","Y.01"))

c(0.5,0.25),

#altering values using \code{statement}
make_model ("X -> Y") |> make_parameters(parameters = c(0.5),
statement = "Y[X=1] > Y[X=0]")

#altering values using a combination of other arguments
make_model ("X -> Y") |> make_parameters(parameters = c(0.5,0.25),
node = "Y", nodal_type = c("00","01"))

Normalize renormalizes values not set so that value set is not renomalized
make_parameters(make_model('X -> Y'),

statement = 'Y[X=1]>Y[X=0]', parameters = .5)
make_parameters(make_model('X -> Y'),

statement = 'Y[X=1]>Y[X=0]', parameters = .5,

normalize = FALSE)

set_parameters examples:
make_model ('X->Y') |> set_parameters(1:6) |> inspect("parameters”)

Simple examples

model <- make_model('X -> Y')

data <- make_data(model, n = 2)

model <- update_model(model, data)

set_parameters(model, parameters = c(.25, .75, 1.25,.25, .25, .25))

set_parameters(model, param_type = 'flat')
set_parameters(model, param_type = 'prior_draw')
set_parameters(model, param_type = 'prior_mean')
set_parameters(model, param_type = 'posterior_draw')
set_parameters(model, param_type = 'posterior_mean')

#altering values using \code{alter_at}

print.causal_model 23

make_model ("X -> Y") |> set_parameters(parameters = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('@@','@01')")

#altering values using \code{param_names}
make_model ("X -> Y") |> set_parameters(parameters = c(0.5,0.25),
param_names = c("Y.10","Y.01"))

#altering values using \code{statement}
make_model ("X -> Y") |> set_parameters(parameters = c(0.5),
statement = "Y[X=1] > Y[X=0]")

#altering values using a combination of other arguments
make_model ("X -> Y") |> set_parameters(parameters = c(0.5,0.25),
node = "Y", nodal_type = c("00","01"))

print.causal_model Print a short summary for a causal model

Description

print method for class causal_model.

Usage
S3 method for class 'causal_model'
print(x, ...)
Arguments
X An object of causal_model class, usually a result of a call to make_model or
update_model.
Further arguments passed to or from other methods.
Details

The information regarding the causal model includes the statement describing causal relations using
dagitty syntax, number of nodal types per parent in a DAG, and number of causal types.

prior_setting

print.model_query

Print a tightened summary of model queries

Description

Arguments

print method for class model_query.

S3 method for class 'model_query'
print(x, ...)

An object of model_query class.

Further arguments passed to or from other methods.

prior_setting

Setting priors

Description

make_priors(

model,
alphas = NA,

distribution = NA,

alter_at = NA,
node = NA,
nodal_type = NA,
label = NA,
param_set = NA,
given = NA,
statement = NA,
join_by = "|",
param_names = NA

Functionality for altering priors:
make_priors Generates priors for a model.
set_priors Adds priors to a model.

Extracts priors as a named vector

prior_setting

set_priors(

model,

alphas = NA,
distribution = NA,
alter_at = NA,
node = NA,
nodal_type = NA,
label = NA,
param_set = NA,
given = NA,
statement = NA,
join_by = "|",
param_names = NA

25

)

get_priors(model, nodes = NULL)

Arguments

model
alphas
distribution

alter_at

node

nodal_type

label

param_set
given
statement

join_by

param_names

nodes

Details

A model object generated by make_model().
Real positive numbers giving hyperparameters of the Dirichlet distribution
string indicating a common prior distribution (uniform, jeffreys or certainty)

string specifying filtering operations to be applied to parameters_df, yielding a
logical vector indicating parameters for which values should be altered. (see
examples)

string indicating nodes which are to be altered

string. Label for nodal type indicating nodal types for which values are to be
altered

string. Label for nodal type indicating nodal types for which values are to be
altered. Equivalent to nodal_type.

string indicating the name of the set of parameters to be altered
string indicates the node on which the parameter to be altered depends
causal query that determines nodal types for which values are to be altered

string specifying the logical operator joining expanded types when statement
contains wildcards. Can take values '&' (logical AND)or '|' (logical OR).

vector of strings. The name of specific parameter in the form of, for example,
X.17,°Y.01

a vector of nodes

Seven arguments govern which parameters should be altered. The default is ’all’ but this can be
reduced by specifying

* alter_at String specifying filtering operations to be applied to parameters_df, yielding a logical
vector indicating parameters for which values should be altered. "node == "X’ & nodal_type

26 prior_setting

* node, which restricts for example to parameters associated with node *X’

* label or nodal_type The label of a particular nodal type, written either in the form Y0000 or
Y.Y0000

* param_set The param_set of a parameter.
* given Given parameter set of a parameter.

* statement, which restricts for example to nodal types that satisfy the statement *Y[X=1] >
Y[X=0I

* param_set, given, which are useful when setting confound statements that produce several sets
of parameters

Two arguments govern what values to apply:
* alphas is one or more non-negative numbers and
* distribution indicates one of a common class: uniform, Jeffreys, or ’certain’

Forbidden statements include:

 Setting distribution and values at the same time.
* Setting a distribution other than uniform, Jeffreys, or certainty.
* Setting negative values.

