
Package ‘BART’
January 24, 2026

Type Package

Title Bayesian Additive Regression Trees

Version 2.9.10

Date 2026-01-24

Author Robert McCulloch [aut],
Rodney Sparapani [aut, cre],
Robert Gramacy [ctb],
Matthew Pratola [ctb],
Charles Spanbauer [ctb],
Martyn Plummer [ctb],
Nicky Best [ctb],
Kate Cowles [ctb],
Karen Vines [ctb]

Maintainer Rodney Sparapani <rsparapa@mcw.edu>

Description Bayesian Additive Regression Trees (BART) provide flexible nonparametric model-
ing of covariates for continuous, binary, categorical and time-to-event outcomes. For more infor-
mation see Sparapani, Spanbauer and McCulloch <doi:10.18637/jss.v097.i01>.

License GPL (>= 2)

Depends R (>= 3.6), nlme, survival

Imports Rcpp (>= 0.12.3), parallel, tools

LinkingTo Rcpp

Suggests MASS, knitr, rmarkdown, rpart, rpart.plot

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-24 17:20:02 UTC

Contents
BART-package . 3
abart . 4

1

https://doi.org/10.18637/jss.v097.i01

2 Contents

ACTG175 . 8
alligator . 10
arq . 12
bartModelMatrix . 13
bladder . 14
class.ind . 16
crisk.bart . 17
crisk.pre.bart . 23
crisk2.bart . 25
draw_lambda_i . 31
gbart . 31
gewekediag . 36
lbart . 38
leukemia . 44
lung . 45
mbart . 46
mbart2 . 50
mc.cores.openmp . 54
mc.crisk.pwbart . 55
mc.crisk2.pwbart . 58
mc.lbart . 61
mc.pbart . 65
mc.surv.pwbart . 69
mc.wbart . 73
mc.wbart.gse . 76
pbart . 78
predict.crisk2bart . 83
predict.criskbart . 86
predict.lbart . 88
predict.mbart . 91
predict.pbart . 94
predict.recurbart . 96
predict.survbart . 99
predict.wbart . 101
pwbart . 103
recur.bart . 105
recur.pre.bart . 110
rs.pbart . 114
rtgamma . 119
rtnorm . 120
spectrum0ar . 121
srstepwise . 122
stratrs . 123
surv.bart . 124
surv.pre.bart . 129
transplant . 131
wbart . 132
xdm20.test . 136

BART-package 3

xdm20.train . 137
ydm20.train . 139

Index 140

BART-package Bayesian Additive Regression Trees

Description

To avoid duplication, the main references that this package relies upon appear here only. For more
information see Sparapani, Spanbauer and McCulloch <doi:10.18637/jss.v097.i01>.

References

Sparapani R., Spanbauer C. and McCulloch R. (2021) Nonparametric Machine Learning and Effi-
cient Computation with Bayesian Additive Regression Trees: The BART R Package. JSS, 97, 1-66.
<doi:10.18637/jss.v097.i01>.

Chipman H., George E. and McCulloch R. (1998) Bayesian CART Model Search. JASA, 93, 935-
948. <doi:10.1080/01621459.1998.10473750>.

Chipman H., George E., and McCulloch R. (2010) Bayesian Additive Regression Trees. Annals of
Applied Statistics, 4, 266-298. <doi:10.1214/09-AOAS285>.

Sparapani R., Logan B., McCulloch R. and Laud P. (2016) Nonparametric Survival Analysis Using
Bayesian Additive Regression Trees (BART). Statistics in Medicine, 35, 2741-2753. <doi:10.1002/sim.6893>.

Sparapani R., Logan B., McCulloch R. and Laud P. (2020) Nonparametric Competing Risks Analy-
sis Using Bayesian Additive Regression Trees (BART). SMMR, 29, 57-77. <doi:10.1177/0962280218822140>.

Sparapani R., Rein L., Tarima S., Jackson T. and Meurer J. (2020) Non-Parametric Recurrent Events
Analysis with BART and an Application to the Hospital Admissions of Patients with Diabetes.
Biostatistics, 21, 69-85. <doi:10.1093/biostatistics/kxy032>.

Gramacy R. and Polson N. (2012) Simulation-based regularized logistic regression. Bayesian Anal-
ysis, 7, 567-590. <doi:10.1214/12-ba719>.

Albert J. and Chib S. (1993) Bayesian Analysis of Binary and Polychotomous Response Data.
JASA, 88, 669-679. <doi:10.1080/01621459.1993.10476321>.

De Waal T., Pannekoek J. and Scholtus S. (2011) Handbook of statistical data editing and imputa-
tion. John Wiley & Sons, Hoboken, NJ.

Friedman J. (1991) Multivariate adaptive regression splines. Annals of Statistics, 19, 1-67.

Friedman J. (2001) Greedy Function Approximation: A Gradient Boosting Machine. Annals of
Statistics, 29, 1189-1232.

Holmes C. and Held L. (2006) Bayesian auxiliary variable models for binary and multinomial re-
gression. Bayesian Analysis, 1, 145-168. <doi:10.1214/06-ba105>.

Linero A. (2018) Bayesian regression trees for high dimensional prediction and variable selection.
JASA, 113, 626-636. <doi:10.1080/01621459.2016.1264957>.

4 abart

abart AFT BART for time-to-event outcomes

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

abart(
x.train, times, delta,
x.test=matrix(0,0,0), K=100,
type='abart', ntype=1,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
sigest=NA, sigdf=3, sigquant=0.90,
k=2, power=2, base=0.95,

lambda=NA, tau.num=c(NA, 3, 6)[ntype],
offset=NULL, w=rep(1, length(times)),
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,

ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
mc.cores = 1L, ## mc.abart only
nice = 19L, ## mc.abart only
seed = 99L ## mc.abart only

)

mc.abart(
x.train, times, delta,
x.test=matrix(0,0,0), K=100,
type='abart', ntype=1,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,

abart 5

sigest=NA, sigdf=3, sigquant=0.90,
k=2, power=2, base=0.95,

lambda=NA, tau.num=c(NA, 3, 6)[ntype],
offset=NULL, w=rep(1, length(times)),

ntree=c(200L, 50L, 50L)[ntype], numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
mc.cores = 2L, nice = 19L, seed = 99L

)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q > 2 and one dummy created if q = 2 where q is the
number of levels of the factor. abart will generate draws of f(x) for each x
which is a row of x.train.

times The time of event or right-censoring.
If y.train is NULL, then times (and delta) must be provided.

delta The event indicator: 1 is an event while 0 is censored.
If y.train is NULL, then delta (and times) must be provided.

x.test Explanatory variables for test (out of sample) data. Should have same structure
as x.train. abart will generate draws of f(x) for each x which is a row of
x.test.

K If provided, then coarsen times per the quantiles 1/K, 2/K, ...,K/K.

type You can use this argument to specify the type of fit. 'abart' for AFT BART.

ntype The integer equivalent of type where 'abart' is 1.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

6 abart

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.

sigest The prior for the error variance (sigma2) is inverted chi-squared (the standard
conditionally conjugate prior). The prior is specified by choosing the degrees of
freedom, a rough estimate of the corresponding standard deviation and a quantile
to put this rough estimate at. If sigest=NA then the rough estimate will be the
usual least squares estimator. Otherwise the supplied value will be used. Not
used if y is binary.

sigdf Degrees of freedom for error variance prior. Not used if y is binary.

sigquant The quantile of the prior that the rough estimate (see sigest) is placed at. The
closer the quantile is to 1, the more aggresive the fit will be as you are putting
more prior weight on error standard deviations (sigma) less than the rough es-
timate. Not used if y is binary.

k For numeric y, k is the number of prior standard deviations E(Y |x) = f(x) is
away from +/-0.5. For binary y, k is the number of prior standard deviations
f(x) is away from +/-3. The bigger k is, the more conservative the fitting will
be.

power Power parameter for tree prior.

base Base parameter for tree prior.

lambda The scale of the prior for the variance. Not used if y is binary.

tau.num The numerator in the tau definition, i.e., tau=tau.num/(k*sqrt(ntree)).

offset Continous BART operates on y.train centered by offset which defaults to
mean(y.train). With binary BART, the centering is P (Y = 1|x) = F (f(x)+
offset) where offset defaults to F^{-1}(mean(y.train)). You can use the
offset parameter to over-ride these defaults.

w Vector of weights which multiply the standard deviation. Not used if y is binary.

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if
given, this is used for all variables. Otherwise a vector with length equal to
ncol(x.train) is required, where the ith element gives the number of c used
for the ith variable in x.train. If usequants is false, numcut equally spaced
cutoffs are used covering the range of values in the corresponding column of
x.train. If usequants is true, then min(numcut, thenumberofuniquevaluesinthecorrespondingcolumnsofx.train−
1) values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

printevery As the MCMC runs, a message is printed every printevery draws.

keepevery Every keepevery draw is kept to be returned to the user.

abart 7

transposed When running abart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.abart.

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is a Bayesian MCMC method. At each MCMC interation, we produce a draw from the joint
posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data,
x.train or the test data, x.test.

Value

abart returns an object of type abart which is essentially a list. In the numeric y case, the list has
components:

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.
yhat.train.mean

train data fits = mean of yhat.train columns.

yhat.test.mean test data fits = mean of yhat.test columns.

sigma post burn in draws of sigma, length = ndpost.

first.sigma burn-in draws of sigma.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

sigest The rough error standard deviation (σ) used in the prior.

See Also

wbart

Examples

N = 1000
P = 5 #number of covariates
M = 8

8 ACTG175

set.seed(12)
x.train=matrix(runif(N*P, -2, 2), N, P)
mu = x.train[, 1]^3
y=rnorm(N, mu)
offset=mean(y)
T=exp(y)
C=rexp(N, 0.05)
delta=(T<C)*1
table(delta)/N
times=(T*delta+C*(1-delta))

##test BART with token run to ensure installation works
set.seed(99)
post1 = abart(x.train, times, delta, nskip=5, ndpost=10)

Not run:

post1 = mc.abart(x.train, times, delta,
mc.cores=M, seed=99)

post2 = mc.abart(x.train, times, delta, offset=offset,
mc.cores=M, seed=99)

Z=8

plot(mu, post1$yhat.train.mean, asp=1,
xlim=c(-Z, Z), ylim=c(-Z, Z))

abline(a=0, b=1)

plot(mu, post2$yhat.train.mean, asp=1,
xlim=c(-Z, Z), ylim=c(-Z, Z))

abline(a=0, b=1)

plot(post1$yhat.train.mean, post2$yhat.train.mean, asp=1,
xlim=c(-Z, Z), ylim=c(-Z, Z))

abline(a=0, b=1)

End(Not run)

ACTG175 AIDS Clinical Trials Group Study 175

Description

ACTG 175 was a randomized clinical trial to compare monotherapy with zidovudine or didanosine
with combination therapy with zidovudine and didanosine or zidovudine and zalcitabine in adults
infected with the human immunodeficiency virus type I whose CD4 T cell counts were between
200 and 500 per cubic millimeter.

ACTG175 9

Usage

data(ACTG175)

Format

A data frame with 2139 observations on the following 27 variables:

pidnum patien ID number
age age in years at baseline
wtkg weight in kg at baseline
hemo hemophilia (0=no, 1=yes)
homo homosexual activity (0=no, 1=yes)
drugs history of intravenous drug use (0=no, 1=yes)
karnof Karnofsky score (on a scale of 0-100)
oprior non-zidovudine antiretroviral therapy prior to initiation of study treatment (0=no, 1=yes)
z30 zidovudine use in the 30 days prior to treatment initiation (0=no, 1=yes)
zprior zidovudine use prior to treatment initiation (0=no, 1=yes)
preanti number of days of previously received antiretroviral therapy
race race (0=white, 1=non-white)
gender gender (0=female, 1=male)
str2 antiretroviral history (0=naive, 1=experienced)
strat antiretroviral history stratification (1=’antiretroviral naive’, 2=’> 1 but <= 52 weeks of prior

antiretroviral therapy’, 3=’> 52 weeks’)
symptom symptomatic indicator (0=asymptomatic, 1=symptomatic)
treat treatment indicator (0=zidovudine only, 1=other therapies)
offtrt indicator of off-treatment before 96+/-5 weeks (0=no,1=yes)
cd40 CD4 T cell count at baseline
cd420 CD4 T cell count at 20+/-5 weeks
cd496 CD4 T cell count at 96+/-5 weeks (=NA if missing)
r missing CD4 T cell count at 96+/-5 weeks (0=missing, 1=observed)
cd80 CD8 T cell count at baseline
cd820 CD8 T cell count at 20+/-5 weeks
cens indicator of observing the event in days

days number of days until the first occurrence of: (i) a decline in CD4 T cell count of at least 50
(ii) an event indicating progression to AIDS, or (iii) death.

arms treatment arm (0=zidovudine, 1=zidovudine and didanosine, 2=zidovudine and zalcitabine,
3=didanosine).

Details

The variable days contains right-censored time-to-event observations. The data set includes the fol-
lowing post-randomization covariates: CD4 and CD8 T cell count at 20+/-5 weeks and the indicator
of whether or not the patient was taken off-treatment before 96+/-5 weeks.

10 alligator

References

Hammer SM, et al. (1996) A trial comparing nucleoside monotherapy with combination therapy
in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. New England
Journal of Medicine 335, 1081-1090.

alligator American alligator Food Choice

Description

In 1985, American alligators were harvested by hunters from August 26 to September 30 in peninsu-
lar Florida from lakes Oklawaha (Putnam County), George (Putnam and Volusia counties), Hancock
(Polk County) and Trafford (Collier County). Lake, length and sex were recorded for each alligator.
Stomachs from a sample of alligators 1.09-3.89m long were frozen prior to analysis. After thawing,
stomach contents were removed and separated and food items were identified and tallied. Volumes
were determined by water displacement. The stomach contents of 219 alligators were classified into
five categories of primary food choice: Fish (the most common primary food choice), Invertebrate
(snails, insects, crayfish, etc.), Reptile (turtles, alligators), Bird, and Other (amphibians, plants,
household pets, stones, and other debris).

Usage

data(alligator)

Format

A data frame with 80 observations on the following 5 variables.

lake a factor with levels George Hancock Oklawaha Trafford

sex a factor with levels female male
size alligator size, a factor with levels large (>2.3m) small (<=2.3m)
food primary food choice, a factor with levels bird fish invert other reptile

count cell frequency, a numeric vector

Details

The table contains a fair number of 0 counts. food is the response variable. fish is the most
frequent choice, and often taken as a baseline category in multinomial response models.

Source

Agresti, A. (2002). Categorical Data Analysis, New York: Wiley, 2nd Ed., Table 7.1

References

Delany MF, Linda SB, Moore CT (1999). "Diet and condition of American alligators in 4 Florida
lakes." In Proceedings of the Annual Conference of the Southeastern Association of Fish and
Wildlife Agencies, 53, 375–389.

alligator 11

Examples

data(alligator)

Not run:
library(nnet)
nnet::multinom Multinomial logit model fit with neural nets
fit <- multinom(food ~ lake+size+sex, data=alligator, weights=count)

summary(fit$fitted.values)
1=bird, 2=fish, 3=invert, 4=other, 5=reptile

(L=length(alligator$count))
(N=sum(alligator$count))
y.train=integer(N)
x.train=matrix(nrow=N, ncol=3)
x.test=matrix(nrow=L, ncol=3)
k=1
for(i in 1:L) {

x.test[i,]=as.integer(
c(alligator$lake[i], alligator$size[i], alligator$sex[i]))

if(alligator$count[i]>0)
for(j in 1:alligator$count[i]) {

y.train[k]=as.integer(alligator$food[i])
x.train[k,]=as.integer(

c(alligator$lake[i], alligator$size[i], alligator$sex[i]))
k=k+1

}
}
table(y.train)
##test mbart with token run to ensure installation works
set.seed(99)
check = mbart(x.train, y.train, nskip=1, ndpost=1)

set.seed(99)
check = mbart(x.train, y.train, nskip=1, ndpost=1)
post=mbart(x.train, y.train, x.test)

##post=mc.mbart(x.train, y.train, x.test, mc.cores=8, seed=99)
##check=predict(post, x.test, mc.cores=8)
##print(cor(post$prob.test.mean, check$prob.test.mean)^2)

par(mfrow=c(3, 2))
K=5
for(j in 1:5) {

h=seq(j, L*K, K)
print(cor(fit$fitted.values[, j], post$prob.test.mean[h])^2)
plot(fit$fitted.values[, j], post$prob.test.mean[h],

xlim=0:1, ylim=0:1,
xlab=paste0('NN: Est. Prob. j=', j),
ylab=paste0('BART: Est. Prob. j=', j))

abline(a=0, b=1)
}

12 arq

par(mfrow=c(1, 1))

L=16
x.test=matrix(nrow=L, ncol=3)
k=1
for(size in 1:2)

for(sex in 1:2)
for(lake in 1:4) {

x.test[k,]=c(lake, size, sex)
k=k+1

}
x.test

two sizes: 1=large: >2.3m, 2=small: <=2.3m
pred=predict(post, x.test)
##pred=predict(post, x.test, mc.cores=8)
ndpost=nrow(pred$prob.test)

size.test=matrix(nrow=ndpost, ncol=K*2)
for(i in 1:K) {

j=seq(i, L*K/2, K) ## large
size.test[, i]=apply(pred$prob.test[, j], 1, mean)
j=j+L*K/2 ## small
size.test[, i+K]=apply(pred$prob.test[, j], 1, mean)

}
size.test.mean=apply(size.test, 2, mean)
size.test.025=apply(size.test, 2, quantile, probs=0.025)
size.test.975=apply(size.test, 2, quantile, probs=0.975)

plot(factor(1:K, labels=c('bird', 'fish', 'invert', 'other', 'reptile')),
rep(1, K), col=1:K, type='n', lwd=1, lty=0,

xlim=c(1, K), ylim=c(0, 0.5), ylab='Prob.',
sub="Multinomial BART\nFriedman's partial dependence function")

points(1:K, size.test.mean[1:K+K], col=1)
lines(1:K, size.test.025[1:K+K], col=1, lty=2)
lines(1:K, size.test.975[1:K+K], col=1, lty=2)
points(1:K, size.test.mean[1:K], col=2)
lines(1:K, size.test.025[1:K], col=2, lty=2)
lines(1:K, size.test.975[1:K], col=2, lty=2)
legend('topright', legend=c('Small', 'Large'),
pch=1, col=1:2)

End(Not run)

arq NHANES 2009-2010 Arthritis Questionnaire

bartModelMatrix 13

Description

This data set was created from the National Health and Nutrition Examination Survey (NHANES)
2009-2010 Arthritis Questionnaire.

Usage

data(arq)

Details

We have two outcomes of interest. Chronic neck pain: Yes arq010a=1 vs.\ No arq010a=0. Chronic
lower-back/buttock pain: Yes arq010de=1 vs.\ No arq010de=0. seqn is a unique survey respondent
identifier. wtint2yr is the survey sampling weight. riagendr is gender: 1 for males, 2 for females.
ridageyr is age in years. There are several anthropometric measurements: bmxwt, weight in kg;
bmxht, height in cm; bmxbmi, body mass index in kg/m2; and bmxwaist, waist circumference in
cm. The data was subsetted to ensure non-missing values of these variables.

References

National Health and Nutrition Examination Survey (NHANES) 2009-2010 Arthritis Questionnaire.
https://wwwn.cdc.gov/nchs/nhanes/2009-2010/ARQ_F.htm

bartModelMatrix Create a matrix out of a vector or data.frame

Description

The external BART functions operate on matrices in memory. Therefore, if the user submits a vector
or data.frame, then this function converts it to a matrix. Also, it determines the number of cutpoints
necessary for each column when asked to do so.

Usage

bartModelMatrix(X, numcut=0L, usequants=FALSE, type=7,
rm.const=FALSE, cont=FALSE, xinfo=NULL)

Arguments

X A vector or data.frame to create the matrix from.

numcut The maximum number of cutpoints to consider. If numcut=0, then just return a
matrix; otherwise, return a list containing a matrix X, a vector numcut and a list
xinfo.

usequants If usequants is FALSE, then the cutpoints in xinfo are generated uniformly;
otherwise, if TRUE, then quantiles are used for the cutpoints.

type Determines which quantile algorithm is employed.

rm.const Whether or not to remove constant variables.

https://wwwn.cdc.gov/nchs/nhanes/2009-2010/ARQ_F.htm

14 bladder

cont Whether or not to assume all variables are continuous.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

See Also

class.ind

Examples

set.seed(99)

a <- rbinom(10, 4, 0.4)

table(a)

x <- runif(10)

df <- data.frame(a=factor(a), x=x)

b <- bartModelMatrix(df)

b

b <- bartModelMatrix(df, numcut=9)

b

b <- bartModelMatrix(df, numcut=9, usequants=TRUE)

b

Not run:
f <- bartModelMatrix(as.character(a))

End(Not run)

bladder Bladder Cancer Recurrences

Description

This interesting example is from a clinical trial conducted by the Veterans Administration Coop-
erative Urological Research Group. This data on recurrence of bladder cancer has been used by
many to demonstrate methodology for recurrent events modelling. In this study, all patients had
superficial bladder tumors when they entered the trial. These tumors were removed transurethrally
and patients were randomly assigned to one of three treatments: placebo, thiotepa or pyridoxine

bladder 15

(vitamin B6). Many patients had multiple recurrences of tumors during the study and new tumors
were removed at each visit. For each patient, their recurrence time, if any, was measured from the
beginning of treatment.

bladder is the data set that appears most commonly in the literature. It uses only the 85 subjects
with nonzero follow-up who were assigned to either thiotepa or placebo and only the first four re-
currences for any patient. The status variable is 1 for recurrence and 0 for everything else (including
death for any reason). The data set is laid out in the competing risks format of the paper by Wei,
Lin, and Weissfeld (WLW).

bladder1 is the full data set from the study. It contains all three treatment arms and all recurrences
for 118 subjects; the maximum observed number of recurrences is 9.

bladder2 uses the same subset of subjects as bladder, but formated in the (start, stop] or Anderson-
Gill (AG) style. Note that in transforming from the WLW to the AG style data set there is a quite
common programming mistake that leads to extra follow-up time for 12 subjects: all those with
follow-up beyond their fourth recurrence. Over this extended time these subjects are by definition
not at risk for another event in the WLW data set.