* specifying alter_at with any of node, nodal_type, param_set, given, statement, or
param_names

* specifying param_names with any of node, nodal_type, param_set, given, statement, or
alter_at

* specifying statement with any of node or nodal_type

Value

A vector indicating the parameters of the prior distribution of the nodal types ("hyperparameters").

An object of class causal_model. It essentially returns a list containing the elements comprising a
model (e.g. ’statement’, ‘nodal_types’ and 'DAG’) with the ‘priors* attached to it.

A vector indicating the hyperparameters of the prior distribution of the nodal types.

Examples

make_priors examples:

Pass all nodal types

model <- make_model("Y <- X")
make_priors(model, alphas = .4)
make_priors(model, distribution = "jeffreys")

model <- CausalQueries::make_model("X -> M ->Y; X <->Y")
#altering values using \code{alter_at}

make_priors(model = model, alphas = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('0@','@1') & given == 'X.0'")

query_distribution

#altering values using \code{param_names}
make_priors(model = model, alphas = c(0.5,0.25),
param_names = c("Y.10_X.0","Y.10_X.1"))

#altering values using \code{statement}
make_priors(model = model, alphas = c(0.5,0.25),
statement = "Y[M=1] > Y[M=0]")

#altering values using a combination of other arguments
make_priors(model = model, alphas = c(0.5,0.25),
node = "Y", nodal_type = c("00","01"), given = "X.0")

set_priors examples:

Pass all nodal types

model <- make_model("Y <- X")
set_priors(model, alphas = .4)
set_priors(model, distribution = "jeffreys")

model <- CausalQueries::make_model("X -> M ->Y; X <-> Y")

#altering values using \code{alter_at}
set_priors(model = model, alphas = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('00','01"') & given == 'X.0'")

#altering values using \code{param_names}
set_priors(model = model, alphas = c(0.5,0.25),
param_names = c("Y.10_X.0","Y.10_X.1"))

#altering values using \code{statement}
set_priors(model = model, alphas = c(0.5,0.25),
statement = "Y[M=1] > Y[M=0]")

#altering values using a combination of other arguments
set_priors(model = model, alphas = c(0.5,0.25), node = "Y",
nodal_type = c("00","01"), given = "X.0")

27

query_distribution Calculate query distribution

Description

Calculated distribution of a query from a prior or posterior distribution of parameters

Usage

query_distribution(
model,
queries = NULL,
given = NULL,

28 query_distribution

using = "parameters”,
parameters = NULL,
n_draws = 4000,

join_by - n | ” ,
case_level = FALSE,
query = NULL
)
Arguments
model A causal_model. A model object generated by make_model.
queries A vector of strings or list of strings specifying queries on potential outcomes
such as "Y[X=1] - Y[X=0]". Queries can also indicate conditioning sets by
placing second queries after a colon: "Y[X=1] - Y[X=0] :I: X=1& Y ==1".
Note a ’:I:* is used rather than the traditional conditioning marker ’I’ to avoid
confusion with logical operators.
given A character vector specifying given conditions for each query. A ’given’ is a
quoted expression that evaluates to logical statement. given allows the query to
be conditioned on either observed or counterfactural distributions. A value of
TRUE is interpreted as no conditioning. A given statement can alternatively be
provided after a colon in the query statement.
using A character. Whether to use priors, posteriors or parameters
parameters A vector or list of vectors of real numbers in [0,1]. A true parameter vector
to be used instead of parameters attached to the model in case using specifies
parameters
n_draws An integer. Number of draws.rm
join_by A character. The logical operator joining expanded types when query contains
wildcard (.). Can take values "&" (logical AND) or "|" (logical OR). When
restriction contains wildcard (.) and join_by is not specified, it defaults to " | ",
otherwise it defaults to NULL.
case_level Logical. If TRUE estimates the probability of the query for a case.
query alias for queries
Value

A data frame where columns contain draws from the distribution of the potential outcomes specified
in query

Examples

model <- make_model("X -> Y") |>
set_parameters(c(.5, .5, .1, .2, .3, .4))

simple queries
query_distribution(model, query = "(Y[X=1] > Y[X=0])", using = "priors") |>
head()

query_distribution

multiple queries
query_distribution(model,
query = list(PE = "(Y[X=1] > Y[X=01)", NE = "(Y[X=1] < Y[X=01)"),

using = "priors")|>

head()
multiple queries and givens, with ':' to identify conditioning distributions
query_distribution(model,

query = 1list(POC = "(Y[X=11 > Y[X=01) :|: X ==1 & Y == 1",

Q = "(YIX=11 < Y[X=01) :|: (Y[X=11 <= Y[X=01)"),
using = "priors")|>
head()

multiple queries and givens, using 'given' argument
query_distribution(model,
query = list("(Y[X=11 > Y[X=01)", "(Y[X=1] < Y[X=01)"),
given = list("Y==1", "(Y[X=1] <= Y[X=01)"),
using = "priors”)|>
head()

linear queries
query_distribution(model, query = "(Y[X=1] - Y[X=01)")

Linear query conditional on potential outcomes
query_distribution(model, query = "(Y[X=1] - Y[X=0]) :|: Y[X=1]==0")

Use join_by to amend query interpretation
query_distribution(model, query = "(Y[X=.] == 1)", join_by = "&")

Probability of causation query
query_distribution(model,
query = "(Y[X=1]1 > Y[X=01)",
given = "X==1 & Y==1",
using = "priors”) |> head()

Case level probability of causation query
query_distribution(model,

query = "(Y[X=1]1 > Y[X=01)",

given = "X==1 & Y==1",

case_level = TRUE,

using = "priors")

Query posterior

update_model (model, make_data(model, n = 3)) |>

query_distribution(query = "(Y[X=1] - Y[X=0])", using = "posteriors”) |>
head()

Case level queries provide the inference for a case, which is a scalar

The case level query *updates* on the given information

For instance, here we have a model for which we are quite sure that X

causes Y but we do not know whether it works through two positive effects
or two negative effects. Thus we do not know if M=0 would suggest an

30

effect or no effect

set.seed(1)
model <-
make_model ("X -> M -> Y") |>

query_helpers

update_model(data.frame(X = rep(@:1, 8), Y = rep(0:1, 8)), iter = 10000)

Q <= "YIX=11 > Y[X=0]"
G <= "X==1 & Y==1 & M==1"

QG <- "(Y[X=11 > Y[X=01) & (X==1 & Y==1 & M==1)"

In this case these are very different:

query_distribution(model, Q, given = G, using

query_distribution(model, Q, given = G, using
case_level = TRUE)

These are equivalent:

1. Case level query via function

query_distribution(model, Q, given = G,
using = "posteriors”, case_level = TRUE)

2. Case level query by hand using Bayes' rule

query_distribution(

model,
1ist(QG = QG, G = G),
using = "posteriors"”) |>

dplyr: :summarize(mean(QG)/mean(G))

"posteriors”)[[1]1] |> mean()
"posteriors”,

query_helpers Query helpers

Description

Various helpers to describe queries or parts of queries in natural language.

Generate a statement for Y monotonic (increasing) in X

Generate a statement for Y weakly monotonic (increasing) in X

Generate a statement for Y monotonic (decreasing) in X

Generate a statement for Y weakly monotonic (not increasing) in X

Generate a statement for X1, X1 interact in the production of Y

Generate a statement for X1, X1 complement each other in the production of Y

Generate a statement for X1, X1 substitute for each other in the production of Y

Generate a statement for (Y(1) - Y(0)). This statement when applied to a model returns an element
in (1,0,-1) and not a set of cases. This is useful for some purposes such as querying a model, but
not for uses that require a list of types, such as set_restrictions.

query_helpers

Usage
increasing(X, Y)
non_decreasing(X, Y)
decreasing(X, Y)
non_increasing(X, Y)
interacts(X1, X2, Y)
complements(X1, X2, Y)

substitutes(X1, X2, Y)

te(X, Y)
Arguments
X A character. The quoted name of the input node
Y A character. The quoted name of the outcome node
X1 A character. The quoted name of the input node 1.
X2 A character. The quoted name of the input node 2.
Value

A character statement of class statement
A character statement of class statement
A character statement of class statement
A character statement of class statement
A character statement of class statement
A character statement of class statement
A character statement of class statement

A character statement of class statement

Examples

increasing('A', 'B')

non_decreasing('A', 'B')

decreasing('A', 'B')

31

32

query_model

non_increasing('A', 'B')

interacts('A', 'B', 'W')
get_query_types(model = make_model('X-> Y <- W'),
query = interacts('X', 'W', 'Y'), map = "causal_type")

complements('A', 'B', 'W")

get_query_types(model = make_model('A -> B <- C"),
query = substitutes('A', 'C', 'B'),map = "causal_type")

query_model (model = make_model('A -> B <- C"),
queries = substitutes('A', 'C', 'B'),

using = 'parameters')
te('A', 'B")
model <- make_model('X->Y') |> set_restrictions(increasing('X', 'Y"))

query_model (model, list(ate = te('X', 'Y')), wusing = 'parameters')

set_restrictions breaks with te because it requires a listing
of causal types, not numeric output.

Not run:
model <- make_model('X->Y') |> set_restrictions(te('X', 'Y'))

End(Not run)

query_model Generate data frame for batches of causal queries

Description

Calculated from a parameter vector, from a prior or from a posterior distribution.