Format

bladder

id: Patient id
rx: Treatment 1=placebo 2=thiotepa
number: Initial number of tumours (8=8 or more)
size: size (cm) of largest initial tumour
stop: recurrence or censoring time
enum: which recurrence (up to 4)

bladder1

id: Patient id
treatment: Placebo, pyridoxine (vitamin B6), or thiotepa
number: Initial number of tumours (8=8 or more)
size: Size (cm) of largest initial tumour
recur: Number of recurrences
start,stop: The start and end time of each time interval
status: End of interval code, 0=censored, 1=recurrence,

2=death from bladder disease, 3=death other/unknown cause
rtumor: Number of tumors found at the time of a recurrence
rsize: Size of largest tumor at a recurrence
enum: Event number (observation number within patient)

bladder2

id: Patient id
rx: Treatment 1=placebo 2=thiotepa

16 class.ind

number: Initial number of tumours (8=8 or more)
size: size (cm) of largest initial tumour
start: start of interval (0 or previous recurrence time)
stop: recurrence or censoring time
enum: which recurrence (up to 4)

References

Byar, DP (1980), "The Veterans Administration Study of Chemoprophylaxis for Recurrent Stage I
Bladder Tumors: Comparisons of Placebo, Pyridoxine, and Topical Thiotepa," in Bladder Tumors
and Other Topics in Urological Oncology, eds. M Pavone-Macaluso, PH Smith, and F Edsmyn,
New York: Plenum, pp. 363-370.

Andrews DF, Hertzberg AM (1985), DATA: A Collection of Problems from Many Fields for the
Student and Research Worker, New York: Springer-Verlag.

LJ Wei, DY Lin, L Weissfeld (1989), Regression analysis of multivariate incomplete failure time
data by modeling marginal distributions. Journal of the American Statistical Association, 84.

Examples

data(bladder)

class.ind Generates Class Indicator Matrix from a Factor

Description

Generates a class indicator function from a given factor.

Usage

class.ind(cl)

Arguments

cl factor or vector of classes for cases.

Value

a matrix which is zero except for the column corresponding to the class.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

crisk.bart 17

Examples

set.seed(99)

a <- rbinom(20, 4, 0.5)

table(a)

b <- class.ind(a)

str(b)

t(cbind(a, b))

crisk.bart BART for competing risks

Description

Here we have implemented a simple and direct approach to utilize BART for competing risks that is
very flexible, and is akin to discrete-time survival analysis. Following the capabilities of BART, we
allow for maximum flexibility in modeling the dependence of competing failure times on covariates.
In particular, we do not impose proportional hazards.

To elaborate, consider data in the form: (si, δi, xi) where si is the event time; δi is an indicator
distinguishing events, δi = h due to cause hin1, 2, from right-censoring, δi = 0; xi is a vector of
covariates; and i = 1, ..., N indexes subjects.

We denote the K distinct event/censoring times by 0 < t(1) < ... < t(K) < ∞ thus taking t(j)
to be the jth order statistic among distinct observation times and, for convenience, t(0) = 0. Now
consider event indicators for cause h: yhij for each subject i at each distinct time t(j) up to and
including the subject’s last observation time si = t(ni) with ni = argmaxj [t(j) ≤ si] for cause 1,
but only up to ni − y1ij for cause 2.

We then denote by phij the probability of an event at time t(j) conditional on no previous event. We
now write the model for yhij as a nonparametric probit (or logistic) regression of yhij on the time
t(j) and the covariates xhi, and then utilize BART for binary responses. Specifically, yhij = I[δi =
h]I[si = t(j)], j = 1, ..., ni − I[h = 2]y1ij . Therefore, we have phij = F (muhij), muhij =
muh + fh(t(j), xhi) where F denotes the Normal (or Logistic) cdf. As in the binary response case,
fh is the sum of many tree models. Finally, based on these probabilities, phij , we can construct
targets of inference such as the cumulative incidence functions.

Usage

crisk.bart(x.train=matrix(0,0,0), y.train=NULL,
x.train2=x.train, y.train2=NULL,
times=NULL, delta=NULL, K=NULL,
x.test=matrix(0,0,0), x.test2=x.test, cond=NULL,
sparse=FALSE, theta=0, omega=1,

18 crisk.bart

a=0.5, b=1, augment=FALSE,
rho=NULL, rho2=NULL,
xinfo=matrix(0,0,0), xinfo2=matrix(0,0,0),
usequants=FALSE,
rm.const=TRUE, type='pbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
k=2, power=2, base=0.95,
offset=NULL, offset2=NULL,
tau.num=c(NA, 3, 6)[ntype],

ntree=50, numcut=100, ndpost=1000, nskip=250,
keepevery = 10L,

printevery=100L,

id=NULL, ## crisk.bart only
seed=99, ## mc.crisk.bart only
mc.cores=2, ## mc.crisk.bart only
nice=19L ## mc.crisk.bart only
)

mc.crisk.bart(x.train=matrix(0,0,0), y.train=NULL,
x.train2=x.train, y.train2=NULL,
times=NULL, delta=NULL, K=NULL,
x.test=matrix(0,0,0), x.test2=x.test, cond=NULL,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE,
rho=NULL, rho2=NULL,
xinfo=matrix(0,0,0), xinfo2=matrix(0,0,0),
usequants=FALSE,
rm.const=TRUE, type='pbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
k=2, power=2, base=0.95,
offset=NULL, offset2=NULL,
tau.num=c(NA, 3, 6)[ntype],

ntree=50, numcut=100, ndpost=1000, nskip=250,
keepevery = 10L,

printevery=100L,

id=NULL, ## crisk.bart only

crisk.bart 19

seed=99, ## mc.crisk.bart only
mc.cores=2, ## mc.crisk.bart only
nice=19L ## mc.crisk.bart only
)

Arguments

x.train Covariates for training (in sample) data of cause 1.
Must be a data.frame or a matrix with rows corresponding to observations and
columns to variables.
crisk.bart will generate draws of f1(t, x) for each x which is a row of x.train
(note that the definition of x.train is dependent on whether y.train has been
specified; see below).

y.train Cause 1 binary response for training (in sample) data.
If y.train is NULL, then y.train (x.train and x.test, if specified) are gen-
erated by a call to crisk.pre.bart (which require that times and delta be
provided: see below); otherwise, y.train (x.train and x.test, if specified)
are utilized as given assuming that the data construction has already been per-
formed.

x.train2 Covariates for training (in sample) data of cause 2. Similar to x.train above.

y.train2 Cause 2 binary response for training (in sample) data, i.e., failure from any cause
besides the cause of interest which is cause 1. Similar to y.train above.

times The time of event or right-censoring, si.
If y.train is NULL, then times (and delta) must be provided.

delta The event indicator: 1 for cause 1, 2 for cause 2 and 0 is censored.
If y.train is NULL, then delta (and times) must be provided.

K If provided, then coarsen times per the quantiles 1/K, 2/K, ...,K/K.

x.test Covariates for test (out of sample) data of cause 1.
Must be a data.frame or a matrix and have the same structure as x.train.
crisk.bart will generate draws of f1(t, x) for each x which is a row of x.test.

x.test2 Covariates for test (out of sample) data of cause 2. Similar to x.test above.

cond A vector of indices for y.train2 indicating subjects who did not suffer a cause
1 event and, therefore, are eligible for cause 2.

sparse Whether to perform variable selection based on a sparse Dirichlet prior; see
Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b=1.

rho Sparse parameter: typically rho=p where p is the number of covariates in x.train.

rho2 Sparse parameter: typically rho2=p where p is the number of covariates in
x.train2.

augment Whether data augmentation is to be performed in sparse variable selection.

20 crisk.bart

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

xinfo2 Cause 2 cutpoints.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.

type Whether to employ probit BART via Albert-Chib, 'pbart', or logistic BART
by Holmes-Held, 'lbart'.

ntype The integer equivalent of type where 'wbart' is 1, 'pbart' is 2 and 'lbart'
is 3.

k k is the number of prior standard deviations fh(t, x) is away from +/-3. The
bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

offset Cause 1 binary offset.

offset2 Cause 2 binary offset.

tau.num The numerator in the tau definition.

ntree The number of trees in the sum.

numcut The number of possible values of cutpoints (see usequants). If a single num-
ber if given, this is used for all variables. Otherwise a vector with length equal
to ncol(x.train) is required, where the ith element gives the number of cut-
points used for the ith variable in x.train. If usequants is FALSE, numcut
equally spaced cutoffs are used covering the range of values in the corresponding
column of x.train. If usequants is TRUE, then min(numcut, the number of
unique values in the corresponding columns of x.train - 1) cutpoint val-
ues are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

id crisk.bart only: unique identifier added to returned list.

seed mc.crisk.bart only: seed required for reproducible MCMC.

mc.cores mc.crisk.bart only: number of cores to employ in parallel.

nice mc.crisk.bart only: set the job niceness. The default niceness is 19: niceness
goes from 0 (highest priority) to 19 (lowest priority).

Value

crisk.bart returns an object of type criskbart which is essentially a list. Besides the items listed
below, the list has offset, offset2, times which are the unique times, K which is the number of
unique times, tx.train and tx.test, if any.

crisk.bart 21

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corre-
sponds to a draw f∗

1 from the posterior of f1 and each column corresponds to a
row of x.train. The (i, j) value is f∗

1 (t, x) for the ith kept draw of f1 and the
jth row of x.train. Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.

surv.test test data fits for the survival function, S(t, x).

surv.test.mean mean of surv.test over the posterior samples.

prob.test The probability of suffering cause 1.

prob.test2 The probability of suffering cause 2.

cif.test The cumulative incidence function of cause 1, F1(t, x).

cif.test2 The cumulative incidence function of cause 2, F2(t, x).

cif.test.mean mean of cif.test columns for cause 1.

cif.test2.mean mean of cif.test2 columns for cause 2.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a
draw. For each variable (corresponding to the columns), the total count of the
number of times this variable is used for cause 1 in a tree decision rule (over all
trees) is given.

varcount2 For each variable the total count of the number of times this variable is used for
cause 2 in a tree decision rule is given.

See Also

crisk.pre.bart, predict.criskbart, mc.crisk.pwbart, crisk2.bart

Examples

data(transplant)

pfit <- survfit(Surv(futime, event) ~ abo, transplant)

competing risks for type O
plot(pfit[4,], xscale=7, xmax=735, col=1:3, lwd=2, ylim=c(0, 1),

xlab='t (weeks)', ylab='Aalen-Johansen (AJ) CI(t)')
legend(450, .4, c("Death", "Transplant", "Withdrawal"), col=1:3, lwd=2)

plot(pfit[4,], xscale=30.5, xmax=735, col=1:3, lwd=2, ylim=c(0, 1),
xlab='t (months)', ylab='Aalen-Johansen (AJ) CI(t)')
legend(450, .4, c("Death", "Transplant", "Withdrawal"), col=1:3, lwd=2)

delta <- (as.numeric(transplant$event)-1)
recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)

times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months

22 crisk.bart

table(times)

typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)

x.train <- cbind(typeO, typeA, typeB, typeAB)

x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

##test BART with token run to ensure installation works
set.seed(99)
post <- crisk.bart(x.train=x.train, times=times, delta=delta,

x.test=x.test, nskip=1, ndpost=1, keepevery=1)

Not run:

run one long MCMC chain in one process
set.seed(99)
post <- crisk.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk.bart(x.train=x.train, times=times, delta=delta,

x.test=x.test, seed=99, mc.cores=8)

K <- post$K

typeO.cif.mean <- apply(post$cif.test, 2, mean)
typeO.cif.025 <- apply(post$cif.test, 2, quantile, probs=0.025)
typeO.cif.975 <- apply(post$cif.test, 2, quantile, probs=0.975)

plot(pfit[4,], xscale=7, xmax=735, col=1:3, lwd=2, ylim=c(0, 0.8),
xlab='t (weeks)', ylab='CI(t)')

points(c(0, post$times)*7, c(0, typeO.cif.mean), col=4, type='s', lwd=2)
points(c(0, post$times)*7, c(0, typeO.cif.025), col=4, type='s', lwd=2, lty=2)
points(c(0, post$times)*7, c(0, typeO.cif.975), col=4, type='s', lwd=2, lty=2)

legend(450, .4, c("Transplant(BART)", "Transplant(AJ)",
"Death(AJ)", "Withdrawal(AJ)"),

col=c(4, 2, 1, 3), lwd=2)
##dev.copy2pdf(file='../vignettes/figures/liver-BART.pdf')
plot(pfit[4,], xscale=30.5, xmax=735, col=1:3, lwd=2, ylim=c(0, 0.8),
xlab='t (months)', ylab='CI(t)')
points(c(0, post$times)*30.5, c(0, typeO.cif.mean), col=4, type='s', lwd=2)
points(c(0, post$times)*30.5, c(0, typeO.cif.025), col=4, type='s', lwd=2, lty=2)
points(c(0, post$times)*30.5, c(0, typeO.cif.975), col=4, type='s', lwd=2, lty=2)
legend(450, .4, c("Transplant(BART)", "Transplant(AJ)",
"Death(AJ)", "Withdrawal(AJ)"),
col=c(4, 2, 1, 3), lwd=2)

crisk.pre.bart 23

End(Not run)

crisk.pre.bart Data construction for competing risks with BART

Description

Competing risks contained in (t, δ, x) must be translated to data suitable for the BART competing
risks model; see crisk.bart for more details.

Usage

crisk.pre.bart(times, delta, x.train=NULL, x.test=NULL,
x.train2=x.train, x.test2=x.test, K=NULL)

Arguments

times The time of event or right-censoring.

delta The event indicator: 1 is a cause 1 event, 2 a cause 2 while 0 is censored.

x.train Explanatory variables for training (in sample) data of cause 1.
If provided, must be a matrix with (as usual) rows corresponding to observations
and columns to variables.

x.test Explanatory variables for test (out of sample) data of cause 1.
If provided, must be a matrix and have the same structure as x.train.

x.train2 Explanatory variables for training (in sample) data of cause 2.
If provided, must be a matrix with (as usual) rows corresponding to observations
and columns to variables.

x.test2 Explanatory variables for test (out of sample) data of cause 2.
If provided, must be a matrix and have the same structure as x.train.

K If provided, then coarsen times per the quantiles 1/K, 2/K, ...,K/K.

Value

surv.pre.bart returns a list. Besides the items listed below, the list has a times component giving
the unique times and K which is the number of unique times.

y.train A vector of binary responses for cause 1.

y.train2 A vector of binary responses for cause 2.

24 crisk.pre.bart

cond A vector of indices of y.train indicating censored subjects.

binaryOffset The binary offset for y.train.

binaryOffset2 The binary offset for y.train2.

tx.train A matrix with rows consisting of time and the covariates of the training data for
cause 1.

tx.train2 A matrix with rows consisting of time and the covariates of the training data for
cause 2.

tx.test A matrix with rows consisting of time and the covariates of the test data, if any,
for cause 1.

tx.test2 A matrix with rows consisting of time and the covariates of the test data, if any,
for cause 2.

See Also

crisk.bart

Examples

data(transplant)

delta <- (as.numeric(transplant$event)-1)

delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)

table(1+floor(transplant$futime/30.5)) ## months
times <- 1+floor(transplant$futime/30.5)

typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)

x.train <- cbind(typeO, typeA, typeB, typeAB)

N <- nrow(x.train)

x.test <- x.train

x.test[1:N, 1:4] <- matrix(c(1, 0, 0, 0), nrow=N, ncol=4, byrow=TRUE)

pre <- crisk.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

crisk2.bart 25

crisk2.bart BART for competing risks

Description

Here we have implemented another approach to utilize BART for competing risks that is very flex-
ible, and is akin to discrete-time survival analysis. Following the capabilities of BART, we allow
for maximum flexibility in modeling the dependence of competing failure times on covariates. In
particular, we do not impose proportional hazards.

Similar to crisk.bart, we utilize two BART models, yet they are two different BART models
than previously considered. First, given an event of either cause occurred, we employ a typical
binary BART model to discriminate between cause 1 and 2. Next, we proceed as if it were a typical
survival analysis with BART for an absorbing event from either cause.

To elaborate, consider data in the form: (si, δi, xi) where si is the event time; δi is an indicator
distinguishing events, δi = h due to cause hin1, 2, from right-censoring, δi = 0; xi is a vector of
covariates; and i = 1, ..., N indexes subjects. We denote the K distinct event/censoring times by
0 < t(1) < ... < t(K) < ∞ thus taking t(j) to be the jth order statistic among distinct observation
times and, for convenience, t(0) = 0.

First, consider event indicators for an event from either cause: y1ij for each subject i at each
distinct time t(j) up to and including the subject’s last observation time si = t(ni) with ni =
argmaxj [t(j) ≤ si]. We denote by p1ij the probability of an event at time t(j) conditional on
no previous event. We now write the model for y1ij as a nonparametric probit (or logistic) re-
gression of y1ij on the time t(j) and the covariates x1i, and then utilize BART for binary re-
sponses. Specifically, y1ij = I[δi > 0]I[si = t(j)], j = 1, ..., ni. Therefore, we have
p1ij = F (mu1ij), mu1ij = mu1 + f1(t(j), x1i) where F denotes the Normal (or Logistic) cdf.

Next, we denote by p2i the probability of a cause 1 event at time si conditional on an event having
occurred. We now write the model for y2i as a nonparametric probit (or logistic) regression of y2i
on the time si and the covariates x2i, via BART for binary responses. Specifically, y2i = I[δi = 1].
Therefore, we have p2i = F (mu2i), mu2i = mu2 + f2(si, x2i) where F denotes the Normal (or
Logistic) cdf. Although, we modeled p2i at the time of an event, si, we can estimate this probability
at any other time points on the grid via p(t(j), x2) = F (mu2+f2(t(j), x2)). Finally, based on these
probabilities, phij , we can construct targets of inference such as the cumulative incidence functions.

Usage

crisk2.bart(x.train=matrix(0,0,0), y.train=NULL,
x.train2=x.train, y.train2=NULL,
times=NULL, delta=NULL, K=NULL,
x.test=matrix(0,0,0), x.test2=x.test,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE,
rho=NULL, rho2=NULL,
xinfo=matrix(0,0,0), xinfo2=matrix(0,0,0),
usequants=FALSE,
rm.const=TRUE, type='pbart',

26 crisk2.bart

ntype=as.integer(
factor(type, levels=c('wbart', 'pbart', 'lbart'))),

k=2, power=2, base=0.95,
offset=NULL, offset2=NULL,
tau.num=c(NA, 3, 6)[ntype],

ntree=50, numcut=100, ndpost=1000, nskip=250,
keepevery = 10L,

printevery=100L,

id=NULL, ## crisk2.bart only
seed=99, ## mc.crisk2.bart only
mc.cores=2, ## mc.crisk2.bart only
nice=19L ## mc.crisk2.bart only
)

mc.crisk2.bart(x.train=matrix(0,0,0), y.train=NULL,
x.train2=x.train, y.train2=NULL,
times=NULL, delta=NULL, K=NULL,
x.test=matrix(0,0,0), x.test2=x.test,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE,
rho=NULL, rho2=NULL,
xinfo=matrix(0,0,0), xinfo2=matrix(0,0,0),
usequants=FALSE,
rm.const=TRUE, type='pbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
k=2, power=2, base=0.95,
offset=NULL, offset2=NULL,
tau.num=c(NA, 3, 6)[ntype],

ntree=50, numcut=100, ndpost=1000, nskip=250,
keepevery = 10L,

printevery=100L,

id=NULL, ## crisk2.bart only
seed=99, ## mc.crisk2.bart only
mc.cores=2, ## mc.crisk2.bart only
nice=19L ## mc.crisk2.bart only
)

crisk2.bart 27

Arguments

x.train Covariates for training (in sample) data for an event.
Must be a data.frame or a matrix with rows corresponding to observations and
columns to variables.
crisk2.bart will generate draws of f1(t, x) for each x which is a row of
x.train (note that the definition of x.train is dependent on whether y.train
has been specified; see below).

y.train Event binary response for training (in sample) data.
If y.train is NULL, then y.train (x.train and x.test, if specified) are gen-
erated by a call to surv.pre.bart (which require that times and delta be
provided: see below); otherwise, y.train (x.train and x.test, if specified)
are utilized as given assuming that the data construction has already been per-
formed.

x.train2 Covariates for training (in sample) data of for a cause 1 event. Similar to
x.train above.

y.train2 Cause 1 event binary response for training (in sample) data. Similar to y.train
above.

times The time of event or right-censoring, si.
If y.train is NULL, then times (and delta) must be provided.

delta The event indicator: 1 for cause 1, 2 for cause 2 and 0 is censored.
If y.train is NULL, then delta (and times) must be provided.