Usage

query_model(
model,
queries = NULL,
given = NULL,
using = list("parameters”),
parameters = NULL,
stats = NULL,
n_draws = 4000,

query_model 33

expand_grid = NULL,
case_level = FALSE,

n_draws

expand_grid

case_level
query

cred
labels

Details

query = NULL,
cred = 95,
labels = NULL
)
Arguments
model A causal_model. A model object generated by make_model.
queries A vector of strings or list of strings specifying queries on potential outcomes
such as "Y[X=1] - Y[X=0]". Queries can also indicate conditioning sets by
placing second queries after a colon: "Y[X=1] - Y[X=0] :I: X=1& Y ==1".
Note a colon, *:I:* is used rather than the traditional conditioning marker ’I’ to
avoid confusion with logical operators.
given A character vector specifying given conditions for each query. A ’given’ is a
quoted expression that evaluates to logical statement. given allows the query
to be conditioned on either observed or counterfactual distributions. A value of
TRUE is interpreted as no conditioning. A given statement can alternatively be
provided after a colon in the query statement.
using A vector or list of strings. Whether to use priors, posteriors or parameters.
parameters A vector of real numbers in [0,1]. Values of parameters to specify (optional). By
default, parameters is drawn from the parameters data. frame. See inspect(model,
"parameters_df").
stats Functions to be applied to the query distribution. If NULL, defaults to mean,

standard deviation, and 95% confidence interval. Functions should return a sin-
gle numeric value.

An integer. Number of draws.

Logical. If TRUE then all combinations of provided lists are examined. If not
then each list is cycled through separately. Defaults to FALSE.

Logical. If TRUE estimates the probability of the query for a case.
alias for queries
size of the credible interval ranging between 0 and 100

labels for queries: if provided labels should have the length of the combinations
of requests

Queries can condition on observed or counterfactual quantities. Nested or "complex" counterfactual
queries of the form Y[X=1, M[X=0]] are allowed.

Value

An object of class model_query. A data frame with possible columns: model, query, given, using,
case_level, mean, sd, cred.low, cred.high. Further columns are generated as specified in stats.

34 query_model

Examples

model <- make_model("X -> Y")

query_model(model, "Y[X=1] - Y[X = @]", using = "priors")
query_model(model, "Y[X=1] - Y[X = @] :|: X==1 & Y==1", using = "priors")
query_model (model,
list("Y[X=11 - Y[X = 01",
"Y[X=1] - Y[X = @] :|: X==1 & Y==1"),
using = "priors")

query_model(model, "Y[X=1] > Y[X = @]", using = "parameters")
query_model (model, "Y[X=11 > Y[X = @]", using = c("priors”, "parameters"))

~expand_grid= TRUE"~ requests the Cartesian product of arguments

models <- list(
M1 = make_model("X -> Y"),
M2 = make_model ("X -> Y") |>
set_restrictions("Y[X=1] < Y[X=0]")
)

No expansion: lists should be equal length
query_model (
models,
query = list(ATE = "Y[X=1] - Y[X=0]",
Share_positive = "Y[X=1] > Y[X=0]1"),
given = c(TRUE, "Y==1 & X==1"),
using = c("parameters”, "priors"),
expand_grid = FALSE)

Expansion when query and given arguments coupled
query_model (

models,
query = list(ATE = "Y[X=1] - Y[X=0]",

Share_positive = "Y[X=1] > Y[X=0] :|: Y==1 & X==1"),
using = c("parameters”, "priors"),

expand_grid = TRUE)

Expands over query and given argument when these are not coupled
query_model(

models,

query = list(ATE = "Y[X=1] - Y[X=e]",

Share_positive = "Y[X=1] > Y[X=01"),

given = c(TRUE, "Y==1 & X==1"),

using = c("parameters”, "priors"),

expand_grid = TRUE)

An example of a custom statistic: uncertainty of token causation
f <- function(x) mean(x)*(1-mean(x))

query_model (
model,
using = list("parameters”, "priors"),

realise_outcomes 35

query = "Y[X=11 > Y[X=0]1",
stats = c(mean = mean, sd = sd, token_variance = f))

realise_outcomes Realise outcomes

Description

Realise outcomes for all causal types. Calculated by sequentially calculating endogenous nodes.
If a do operator is applied to any node then it takes the given value and all its descendants are
generated accordingly.

Usage

realise_outcomes(model, dos = NULL, node = NULL, add_rownames = TRUE)

Arguments
model A causal_model. A model object generated by make_model.
dos A named list. Do actions defining node values, e.g., list(X=0, M=1).
node A character. An optional quoted name of the node whose outcome should be

revealed. If specified all values of parents need to be specified via dos.

add_rownames logical indicating whether to add causal types as rownames to the output

Details

If a node is not specified all outcomes are realised for all possible causal types consistent with the
model. If a node is specified then outcomes of Y are returned conditional on different values of
parents, whether or not these values of the parents obtain given restrictions under the model.

realise_outcomes starts off by creating types (via get_nodal_types). It then takes types of
endogenous and reveals their outcome based on the value that their parents took. Exogenous nodes
outcomes correspond to their type.

Value

A data. frame object of revealed data for each node (columns) given causal / nodal type (rows).

Examples

make_model("X -> Y") |>
realise_outcomes()

make_model ("X -> Y <= W") |>
set_restrictions(labels = list(X = "1", Y="0010"),
keep = TRUE) |>

36

realise_outcomes()

make_model ("X1->Y; X2->M; M->Y") |>
realise_outcomes(dos = list(X1 =1, M = 0))

With node specified
make_model ("X->M->Y") |>

realise_outcomes(node = "Y")

make_model ("X->M->Y") |>

set_confound

realise_outcomes(dos = list(M = 1), node = "Y")
set_confound Set confound
Description

Adjust parameter matrix to allow confounding.