K If provided, then coarsen times per the quantiles 1/K, 2/K, ...,K/K.

x.test Covariates for test (out of sample) data of an event.
Must be a data.frame or a matrix and have the same structure as x.train.
crisk2.bart will generate draws of f1(t, x) for each x which is a row of
x.test.

x.test2 Covariates for test (out of sample) data of a cause 1 event. Similar to x.test
above.

sparse Whether to perform variable selection based on a sparse Dirichlet prior; see
Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b=1.

rho Sparse parameter: typically rho=p where p is the number of covariates in x.train.

rho2 Sparse parameter: typically rho2=p where p is the number of covariates in
x.train2.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

28 crisk2.bart

xinfo2 Cause 2 cutpoints.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.

type Whether to employ probit BART via Albert-Chib, 'pbart', or logistic BART
by Holmes-Held, 'lbart'.

ntype The integer equivalent of type where 'wbart' is 1, 'pbart' is 2 and 'lbart'
is 3.

k k is the number of prior standard deviations fh(t, x) is away from +/-3. The
bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

offset Cause 1 binary offset.

offset2 Cause 2 binary offset.

tau.num The numerator in the tau definition.

ntree The number of trees in the sum.

numcut The number of possible values of cutpoints (see usequants). If a single num-
ber if given, this is used for all variables. Otherwise a vector with length equal
to ncol(x.train) is required, where the ith element gives the number of cut-
points used for the ith variable in x.train. If usequants is FALSE, numcut
equally spaced cutoffs are used covering the range of values in the corresponding
column of x.train. If usequants is TRUE, then min(numcut, the number of
unique values in the corresponding columns of x.train - 1) cutpoint val-
ues are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

id crisk2.bart only: unique identifier added to returned list.

seed mc.crisk2.bart only: seed required for reproducible MCMC.

mc.cores mc.crisk2.bart only: number of cores to employ in parallel.

nice mc.crisk2.bart only: set the job niceness. The default niceness is 19: niceness
goes from 0 (highest priority) to 19 (lowest priority).

Value

crisk2.bart returns an object of type crisk2bart which is essentially a list. Besides the items
listed below, the list has offset, offset2, times which are the unique times, K which is the number
of unique times, tx.train and tx.test, if any.

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corre-
sponds to a draw f∗

1 from the posterior of f1 and each column corresponds to a
row of x.train. The (i, j) value is f∗

1 (t, x) for the ith kept draw of f1 and the
jth row of x.train. Burn-in is dropped.

crisk2.bart 29

yhat.test Same as yhat.train but now the x’s are the rows of the test data.

surv.test test data fits for the survival function, S(t, x).

surv.test.mean mean of surv.test over the posterior samples.

prob.test The probability of suffering an event.

prob.test2 The probability of suffering a cause 1 event.

cif.test The cumulative incidence function of cause 1, F1(t, x).

cif.test2 The cumulative incidence function of cause 2, F2(t, x).

cif.test.mean mean of cif.test columns for cause 1.

cif.test2.mean mean of cif.test2 columns for cause 2.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a
draw. For each variable (corresponding to the columns), the total count of the
number of times this variable is used for an event in a tree decision rule (over all
trees) is given.

varcount2 For each variable the total count of the number of times this variable is used for
a cause 1 event in a tree decision rule is given.

See Also

surv.pre.bart, predict.crisk2bart, mc.crisk2.pwbart, crisk.bart

Examples

data(transplant)

pfit <- survfit(Surv(futime, event) ~ abo, transplant)

competing risks for type O
plot(pfit[4,], xscale=7, xmax=735, col=1:3, lwd=2, ylim=c(0, 1),

xlab='t (weeks)', ylab='Aalen-Johansen (AJ) CI(t)')
legend(450, .4, c("Death", "Transplant", "Withdrawal"), col=1:3, lwd=2)

plot(pfit[4,], xscale=30.5, xmax=735, col=1:3, lwd=2, ylim=c(0, 1),
xlab='t (months)', ylab='Aalen-Johansen (AJ) CI(t)')
legend(450, .4, c("Death", "Transplant", "Withdrawal"), col=1:3, lwd=2)

delta <- (as.numeric(transplant$event)-1)
recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)

times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months
table(times)

typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')

30 crisk2.bart

typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)

x.train <- cbind(typeO, typeA, typeB, typeAB)

x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

##test BART with token run to ensure installation works
set.seed(99)
post <- crisk2.bart(x.train=x.train, times=times, delta=delta,

x.test=x.test, nskip=1, ndpost=1, keepevery=1)

Not run:

run one long MCMC chain in one process
set.seed(99)
post <- crisk2.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk2.bart(x.train=x.train, times=times, delta=delta,

x.test=x.test, seed=99, mc.cores=8)

K <- post$K

typeO.cif.mean <- apply(post$cif.test, 2, mean)
typeO.cif.025 <- apply(post$cif.test, 2, quantile, probs=0.025)
typeO.cif.975 <- apply(post$cif.test, 2, quantile, probs=0.975)

plot(pfit[4,], xscale=7, xmax=735, col=1:3, lwd=2, ylim=c(0, 0.8),
xlab='t (weeks)', ylab='CI(t)')

points(c(0, post$times)*7, c(0, typeO.cif.mean), col=4, type='s', lwd=2)
points(c(0, post$times)*7, c(0, typeO.cif.025), col=4, type='s', lwd=2, lty=2)
points(c(0, post$times)*7, c(0, typeO.cif.975), col=4, type='s', lwd=2, lty=2)

legend(450, .4, c("Transplant(BART)", "Transplant(AJ)",
"Death(AJ)", "Withdrawal(AJ)"),

col=c(4, 2, 1, 3), lwd=2)
##dev.copy2pdf(file='../vignettes/figures/liver-BART.pdf')
plot(pfit[4,], xscale=30.5, xmax=735, col=1:3, lwd=2, ylim=c(0, 0.8),
xlab='t (months)', ylab='CI(t)')
points(c(0, post$times)*30.5, c(0, typeO.cif.mean), col=4, type='s', lwd=2)
points(c(0, post$times)*30.5, c(0, typeO.cif.025), col=4, type='s', lwd=2, lty=2)
points(c(0, post$times)*30.5, c(0, typeO.cif.975), col=4, type='s', lwd=2, lty=2)
legend(450, .4, c("Transplant(BART)", "Transplant(AJ)",
"Death(AJ)", "Withdrawal(AJ)"),
col=c(4, 2, 1, 3), lwd=2)

End(Not run)

draw_lambda_i 31

draw_lambda_i Testing truncated Normal sampling

Description

Truncated Normal latents with non-unit variance are necessary for logistic BART.

Usage

draw_lambda_i(lambda, mean, kmax=1000, thin=1)

Arguments

lambda Previous value of lambda.
mean Mean of truncated Normal.
kmax The number of terms in the mixture.
thin The thinning parameter.

Value

Returns the variance for a truncated Normal, i.e., N(mean, lambda)I(tau, infinity).

See Also

rtnorm, lbart

Examples

set.seed(12)

draw_lambda_i(1, 2)
rtnorm(1, 2, sqrt(6.773462), 6)
draw_lambda_i(6.773462, 2)

gbart Generalized BART for continuous and binary outcomes

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

32 gbart

Usage

gbart(
x.train, y.train,
x.test=matrix(0,0,0), type='wbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
sigest=NA, sigdf=3, sigquant=0.90,
k=2, power=2, base=0.95,

lambda=NA, tau.num=c(NA, 3, 6)[ntype],
offset=NULL, w=rep(1, length(y.train)),
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,

ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 1L, ## mc.gbart only
nice = 19L, ## mc.gbart only
seed = 99L ## mc.gbart only

)

mc.gbart(
x.train, y.train,
x.test=matrix(0,0,0), type='wbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
sigest=NA, sigdf=3, sigquant=0.90,
k=2, power=2, base=0.95,

lambda=NA, tau.num=c(NA, 3, 6)[ntype],
offset=NULL, w=rep(1, length(y.train)),

ntree=c(200L, 50L, 50L)[ntype], numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 2L, nice = 19L, seed = 99L

)

gbart 33

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q > 2 and one dummy created if q = 2 where q is the
number of levels of the factor. gbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Continuous or binary dependent variable for training (in sample) data.
If y is numeric, then a continuous BART model is fit (Normal errors).
If y is binary (has only 0’s and 1’s), then a binary BART model with a probit link
is fit by default: you can over-ride the default via the argument type to specify
a logit BART model.

x.test Explanatory variables for test (out of sample) data. Should have same structure
as x.train. gbart will generate draws of f(x) for each x which is a row of
x.test.

type You can use this argument to specify the type of fit. 'wbart' for continuous
BART, 'pbart' for probit BART or 'lbart' for logit BART.

ntype The integer equivalent of type where 'wbart' is 1, 'pbart' is 2 and 'lbart'
is 3.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.
omega Set omega parameter; zero means random.
a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values

inducing more sparsity.
b Sparse parameter for Beta(a, b) prior; typically, b = 1.
rho Sparse parameter: typically rho = p where p is the number of covariates under

consideration.
augment Whether data augmentation is to be performed in sparse variable selection.
xinfo You can provide the cutpoints to BART or let BART choose them for you. To

provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.
sigest The prior for the error variance (sigma2) is inverted chi-squared (the standard

conditionally conjugate prior). The prior is specified by choosing the degrees of
freedom, a rough estimate of the corresponding standard deviation and a quantile
to put this rough estimate at. If sigest=NA then the rough estimate will be the
usual least squares estimator. Otherwise the supplied value will be used. Not
used if y is binary.

34 gbart

sigdf Degrees of freedom for error variance prior. Not used if y is binary.

sigquant The quantile of the prior that the rough estimate (see sigest) is placed at. The
closer the quantile is to 1, the more aggresive the fit will be as you are putting
more prior weight on error standard deviations (sigma) less than the rough es-
timate. Not used if y is binary.

k For numeric y, k is the number of prior standard deviations E(Y |x) = f(x) is
away from +/-0.5. For binary y, k is the number of prior standard deviations
f(x) is away from +/-3. The bigger k is, the more conservative the fitting will
be.

power Power parameter for tree prior.

base Base parameter for tree prior.

lambda The scale of the prior for the variance. If lambda is zero, then the variance is to
be considered fixed and known at the given value of sigest. Not used if y is
binary.

tau.num The numerator in the tau definition, i.e., tau=tau.num/(k*sqrt(ntree)).

offset Continous BART operates on y.train centered by offset which defaults to
mean(y.train). With binary BART, the centering is P (Y = 1|x) = F (f(x)+
offset) where offset defaults to F^{-1}(mean(y.train)). You can use the
offset parameter to over-ride these defaults.

w Vector of weights which multiply the standard deviation. Not used if y is binary.

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if
given, this is used for all variables. Otherwise a vector with length equal to
ncol(x.train) is required, where the ith element gives the number of c used
for the ith variable in x.train. If usequants is false, numcut equally spaced
cutoffs are used covering the range of values in the corresponding column of
x.train. If usequants is true, then min(numcut, thenumberofuniquevaluesinthecorrespondingcolumnsofx.train−
1) values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

printevery As the MCMC runs, a message is printed every printevery draws.

keepevery Every keepevery draw is kept to be returned to the user.

transposed When running gbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.gbart.

hostname When running on a cluster occasionally it is useful to track on which node each
chain is running; to do so set this argument to TRUE.

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

gbart 35

Details

BART is a Bayesian MCMC method. At each MCMC interation, we produce a draw from the joint
posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data,
x.train or the test data, x.test.

For x.train/x.test with missing data elements, gbart will singly impute them with hot decking.
For one or more missing covariates, record-level hot-decking imputation deWaPann11 is employed
that is biased towards the null, i.e., nonmissing values from another record are randomly selected
regardless of the outcome. Since mc.gbart runs multiple gbart threads in parallel, mc.gbart
performs multiple imputation with hot decking, i.e., a separate imputation for each thread. This
record-level hot-decking imputation is biased towards the null, i.e., nonmissing values from another
record are randomly selected regardless of y.train.

Value

gbart returns an object of type gbart which is essentially a list. In the numeric y case, the list has
components:

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.
yhat.train.mean

train data fits = mean of yhat.train columns.

yhat.test.mean test data fits = mean of yhat.test columns.

sigma post burn in draws of sigma, length = ndpost.

first.sigma burn-in draws of sigma.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

sigest The rough error standard deviation (σ) used in the prior.

See Also

pbart

Examples

##simulate data (example from Friedman MARS paper)
f = function(x){
10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x[,5]
}

36 gewekediag

sigma = 1.0 #y = f(x) + sigma*z , z~N(0,1)
n = 100 #number of observations
set.seed(99)
x=matrix(runif(n*10),n,10) #10 variables, only first 5 matter
Ey = f(x)
y=Ey+sigma*rnorm(n)
lmFit = lm(y~.,data.frame(x,y)) #compare lm fit to BART later

##test BART with token run to ensure installation works
set.seed(99)
bartFit = wbart(x,y,nskip=5,ndpost=5)

Not run:
##run BART
set.seed(99)
bartFit = wbart(x,y)

##compare BART fit to linear matter and truth = Ey
fitmat = cbind(y,Ey,lmFit$fitted,bartFit$yhat.train.mean)
colnames(fitmat) = c('y','Ey','lm','bart')
print(cor(fitmat))

End(Not run)

gewekediag Geweke’s convergence diagnostic

Description

Geweke (1992) proposed a convergence diagnostic for Markov chains based on a test for equality
of the means of the first and last part of a Markov chain (by default the first 10% and the last 50%).
If the samples are drawn from the stationary distribution of the chain, the two means are equal and
Geweke’s statistic has an asymptotically standard normal distribution.

The test statistic is a standard Z-score: the difference between the two sample means divided by its
estimated standard error. The standard error is estimated from the spectral density at zero and so
takes into account any autocorrelation.

The Z-score is calculated under the assumption that the two parts of the chain are asymptotically
independent, which requires that the sum of frac1 and frac2 be strictly less than 1.

Adapted from the geweke.diag function of the coda package which passes mcmc objects as argu-
ments rather than matrices.

Usage

gewekediag(x, frac1=0.1, frac2=0.5)

gewekediag 37

Arguments

x Matrix of MCMC chains: the rows are the samples and the columns are different
"parameters". For BART, generally, the columns are estimates of f . For pbart,
they are different subjects. For surv.bart, they are different subjects at a grid
of times.

frac1 fraction to use from beginning of chain

frac2 fraction to use from end of chain

Value

Z-scores for a test of equality of means between the first and last parts of the chain. A separate
statistic is calculated for each variable in each chain.

References

Geweke J. (1992) Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of
Posterior Moments. In JM Bernado, JO Berger, AP Dawid, AFM Smith (eds.), Bayesian Statistics
4, pp. 169-193. Oxford University Press, Oxford.

Plummer M., Best N., Cowles K. and Vines K. (2006) CODA: Convergence Diagnosis and Output
Analysis for MCMC. R News, vol 6, 7-11.

See Also

spectrum0ar.

Examples

load survival package for the advanced lung cancer example
data(lung)

group <- -which(is.na(lung[, 7])) ## remove missing row for ph.karno
times <- lung[group, 2] ##lung$time
delta <- lung[group, 3]-1 ##lung$status: 1=censored, 2=dead

##delta: 0=censored, 1=dead

this study reports time in days rather than months like other studies
coarsening from days to months will reduce the computational burden
times <- ceiling(times/30)

summary(times)
table(delta)

x.train <- as.matrix(lung[group, c(4, 5, 7)]) ## matrix of observed covariates

lung$age: Age in years
lung$sex: Male=1 Female=2
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

dimnames(x.train)[[2]] <- c('age(yr)', 'M(1):F(2)', 'ph.karno(0:100:10)')

38 lbart

summary(x.train[, 1])
table(x.train[, 2])
table(x.train[, 3])

x.test <- matrix(nrow=84, ncol=3) ## matrix of covariate scenarios

dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

i <- 1

for(age in 5*(9:15)) for(sex in 1:2) for(ph.karno in 10*(5:10)) {
x.test[i,] <- c(age, sex, ph.karno)
i <- i+1

}

Not run:
set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)
in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.surv.bart(x.train=x.train, times=times, delta=delta,
x.test=x.test, mc.cores=8, seed=99)

N <- nrow(x.test)

K <- post$K
select 10 lung cancer patients uniformly spread out over the data set
h <- seq(1, N*K, floor(N/10)*K)

for(i in h) {
post.mcmc <- post$yhat.test[, (i-1)+1:K]
z <- gewekediag(post.mcmc)$z
y <- max(c(4, abs(z)))

plot the z scores vs. time for each patient
if(i==1) plot(post$times, z, ylim=c(-y, y), type='l',

xlab='t', ylab='z')
else lines(post$times, z, type='l')

}
add two-sided alpha=0.05 critical value lines
lines(post$times, rep(-1.96, K), type='l', lty=2)
lines(post$times, rep(1.96, K), type='l', lty=2)

End(Not run)

lbart Logit BART for dichotomous outcomes with Logistic latents

lbart 39

Description

BART is a Bayesian “sum-of-trees” model.
For numeric response y, we have y = f(x) + ϵ, where ϵ ∼ Log(0, 1).
For a binary response y, P (Y = 1|x) = F (f(x)), where F denotes the standard Logistic CDF
(logit link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

lbart(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE, tau.interval=0.95,
k=2.0, power=2.0, base=.95,
binaryOffset=NULL,
ntree=200L, numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=1L,
nkeeptrain=ndpost, nkeeptest=ndpost,

nkeeptreedraws=ndpost,
printevery=100L, transposed=FALSE

)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. lbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Binary dependent variable for training (in sample) data.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
lbart will generate draws of f(x) for each x which is a row of x.test.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

40 lbart

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

cont Whether or not to assume all variables are continuous.

rm.const Whether or not to remove constant variables.

tau.interval The width of the interval to scale the variance for the terminal leaf values.

k For numeric y, k is the number of prior standard deviations E(Y |x) = f(x)
is away from +/-.5. For binary y, k is the number of prior standard deviations
f(x) is away from +/-3. In both cases, the bigger k is, the more conservative the
fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

binaryOffset Used for binary y.
The model is P (Y = 1|x) = F (f(x) + binaryOffset).

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

nkeeptrain Number of MCMC iterations to be returned for train data.

nkeeptest Number of MCMC iterations to be returned for test data.

nkeeptreedraws Number of MCMC iterations to be returned for tree draws.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

transposed When running lbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.lbart.

lbart 41

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior f |(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) where * denotes a
particular draw. The x is either a row from the training data (x.train) or the test data (x.test).

Value

lbart returns an object of type lbart which is essentially a list.

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.
yhat.train.mean

train data fits = mean of yhat.train columns.

yhat.test.mean test data fits = mean of yhat.test columns.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

In addition, the list has a binaryOffset giving the value used.

Note that in the binary y, case yhat.train and yhat.test are f(x)+binaryOffset. If you want draws
of the probability P (Y = 1|x) you need to apply the Logistic CDF (plogis) to these values.

See Also

wbart

Examples

data(ACTG175)

exclude those who do not have CD4 count at 96 weeks
ex <- is.na(ACTG175$cd496)
table(ex)

inclusion criteria are CD4 counts between 200 and 500
ACTG175$cd40 <- min(500, max(250, ACTG175$cd40))

calculate relative CD4 decline
y <- ((ACTG175$cd496-ACTG175$cd40)/ACTG175$cd40)[!ex]
summary(y)

0=failure, 1=success

42 lbart

y <- 1*(y > -0.5)

summarize CD4 outcomes
table(y, ACTG175$arms[!ex])

table(y, ACTG175$arms[!ex])/
matrix(table(ACTG175$arms[!ex]), nrow=2, ncol=4, byrow=TRUE)

drop unneeded and unwanted variables
1: 'pidnum' patient ID number
##14: 'str2' which will be handled by strat1 below
##15: 'strat' which will be handled by strat1-strat3 below
##17: 'treat' handled by arm0-arm3 below
##18: 'offtrt' indicator of off-treatment before 96 weeks
##20: 'cd420' CD4 T cell count at 20 weeks
##21: 'cd496' CD4 T cell count at 96 weeks
##22: 'r' missing CD4 T cell count at 96 weeks
##24: 'cd820' CD8 T cell count at 20 weeks
##25: 'cens' indicator of observing the event in days
##26: 'days' number of days until the primary endpoint
##27: 'arms' handled by arm0-arm3 below
train <- as.matrix(ACTG175)[!ex, -c(1, 14:15, 17, 18, 20:22, 24:27)]
train <- cbind(1*(ACTG175$strat[!ex]==1), 1*(ACTG175$strat[!ex]==2),

1*(ACTG175$strat[!ex]==3), train)
dimnames(train)[[2]][1:3] <- paste0('strat', 1:3)
train <- cbind(1*(ACTG175$arms[!ex]==0), 1*(ACTG175$arms[!ex]==1),

1*(ACTG175$arms[!ex]==2), 1*(ACTG175$arms[!ex]==3), train)
dimnames(train)[[2]][1:4] <- paste0('arm', 0:3)

N <- nrow(train)

test0 <- train; test0[, 1:4] <- 0; test0[, 1] <- 1
test1 <- train; test1[, 1:4] <- 0; test1[, 2] <- 1
test2 <- train; test2[, 1:4] <- 0; test2[, 3] <- 1
test3 <- train; test3[, 1:4] <- 0; test3[, 4] <- 1

test <- rbind(test0, test1, test2, test3)

##test BART with token run to ensure installation works
set.seed(21)
post <- lbart(train, y, test, nskip=5, ndpost=5)

Not run:
set.seed(21)
post <- lbart(train, y, test)

turn z-scores into probabilities
post$prob.test <- plogis(post$yhat.test)

average over the posterior samples
post$prob.test.mean <- apply(post$prob.test, 2, mean)

place estimates for arms 0-3 next to each other for convenience

lbart 43

itr <- cbind(post$prob.test.mean[(1:N)], post$prob.test.mean[N+(1:N)],
post$prob.test.mean[2*N+(1:N)], post$prob.test.mean[3*N+(1:N)])

find the BART ITR for each patient
itr.pick <- integer(N)
for(i in 1:N) itr.pick[i] <- which(itr[i,]==max(itr[i,]))-1

arms 0 and 3 (monotherapy) are never chosen
table(itr.pick)

do arms 1 and 2 show treatment heterogeneity?
diff. <- apply(post$prob.test[, 2*N+(1:N)]-post$prob.test[, N+(1:N)], 2, mean)
plot(sort(diff.), type='h', main='ACTG175 trial: 50% CD4 decline from baseline at 96 weeks',

xlab='Arm 2 (1) Preferable to the Right (Left)', ylab='Prob.Diff.: Arms 2 - 1')

library(rpart)
library(rpart.plot)

make data frame for nicer names in the plot
var <- as.data.frame(train[, -(1:4)])

dss <- rpart(diff. ~ var$age+var$gender+var$race+var$wtkg+var$cd40+var$cd80+
var$karnof+var$symptom+var$hemo+var$homo+var$drugs+var$z30+
var$zprior+var$oprior+var$strat1+var$strat2+var$strat3,

method='anova', control=rpart.control(cp=0.1))
rpart.plot(dss, type=3, extra=101)

if strat1==1 (antiretroviral naive), then arm 2 is better
otherwise, arm 1
print(dss)

all0 <- apply(post$prob.test[, (1:N)], 1, mean)
all1 <- apply(post$prob.test[, N+(1:N)], 1, mean)
all2 <- apply(post$prob.test[, 2*N+(1:N)], 1, mean)
all3 <- apply(post$prob.test[, 3*N+(1:N)], 1, mean)

BART ITR
BART.itr <- apply(post$prob.test[, c(N+which(itr.pick==1), 2*N+which(itr.pick==2))], 1, mean)

test <- train
test[, 1:4] <- 0
test[test[, 5]==0, 2] <- 1
test[test[, 5]==1, 3] <- 1

BART ITR simple
BART.itr.simp <- pwbart(test, post$treedraws)
BART.itr.simp <- apply(plogis(BART.itr.simp), 1, mean)

plot(density(BART.itr), xlab='Value', xlim=c(0.475, 0.775), lwd=2,
main='ACTG175 trial: 50% CD4 decline from baseline at 96 weeks')

lines(density(BART.itr.simp), col='brown', lwd=2)
lines(density(all0), col='green', lwd=2)
lines(density(all1), col='red', lwd=2)

44 leukemia

lines(density(all2), col='blue', lwd=2)
lines(density(all3), col='yellow', lwd=2)
legend('topleft', legend=c('All Arm 0 (ZDV only)', 'All Arm 1 (ZDV+DDI)',

'All Arm 2 (ZDV+DDC)', 'All Arm 3 (DDI only)',
'BART ITR simple', 'BART ITR'),

col=c('green', 'red', 'blue', 'yellow', 'brown', 'black'), lty=1, lwd=2)

End(Not run)

leukemia Bone marrow transplantation for leukemia and multi-state models

Description

137 patients with acute myelocytic leukemia (AML) and acute lymphoblastic leukemia (ALL) were
given oral busulfan (Bu) 4 mg/kg on each of 4 days and intravenous cyclophosphamide (Cy) 60
mg/kg on each of 2 days (BuCy2) followed by allogeneic bone marrow transplantation from an
HLA-identical or one antigen disparate sibling.

Usage

data(leukemia)

Format

A data frame with 137 subjects on the following 22 variables.

G Disease Group (1=ALL, 2=AML Low Risk in first remission, 3=AML High Risk not in first
remission)

TD Time To Death Or On Study Time

TB Disease Free Survival Time (Time To Relapse, Death Or End Of Study)

D Death Indicator (0=Alive, 1=Dead)

R Relapse Indicator (0=Disease Free, 1=Relapsed)

B Disease Free Survival Indicator (0=Alive and Disease Free, 1=Dead or Relapsed)

TA Time To Acute Graft-Versus-Host Disease (GVHD)

A Acute GVHD Indicator (0=Never Developed Acute GVHD, 1=Developed Acute GVHD)

TC Time To Chronic Graft-Versus-Host Disease (GVHD)

C Chronic GVHD Indicator (0=Never Developed Chronic GVHD, 1=Developed Chronic GVHD)

TP Time of Platelets Returning to Normal Levels

P Platelet Recovery Indicator (0=Platelets Never Returned to Normal, 1=Platelets Returned To
Normal)

X1 Patient Age In Years

X2 Donor Age In Years

lung 45

X3 Patient Gender (0=female, 1=male)

X4 Donor Gender (0=female, 1=male)

X5 Patient Cytomegalovirus (CMV) Immune Status (0=CMV Negative, 1=CMV Positive)

X6 Donor Cytomegalovirus (CMV) Immune Status (0=CMV Negative, 1=CMV Positive)

X7 Waiting Time to Transplant In Days

X8 AML Patients with Elevated Risk By French-American-British (FAB) Classification (0=Not
AML/Elevated, 1=FAB M4 Or M5 with AML)

X9 Hospital (1=The Ohio State University in Columbus, 2=Alfred in Melbourne, 3=St. Vincent in
Sydney, 4=Hahnemann University in Philadelphia)

X10 Methotrexate Used as a Graft-Versus-Host Disease Prophylactic (0=No, 1=Yes)

Source

Klein J. and Moeschberger M.L. (2003) Survival Analysis: Techniques for Censored and Truncated
Data, New York: Springer-Verlag, 2nd Ed., Section 1.3.

References

Copelan E., Biggs J., Thompson J., Crilley P., Szer J., Klein, J., Kapoor N., Avalos, B., Cunningham
I. and Atkinson, K. (1991) "Treatment for acute myelocytic leukemia with allogeneic bone marrow
transplantation following preparation with BuCy2". Blood, 78(3), pp.838-843.

lung NCCTG Lung Cancer Data

Description

Survival in patients with advanced lung cancer from the North Central Cancer Treatment Group.
Performance scores rate how well the patient can perform usual daily activities.

Format

inst: Institution code
time: Survival time in days
status: censoring status 1=censored, 2=dead
age: Age in years
sex: Male=1 Female=2
ph.ecog: ECOG performance score (0=good 5=dead)
ph.karno: Karnofsky performance score (bad=0-good=100) rated by physician
pat.karno: Karnofsky performance score as rated by patient
meal.cal: Calories consumed at meals
wt.loss: Weight loss in last six months

46 mbart

Source

Terry Therneau

References

Loprinzi CL. Laurie JA. Wieand HS. Krook JE. Novotny PJ. Kugler JW. Bartel J. Law M. Bateman
M. Klatt NE. et al. Prospective evaluation of prognostic variables from patient-completed ques-
tionnaires. North Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7,
1994.

Examples

data(lung)

mbart Multinomial BART for categorical outcomes with fewer categories

Description

BART is a Bayesian “sum-of-trees” model.
For numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, 1).
For a multinomial response y, P (Y = y|x) = F (f(x)), where F denotes the standard Normal
CDF (probit link) or the standard Logistic CDF (logit link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

mbart(
x.train, y.train,
x.test=matrix(0,0,0), type='pbart',
ntype=as.integer(

factor(type,
levels=c('wbart', 'pbart', 'lbart'))),

sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
k=2, power=2, base=0.95,
tau.num=c(NA, 3, 6)[ntype],
offset=NULL,
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],

mbart 47

printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 2L, ## mc.bart only
nice = 19L, ## mc.bart only
seed = 99L ## mc.bart only
)

mc.mbart(
x.train, y.train,
x.test=matrix(0,0,0), type='pbart',
ntype=as.integer(

factor(type,
levels=c('wbart', 'pbart', 'lbart'))),

sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
k=2, power=2, base=0.95,
tau.num=c(NA, 3, 6)[ntype],
offset=NULL,
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 2L, ## mc.bart only
nice = 19L, ## mc.bart only
seed = 99L ## mc.bart only
)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. mbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Categorical dependent variable for training (in sample) data.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
mbart will generate draws of f(x) for each x which is a row of x.test.

type You can use this argument to specify the type of fit. 'pbart' for probit BART
or 'lbart' for logit BART.

ntype The integer equivalent of type where 'pbart' is 2 and 'lbart' is 3.

48 mbart

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.

k For categorical y.train, k is the number of prior standard deviations f(x) is
away from +/-3.

power Power parameter for tree prior.

base Base parameter for tree prior.

tau.num The numerator in the tau definition, i.e., tau=tau.num/(k*sqrt(ntree)).

offset With Multinomial BART, the centering is P (yj = 1|x) = F (fj(x)+offset[j])
where offset defaults to F^{-1}(mean(y.train)). You can use the offset
parameter to over-ride these defaults.

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

transposed When running mbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.mbart.

hostname When running on a cluster occasionally it is useful to track on which node each
chain is running; to do so set this argument to TRUE.

mbart 49

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from f in the
categorical y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) where * denotes a
particular draw. The x is either a row from the training data (x.train).

Value

mbart returns an object of type mbart which is essentially a list.

yhat.train A matrix with ndpost rows and nrow(x.train)*K columns. Each row corre-
sponds to a draw f∗ from the posterior of f and each column corresponds to
an estimate for a row of x.train. For the ith row of x.train, we provide the
corresponding (i-1)*K+jth column of yhat.train where j=1,...,K indexes
the categories.
Burn-in is dropped.

yhat.train.mean

train data fits = mean of yhat.train columns.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a
draw. For each variable (corresponding to the columns), the total count of the
number of times that variable is used in a tree decision rule (over all trees) is
given.

In addition, the list has a offset vector giving the value used.

Note that in the multinomial y case yhat.train is f(x) + offset[j].

See Also

gbart, alligator

Examples

N=500
set.seed(12)
x1=runif(N)
x2=runif(N, max=1-x1)
x3=1-x1-x2
x.train=cbind(x1, x2, x3)
y.train=0
for(i in 1:N)

y.train[i]=sum((1:3)*rmultinom(1, 1, x.train[i,]))
table(y.train)/N

50 mbart2

##test mbart with token run to ensure installation works
set.seed(99)
post = mbart(x.train, y.train, nskip=1, ndpost=1)

Not run:
set.seed(99)
post=mbart(x.train, y.train, x.train)
##mc.post=mbart(x.train, y.train, x.test, mc.cores=8, seed=99)

K=3
i=seq(1, N*K, K)-1
for(j in 1:K)

print(cor(x.train[, j], post$prob.test.mean[i+j])^2)

End(Not run)

mbart2 Multinomial BART for categorical outcomes with more categories

Description

BART is a Bayesian “sum-of-trees” model.
For numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, 1).
For a multinomial response y, P (Y = y|x) = F (f(x)), where F denotes the standard Normal
CDF (probit link) or the standard Logistic CDF (logit link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

mbart2(
x.train, y.train,
x.test=matrix(0,0,0), type='lbart',
ntype=as.integer(

factor(type,
levels=c('wbart', 'pbart', 'lbart'))),

sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
k=2, power=2, base=0.95,
tau.num=c(NA, 3, 6)[ntype],
offset=NULL,
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,

mbart2 51

ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 2L, ## mc.bart only
nice = 19L, ## mc.bart only
seed = 99L ## mc.bart only
)

mc.mbart2(
x.train, y.train,
x.test=matrix(0,0,0), type='lbart',
ntype=as.integer(

factor(type,
levels=c('wbart', 'pbart', 'lbart'))),

sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
k=2, power=2, base=0.95,
tau.num=c(NA, 3, 6)[ntype],
offset=NULL,
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 2L, ## mc.bart only
nice = 19L, ## mc.bart only
seed = 99L ## mc.bart only
)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. mbart2 will generate draws of f(x) for each x
which is a row of x.train.

y.train Categorical dependent variable for training (in sample) data.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
mbart2 will generate draws of f(x) for each x which is a row of x.test.

52 mbart2

type You can use this argument to specify the type of fit. 'pbart' for probit BART
or 'lbart' for logit BART.

ntype The integer equivalent of type where 'pbart' is 2 and 'lbart' is 3.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.

k For categorical y.train, k is the number of prior standard deviations f(x) is
away from +/-3.

power Power parameter for tree prior.

base Base parameter for tree prior.

tau.num The numerator in the tau definition, i.e., tau=tau.num/(k*sqrt(ntree)).

offset With Multinomial BART, the centering is P (yj = 1|x) = F (fj(x)+offset[j])
where offset defaults to F^{-1}(mean(y.train)). You can use the offset
parameter to over-ride these defaults.

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

transposed When running mbart2 in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.mbart2.

mbart2 53

hostname When running on a cluster occasionally it is useful to track on which node each
chain is running; to do so set this argument to TRUE.

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from f in the
categorical y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) where * denotes a
particular draw. The x is either a row from the training data (x.train).

Value

mbart2 returns an object of type mbart2 which is essentially a list.

yhat.train A matrix with ndpost rows and nrow(x.train)*K columns. Each row corre-
sponds to a draw f∗ from the posterior of f and each column corresponds to
an estimate for a row of x.train. For the ith row of x.train, we provide the
corresponding (i-1)*K+jth column of yhat.train where j=1,...,K indexes
the categories.
Burn-in is dropped.

yhat.train.mean

train data fits = mean of yhat.train columns.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a
draw. For each variable (corresponding to the columns), the total count of the
number of times that variable is used in a tree decision rule (over all trees) is
given.

In addition, the list has a offset vector giving the value used.

Note that in the multinomial y case yhat.train is f(x) + offset[j].

See Also

gbart, alligator

Examples

N=500
set.seed(12)
x1=runif(N)
x2=runif(N, max=1-x1)
x3=1-x1-x2
x.train=cbind(x1, x2, x3)
y.train=0

54 mc.cores.openmp

for(i in 1:N)
y.train[i]=sum((1:3)*rmultinom(1, 1, x.train[i,]))

table(y.train)/N

##test mbart2 with token run to ensure installation works
set.seed(99)
post = mbart2(x.train, y.train, nskip=1, ndpost=1)

Not run:
set.seed(99)
post=mbart2(x.train, y.train, x.train)
##mc.post=mbart2(x.train, y.train, x.test, mc.cores=8, seed=99)

K=3
i=seq(1, N*K, K)-1
for(j in 1:K)

print(cor(x.train[, j], post$prob.test.mean[i+j])^2)

End(Not run)

mc.cores.openmp Detecting OpenMP

Description

This package was designed for OpenMP. For example, the pwbart function can use OpenMP or
the parallel R package for multi-threading. On UNIX/Unix-like systems, OpenMP, if available, is
discovered at install time; for the details, see the configure.ac file which can be found in the
source version of this package. However, we know of no GPL licensed code available to detect
OpenMP on Windows (for Artistic licensed OpenMP detection code on Windows, see the Biocon-
ductor R package rGADEM). To determine whether OpenMP is available at run time, we provide
the function documented here.

Usage

mc.cores.openmp()

Value

Returns a zero when OpenMP is not available, otherwise, an integer greater than zero when OpenMP
is available (returns one unless you are running in a multi-threaded process).

See Also

pwbart

mc.crisk.pwbart 55

Examples

mc.cores.openmp()

mc.crisk.pwbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

mc.crisk.pwbart(x.test, x.test2,
treedraws, treedraws2,
binaryOffset=0, binaryOffset2=0,
mc.cores=2L, type='pbart',
transposed=FALSE, nice=19L

)

Arguments

x.test Matrix of covariates to predict y for cause 1.

x.test2 Matrix of covariates to predict y for cause 2.

treedraws $treedraws for cause 1.

treedraws2 $treedraws for cause 2.

binaryOffset Mean to add on to y prediction for cause 1.

binaryOffset2 Mean to add on to y prediction for cause 2.

mc.cores Number of threads to utilize.

type Whether to employ Albert-Chib, 'pbart', or Holmes-Held, 'lbart'.

transposed When running pwbart or mc.pwbart in parallel, it is more memory-efficient to
transpose x.test prior to calling the internal versions of these functions.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

56 mc.crisk.pwbart

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type criskbart which is essentially a list with components:

yhat.test A matrix with ndpost rows and nrow(x.test) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

surv.test test data fits for survival probability.

surv.test.mean mean of surv.test over the posterior samples.

prob.test The probability of suffering cause 1 which is occasionally useful, e.g., in calcu-
lating the concordance.

prob.test2 The probability of suffering cause 2 which is occasionally useful, e.g., in calcu-
lating the concordance.

cif.test The cumulative incidence function of cause 1, F1(t, x), where x’s are the rows
of the test data.

cif.test2 The cumulative incidence function of cause 2, F2(t, x), where x’s are the rows
of the test data.

yhat.test.mean test data fits = mean of yhat.test columns.

cif.test.mean mean of cif.test columns for cause 1.

cif.test2.mean mean of cif.test2 columns for cause 2.

See Also

pwbart, crisk.bart, mc.crisk.bart

Examples

data(transplant)

delta <- (as.numeric(transplant$event)-1)
recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)

mc.crisk.pwbart 57

times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months
table(times)

typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)

x.train <- cbind(typeO, typeA, typeB, typeAB)

x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

post <- mc.crisk.bart(x.train=x.train, times=times, delta=delta,
seed=99, mc.cores=2, nskip=5, ndpost=5,
keepevery=1)

pre <- surv.pre.bart(x.train=x.train, x.test=x.test,
times=times, delta=delta)

K <- post$K

pred <- mc.crisk.pwbart(pre$tx.test, pre$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset, post$binaryOffset2)

}

Not run:

run one long MCMC chain in one process
set.seed(99)
post <- crisk.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk.bart(x.train=x.train,

times=times, delta=delta,
x.test=x.test, seed=99, mc.cores=8)

check <- mc.crisk.pwbart(post$tx.test, post$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset,
post$binaryOffset2, mc.cores=8)

check <- predict(post, newdata=post$tx.test, newdata2=post$tx.test2,
mc.cores=8)

print(c(post$surv.test.mean[1], check$surv.test.mean[1],
post$surv.test.mean[1]-check$surv.test.mean[1]), digits=22)

58 mc.crisk2.pwbart

print(all(round(post$surv.test.mean, digits=9)==
round(check$surv.test.mean, digits=9)))

print(c(post$cif.test.mean[1], check$cif.test.mean[1],
post$cif.test.mean[1]-check$cif.test.mean[1]), digits=22)

print(all(round(post$cif.test.mean, digits=9)==
round(check$cif.test.mean, digits=9)))

print(c(post$cif.test2.mean[1], check$cif.test2.mean[1],
post$cif.test2.mean[1]-check$cif.test2.mean[1]), digits=22)

print(all(round(post$cif.test2.mean, digits=9)==
round(check$cif.test2.mean, digits=9)))

End(Not run)

mc.crisk2.pwbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

mc.crisk2.pwbart(x.test, x.test2,
treedraws, treedraws2,
binaryOffset=0, binaryOffset2=0,
mc.cores=2L, type='pbart',
transposed=FALSE, nice=19L

)

Arguments

x.test Matrix of covariates to predict y for cause 1.

x.test2 Matrix of covariates to predict y for cause 2.

treedraws $treedraws for cause 1.

treedraws2 $treedraws for cause 2.

mc.crisk2.pwbart 59

binaryOffset Mean to add on to y prediction for cause 1.

binaryOffset2 Mean to add on to y prediction for cause 2.

mc.cores Number of threads to utilize.

type Whether to employ Albert-Chib, 'pbart', or Holmes-Held, 'lbart'.

transposed When running pwbart or mc.pwbart in parallel, it is more memory-efficient to
transpose x.test prior to calling the internal versions of these functions.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type crisk2bart which is essentially a list with components:

yhat.test A matrix with ndpost rows and nrow(x.test) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

surv.test test data fits for survival probability.

surv.test.mean mean of surv.test over the posterior samples.

prob.test The probability of suffering cause 1 which is occasionally useful, e.g., in calcu-
lating the concordance.

prob.test2 The probability of suffering cause 2 which is occasionally useful, e.g., in calcu-
lating the concordance.

cif.test The cumulative incidence function of cause 1, F1(t, x), where x’s are the rows
of the test data.

cif.test2 The cumulative incidence function of cause 2, F2(t, x), where x’s are the rows
of the test data.

yhat.test.mean test data fits = mean of yhat.test columns.

cif.test.mean mean of cif.test columns for cause 1.

cif.test2.mean mean of cif.test2 columns for cause 2.