Usage

set_confound(model, confound = NULL)

Arguments
model A causal_model. A model object generated by make_model.
confound A list of statements indicating pairs of nodes whose types are jointly dis-
tributed (e.g. list("A <->B", "C <->D")).
Details

Confounding between X and Y arises when the nodal types for X and Y are not independently
distributed. In the X -> Y graph, for instance, there are 2 nodal types for X and 4 for Y. There are

thus 8 joint nodal types:

I | t*X I I

el el | ==mmmmm oo — |
| | | @ | 1 | Sum

e R B | =mmmmmmmmmmoonoooe — |
| t*Y | 00 | Pr(t*"X=0 & t*"Y=00) | Pr(t*X=1 & t*Y=00) | Pr(t"Y=00) |
I | 10 | I I

I | o1 | I I

I [11 | I I

e R B | =mmmmmmmmmeomoeee E—
| [Sum | Pr(t*X=0) | Pr(t*"X=1) | 1

set_confound 37

This table has 8 interior elements and so an unconstrained joint distribution would have 7 degrees
of freedom. A no confounding assumption means that Pr(t*"X | t"Y) = Pr(t*X), or Pr(t"X, t"\Y) =
Pr(t*X)Pr(t"Y). In this case there would be 3 degrees of freedom for Y and 1 for X, totaling 4 rather
than 7.

set_confound lets you relax this assumption by increasing the number of parameters characterizing
the joint distribution. Using the fact that P(A,B) = P(A)P(BIA) new parameters are introduced to
capture P(BIA=a) rather than simply P(B). For instance here two parameters (and one degree of
freedom) govern the distribution of types X and four parameters (with 3 degrees of freedom) govern
the types for Y given the type of X for a total of 1+3+3 = 7 degrees of freedom.

Value

An object of class causal_model with updated parameters_df and parameter matrix.

See Also

Other set: set_prior_distribution(), set_restrictions()

Examples

make_model('X -> Y; X <->Y') |>
inspect("parameters™)

make_model('X -=> M -> Y; X <->Y"') |>
inspect("parameters")

model <- make_model('X -> M ->Y; X <> Y; M<->Y")
inspect(model, "parameters_df")

Example where set_confound is implemented after restrictions
make_model("A -> B -> C") |>

set_restrictions(increasing("A", "B")) |>

set_confound("B <-> C") |>

inspect("parameters")

Example where two parents are confounded

make_model('A -> B <- C; A <> C") [|>
set_parameters(node = "C", c(0.05, .95, .95, 0.05)) |>
make_data(n = 50) |>
cor()

Example with two confounds, added sequentially

model <- make_model('A -> B -> C') |>
set_confound(list("A <-> B", "B <-> C"))

inspect(model, "statement")

plot(model)

38

set_restrictions

set_prior_distribution
Add prior distribution draws

Description

Add ‘n_param x n_draws‘ database of possible parameter draws to the model.

Usage

set_prior_distribution(model, n_draws = 4000)

Arguments
model A causal_model. A model object generated by make_model.
n_draws A scalar. Number of draws.

Value

An object of class causal_model with the ‘prior_distribution® attached to it.

See Also

Other set: set_confound(), set_restrictions()

Examples

make_model('X -> Y') |>
set_prior_distribution(n_draws = 5) |>
inspect("prior_distribution™)

set_restrictions Restrict a model

Description

Restrict a model’s parameter space. This reduces the number of nodal types and in consequence the

number of unit causal types.

set_restrictions

Usage

39

set_restrictions(

model,

statement = NULL,

llln

join_by =

’

labels = NULL,
param_names = NULL,

given = NULL,
keep = FALSE

Arguments

model

statement

join_by

labels

param_names

given

keep

Details

A causal_model. A model object generated by make_model.

A quoted expressions defining the restriction. If values for some parents are not
specified, statements should be surrounded by parentheses, for instance (Y[A =
11 > Y[A=0]) will be interpreted for all combinations of other parents of Y set
at possible levels they might take.

A string. The logical operator joining expanded types when statement contains
wildcard (.). Can take values '&' (logical AND) or '|' (logical OR). When
restriction contains wildcard (.) and join_by is not specified, it defaultsto ' | ',
otherwise it defaults to NULL. Note that join_by joins within statements, not
across statements.

A list of character vectors specifying nodal types to be kept or removed from the
model. Use get_nodal_types to see syntax. Note that labels gets overwritten
by statement if statement is not NULL.

A character vector of names of parameters to restrict on.

A character vector or list of character vectors specifying nodes on which the
parameter set to be restricted depends. When restricting by statement, given
must either be NULL or of the same length as statement. When mixing state-
ments that are further restricted by given and ones that are not, statements with-
out given restrictions should have given specified as one of NULL, NA, "" or "

Logical. If ‘FALSE‘, removes and if “TRUE* keeps only causal types specified
by statement or labels.