See Also

pwbart, crisk2.bart, mc.crisk2.bart

60 mc.crisk2.pwbart

Examples

data(transplant)

delta <- (as.numeric(transplant$event)-1)
recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)

times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months
table(times)

typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)

x.train <- cbind(typeO, typeA, typeB, typeAB)

x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

post <- mc.crisk2.bart(x.train=x.train, times=times, delta=delta,
seed=99, mc.cores=2, nskip=5, ndpost=5,
keepevery=1)

pre <- surv.pre.bart(x.train=x.train, x.test=x.test,
times=times, delta=delta)

K <- post$K

pred <- mc.crisk2.pwbart(pre$tx.test, pre$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset, post$binaryOffset2)

}

Not run:

run one long MCMC chain in one process
set.seed(99)
post <- crisk2.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk2.bart(x.train=x.train,

times=times, delta=delta,

mc.lbart 61

x.test=x.test, seed=99, mc.cores=8)

check <- mc.crisk2.pwbart(post$tx.test, post$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset,
post$binaryOffset2, mc.cores=8)

check <- predict(post, newdata=post$tx.test, newdata2=post$tx.test2,
mc.cores=8)

print(c(post$surv.test.mean[1], check$surv.test.mean[1],
post$surv.test.mean[1]-check$surv.test.mean[1]), digits=22)

print(all(round(post$surv.test.mean, digits=9)==
round(check$surv.test.mean, digits=9)))

print(c(post$cif.test.mean[1], check$cif.test.mean[1],
post$cif.test.mean[1]-check$cif.test.mean[1]), digits=22)

print(all(round(post$cif.test.mean, digits=9)==
round(check$cif.test.mean, digits=9)))

print(c(post$cif.test2.mean[1], check$cif.test2.mean[1],
post$cif.test2.mean[1]-check$cif.test2.mean[1]), digits=22)

print(all(round(post$cif.test2.mean, digits=9)==
round(check$cif.test2.mean, digits=9)))

End(Not run)

mc.lbart Logit BART for dichotomous outcomes with Logistic latents and par-
allel computation

Description

BART is a Bayesian “sum-of-trees” model.
For numeric response y, we have y = f(x) + ϵ, where ϵ ∼ Log(0, 1).
For a binary response y, P (Y = 1|x) = F (f(x)), where F denotes the standard Logistic CDF
(logit link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

62 mc.lbart

Usage

mc.lbart(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE, tau.interval=0.95,
k=2.0, power=2.0, base=.95,
binaryOffset=NULL,
ntree=50L, numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=1L, printevery=100,
keeptrainfits=TRUE, transposed=FALSE,

mc.cores = 2L, nice = 19L,
seed = 99L

)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. lbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Dependent variable for training (in sample) data.
If y is numeric a continous response model is fit (normal errors).
If y is a factor (or just has values 0 and 1) then a binary response model with a
logit link is fit.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
lbart will generate draws of f(x) for each x which is a row of x.test.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

mc.lbart 63

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

cont Whether or not to assume all variables are continuous.

rm.const Whether or not to remove constant variables.

tau.interval The width of the interval to scale the variance for the terminal leaf values.

k For numeric y, k is the number of prior standard deviations E(Y |x) = f(x)
is away from +/-.5. For binary y, k is the number of prior standard deviations
f(x) is away from +/-3. In both cases, the bigger k is, the more conservative the
fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

binaryOffset Used for binary y.
The model is P (Y = 1|x) = F (f(x) + binaryOffset).

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

keeptrainfits Whether to keep yhat.train or not.

transposed When running lbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.lbart.

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

64 mc.lbart

Value

mc.lbart returns an object of type lbart which is essentially a list.

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.
yhat.train.mean

train data fits = mean of yhat.train columns.

yhat.test.mean test data fits = mean of yhat.test columns.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

In addition, the list has a binaryOffset giving the value used.

Note that in the binary y, case yhat.train and yhat.test are f(x)+binaryOffset. If you want draws
of the probability P (Y = 1|x) you need to apply the Logistic cdf (plogis) to these values.

See Also

lbart

Examples

set.seed(99)
n=5000
x = sort(-2+4*runif(n))
X=matrix(x,ncol=1)
f = function(x) {return((1/2)*x^3)}
FL = function(x) {return(exp(x)/(1+exp(x)))}
pv = FL(f(x))
y = rbinom(n,1,pv)
np=100
xp=-2+4*(1:np)/np
Xp=matrix(xp,ncol=1)

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works
mf = mc.lbart(X, y, nskip=5, ndpost=5, mc.cores=1, seed=99)
}

Not run:
set.seed(99)
pf = lbart(X,y,Xp)

plot(f(Xp), pf$yhat.test.mean, xlim=c(-4, 4), ylim=c(-4, 4),

mc.pbart 65

xlab='True f(x)', ylab='BART f(x)')
lines(c(-4, 4), c(-4, 4))

mf = mc.lbart(X,y,Xp, mc.cores=4, seed=99)

plot(f(Xp), mf$yhat.test.mean, xlim=c(-4, 4), ylim=c(-4, 4),
xlab='True f(x)', ylab='BART f(x)')

lines(c(-4, 4), c(-4, 4))

par(mfrow=c(2,2))

plot(range(xp),range(pf$yhat.test),xlab='x',ylab='f(x)',type='n')
lines(x,f(x),col='blue',lwd=2)
lines(xp,apply(pf$yhat.test,2,mean),col='red')
qpl = apply(pf$yhat.test,2,quantile,probs=c(.025,.975))
lines(xp,qpl[1,],col='green',lty=1)
lines(xp,qpl[2,],col='green',lty=1)
title(main='BART::lbart f(x) with 0.95 intervals')

plot(range(xp),range(mf$yhat.test),xlab='x',ylab='f(x)',type='n')
lines(x,f(x),col='blue',lwd=2)
lines(xp,apply(mf$yhat.test,2,mean),col='red')
qpl = apply(mf$yhat.test,2,quantile,probs=c(.025,.975))
lines(xp,qpl[1,],col='green',lty=1)
lines(xp,qpl[2,],col='green',lty=1)
title(main='BART::mc.lbart f(x) with 0.95 intervals')

plot(pf$yhat.test.mean,apply(mf$yhat.test,2,mean),xlab='BART::lbart',ylab='BART::mc.lbart')
abline(0,1,col='red')
title(main="BART::lbart f(x) vs. BART::mc.lbart f(x)")

End(Not run)

mc.pbart Probit BART for dichotomous outcomes with Normal latents and par-
allel computation

Description

BART is a Bayesian “sum-of-trees” model.
For a binary response y, P (Y = 1|x) = F (f(x)), where F denotes the standard normal cdf (probit
link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

66 mc.pbart

Usage

mc.pbart(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE,
k=2.0, power=2.0, base=.95,
binaryOffset=NULL,
ntree=50L, numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=1L, printevery=100,
keeptrainfits=TRUE, transposed=FALSE,
mc.cores = 2L, nice = 19L,
seed = 99L

)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. pbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Binary dependent variable for training (in sample) data.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
pbart will generate draws of f(x) for each x which is a row of x.test.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

mc.pbart 67

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

cont Whether or not to assume all variables are continuous.

rm.const Whether or not to remove constant variables.

k For binary y, k is the number of prior standard deviations f(x) is away from
+/-3. The bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

binaryOffset Used for binary y.
The model is P (Y = 1|x) = F (f(x) + binaryOffset).

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

keeptrainfits Whether to keep yhat.train or not.

transposed When running pbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.pbart.

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from f in the
binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) where * denotes a
particular draw. The x is either a row from the training data (x.train) or the test data (x.test).

Value

mc.pbart returns an object of type pbart which is essentially a list.

68 mc.pbart

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

In addition the list has a binaryOffset component giving the value used.

Note that in the binary y, case yhat.train and yhat.test are f(x) + binaryOffset. If you want draws
of the probability P (Y = 1|x) you need to apply the normal cdf (pnorm) to these values.

See Also

pbart

Examples

set.seed(99)
n=5000
x = sort(-2+4*runif(n))
X=matrix(x,ncol=1)
f = function(x) {return((1/2)*x^3)}
FL = function(x) {return(exp(x)/(1+exp(x)))}
pv = FL(f(x))
y = rbinom(n,1,pv)
np=100
xp=-2+4*(1:np)/np
Xp=matrix(xp,ncol=1)

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

mf = mc.pbart(X, y, nskip=5, ndpost=5, mc.cores=1, seed=99)
}

Not run:
set.seed(99)
pf = pbart(X,y,Xp)

plot(f(Xp), pf$yhat.test.mean, xlim=c(-4, 4), ylim=c(-4, 4),
xlab='True f(x)', ylab='BART f(x)')
lines(c(-4, 4), c(-4, 4))

mf = mc.pbart(X,y,Xp, mc.cores=4, seed=99)

plot(f(Xp), mf$yhat.test.mean, xlim=c(-4, 4), ylim=c(-4, 4),
xlab='True f(x)', ylab='BART f(x)')
lines(c(-4, 4), c(-4, 4))

mc.surv.pwbart 69

par(mfrow=c(2,2))

plot(range(xp),range(pf$yhat.test),xlab='x',ylab='f(x)',type='n')
lines(x,f(x),col='blue',lwd=2)
lines(xp,apply(pf$yhat.test,2,mean),col='red')
qpl = apply(pf$yhat.test,2,quantile,probs=c(.025,.975))
lines(xp,qpl[1,],col='green',lty=1)
lines(xp,qpl[2,],col='green',lty=1)
title(main='BART::pbart f(x) with 0.95 intervals')

plot(range(xp),range(mf$yhat.test),xlab='x',ylab='f(x)',type='n')
lines(x,f(x),col='blue',lwd=2)
lines(xp,apply(mf$yhat.test,2,mean),col='red')
qpl = apply(mf$yhat.test,2,quantile,probs=c(.025,.975))
lines(xp,qpl[1,],col='green',lty=1)
lines(xp,qpl[2,],col='green',lty=1)
title(main='BART::mc.pbart f(x) with 0.95 intervals')

plot(pf$yhat.test.mean,apply(mf$yhat.test,2,mean),xlab='BART::pbart',ylab='BART::mc.pbart')
abline(0,1,col='red')
title(main="BART::pbart f(x) vs. BART::mc.pbart f(x)")

End(Not run)

mc.surv.pwbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

surv.pwbart(
x.test,
treedraws,
binaryOffset=0,
mc.cores=1L,
type='pbart',
transposed=FALSE, nice=19L

)

70 mc.surv.pwbart

mc.surv.pwbart(
x.test,
treedraws,
binaryOffset=0,
mc.cores=2L,
type='pbart',
transposed=FALSE, nice=19L

)

mc.recur.pwbart(
x.test,
treedraws,
binaryOffset=0,
mc.cores=2L,
type='pbart',
transposed=FALSE, nice=19L

)

Arguments

x.test Matrix of covariates to predict y for.

binaryOffset Mean to add on to y prediction.

treedraws $treedraws returned from surv.bart, mc.surv.bart, recur.bart or mc.recur.bart.

mc.cores Number of threads to utilize.

type Whether to employ Albert-Chib, 'pbart', or Holmes-Held, 'lbart'.

transposed When running pwbart or mc.pwbart in parallel, it is more memory-efficient to
transpose x.test prior to calling the internal versions of these functions.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type survbart which is essentially a list with components:

yhat.test A matrix with ndpost rows and nrow(x.test) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of

mc.surv.pwbart 71

x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

surv.test test data fits for survival probability: not available for mc.recur.pwbart.

surv.test.mean mean of surv.test over the posterior samples: not available for mc.recur.pwbart.

haz.test test data fits for hazard: available for mc.recur.pwbart only.

haz.test.mean mean of haz.test over the posterior samples: available for mc.recur.pwbart
only.

cum.test test data fits for cumulative hazard: available for mc.recur.pwbart only.

cum.test.mean mean of cum.test over the posterior samples: available for mc.recur.pwbart
only.

See Also

pwbart

Examples

load the advanced lung cancer example
data(lung)

group <- -which(is.na(lung[, 7])) ## remove missing row for ph.karno
times <- lung[group, 2] ##lung$time
delta <- lung[group, 3]-1 ##lung$status: 1=censored, 2=dead

##delta: 0=censored, 1=dead

this study reports time in days rather than months like other studies
coarsening from days to months will reduce the computational burden
times <- ceiling(times/30)

summary(times)
table(delta)

x.train <- as.matrix(lung[group, c(4, 5, 7)]) ## matrix of observed covariates

lung$age: Age in years
lung$sex: Male=1 Female=2
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

dimnames(x.train)[[2]] <- c('age(yr)', 'M(1):F(2)', 'ph.karno(0:100:10)')

summary(x.train[, 1])
table(x.train[, 2])
table(x.train[, 3])

x.test <- matrix(nrow=84, ncol=3) ## matrix of covariate scenarios

dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

72 mc.surv.pwbart

i <- 1

for(age in 5*(9:15)) for(sex in 1:2) for(ph.karno in 10*(5:10)) {
x.test[i,] <- c(age, sex, ph.karno)
i <- i+1

}

this x.test is relatively small, but often you will want to
predict for a large x.test matrix which may cause problems
due to consumption of RAM so we can predict separately

mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta, nskip=5, ndpost=5, keepevery=1)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- mc.surv.pwbart(pre$tx.test, post$treedraws, post$binaryOffset)
}

Not run:
run one long MCMC chain in one process
set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta)

run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.surv.bart(x.train=x.train, times=times, delta=delta,
mc.cores=8, seed=99)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- surv.pwbart(pre$tx.test, post$treedraws, post$binaryOffset)

let's look at some survival curves
first, a younger group with a healthier KPS
age 50 with KPS=90: males and females
males: row 17, females: row 23
x.test[c(17, 23),]

low.risk.males <- 16*post$K+1:post$K ## K=unique times including censoring
low.risk.females <- 22*post$K+1:post$K

plot(post$times, pred$surv.test.mean[low.risk.males], type='s', col='blue',
main='Age 50 with KPS=90', xlab='t', ylab='S(t)', ylim=c(0, 1))

points(post$times, pred$surv.test.mean[low.risk.females], type='s', col='red')

End(Not run)

mc.wbart 73

mc.wbart BART for continuous outcomes with parallel computation

Description

BART is a Bayesian “sum-of-trees” model.
For numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

mc.wbart(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE,
sigest=NA, sigdf=3, sigquant=0.90,
k=2.0, power=2.0, base=.95,
sigmaf=NA, lambda=NA, fmean=mean(y.train),
w=rep(1,length(y.train)),
ntree=200L, numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=1L, printevery=100,
keeptrainfits=TRUE, transposed=FALSE,

mc.cores = 2L, nice = 19L,
seed = 99L

)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. wbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Dependent variable for training (in sample) data.
If y is numeric a continous response model is fit (normal errors).

74 mc.wbart

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
wbart will generate draws of f(x) for each x which is a row of x.test.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

cont Whether or not to assume all variables are continuous.

rm.const Whether or not to remove constant variables.

sigest The prior for the error variance (σ2) is inverted chi-squared (the standard con-
ditionally conjugate prior). The prior is specified by choosing the degrees of
freedom, a rough estimate of the corresponding standard deviation and a quan-
tile to put this rough estimate at. If sigest=NA then the rough estimate will be
the usual least squares estimator. Otherwise the supplied value will be used.

sigdf Degrees of freedom for error variance prior.

sigquant The quantile of the prior that the rough estimate (see sigest) is placed at. The
closer the quantile is to 1, the more aggresive the fit will be as you are putting
more prior weight on error standard deviations (σ) less than the rough estimate.

k For numeric y, k is the number of prior standard deviations E(Y |x) = f(x) is
away from +/-.5. The bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

sigmaf The SD of f.

lambda The scale of the prior for the variance.

fmean BART operates on y.train centered by fmean.

w Vector of weights which multiply the variance.

ntree The number of trees in the sum.

mc.wbart 75

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

keeptrainfits Whether to keep yhat.train or not.

transposed When running wbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.wbart.

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

mc.wbart returns an object of type wbart which is essentially a list.

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.
yhat.train.mean

train data fits = mean of yhat.train columns.

yhat.test.mean test data fits = mean of yhat.test columns.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

76 mc.wbart.gse

See Also

wbart

Examples

##simulate data (example from Friedman MARS paper)
f = function(x){
10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x[,5]
}
sigma = 1.0 #y = f(x) + sigma*z , z~N(0,1)
n = 100 #number of observations
set.seed(99)
x=matrix(runif(n*10),n,10) #10 variables, only first 5 matter
Ey = f(x)
y=Ey+sigma*rnorm(n)
lmFit = lm(y~.,data.frame(x,y)) #compare lm fit to BART later

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

bartFit = mc.wbart(x,y,mc.cores=2,seed=99,nskip=5,ndpost=5)
}

Not run:
##run BART
bartFit = mc.wbart(x,y,mc.cores=5,seed=99)
##compare BART fit to linear matter and truth = Ey
fitmat = cbind(y,Ey,lmFit$fitted,bartFit$yhat.train.mean)
colnames(fitmat) = c('y','Ey','lm','bart')
print(cor(fitmat))

End(Not run)

mc.wbart.gse Global SE variable selection for BART with parallel computation

Description

Here we implement the global SE method for variable selection in nonparametric survival analysis
with BART. Unfortunately, the method is very computationally intensive so we present some trade-
offs below.

Usage

mc.wbart.gse(x.train, y.train,
P=50L, R=5L, ntree=20L, numcut=100L, C=1, alpha=0.05,
k=2.0, power=2.0, base=0.95,
ndpost=2000L, nskip=100L,
printevery=100L, keepevery=1L, keeptrainfits=FALSE,

mc.wbart.gse 77

seed=99L, mc.cores=2L, nice=19L
)

Arguments

x.train Explanatory variables for training (in sample) data.
Must be a matrix with (as usual) rows corresponding to observations and columns
to variables.
surv.bart will generate draws of f(t, x) for each x which is a row of x.train.

y.train The continuous outcome.

P The number of permutations: typically 50 or 100.

R The number of replicates: typically 5 or 10.

ntree The number of trees. In variable selection, the number of trees is smaller than
what might be used for the best fit.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

C The starting value for the multiple of SE. You should not need to change this
except in rare circumstances.

alpha The global SE method relies on simultaneous 1-alpha coverage across the per-
mutations for all predictor variables.

k k is the number of prior standard deviations f(t, x) is away from +/-3. The
bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

ndpost The number of posterior draws after burn in. In the global SE method, generally,
the method is repeated several times to establish the variable count probabilities.
However, we take the alternative approach of simply running the MCMC chain
longer which should result in the same stabilization of the estimates. Therefore,
the number of posterior draws in variable selection should be set to a larger value
than would be typically anticipated for fitting.

nskip Number of MCMC iterations to be treated as burn in.

printevery As the MCMC runs, a message is printed every printevery draws.

keepevery Every keepevery draw is kept.

keeptrainfits If TRUE the draws of f(t, x) for x = rows of x.train are generated.

seed seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job priority. The default priority is 19: priorities go from 0 (highest) to
19 (lowest).

78 pbart

Value

mc.wbart.gse returns a list.

References

Bleich, J., Kapelner, A., George, E.I., and Jensen, S.T. (2014). Variable selection for BART: an
application to gene regulation. The Annals of Applied Statistics, 8:1750-81.

See Also

mc.wbart

Examples

Not run:

library(ElemStatLearn)

data(phoneme)

x.train <- matrix(NA, nrow=4509, ncol=257)

dimnames(x.train)[[2]] <- c(paste0('x.', 1:256), 'speaker')

x.train[, 257] <- as.numeric(phoneme$speaker)

for(j in 1:256) x.train[, j] <- as.numeric(phoneme[, paste0('x.', j)])

gse <- mc.wbart.gse(x.train, as.numeric(phoneme$g), mc.cores=5, seed=99)

important variables
dimnames(x.train)[[2]][gse$which]

End(Not run)

pbart Probit BART for dichotomous outcomes with Normal latents

Description

BART is a Bayesian “sum-of-trees” model.
For a binary response y, P (Y = 1|x) = F (f(x)), where F denotes the standard Normal CDF
(probit link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

pbart 79

Usage

pbart(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE,
k=2.0, power=2.0, base=.95,
binaryOffset=NULL,
ntree=50L, numcut=100L,
ndpost=1000L, nskip=100L, keepevery=1L,
nkeeptrain=ndpost, nkeeptest=ndpost,
nkeeptreedraws=ndpost,
printevery=100L, transposed=FALSE

)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. pbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Binary dependent variable for training (in sample) data.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
pbart will generate draws of f(x) for each x which is a row of x.test.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

80 pbart

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

cont Whether or not to assume all variables are continuous.
rm.const Whether or not to remove constant variables.
k For binary y, k is the number of prior standard deviations f(x) is away from

+/-3. The bigger k is, the more conservative the fitting will be.
power Power parameter for tree prior.
base Base parameter for tree prior.
binaryOffset Used for binary y.

The model is P (Y = 1|x) = F (f(x) + binaryOffset).

ntree The number of trees in the sum.
numcut The number of possible values of c (see usequants). If a single number if given,

this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.
nskip Number of MCMC iterations to be treated as burn in.
nkeeptrain Number of MCMC iterations to be returned for train data.
nkeeptest Number of MCMC iterations to be returned for test data.
nkeeptreedraws Number of MCMC iterations to be returned for tree draws.
keepevery Every keepevery draw is kept to be returned to the user.
printevery As the MCMC runs, a message is printed every printevery draws.
transposed When running pbart in parallel, it is more memory-efficient to transpose x.train

and x.test, if any, prior to calling mc.pbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from f in the
binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) where * denotes a
particular draw. The x is either a row from the training data (x.train) or the test data (x.test).

Value

pbart returns an object of type pbart which is essentially a list.

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

pbart 81

yhat.test Same as yhat.train but now the x’s are the rows of the test data.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

In addition the list has a binaryOffset component giving the value used.

Note that in the binary y, case yhat.train and yhat.test are f(x) + binaryOffset. If you want draws
of the probability P (Y = 1|x) you need to apply the Normal CDF (pnorm) to these values.

See Also

wbart

Examples

data(ACTG175)

exclude those who do not have CD4 count at 96 weeks
ex <- is.na(ACTG175$cd496)
table(ex)

inclusion criteria are CD4 counts between 200 and 500
ACTG175$cd40 <- min(500, max(250, ACTG175$cd40))

calculate relative CD4 decline
y <- ((ACTG175$cd496-ACTG175$cd40)/ACTG175$cd40)[!ex]
summary(y)

0=failure, 1=success
y <- 1*(y > -0.5)

summarize CD4 outcomes
table(y, ACTG175$arms[!ex])

table(y, ACTG175$arms[!ex])/
matrix(table(ACTG175$arms[!ex]), nrow=2, ncol=4, byrow=TRUE)

drop unneeded and unwanted variables
1: 'pidnum' patient ID number
##14: 'str2' which will be handled by strat1 below
##15: 'strat' which will be handled by strat1-strat3 below
##17: 'treat' handled by arm0-arm3 below
##18: 'offtrt' indicator of off-treatment before 96 weeks
##20: 'cd420' CD4 T cell count at 20 weeks
##21: 'cd496' CD4 T cell count at 96 weeks
##22: 'r' missing CD4 T cell count at 96 weeks
##24: 'cd820' CD8 T cell count at 20 weeks
##25: 'cens' indicator of observing the event in days
##26: 'days' number of days until the primary endpoint
##27: 'arms' handled by arm0-arm3 below
train <- as.matrix(ACTG175)[!ex, -c(1, 14:15, 17, 18, 20:22, 24:27)]
train <- cbind(1*(ACTG175$strat[!ex]==1), 1*(ACTG175$strat[!ex]==2),

82 pbart

1*(ACTG175$strat[!ex]==3), train)
dimnames(train)[[2]][1:3] <- paste0('strat', 1:3)
train <- cbind(1*(ACTG175$arms[!ex]==0), 1*(ACTG175$arms[!ex]==1),

1*(ACTG175$arms[!ex]==2), 1*(ACTG175$arms[!ex]==3), train)
dimnames(train)[[2]][1:4] <- paste0('arm', 0:3)

N <- nrow(train)

test0 <- train; test0[, 1:4] <- 0; test0[, 1] <- 1
test1 <- train; test1[, 1:4] <- 0; test1[, 2] <- 1
test2 <- train; test2[, 1:4] <- 0; test2[, 3] <- 1
test3 <- train; test3[, 1:4] <- 0; test3[, 4] <- 1

test <- rbind(test0, test1, test2, test3)

##test BART with token run to ensure installation works
set.seed(21)
post <- pbart(train, y, test, nskip=5, ndpost=5)

Not run:
set.seed(21)
post <- pbart(train, y, test)

turn z-scores into probabilities
post$prob.test <- pnorm(post$yhat.test)

average over the posterior samples
post$prob.test.mean <- apply(post$prob.test, 2, mean)

place estimates for arms 0-3 next to each other for convenience
itr <- cbind(post$prob.test.mean[(1:N)], post$prob.test.mean[N+(1:N)],

post$prob.test.mean[2*N+(1:N)], post$prob.test.mean[3*N+(1:N)])

find the BART ITR for each patient
itr.pick <- integer(N)
for(i in 1:N) itr.pick[i] <- which(itr[i,]==max(itr[i,]))-1

arms 0 and 3 (monotherapy) are never chosen
table(itr.pick)

do arms 1 and 2 show treatment heterogeneity?
diff. <- apply(post$prob.test[, 2*N+(1:N)]-post$prob.test[, N+(1:N)], 2, mean)
plot(sort(diff.), type='h', main='ACTG175 trial: 50% CD4 decline from baseline at 96 weeks',

xlab='Arm 2 (1) Preferable to the Right (Left)', ylab='Prob.Diff.: Arms 2 - 1')

library(rpart)
library(rpart.plot)

make data frame for nicer names in the plot
var <- as.data.frame(train[, -(1:4)])

dss <- rpart(diff. ~ var$age+var$gender+var$race+var$wtkg+var$cd40+var$cd80+
var$karnof+var$symptom+var$hemo+var$homo+var$drugs+var$z30+

predict.crisk2bart 83

var$zprior+var$oprior+var$strat1+var$strat2+var$strat3,
method='anova', control=rpart.control(cp=0.1))

rpart.plot(dss, type=3, extra=101)

if strat1==1 (antiretroviral naive), then arm 2 is better
otherwise, arm 1
print(dss)

all0 <- apply(post$prob.test[, (1:N)], 1, mean)
all1 <- apply(post$prob.test[, N+(1:N)], 1, mean)
all2 <- apply(post$prob.test[, 2*N+(1:N)], 1, mean)
all3 <- apply(post$prob.test[, 3*N+(1:N)], 1, mean)

BART ITR
BART.itr <- apply(post$prob.test[, c(N+which(itr.pick==1), 2*N+which(itr.pick==2))], 1, mean)

test <- train
test[, 1:4] <- 0
test[test[, 5]==0, 2] <- 1
test[test[, 5]==1, 3] <- 1

BART ITR simple
BART.itr.simp <- pwbart(test, post$treedraws)
BART.itr.simp <- apply(pnorm(BART.itr.simp), 1, mean)

plot(density(BART.itr), xlab='Value', xlim=c(0.475, 0.775), lwd=2,
main='ACTG175 trial: 50% CD4 decline from baseline at 96 weeks')

lines(density(BART.itr.simp), col='brown', lwd=2)
lines(density(all0), col='green', lwd=2)
lines(density(all1), col='red', lwd=2)
lines(density(all2), col='blue', lwd=2)
lines(density(all3), col='yellow', lwd=2)
legend('topleft', legend=c('All Arm 0 (ZDV only)', 'All Arm 1 (ZDV+DDI)',

'All Arm 2 (ZDV+DDC)', 'All Arm 3 (DDI only)',
'BART ITR simple', 'BART ITR'),

col=c('green', 'red', 'blue', 'yellow', 'brown', 'black'), lty=1, lwd=2)

End(Not run)

predict.crisk2bart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

84 predict.crisk2bart

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'crisk2bart'
predict(object, newdata, newdata2, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

Arguments

object object returned from previous BART fit with crisk2.bart or mc.crisk2.bart.

newdata Matrix of covariates to predict the distribution of t1.

newdata2 Matrix of covariates to predict the distribution of t2.

mc.cores Number of threads to utilize.

openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of
course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type crisk2bart with predictions corresponding to newdata and newdata2.

See Also

crisk2.bart, mc.crisk2.bart, mc.crisk2.pwbart, mc.cores.openmp

Examples

data(transplant)

delta <- (as.numeric(transplant$event)-1)
recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)

times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months

predict.crisk2bart 85

table(times)

typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)

x.train <- cbind(typeO, typeA, typeB, typeAB)

x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

post <- mc.crisk2.bart(x.train=x.train, times=times, delta=delta,
seed=99, mc.cores=2, nskip=5, ndpost=5,
keepevery=1)

pre <- surv.pre.bart(x.train=x.train, x.test=x.test,
times=times, delta=delta)

K <- post$K

pred <- mc.crisk2.pwbart(pre$tx.test, pre$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset, post$binaryOffset2)

}

Not run:

run one long MCMC chain in one process
set.seed(99)
post <- crisk2.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk2.bart(x.train=x.train,

times=times, delta=delta,
x.test=x.test, seed=99, mc.cores=8)

check <- mc.crisk2.pwbart(post$tx.test, post$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset,
post$binaryOffset2, mc.cores=8)
check <- predict(post, newdata=post$tx.test, newdata2=post$tx.test2,

mc.cores=8)

print(c(post$surv.test.mean[1], check$surv.test.mean[1],
post$surv.test.mean[1]-check$surv.test.mean[1]), digits=22)

print(all(round(post$surv.test.mean, digits=9)==

86 predict.criskbart

round(check$surv.test.mean, digits=9)))

print(c(post$cif.test.mean[1], check$cif.test.mean[1],
post$cif.test.mean[1]-check$cif.test.mean[1]), digits=22)

print(all(round(post$cif.test.mean, digits=9)==
round(check$cif.test.mean, digits=9)))

print(c(post$cif.test2.mean[1], check$cif.test2.mean[1],
post$cif.test2.mean[1]-check$cif.test2.mean[1]), digits=22)

print(all(round(post$cif.test2.mean, digits=9)==
round(check$cif.test2.mean, digits=9)))

End(Not run)

predict.criskbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'criskbart'
predict(object, newdata, newdata2, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

Arguments

object object returned from previous BART fit with crisk.bart or mc.crisk.bart.

newdata Matrix of covariates to predict the distribution of t1.

newdata2 Matrix of covariates to predict the distribution of t2.

mc.cores Number of threads to utilize.

openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of
course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

predict.criskbart 87

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type criskbart with predictions corresponding to newdata and newdata2.

See Also

crisk.bart, mc.crisk.bart, mc.crisk.pwbart, mc.cores.openmp

Examples

data(transplant)

delta <- (as.numeric(transplant$event)-1)
recode so that delta=1 is cause of interest; delta=2 otherwise
delta[delta==1] <- 4
delta[delta==2] <- 1
delta[delta>1] <- 2
table(delta, transplant$event)

times <- pmax(1, ceiling(transplant$futime/7)) ## weeks
##times <- pmax(1, ceiling(transplant$futime/30.5)) ## months
table(times)

typeO <- 1*(transplant$abo=='O')
typeA <- 1*(transplant$abo=='A')
typeB <- 1*(transplant$abo=='B')
typeAB <- 1*(transplant$abo=='AB')
table(typeA, typeO)

x.train <- cbind(typeO, typeA, typeB, typeAB)

x.test <- cbind(1, 0, 0, 0)
dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

post <- mc.crisk.bart(x.train=x.train, times=times, delta=delta,
seed=99, mc.cores=2, nskip=5, ndpost=5,
keepevery=1)

pre <- surv.pre.bart(x.train=x.train, x.test=x.test,
times=times, delta=delta)

88 predict.lbart

K <- post$K

pred <- mc.crisk.pwbart(pre$tx.test, pre$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset, post$binaryOffset2)

}

Not run:

run one long MCMC chain in one process
set.seed(99)
post <- crisk.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.crisk.bart(x.train=x.train,

times=times, delta=delta,
x.test=x.test, seed=99, mc.cores=8)

check <- mc.crisk.pwbart(post$tx.test, post$tx.test,
post$treedraws, post$treedraws2,
post$binaryOffset,
post$binaryOffset2, mc.cores=8)
check <- predict(post, newdata=post$tx.test, newdata2=post$tx.test2,

mc.cores=8)

print(c(post$surv.test.mean[1], check$surv.test.mean[1],
post$surv.test.mean[1]-check$surv.test.mean[1]), digits=22)

print(all(round(post$surv.test.mean, digits=9)==
round(check$surv.test.mean, digits=9)))

print(c(post$cif.test.mean[1], check$cif.test.mean[1],
post$cif.test.mean[1]-check$cif.test.mean[1]), digits=22)

print(all(round(post$cif.test.mean, digits=9)==
round(check$cif.test.mean, digits=9)))

print(c(post$cif.test2.mean[1], check$cif.test2.mean[1],
post$cif.test2.mean[1]-check$cif.test2.mean[1]), digits=22)

print(all(round(post$cif.test2.mean, digits=9)==
round(check$cif.test2.mean, digits=9)))

End(Not run)

predict.lbart Predicting new observations with a previously fitted BART model

predict.lbart 89

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'lbart'
predict(object, newdata, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

Arguments

object object returned from previous BART fit with surv.bart or mc.surv.bart.

newdata Matrix of covariates to predict the distribution of t.

mc.cores Number of threads to utilize.

openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of
course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type lbart with predictions corresponding to newdata.

See Also

surv.bart, mc.surv.bart, surv.pwbart, mc.surv.pwbart, mc.cores.openmp

Examples

load the advanced lung cancer example
data(lung)

group <- -which(is.na(lung[, 7])) ## remove missing row for ph.karno

90 predict.lbart

times <- lung[group, 2] ##lung$time
delta <- lung[group, 3]-1 ##lung$status: 1=censored, 2=dead

##delta: 0=censored, 1=dead

this study reports time in days rather than months like other studies
coarsening from days to months will reduce the computational burden
times <- ceiling(times/30)

summary(times)
table(delta)

x.train <- as.matrix(lung[group, c(4, 5, 7)]) ## matrix of observed covariates

lung$age: Age in years
lung$sex: Male=1 Female=2
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

dimnames(x.train)[[2]] <- c('age(yr)', 'M(1):F(2)', 'ph.karno(0:100:10)')

summary(x.train[, 1])
table(x.train[, 2])
table(x.train[, 3])

x.test <- matrix(nrow=84, ncol=3) ## matrix of covariate scenarios

dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

i <- 1

for(age in 5*(9:15)) for(sex in 1:2) for(ph.karno in 10*(5:10)) {
x.test[i,] <- c(age, sex, ph.karno)
i <- i+1

}

this x.test is relatively small, but often you will want to
predict for a large x.test matrix which may cause problems
due to consumption of RAM so we can predict separately

mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta, nskip=5, ndpost=5, keepevery=1)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)
##pred. <- surv.pwbart(pre$tx.test, post$treedraws, post$binaryOffset)

}

Not run:
run one long MCMC chain in one process

predict.mbart 91

set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta)

run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.surv.bart(x.train=x.train, times=times, delta=delta,
mc.cores=5, seed=99)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)

let's look at some survival curves
first, a younger group with a healthier KPS
age 50 with KPS=90: males and females
males: row 17, females: row 23
x.test[c(17, 23),]

low.risk.males <- 16*post$K+1:post$K ## K=unique times including censoring
low.risk.females <- 22*post$K+1:post$K

plot(post$times, pred$surv.test.mean[low.risk.males], type='s', col='blue',
main='Age 50 with KPS=90', xlab='t', ylab='S(t)', ylim=c(0, 1))

points(post$times, pred$surv.test.mean[low.risk.females], type='s', col='red')

End(Not run)

predict.mbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'mbart'
predict(object, newdata, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)
S3 method for class 'mbart2'
predict(object, newdata, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

92 predict.mbart

Arguments

object object returned from previous BART fit with mbart or mbart2.

newdata Matrix of covariates to predict the distribution of t.

mc.cores Number of threads to utilize.

openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of
course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type mbart with predictions corresponding to newdata.

See Also

mbart, mbart2

Examples

load the advanced lung cancer example
data(lung)

group <- -which(is.na(lung[, 7])) ## remove missing row for ph.karno
times <- lung[group, 2] ##lung$time
delta <- lung[group, 3]-1 ##lung$status: 1=censored, 2=dead

##delta: 0=censored, 1=dead

this study reports time in days rather than months like other studies
coarsening from days to months will reduce the computational burden
times <- ceiling(times/30)

summary(times)
table(delta)

x.train <- as.matrix(lung[group, c(4, 5, 7)]) ## matrix of observed covariates

lung$age: Age in years
lung$sex: Male=1 Female=2
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

predict.mbart 93

dimnames(x.train)[[2]] <- c('age(yr)', 'M(1):F(2)', 'ph.karno(0:100:10)')

summary(x.train[, 1])
table(x.train[, 2])
table(x.train[, 3])

x.test <- matrix(nrow=84, ncol=3) ## matrix of covariate scenarios

dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

i <- 1

for(age in 5*(9:15)) for(sex in 1:2) for(ph.karno in 10*(5:10)) {
x.test[i,] <- c(age, sex, ph.karno)
i <- i+1

}

this x.test is relatively small, but often you will want to
predict for a large x.test matrix which may cause problems
due to consumption of RAM so we can predict separately

mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta, nskip=5, ndpost=5, keepevery=1)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)
##pred. <- surv.pwbart(pre$tx.test, post$treedraws, post$binaryOffset)

}

Not run:
run one long MCMC chain in one process
set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta)

run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.surv.bart(x.train=x.train, times=times, delta=delta,
mc.cores=5, seed=99)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)

let's look at some survival curves
first, a younger group with a healthier KPS
age 50 with KPS=90: males and females
males: row 17, females: row 23
x.test[c(17, 23),]

94 predict.pbart

low.risk.males <- 16*post$K+1:post$K ## K=unique times including censoring
low.risk.females <- 22*post$K+1:post$K

plot(post$times, pred$surv.test.mean[low.risk.males], type='s', col='blue',
main='Age 50 with KPS=90', xlab='t', ylab='S(t)', ylim=c(0, 1))

points(post$times, pred$surv.test.mean[low.risk.females], type='s', col='red')

End(Not run)

predict.pbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'pbart'
predict(object, newdata, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

Arguments

object object returned from previous BART fit with surv.bart or mc.surv.bart.

newdata Matrix of covariates to predict the distribution of t.

mc.cores Number of threads to utilize.

openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of
course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

predict.pbart 95

Value

Returns an object of type pbart with predictions corresponding to newdata.

See Also

surv.bart, mc.surv.bart, surv.pwbart, mc.surv.pwbart, mc.cores.openmp

Examples

load the advanced lung cancer example
data(lung)

group <- -which(is.na(lung[, 7])) ## remove missing row for ph.karno
times <- lung[group, 2] ##lung$time
delta <- lung[group, 3]-1 ##lung$status: 1=censored, 2=dead

##delta: 0=censored, 1=dead

this study reports time in days rather than months like other studies
coarsening from days to months will reduce the computational burden
times <- ceiling(times/30)

summary(times)
table(delta)

x.train <- as.matrix(lung[group, c(4, 5, 7)]) ## matrix of observed covariates

lung$age: Age in years
lung$sex: Male=1 Female=2
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

dimnames(x.train)[[2]] <- c('age(yr)', 'M(1):F(2)', 'ph.karno(0:100:10)')

summary(x.train[, 1])
table(x.train[, 2])
table(x.train[, 3])

x.test <- matrix(nrow=84, ncol=3) ## matrix of covariate scenarios

dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

i <- 1

for(age in 5*(9:15)) for(sex in 1:2) for(ph.karno in 10*(5:10)) {
x.test[i,] <- c(age, sex, ph.karno)
i <- i+1

}

this x.test is relatively small, but often you will want to
predict for a large x.test matrix which may cause problems
due to consumption of RAM so we can predict separately

96 predict.recurbart

mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta, nskip=5, ndpost=5, keepevery=1)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)
##pred. <- surv.pwbart(pre$tx.test, post$treedraws, post$binaryOffset)

}

Not run:
run one long MCMC chain in one process
set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta)

run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.surv.bart(x.train=x.train, times=times, delta=delta,
mc.cores=5, seed=99)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)

let's look at some survival curves
first, a younger group with a healthier KPS
age 50 with KPS=90: males and females
males: row 17, females: row 23
x.test[c(17, 23),]

low.risk.males <- 16*post$K+1:post$K ## K=unique times including censoring
low.risk.females <- 22*post$K+1:post$K

plot(post$times, pred$surv.test.mean[low.risk.males], type='s', col='blue',
main='Age 50 with KPS=90', xlab='t', ylab='S(t)', ylim=c(0, 1))

points(post$times, pred$surv.test.mean[low.risk.females], type='s', col='red')

End(Not run)

predict.recurbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

predict.recurbart 97

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'recurbart'
predict(object, newdata, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

Arguments

object object returned from previous BART fit with recur.bart or mc.recur.bart.

newdata Matrix of covariates to predict the distribution of t.

mc.cores Number of threads to utilize.

openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of
course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns an object of type recurbart with predictions corresponding to newdata.

See Also

recur.bart, mc.recur.bart, recur.pwbart, mc.recur.pwbart, mc.cores.openmp

Examples

load 20 percent random sample
data(xdm20.train)
data(xdm20.test)
data(ydm20.train)

##test BART with token run to ensure installation works
with current technology even a token run will violate CRAN policy
set.seed(99)
post <- recur.bart(x.train=xdm20.train, y.train=ydm20.train,
nskip=1, ndpost=1, keepevery=1)

98 predict.recurbart

Not run:
set.seed(99)
post <- recur.bart(x.train=xdm20.train, y.train=ydm20.train)
larger data sets can take some time so, if parallel processing
is available, submit this statement instead
post <- mc.recur.bart(x.train=xdm20.train, y.train=ydm20.train,
mc.cores=8, seed=99)

require(rpart)
require(rpart.plot)

dss <- rpart(post$yhat.train.mean~xdm20.train)

rpart.plot(dss)
for the 20 percent sample, notice that the top splits
involve cci_pvd and n
for the full data set, notice that all splits
involve ca, cci_pud, cci_pvd, ins270 and n
(except one at the bottom involving a small group)

compare patients treated with insulin (ins270=1) vs
not treated with insulin (ins270=0)
N.train <- 50
N.test <- 50
K <- post$K ## 798 unique time points

only testing set, i.e., remove training set
xdm20.test. <- xdm20.test[N.train*K+(1:(N.test*K)),]
xdm20.test. <- rbind(xdm20.test., xdm20.test.)
xdm20.test.[, 'ins270'] <- rep(0:1, each=N.test*K)

multiple threads will be utilized if available
pred <- predict(post, xdm20.test., mc.cores=8)

create Friedman's partial dependence function for the
intensity/hazard by time and ins270
NK.test <- N.test*K
M <- nrow(pred$haz.test) ## number of MCMC samples, typically 1000

RI <- matrix(0, M, K)

for(i in 1:N.test)
RI <- RI+(pred$haz.test[, (N.test+i-1)*K+1:K]/

pred$haz.test[, (i-1)*K+1:K])/N.test

RI.lo <- apply(RI, 2, quantile, probs=0.025)
RI.mu <- apply(RI, 2, mean)
RI.hi <- apply(RI, 2, quantile, probs=0.975)

plot(post$times, RI.hi, type='l', lty=2, log='y',
ylim=c(min(RI.lo, 1/RI.hi), max(1/RI.lo, RI.hi)),
xlab='t', ylab='RI(t, x)',

predict.survbart 99

sub='insulin(ins270=1) vs. no insulin(ins270=0)',
main='Relative intensity of hospital admissions for diabetics')

lines(post$times, RI.mu)
lines(post$times, RI.lo, lty=2)
lines(post$times, rep(1, K), col='darkgray')

RI for insulin therapy seems fairly constant with time
mean(RI.mu)

End(Not run)

predict.survbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'survbart'
predict(object, newdata, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

Arguments

object object returned from previous BART fit with surv.bart or mc.surv.bart.
newdata Matrix of covariates to predict the distribution of t.
mc.cores Number of threads to utilize.
openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of

course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

100 predict.survbart

Value

Returns an object of type survbart with predictions corresponding to newdata.