Restrictions are made to nodal types, not to unit causal types. Thus for instance in a model X -> M ->
Y, one cannot apply a simple restriction so that Y is nondecreasing in X, however one can restrict so
that M is nondecreasing in X and Y nondecreasing in M. To have a restriction that Y be nondecreasing
in X would otherwise require restrictions on causal types, not nodal types, which implies a form of
undeclared confounding (i.e. that in cases in which M is decreasing in X, Y is decreasing in M).

Since restrictions are to nodal types, all parents of a node are implicitly fixed. Thus for model
make_model ("X ->Y <- W™) the request set_restrictions(" (Y[X=1]==0)") is interpreted as
set_restrictions(" (Y[X=1, W=0] ==0 | Y[X=1, W=11==10)").

40 set_restrictions

Statements with implicitly controlled nodes should be surrounded by parentheses, as in these ex-
amples.

Note that prior probabilities are redistributed over remaining types.

Value

An object of class model. The causal types and nodal types in the model are reduced according to
the stated restriction.

See Also

Other set: set_confound(), set_prior_distribution()

Examples

1. Restrict parameter space using statements
model <- make_model('X->Y') |>
set_restrictions(statement = c('X[] == 0'))

model <- make_model('X->Y') |>
set_restrictions(non_increasing('X', 'Y'))

model <- make_model('X ->Y <= W') |>
set_restrictions(c(decreasing('X"', 'Y'), substitutes('X', 'W', 'Y"')))

inspect(model, "parameters_df")

model <- make_model('X->Y <= W') |>
set_restrictions(statement = decreasing('X', 'Y"))
inspect(model, "parameters_df")

model <- make_model('X->Y') [>
set_restrictions(decreasing('X', 'Y'"))
inspect(model, "parameters_df")

model <- make_model('X->Y') |>
set_restrictions(c(increasing('X"', 'Y'), decreasing('X"', 'Y')))
inspect(model, "parameters_df")

Restrict to define a model with monotonicity
model <- make_model('X->Y') |>
set_restrictions(statement = c('Y[X=1] < Y[X=0]1'))
inspect(model, "parameter_matrix")

Restrict to a single type in endogenous node

model <- make_model('X->Y') |>

set_restrictions(statement = '(Y[X = 1] == 1)', join_by = '&', keep = TRUE)
inspect(model, "parameter_matrix")

Use of | and &
Keep node if xfor some value of Bx Y[A = 1] ==
model <- make_model('A->Y<-B') |>

summary.causal_model

set_restrictions(statement = '(Y[A = 1] == 1)', join_by
dim(inspect(model ,"parameter_matrix"))

Keep node if xfor all values of Bx Y[A = 1] ==

model <- make_model('A->Y<-B') |>
set_restrictions(statement = '(Y[A = 1] == 1)', join_by
dim(inspect(model, "parameter_matrix"))

Restrict multiple nodes

model <- make_model('X->Y<-M; X -> M') |>

set_restrictions(statement = c('(Y[X = 1] == 1)', "(M[X
join_by = '&', keep = TRUE)

inspect(model, "parameter_matrix")

Restrict using statements and given:
model <- make_model("X ->Y -> Z; X <-> Z") |>

set_restrictions(list(decreasing('X"','Y"), decreasing('Y','Z")),

given = c(NA, 'X.0"))
inspect(model, "parameter_matrix")

Restrictions on levels for endogenous nodes aren't allowed

Not run:
model <- make_model('X->Y') |>
set_restrictions(statement = '(Y == 1)")

End(Not run)

2. Restrict parameter space Using labels:
model <- make_model('X->Y') |>
set_restrictions(labels = list(X = '@', Y = '00'))

Restrictions can be with wildcards
model <- make_model('X->Y') |>
set_restrictions(labels = list(Y = '?0'))
inspect(model, "parameter_matrix")

Deterministic model

model <- make_model('S -> C -> Y <- R<- X; X ->C ->R")

set_restrictions(labels = 1ist(C = '1000', R = '0001', Y
keep = TRUE)

inspect(model, "parameter_matrix")

Restrict using labels and given:

model <- make_model("X ->Y -> Z; X <-> Z") |>
set_restrictions(labels = list(X = '@', Z = '00'), given
inspect(model, "parameter_matrix")

|>

"|'", keep = TRUE)
'&', keep = TRUE)
11 = 1",
'0001"),
c(NA,'X.0"))

41

summary.causal_model Summarizing causal models

42 summary.causal_model

Description

summary method for class "causal_model".

Usage

S3 method for class 'causal_model'
summary(object, include = NULL, ...)

S3 method for class 'summary.causal_model'’

print(x, what = NULL, ...)

Arguments
object An object of causal_model class produced using make_model or update_model.
include A character string specifying the additional objects to include in summary. De-

faults to NULL. See details for full list of available values.
Further arguments passed to or from other methods.
X An object of summary. causal_model class, produced using summary . causal_model.

what A character string specifying the objects summaries to print. Defaults to NULL
printing causal statement, specification of nodal types and summary of model
restrictions. See details for full list of available values.