See Also

surv.bart, mc.surv.bart, surv.pwbart, mc.surv.pwbart, mc.cores.openmp

Examples

load the advanced lung cancer example
data(lung)

group <- -which(is.na(lung[, 7])) ## remove missing row for ph.karno
times <- lung[group, 2] ##lung$time
delta <- lung[group, 3]-1 ##lung$status: 1=censored, 2=dead

##delta: 0=censored, 1=dead

this study reports time in days rather than months like other studies
coarsening from days to months will reduce the computational burden
times <- ceiling(times/30)

summary(times)
table(delta)

x.train <- as.matrix(lung[group, c(4, 5, 7)]) ## matrix of observed covariates

lung$age: Age in years
lung$sex: Male=1 Female=2
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

dimnames(x.train)[[2]] <- c('age(yr)', 'M(1):F(2)', 'ph.karno(0:100:10)')

summary(x.train[, 1])
table(x.train[, 2])
table(x.train[, 3])

x.test <- matrix(nrow=84, ncol=3) ## matrix of covariate scenarios

dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

i <- 1

for(age in 5*(9:15)) for(sex in 1:2) for(ph.karno in 10*(5:10)) {
x.test[i,] <- c(age, sex, ph.karno)
i <- i+1

}

this x.test is relatively small, but often you will want to
predict for a large x.test matrix which may cause problems
due to consumption of RAM so we can predict separately

predict.wbart 101

mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta, nskip=5, ndpost=5, keepevery=1)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)
##pred. <- surv.pwbart(pre$tx.test, post$treedraws, post$binaryOffset)

}

Not run:
run one long MCMC chain in one process
set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta)

run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.surv.bart(x.train=x.train, times=times, delta=delta,
mc.cores=5, seed=99)

pre <- surv.pre.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

pred <- predict(post, pre$tx.test)

let's look at some survival curves
first, a younger group with a healthier KPS
age 50 with KPS=90: males and females
males: row 17, females: row 23
x.test[c(17, 23),]

low.risk.males <- 16*post$K+1:post$K ## K=unique times including censoring
low.risk.females <- 22*post$K+1:post$K

plot(post$times, pred$surv.test.mean[low.risk.males], type='s', col='blue',
main='Age 50 with KPS=90', xlab='t', ylab='S(t)', ylim=c(0, 1))

points(post$times, pred$surv.test.mean[low.risk.females], type='s', col='red')

End(Not run)

predict.wbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

102 predict.wbart

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

S3 method for class 'wbart'
predict(object, newdata, mc.cores=1, openmp=(mc.cores.openmp()>0), ...)

Arguments

object object returned from previous BART fit.

newdata Matrix of covariates to predict y for.

mc.cores Number of threads to utilize.

openmp Logical value dictating whether OpenMP is utilized for parallel processing. Of
course, this depends on whether OpenMP is available on your system which, by
default, is verified with mc.cores.openmp.

... Other arguments which will be passed on to pwbart.

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns a matrix of predictions corresponding to newdata.

See Also

wbart, mc.wbart, pwbart, mc.pwbart, mc.cores.openmp

Examples

##simulate data (example from Friedman MARS paper)
f = function(x){
10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x[,5]
}
sigma = 1.0 #y = f(x) + sigma*z , z~N(0,1)
n = 100 #number of observations
set.seed(99)
x=matrix(runif(n*10),n,10) #10 variables, only first 5 matter
y=f(x)

pwbart 103

##test BART with token run to ensure installation works
set.seed(99)
post = wbart(x,y,nskip=5,ndpost=5)
x.test = matrix(runif(500*10),500,10)

Not run:
##run BART
set.seed(99)
post = wbart(x,y)
x.test = matrix(runif(500*10),500,10)
pred = predict(post, x.test, mu=mean(y))

plot(apply(pred, 2, mean), f(x.test))

End(Not run)

pwbart Predicting new observations with a previously fitted BART model

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

pwbart(x.test, treedraws, mu=0, mc.cores=1L, transposed=FALSE,
dodraws=TRUE,
nice=19L ## mc.pwbart only

)

mc.pwbart(x.test, treedraws, mu=0, mc.cores=2L, transposed=FALSE,
dodraws=TRUE,
nice=19L ## mc.pwbart only

)

Arguments

x.test Matrix of covariates to predict y for.

treedraws $treedraws returned from wbart or pbart.

mu Mean to add on to y prediction.

104 pwbart

mc.cores Number of threads to utilize.

transposed When running pwbart or mc.pwbart in parallel, it is more memory-efficient to
transpose x.test prior to calling the internal versions of these functions.

dodraws Whether to return the draws themselves (the default), or whether to return the
mean of the draws as specified by dodraws=FALSE.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

Returns a matrix of predictions corresponding to x.test.

See Also

wbart predict.wbart

Examples

##simulate data (example from Friedman MARS paper)
f = function(x){
10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x[,5]
}
sigma = 1.0 #y = f(x) + sigma*z , z~N(0,1)
n = 100 #number of observations
set.seed(99)
x=matrix(runif(n*10),n,10) #10 variables, only first 5 matter
y=f(x)

##test BART with token run to ensure installation works
set.seed(99)
post = wbart(x,y,nskip=5,ndpost=5)
x.test = matrix(runif(500*10),500,10)

Not run:
##run BART
set.seed(99)
post = wbart(x,y)
x.test = matrix(runif(500*10),500,10)
pred = pwbart(post$treedraws, x.test, mu=mean(y))

plot(apply(pred, 2, mean), f(x.test))

recur.bart 105

End(Not run)

recur.bart BART for recurrent events

Description

Here we have implemented a simple and direct approach to utilize BART in survival analysis that
is very flexible, and is akin to discrete-time survival analysis. Following the capabilities of BART,
we allow for maximum flexibility in modeling the dependence of survival times on covariates. In
particular, we do not impose proportional hazards.

To elaborate, consider data in the usual form: (ti, δi, xi) where ti is the event time, δi is an indicator
distinguishing events (δ = 1) from right-censoring (δ = 0), xi is a vector of covariates, and i =
1, ..., N indexes subjects.

We denote the K distinct event/censoring times by 0 < t(1) < ... < t(K) < ∞ thus taking t(j)
to be the jth order statistic among distinct observation times and, for convenience, t(0) = 0. Now
consider event indicators yij for each subject i at each distinct time t(j) up to and including the
subject’s observation time ti = t(ni) with ni =

∑
j I[t(j) ≤ ti]. This means yij = 0 if j < ni and

yini
= δi.

We then denote by pij the probability of an event at time t(j) conditional on no previous event. We
now write the model for yij as a nonparametric probit regression of yij on the time t(j) and the
covariates xi, and then utilize BART for binary responses. Specifically, yij = δiI[ti = t(j)], j =
1, ..., ni; we have pij = F (µij), µij = µ0 + f(t(j), xi) where F denotes the standard normal cdf
(probit link). As in the binary response case, f is the sum of many tree models.

Usage

recur.bart(x.train=matrix(0,0,0),
y.train=NULL, times=NULL, delta=NULL,
x.test=matrix(0,0,0), x.test.nogrid=FALSE,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,

rm.const=TRUE, type='pbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
k=2, power=2, base=0.95,
offset=NULL, tau.num=c(NA, 3, 6)[ntype],
ntree=50, numcut = 100L, ndpost=1000, nskip=250,
keepevery=10,

printevery = 100L,

106 recur.bart

keeptrainfits = TRUE,
seed=99, ## mc.recur.bart only
mc.cores=2, ## mc.recur.bart only
nice=19L ## mc.recur.bart only

)

mc.recur.bart(x.train=matrix(0,0,0),
y.train=NULL, times=NULL, delta=NULL,
x.test=matrix(0,0,0), x.test.nogrid=FALSE,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,

rm.const=TRUE, type='pbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
k=2, power=2, base=0.95,
offset=NULL, tau.num=c(NA, 3, 6)[ntype],
ntree=50, numcut = 100L, ndpost=1000, nskip=250,
keepevery=10,

printevery = 100L,
keeptrainfits = TRUE,
seed=99, ## mc.recur.bart only
mc.cores=2, ## mc.recur.bart only
nice=19L ## mc.recur.bart only

)

Arguments

x.train Explanatory variables for training (in sample) data.
Must be a matrix with (as usual) rows corresponding to observations and columns
to variables.
recur.bart will generate draws of f(t, x) for each x which is a row of x.train
(note that the definition of x.train is dependent on whether y.train has been
specified; see below).

y.train Binary response dependent variable for training (in sample) data.
If y.train is NULL, then y.train (x.train and x.test, if specified) are gen-
erated by a call to recur.pre.bart (which require that times and delta be
provided: see below); otherwise, y.train (x.train and x.test, if specified)
are utilized as given assuming that the data construction has already been per-
formed.

times The time of event or right-censoring.
If y.train is NULL, then times (and delta) must be provided.

delta The event indicator: 1 is an event while 0 is censored.
If y.train is NULL, then delta (and times) must be provided.

recur.bart 107

x.test Explanatory variables for test (out of sample) data.
Must be a matrix and have the same structure as x.train.
recur.bart will generate draws of f(t, x) for each x which is a row of x.test.

x.test.nogrid Occasionally, you do not need the entire time grid for x.test. If so, then for
performance reasons, you can set this argument to TRUE.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.

type Whether to employ Albert-Chib, 'pbart', or Holmes-Held, 'lbart'.

ntype The integer equivalent of type where 'wbart' is 1, 'pbart' is 2 and 'lbart'
is 3.

k k is the number of prior standard deviations f(t, x) is away from +/-3. The
bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

offset With binary BART, the centering is P (Y = 1|x) = F (f(x) + offset) where
offset defaults to F^{-1}(mean(y.train)). You can use the offset parame-
ter to over-ride these defaults.

tau.num The numerator in the tau definition, i.e., tau=tau.num/(k*sqrt(ntree)).

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

108 recur.bart

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

keeptrainfits Whether to keep yhat.train or not.

seed mc.recur.bart only: seed required for reproducible MCMC.

mc.cores mc.recur.bart only: number of cores to employ in parallel.

nice mc.recur.bart only: set the job niceness. The default niceness is 19: niceness
goes from 0 (highest) to 19 (lowest).

Value

recur.bart returns an object of type recurbart which is essentially a list. Besides the items listed
below, the list has a binaryOffset component giving the value used, a times component giving
the unique times, K which is the number of unique times, tx.train and tx.test, if any.

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(t, x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

haz.train The hazard function, h(t|x), where x’s are the rows of the training data.

cum.train The cumulative hazard function, h(t|x), where x’s are the rows of the training
data.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.

haz.test The hazard function, h(t|x), where x’s are the rows of the test data.

cum.test The cumulative hazard function, h(t|x), where x’s are the rows of the test data.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

Note that yhat.train and yhat.test are f(t, x) + binaryOffset. If you want draws of the probability
P (Y = 1|t, x) you need to apply the normal cdf (pnorm) to these values.

See Also

recur.pre.bart, predict.recurbart, recur.pwbart, mc.recur.pwbart

Examples

load 20 percent random sample
data(xdm20.train)
data(xdm20.test)
data(ydm20.train)

##test BART with token run to ensure installation works
with current technology even a token run will violate CRAN policy

recur.bart 109

set.seed(99)
post <- recur.bart(x.train=xdm20.train, y.train=ydm20.train,
nskip=1, ndpost=1, keepevery=1)

Not run:

set.seed(99)
post <- recur.bart(x.train=xdm20.train, y.train=ydm20.train,
keeptrainfits=TRUE)

larger data sets can take some time so, if parallel processing
is available, submit this statement instead
post <- mc.recur.bart(x.train=xdm20.train, y.train=ydm20.train,

keeptrainfits=TRUE, mc.cores=8, seed=99)

require(rpart)
require(rpart.plot)

post$yhat.train.mean <- apply(post$yhat.train, 2, mean)
dss <- rpart(post$yhat.train.mean~xdm20.train)

rpart.plot(dss)
for the 20 percent sample, notice that the top splits
involve cci_pvd and n
for the full data set, notice that all splits
involve ca, cci_pud, cci_pvd, ins270 and n
(except one at the bottom involving a small group)

compare patients treated with insulin (ins270=1) vs
not treated with insulin (ins270=0)
N <- 50 ## 50 training patients and 50 validation patients
K <- post$K ## 798 unique time points
NK <- 50*K

only testing set, i.e., remove training set
xdm20.test. <- xdm20.test[NK+1:NK, post$rm.const]
xdm20.test. <- rbind(xdm20.test., xdm20.test.)
xdm20.test.[, 'ins270'] <- rep(0:1, each=NK)

multiple threads will be utilized if available
pred <- predict(post, xdm20.test., mc.cores=8)

create Friedman's partial dependence function for the
relative intensity for ins270 by time
M <- nrow(pred$haz.test) ## number of MCMC samples
RI <- matrix(0, M, K)
for(j in 1:K) {

h <- seq(j, NK, by=K)
RI[, j] <- apply(pred$haz.test[, h+NK]/

pred$haz.test[, h], 1, mean)
}

RI.lo <- apply(RI, 2, quantile, probs=0.025)

110 recur.pre.bart

RI.mu <- apply(RI, 2, mean)
RI.hi <- apply(RI, 2, quantile, probs=0.975)

plot(post$times, RI.hi, type='l', lty=2, log='y',
ylim=c(min(RI.lo, 1/RI.hi), max(1/RI.lo, RI.hi)),
xlab='t', ylab='RI(t, x)',
sub='insulin(ins270=1) vs. no insulin(ins270=0)',
main='Relative intensity of hospital admissions for diabetics')

lines(post$times, RI.mu)
lines(post$times, RI.lo, lty=2)
lines(post$times, rep(1, K), col='darkgray')

RI for insulin therapy seems fairly constant with time
mean(RI.mu)

End(Not run)

recur.pre.bart Data construction for recurrent events with BART

Description

Recurrent event data contained in (t1, δ1, ..., tk, δk, x) must be translated to data suitable for the
BART model; see recur.bart for more details.

Usage

recur.pre.bart(times, delta, x.train=NULL, tstop=NULL, last.value=TRUE)

Arguments

times Matrix of time to event or right-censoring.

delta Matrix of event indicators: 1 is an event while 0 is censored.

x.train Explanatory variables for training (in sample) data.
If provided, must be a matrix with (as usual) rows corresponding to observations
and columns to variables.

tstop For non-instantaneous events, this the matrix of event stop times, i.e., between
times[i, j] and tstop[i, j] subject i is not in the risk set for a recurrent
event. N.B. This is NOT for counting process notation.

last.value If last.value=TRUE, then the sojourn time, v, and the number of previous
events, N, are carried forward assuming that no new events occur beyond cen-
soring. If last.value=FALSE, then these variables are coded NA for easy iden-
tification allowing replacement with the desired values.

recur.pre.bart 111

Value

recur.pre.bart returns a list. Besides the items listed below, the list has a times component
giving the unique times and K which is the number of unique times.

y.train A vector of binary responses.

tx.train A matrix with the rows of the training data.

tx.test Generated from x.train (see discussion above included in the argument last.value).

See Also

recur.bart

Examples

data(bladder)
subset <- -which(bladder1$stop==0)
bladder0 <- bladder1[subset,]
id <- unique(sort(bladder0$id))
N <- length(id)
L <- max(bladder0$enum)

times <- matrix(0, nrow=N, ncol=L)
dimnames(times)[[1]] <- paste0(id)

delta <- matrix(0, nrow=N, ncol=L)
dimnames(delta)[[1]] <- paste0(id)

x.train <- matrix(NA, nrow=N, ncol=3+2*L) ## add time-dependent cols too
dimnames(x.train)[[1]] <- paste0(id)
dimnames(x.train)[[2]] <- c('Pl', 'B6', 'Th', rep(c('number', 'size'), L))

for(i in 1:N) {
h <- id[i]

for(j in 1:L) {
k <- which(bladder0$id==h & bladder0$enum==j)

if(length(k)==1) {
times[i, j] <- bladder0$stop[k]
delta[i, j] <- (bladder0$status[k]==1)*1

if(j==1) {
x.train[i, 1] <- as.numeric(bladder0$treatment[k])==1
x.train[i, 2] <- as.numeric(bladder0$treatment[k])==2
x.train[i, 3] <- as.numeric(bladder0$treatment[k])==3
x.train[i, 4] <- bladder0$number[k]
x.train[i, 5] <- bladder0$size[k]

}
else if(delta[i, j]==1) {

if(bladder0$rtumor[k]!='.')
x.train[i, 2*j+2] <- as.numeric(bladder0$rtumor[k])

112 recur.pre.bart

if(bladder0$rsize[k]!='.')
x.train[i, 2*j+3] <- as.numeric(bladder0$rsize[k])

}
}

}
}

pre <- recur.pre.bart(times=times, delta=delta, x.train=x.train)

J <- nrow(pre$tx.train)
for(j in 1:J) {

if(pre$tx.train[j, 3]>0) {
pre$tx.train[j, 7] <- pre$tx.train[j, 7+pre$tx.train[j, 3]*2]
pre$tx.train[j, 8] <- pre$tx.train[j, 8+pre$tx.train[j, 3]*2]

}
}
pre$tx.train <- pre$tx.train[, 1:8]

K <- pre$K
NK <- N*K
for(j in 1:NK) {

if(pre$tx.test[j, 3]>0) {
pre$tx.test[j, 7] <- pre$tx.test[j, 7+pre$tx.test[j, 3]*2]
pre$tx.test[j, 8] <- pre$tx.test[j, 8+pre$tx.test[j, 3]*2]

}
}
pre$tx.test <- pre$tx.test[, 1:8]

in bladder1 both number and size are recorded as integers
from 1 to 8 however they are often missing for recurrences
at baseline there are no missing and 1 is the mode of both
pre$tx.train[which(is.na(pre$tx.train[, 7])), 7] <- 1
pre$tx.train[which(is.na(pre$tx.train[, 8])), 8] <- 1
pre$tx.test[which(is.na(pre$tx.test[, 7])), 7] <- 1
pre$tx.test[which(is.na(pre$tx.test[, 8])), 8] <- 1

it is a good idea to explore more sophisticated methods
such as imputing the missing data with Sequential BART
Xu, Daniels and Winterstein. Sequential BART for imputation of missing
covariates. Biostatistics 2016 doi: 10.1093/biostatistics/kxw009
http://biostatistics.oxfordjournals.org/content/early/2016/03/15/biostatistics.kxw009/suppl/DC1
https://cran.r-project.org/package=sbart
library(sbart)
set.seed(21)
train <- seqBART(xx=pre$tx.train, yy=NULL, datatype=rep(0, 6),
type=0, numskip=20, burn=1000)
coarsen the imputed data same way as observed example data
train$imputed5[which(train$imputed5[, 7]<1), 7] <- 1
train$imputed5[which(train$imputed5[, 7]>8), 7] <- 8
train$imputed5[, 7] <- round(train$imputed5[, 7])
train$imputed5[which(train$imputed5[, 8]<1), 8] <- 1
train$imputed5[which(train$imputed5[, 8]>8), 8] <- 8

recur.pre.bart 113

train$imputed5[, 8] <- round(train$imputed5[, 8])

for Friedman's partial dependence, we need to estimate the whole cohort
at each treatment assignment (and, average over those)
pre$tx.test <- rbind(pre$tx.test, pre$tx.test, pre$tx.test)
pre$tx.test[, 4] <- c(rep(1, NK), rep(0, 2*NK)) ## Pl
pre$tx.test[, 5] <- c(rep(0, NK), rep(1, NK), rep(0, NK))## B6
pre$tx.test[, 6] <- c(rep(0, 2*NK), rep(1, NK)) ## Th

Not run:
set.seed(99)
post <- recur.bart(y.train=pre$y.train, x.train=pre$tx.train, x.test=pre$tx.test)
depending on your performance, you may want to run in parallel if available
post <- mc.recur.bart(y.train=pre$y.train, x.train=pre$tx.train,

x.test=pre$tx.test, mc.cores=8, seed=99)