Details

In addition to the default objects included in ‘summary.causal_model‘ users can request additional
objects via ‘include‘ argument. Note that these additional objects can be large for complex models
and can increase computing time. The ‘include‘ argument can be a vector of any of the following
additional objects:

* "parameter_matrix” A matrix mapping from parameters into causal types,

* "parameter_mapping"” a matrix mapping from parameters into data types,

* "causal_types" A data frame listing causal types and the nodal types that produce them,

* "prior_distribution” A data frame of the parameter prior distribution,

* "ambiguities_matrix"” A matrix mapping from causal types into data types,

e "type_prior” A matrix of type probabilities using priors.
print.summary.causal_model reports causal statement, full specification of nodal types and sum-
mary of model restrictions. By specifying ‘what® argument users can instead print a custom sum-
mary of any set of the following objects contained in the ‘summary.causal_model‘:

* "statement” A character string giving the causal statement,

* "nodes” A list containing the nodes in the model,

* "parents” A list of parents of all nodes in a model,

* "parents_df" A data frame listing nodes, whether they are root nodes or not, and the number
and names of parents they have,

* "parameters” A vector of ’true’ parameters,

summary.causal_model 43

* "parameters_df"” A data frame containing parameter information,

* "parameter_names” A vector of names of parameters,

* "parameter_mapping” A matrix mapping from parameters into data types,

* "parameter_matrix” A matrix mapping from parameters into causal types,

* "causal_types" A data frame listing causal types and the nodal types that produce them,

* "nodal_types"” A list with the nodal types of the model,

* "data_types"” A list with the all data types consistent with the model; for options see ?get_all_data_types,

* "prior_hyperparameters” A vector of alpha values used to parameterize Dirichlet prior dis-
tributions; optionally provide node names to reduce output inspect(prior_hyperparameters,
("M, YD)

e "prior_distribution” A data frame of the parameter prior distribution,

* "prior_event_probabilities"” A vector of data (event) probabilities given a single (speci-
fied) parameter vector; for options see ?get_event_probabilities,

* "ambiguities_matrix"” A matrix mapping from causal types into data types,

* "type_prior” A matrix of type probabilities using priors,

* "type_posterior"” A matrix of type probabilities using posteriors,

* "posterior_distribution” A data frame of the parameter posterior distribution,

* "posterior_event_probabilities” A sample of data (event) probabilities from the poste-
rior,

* "data" A data frame with data that was used to update model,
* "stanfit” A ‘stanfit® object generated by Stan,

* "stan_summary"” A ‘stanfit* summary with updated parameter names.

Value

Returns the object of class summary . causal_model that preserves the list structure of causal_model
class and adds the following additional objects:
* "parents” alist of parents of all nodes in a model,
* "parameters” a vector of ’true’ parameters,
* "parameter_names" a vector of names of parameters,
* "data_types" alist with the all data types consistent with the model; for options see ?get_all_data_types,

* "prior_event_probabilities” a vector of prior data (event) probabilities given a parameter
vector; for options see ?get_event_probabilities,

* "prior_hyperparameters” a vector of alpha values used to parameterize Dirichlet prior dis-
tributions; optionally provide node names to reduce output inspect (prior_hyperparameters,
("M, YD)

44

Examples

model <-
make_model ("X -> Y")

model |>
update_model(
keep_event_probabilities
keep_fit = TRUE,

= TRUE,

data = make_data(model, n = 100)

) 1>

summary ()

model <-
make_model ("X -> Y")

model <-
model |>
update_model (
keep_event_probabilities
keep_fit = TRUE,

= TRUE,

data = make_data(model, n = 100)

)

print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =
print(summary(model), what =

Large objects have to be added to the summary before printing

print(summary(model, include

"type_posterior")
"posterior_distribution”)
"posterior_event_probabilities")
"data_types")
"prior_hyperparameters")
c("statement”, "nodes"))
"parameters_df")
"posterior_event_probabilities”)
"posterior_distribution")
"data")

"stanfit")

"type_posterior"”)

= "ambiguities_matrix"),

what = "ambiguities_matrix")

summary.model_query

summary.model_query

Summarizing model queries

Description

summary method for class "model_query".

update_model 45

Usage

S3 method for class 'model_query'
summary(object, ...)

S3 method for class 'summary.model_query'

print(x, ...)
Arguments
object An object of model_query class produced using query_model
Further arguments passed to or from other methods.
X an object of model_query class produced using query_model
Value

Returns the object of class summary.model_query

Examples

model <-
make_model ("X -> Y") |>
query_model("Y[X=1] > Y[X=11") |>
summary ()

update_model Fit causal model using ’stan’

Description

Takes a model and data and returns a model object with data attached and a posterior model

Usage
update_model (
model,
data = NULL,

data_type = NULL,
keep_type_distribution = TRUE,
keep_event_probabilities = FALSE,
keep_fit = FALSE,

censored_types = NULL,

46

Arguments

model

data

data_type

update_model

A causal_model. A model object generated by make_model.

A data.frame. Data of nodes that can take three values: 0, 1, and NA. In long
form as generated by make_events

Either ’long’ (as made by make_data) or ’compact’ (as made by collapse_data).
Compact data must have entries for each member of each strategy family to
produce a valid simplex. When long form data is provided with missingness,
missing data is assumed to be missing at random.

keep_type_distribution

Logical. Whether to keep the (transformed) distribution of the causal types.
Defaults to “TRUE®

keep_event_probabilities

keep_fit

censored_types

Value

Logical. Whether to keep the (transformed) distribution of event probabilities.
Defaults to ‘FALSE®

Logical. Whether to keep the stanfit object produced by sampling for further
inspection. See ?stanfit for more details. Defaults to ‘FALSE‘. Note the
stanfit object has internal names for parameters (lambda), event probabilities
(w), and the type distribution (types)

vector of data types that are selected out of the data, e.g. c("X0Y0")

Options passed onto sampling call. For details see ?rstan: :sampling

An object of class causal_model with posterior distribution on parameters and other elements
generated by updating; all elements accessible via get and inspect.

See Also

make_model to create a new model, summary.causal_model provides a summary method for out-
put objects of class causal_model

Examples

model <- make_model('X->Y")

data_long <- make_data(model, n = 4)
data_short <- collapse_data(data_long, model)
model <- update_model(model, data_long)
model <- update_model(model, data_short)

It is possible to implement updating without data, in which
case the posterior is a stan object that reflects the prior

update_model (model)

Not run:

Censored data types illustrations
Here we update less than we might because we are aware of filtered data

update_model 47

data <- data.frame(X=rep(@:1, 10), Y=rep(0:1,10))
uncensored <-

make_model ("X->Y") |>

update_model (data) |>

query_model (te("X", "Y"), using = "posteriors")

censored <-
make_model ("X->Y") |>
update_model (
data,
censored_types = c("X1Y0")) |>
query_model (te("X", "Y"), using = "posteriors")

Censored data: We learn nothing because the data
we see is the only data we could ever see
make_model ("X->Y") |>
update_model (
data,
censored_types = c("X1YQ", "XQYQ", "XoY1")) |[>
query_model (te("X", "Y"), using = "posteriors")

End(Not run)

Index

x data_generation
data_helpers, 4
get_all_data_types, 10

x datasets
democracy_data, 8
institutions_data, 16
lipids_data, 17

* parameters
parameter_setting, 20

* priors
prior_setting, 24

* set
set_confound, 36
set_prior_distribution, 38
set_restrictions, 38

* statements
query_helpers, 30

CausalQueries (CausalQueries-package), 3
CausalQueries-package, 3
collapse_data, 46

collapse_data (data_helpers), 4
complements (query_helpers), 30

data_helpers, 4, 10

decreasing (query_helpers), 30
democracy_data, 8
draw_causal_type, 9

expand_data (data_helpers), 4

get, 46

get_all_data_types, 6, 10
get_event_probabilities, 11
get_parameters (parameter_setting), 20
get_priors (prior_setting), 24
get_query_types, 12

grab (inspection), 13

increasing (query_helpers), 30
inspect, 46

48

inspect (inspection), 13
inspection, 13
institutions_data, 16
interacts (query_helpers), 30
interpret_type, 16

lipids_data, 17

make_data, 4, 46

make_data (data_helpers), 4

make_data_single, 6, 10

make_events, 5, 46

make_events (data_helpers), 4

make_model, 5, 9-12, 14, 17, 18, 21, 23, 28,
33, 35, 36, 38, 39,42, 46

make_parameters, 20

make_parameters (parameter_setting), 20

make_priors, 20, 21

make_priors (prior_setting), 24

non_decreasing (query_helpers), 30
non_increasing (query_helpers), 30

observe_data, 6, 10

parameter_setting, 20
print.causal_model, 23
print.model_query, 24
print.summary.causal_model
(summary.causal_model), 41
print.summary.model_query
(summary.model_query), 44
prior_setting, 24

query_distribution, 27
query_helpers, 30
query_model, 32

realise_outcomes, 35

sampling, 46

INDEX 49

set_confound, 36, 38, 40
set_parameters, 9, 19

set_parameters (parameter_setting), 20
set_prior_distribution, 37, 38, 40
set_priors, 19

set_priors (prior_setting), 24
set_restrictions, 19, 37, 38, 38
substitutes (query_helpers), 30
summary.causal_model, 19, 41, 46
summary .model_query, 44

te (query_helpers), 30

update_model, 23, 42, 45

	CausalQueries-package
	data_helpers
	democracy_data
	draw_causal_type
	get_all_data_types
	get_event_probabilities
	get_query_types
	inspection
	institutions_data
	interpret_type
	lipids_data
	make_model
	parameter_setting
	print.causal_model
	print.model_query
	prior_setting
	query_distribution
	query_helpers
	query_model
	realise_outcomes
	set_confound
	set_prior_distribution
	set_restrictions
	summary.causal_model
	summary.model_query
	update_model
	Index