M <- nrow(post$yhat.test)
RI.B6.Pl <- matrix(0, nrow=M, ncol=K)
RI.Th.Pl <- matrix(0, nrow=M, ncol=K)
RI.Th.B6 <- matrix(0, nrow=M, ncol=K)

for(j in 1:K) {
h <- seq(j, NK, K)
RI.B6.Pl[, j] <- apply(post$prob.test[, h+NK]/

post$prob.test[, h], 1, mean)
RI.Th.Pl[, j] <- apply(post$prob.test[, h+2*NK]/

post$prob.test[, h], 1, mean)
RI.Th.B6[, j] <- apply(post$prob.test[, h+2*NK]/

post$prob.test[, h+NK], 1, mean)
}

RI.B6.Pl.mu <- apply(RI.B6.Pl, 2, mean)
RI.B6.Pl.025 <- apply(RI.B6.Pl, 2, quantile, probs=0.025)
RI.B6.Pl.975 <- apply(RI.B6.Pl, 2, quantile, probs=0.975)

RI.Th.Pl.mu <- apply(RI.Th.Pl, 2, mean)
RI.Th.Pl.025 <- apply(RI.Th.Pl, 2, quantile, probs=0.025)
RI.Th.Pl.975 <- apply(RI.Th.Pl, 2, quantile, probs=0.975)

RI.Th.B6.mu <- apply(RI.Th.B6, 2, mean)
RI.Th.B6.025 <- apply(RI.Th.B6, 2, quantile, probs=0.025)
RI.Th.B6.975 <- apply(RI.Th.B6, 2, quantile, probs=0.975)

plot(post$times, RI.Th.Pl.mu, col='blue',
log='y', main='Bladder cancer ex: Thiotepa vs. Placebo',
type='l', ylim=c(0.1, 10), ylab='RI(t)', xlab='t (months)')

lines(post$times, RI.Th.Pl.025, col='red')
lines(post$times, RI.Th.Pl.975, col='red')
abline(h=1)

plot(post$times, RI.B6.Pl.mu, col='blue',
log='y', main='Bladder cancer ex: Vitamin B6 vs. Placebo',
type='l', ylim=c(0.1, 10), ylab='RI(t)', xlab='t (months)')

114 rs.pbart

lines(post$times, RI.B6.Pl.025, col='red')
lines(post$times, RI.B6.Pl.975, col='red')
abline(h=1)

plot(post$times, RI.Th.B6.mu, col='blue',
log='y', main='Bladder cancer ex: Thiotepa vs. Vitamin B6',
type='l', ylim=c(0.1, 10), ylab='RI(t)', xlab='t (months)')

lines(post$times, RI.Th.B6.025, col='red')
lines(post$times, RI.Th.B6.975, col='red')
abline(h=1)

End(Not run)

rs.pbart BART for dichotomous outcomes with parallel computation and strat-
ified random sampling

Description

BART is a Bayesian “sum-of-trees” model.
For numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).
For a binary response y, P (Y = 1|x) = F (f(x)), where F denotes the standard normal cdf (probit
link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the
uknown function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

Usage

rs.pbart(
x.train, y.train, x.test=matrix(0.0,0,0),
C=floor(length(y.train)/2000),
k=2.0, power=2.0, base=.95,
binaryOffset=0,
ntree=50L, numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=1L, printevery=100,
keeptrainfits=FALSE, transposed=FALSE,

mc.cores = 2L, nice = 19L,
seed = 99L

)

rs.pbart 115

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. pbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Dependent variable for training (in sample) data.
If y is numeric a continous response model is fit (normal errors).
If y is a factor (or just has values 0 and 1) then a binary response model with a
probit link is fit.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
pbart will generate draws of f(x) for each x which is a row of x.test.

C The number of shards to break the data into and analyze separately.

k For binary y, k is the number of prior standard deviations f(x) is away from
+/-3. In both cases, the bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

binaryOffset Used for binary y.
The model is P (Y = 1|x) = F (f(x) + binaryOffset).
The idea is that f is shrunk towards 0, so the offset allows you to shrink towards
a probability other than .5.

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

keepevery Every keepevery draw is kept to be returned to the user.

printevery As the MCMC runs, a message is printed every printevery draws.

keeptrainfits Whether to keep yhat.train or not.

transposed When running pbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.pbart.

seed Setting the seed required for reproducible MCMC.

mc.cores Number of cores to employ in parallel.

nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest)
to 19 (lowest).

116 rs.pbart

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case and just f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

rs.pbart returns an object of type pbart which is essentially a list.

yhat.shard Estimates generated from the individual shards rather than from the whole. This
object is only useful for assessing convergence.
A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.train Estimates generated from the whole if keeptrainfits=TRUE.
A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Estimates generated from the whole if x.test is provided.
Same as yhat.train but now the x’s are the rows of the test data.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

In addition the list has a binaryOffset component giving the value used.

Note that in the binary y, case yhat.train and yhat.test are f(x) + binaryOffset. If you want draws
of the probability P (Y = 1|x) you need to apply the normal cdf (pnorm) to these values.

See Also

mc.pbart

Examples

##simulate from Friedman's five-dimensional test function
##Friedman JH. Multivariate adaptive regression splines
##(with discussion and a rejoinder by the author).
##Annals of Statistics 1991; 19:1-67.

f = function(x) #only the first 5 matter

rs.pbart 117

sin(pi*x[, 1]*x[, 2]) + 2*(x[, 3]-.5)^2+x[, 4]+0.5*x[, 5]-1.5

sigma = 1.0 #y = f(x) + sigma*z where z~N(0, 1)
k = 50 #number of covariates
thin = 25
ndpost = 2500
nskip = 100
C = 10
m = 10
n = 10000

set.seed(12)
x.train=matrix(runif(n*k), n, k)
Ey.train = f(x.train)
y.train=(Ey.train+sigma*rnorm(n)>0)*1
table(y.train)/n

x <- x.train
x4 <- seq(0, 1, length.out=m)

for(i in 1:m) {
x[, 4] <- x4[i]

if(i==1) x.test <- x
else x.test <- rbind(x.test, x)

}

parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') {
##test BART with token run to ensure installation works

post = rs.pbart(x.train, y.train,
C=C, mc.cores=4, keepevery=1,
seed=99, ndpost=1, nskip=1)

}

Not run:
post = rs.pbart(x.train, y.train, x.test=x.test,

C=C, mc.cores=8, keepevery=thin,
seed=99, ndpost=ndpost, nskip=nskip)

str(post)

par(mfrow=c(2, 2))

M <- nrow(post$yhat.test)
pred <- matrix(nrow=M, ncol=10)

for(i in 1:m) {
h <- (i-1)*n+1:n
pred[, i] <- apply(pnorm(post$yhat.test[, h]), 1, mean)

}

pred <- apply(pred, 2, mean)

118 rs.pbart

plot(x4, qnorm(pred), xlab=expression(x[4]),
ylab='partial dependence function', type='l')

i <- floor(seq(1, n, length.out=10))
j <- seq(-0.5, 0.4, length.out=10)
for(h in 1:10) {

auto.corr <- acf(post$yhat.shard[, i[h]], plot=FALSE)
if(h==1) {

max.lag <- max(auto.corr$lag[, 1, 1])
plot(1:max.lag+j[h], auto.corr$acf[1+(1:max.lag), 1, 1],

type='h', xlim=c(0, max.lag+1), ylim=c(-1, 1),
ylab='auto-correlation', xlab='lag')

}
else

lines(1:max.lag+j[h], auto.corr$acf[1+(1:max.lag), 1, 1],
type='h', col=h)

}

for(j in 1:10) {
if(j==1)

plot(pnorm(post$yhat.shard[, i[j]]),
type='l', ylim=c(0, 1),
sub=paste0('N:', n, ', k:', k),
ylab=expression(Phi(f(x))), xlab='m')

else
lines(pnorm(post$yhat.shard[, i[j]]),

type='l', col=j)
}

geweke <- gewekediag(post$yhat.shard)

j <- -10^(log10(n)-1)
plot(geweke$z, pch='.', cex=2, ylab='z', xlab='i',

sub=paste0('N:', n, ', k:', k),
xlim=c(j, n), ylim=c(-5, 5))

lines(1:n, rep(-1.96, n), type='l', col=6)
lines(1:n, rep(+1.96, n), type='l', col=6)
lines(1:n, rep(-2.576, n), type='l', col=5)
lines(1:n, rep(+2.576, n), type='l', col=5)
lines(1:n, rep(-3.291, n), type='l', col=4)
lines(1:n, rep(+3.291, n), type='l', col=4)
lines(1:n, rep(-3.891, n), type='l', col=3)
lines(1:n, rep(+3.891, n), type='l', col=3)
lines(1:n, rep(-4.417, n), type='l', col=2)
lines(1:n, rep(+4.417, n), type='l', col=2)
text(c(1, 1), c(-1.96, 1.96), pos=2, cex=0.6, labels='0.95')
text(c(1, 1), c(-2.576, 2.576), pos=2, cex=0.6, labels='0.99')
text(c(1, 1), c(-3.291, 3.291), pos=2, cex=0.6, labels='0.999')
text(c(1, 1), c(-3.891, 3.891), pos=2, cex=0.6, labels='0.9999')
text(c(1, 1), c(-4.417, 4.417), pos=2, cex=0.6, labels='0.99999')

par(mfrow=c(1, 1))

rtgamma 119

##dev.copy2pdf(file='geweke.rs.pbart.pdf')

End(Not run)

rtgamma Testing truncated Gamma sampling

Description

Truncated Gamma draws are needed for the standard deviation of the random effects Gibbs condi-
tional.

Usage

rtgamma(n, shape, rate, a)

Arguments

n Number of samples.

shape Sampling from a truncated Gamma where E[x] = shape/rate.

rate This parameter is the inverse of the scale which is an alternative representation
for the Gamma distribution.

a The truncation point, i.e., a < x.

Value

Returns n truncated Gamma, i.e., Gam(shape, rate)I(a, infinity).

References

Gentle J. (2013) Random number generation and Monte Carlo methods. Springer, New York, NY.

Examples

set.seed(12)
rtgamma(1, 3, 1, 4)
rtgamma(1, 3, 1, 4)

a=rtgamma(10000, 10, 2, 1)
mean(a)
min(a)

120 rtnorm

rtnorm Testing truncated Normal sampling

Description

Truncated Normal latents are necessary to transform a binary BART into a continuous BART.

Usage

rtnorm(n, mean, sd, tau)

Arguments

n Number of samples.

mean Mean.

sd Standard deviation.

tau Truncation point.

Value

Returns n truncated Normals, i.e., N(mean, sd)I(tau, infinity).

References

Robert C. (1995) Simulation of truncated normal variables. Statistics and computing, 5(2), 121–
125.

See Also

pbart, lbart

Examples

set.seed(12)

rtnorm(1, 0, 1, 3)
rtnorm(1, 0, 1, 3)

spectrum0ar 121

spectrum0ar Estimate spectral density at zero

Description

The spectral density at frequency zero is estimated by fitting an autoregressive model. spectrum0(x)/length(x)
estimates the variance of mean(x).

Usage

spectrum0ar(x)

Arguments

x Matrix of MCMC chains: the rows are the samples and the columns are different
"parameters". For BART, generally, the columns are estimates of f . For pbart,
they are different subjects. For surv.bart, they are different subjects at a grid
of times.

Details

The ar() function to fit an autoregressive model to the time series x. For multivariate time series,
separate models are fitted for each column. The value of the spectral density at zero is then given
by a well-known formula. Adapted from the spectrum0.ar function of the coda package which
passes mcmc objects as arguments rather than matrices.

Value

A list with the following values

spec The predicted value of the spectral density at frequency zero.

order The order of the fitted model

References

Martyn Plummer, Nicky Best, Kate Cowles and Karen Vines (2006). CODA: Convergence Diag-
nosis and Output Analysis for MCMC, R News, vol 6, 7-11.

BW Silverman (1986). Density estimation for statistics and data analysis. Chapman and Hall,
London.

See Also

gewekediag

122 srstepwise

srstepwise Stepwise Variable Selection Procedure for survreg

Description

This stepwise variable selection procedure can be applied to obtain the best candidates for a survreg
fit.

Usage

srstepwise(x, times, delta, sle = 0.15, sls = 0.15, dist='lognormal')

Arguments

x Matrix of variables to consider.

times The time to an event, if any.

delta The event indicator: 1 for event, 0 for no event.

sle The chosen significance level for entering.

sls The chosen significance level for staying.

dist The distribution to be used by survreg.

Details

Unfortunately, no stepwise procedure exists for survreg models. Therefore, we provide this brute
force method.

Value

Returns a list of indices of variables which have entered and stayed.

See Also

lung

Examples

names. <- names(lung)[-(2:3)]
status1 <- ifelse(lung$status==2,1,0)
X <- as.matrix(lung)[, names.]
vars=srstepwise(X, lung$time, status1)
print(names.[vars])

stratrs 123

stratrs Perform stratified random sampling to balance outcomes

Description

This function is used to perform stratified random sampling to balance outcomes among the shards.

Usage

stratrs(y, C=5, P=0)

Arguments

y The binary/categorical/continuous outcome.

C The number of shards to break the data set into.

P For continuous data, we break the range into P segments via the quantiles. Spec-
ifying, P=20 seems to work reasonably well.

Details

To perform BART with large data sets, random sampling is employed to break the data into C shards.
Each shard should be balanced with respect to the outcome. For binary/categorical outcomes, strat-
ified random sampling is employed with this function.

Value

A vector is returned with each element assigned to a shard.

See Also

rs.pbart

Examples

set.seed(12)
x <- rbinom(25000, 1, 0.1)
a <- stratrs(x)
table(a, x)
z <- pmin(rpois(25000, 0.8), 5)
b <- stratrs(z)
table(b, z)

124 surv.bart

surv.bart Survival analysis with BART

Description

Here we have implemented a simple and direct approach to utilize BART in survival analysis that
is very flexible, and is akin to discrete-time survival analysis. Following the capabilities of BART,
we allow for maximum flexibility in modeling the dependence of survival times on covariates. In
particular, we do not impose proportional hazards.

To elaborate, consider data in the usual form: (ti, δi, xi) where ti is the event time, δi is an indicator
distinguishing events (δ = 1) from right-censoring (δ = 0), xi is a vector of covariates, and i =
1, ..., N indexes subjects.

We denote the K distinct event/censoring times by 0 < t(1) < ... < t(K) < ∞ thus taking t(j)
to be the jth order statistic among distinct observation times and, for convenience, t(0) = 0. Now
consider event indicators yij for each subject i at each distinct time t(j) up to and including the
subject’s observation time ti = t(ni) with ni =

∑
j I[t(j) ≤ ti]. This means yij = 0 if j < ni and

yini
= δi.

We then denote by pij the probability of an event at time t(j) conditional on no previous event. We
now write the model for yij as a nonparametric probit regression of yij on the time t(j) and the
covariates xi, and then utilize BART for binary responses. Specifically, yij = δiI[ti = t(j)], j =
1, ..., ni; we have pij = F (µij), µij = µ0 + f(t(j), xi) where F denotes the standard normal cdf
(probit link). As in the binary response case, f is the sum of many tree models.

Usage

surv.bart(x.train=matrix(0,0,0),
y.train=NULL, times=NULL, delta=NULL,
x.test=matrix(0,0,0),
K=NULL, events=NULL, ztimes=NULL, zdelta=NULL,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,

rm.const=TRUE, type='pbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
k=2, power=2, base=.95,
offset=NULL, tau.num=c(NA, 3, 6)[ntype],
ntree=50, numcut=100, ndpost=1000, nskip=250,
keepevery = 10L,

printevery=100L,

surv.bart 125

id=NULL, ## surv.bart only
seed=99, ## mc.surv.bart only
mc.cores=2, ## mc.surv.bart only
nice=19L ## mc.surv.bart only

)

mc.surv.bart(x.train=matrix(0,0,0),
y.train=NULL, times=NULL, delta=NULL,
x.test=matrix(0,0,0),
K=NULL, events=NULL, ztimes=NULL, zdelta=NULL,
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,

rm.const=TRUE, type='pbart',
ntype=as.integer(

factor(type, levels=c('wbart', 'pbart', 'lbart'))),
k=2, power=2, base=.95,
offset=NULL, tau.num=c(NA, 3, 6)[ntype],
ntree=50, numcut=100, ndpost=1000, nskip=250,
keepevery = 10L,

printevery=100L,

id=NULL, ## surv.bart only
seed=99, ## mc.surv.bart only
mc.cores=2, ## mc.surv.bart only
nice=19L ## mc.surv.bart only

)

Arguments

x.train Explanatory variables for training (in sample) data.
Must be a matrix with (as usual) rows corresponding to observations and columns
to variables.
surv.bart will generate draws of f(t, x) for each x which is a row of x.train
(note that the definition of x.train is dependent on whether y.train has been
specified; see below).

y.train Binary response dependent variable for training (in sample) data.
If y.train is NULL, then y.train (x.train and x.test, if specified) are gen-
erated by a call to surv.pre.bart (which require that times and delta be
provided: see below); otherwise, y.train (x.train and x.test, if specified)
are utilized as given assuming that the data construction has already been per-
formed.

times The time of event or right-censoring.

126 surv.bart

If y.train is NULL, then times (and delta) must be provided.

delta The event indicator: 1 is an event while 0 is censored.
If y.train is NULL, then delta (and times) must be provided.

x.test Explanatory variables for test (out of sample) data.
Must be a matrix and have the same structure as x.train.
surv.bart will generate draws of f(t, x) for each x which is a row of x.test.

K If provided, then coarsen times per the quantiles 1/K, 2/K, ...,K/K.

events If provided, then use for the grid of time points.

ztimes If provided, then these columns of x.train (and x.test if any) are the times
for time-dependent covariates. They will be transformed into time-dependent
covariate sojourn times.

zdelta If provided, then these columns of x.train (and x.test if any) are the delta
for time-dependent covariates. They will be transformed into time-dependent
covariate binary events.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.

omega Set omega parameter; zero means random.

a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
inducing more sparsity.

b Sparse parameter for Beta(a, b) prior; typically, b = 1.

rho Sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment Whether data augmentation is to be performed in sparse variable selection.

xinfo You can provide the cutpoints to BART or let BART choose them for you. To
provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

rm.const Whether or not to remove constant variables.

type Whether to employ Albert-Chib, 'pbart', or Holmes-Held, 'lbart'.

ntype The integer equivalent of type where 'wbart' is 1, 'pbart' is 2 and 'lbart'
is 3.

k k is the number of prior standard deviations f(t, x) is away from +/-3. The
bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

offset With binary BART, the centering is P (Y = 1|x) = F (f(x) + offset) where
offset defaults to F^{-1}(mean(y.train)). You can use the offset parame-
ter to over-ride these defaults.

surv.bart 127

tau.num The numerator in the tau definition, i.e., tau=tau.num/(k*sqrt(ntree)).

ntree The number of trees in the sum.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

printevery As the MCMC runs, a message is printed every printevery draws.

keepevery Every keepevery draw is kept to be returned to the user.
A “draw” will consist of values f∗(t, x) at x = rows from the train(optionally)
and test data, where f∗ denotes the current draw of f .

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

id surv.bart only: unique identifier added to returned list.

seed mc.surv.bart only: seed required for reproducible MCMC.

mc.cores mc.surv.bart only: number of cores to employ in parallel.

nice mc.surv.bart only: set the job niceness. The default niceness is 19: niceness
goes from 0 (highest) to 19 (lowest).

Value

surv.bart returns an object of type survbart which is essentially a list. Besides the items listed
below, the list has a binaryOffset component giving the value used, a times component giving
the unique times, K which is the number of unique times, tx.train and tx.test, if any.

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(t, x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.

surv.test The survival function, S(t|x), where x’s are the rows of the test data.
yhat.train.mean

train data fits = mean of yhat.train columns.

yhat.test.mean test data fits = mean of yhat.test columns.

surv.test.mean mean of surv.test columns.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

Note that yhat.train and yhat.test are f(t, x) + binaryOffset. If you want draws of the probability
P (Y = 1|t, x) you need to apply the normal cdf (pnorm) to these values.

128 surv.bart

See Also

surv.pre.bart

Examples

load survival package for the advanced lung cancer example
data(lung)

N <- length(lung$status)

table(lung$ph.karno, lung$pat.karno)

if physician's KPS unavailable, then use the patient's
h <- which(is.na(lung$ph.karno))
lung$ph.karno[h] <- lung$pat.karno[h]

times <- lung$time
delta <- lung$status-1 ##lung$status: 1=censored, 2=dead
##delta: 0=censored, 1=dead

this study reports time in days rather than weeks or months
coarsening from days to weeks or months will reduce the computational burden
##times <- ceiling(times/30)
times <- ceiling(times/7) ## weeks

table(times)
table(delta)

matrix of observed covariates
x.train <- cbind(lung$sex, lung$age, lung$ph.karno)

lung$sex: Male=1 Female=2
lung$age: Age in years
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

dimnames(x.train)[[2]] <- c('M(1):F(2)', 'age(39:82)', 'ph.karno(50:100:10)')

table(x.train[, 1])
summary(x.train[, 2])
table(x.train[, 3])

##test BART with token run to ensure installation works
set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta,

nskip=1, ndpost=1, keepevery=1)

Not run:
run one long MCMC chain in one process
set.seed(99)
post <- surv.bart(x.train=x.train, times=times, delta=delta, x.test=x.test)

surv.pre.bart 129

in the interest of time, consider speeding it up by parallel processing
run "mc.cores" number of shorter MCMC chains in parallel processes
post <- mc.surv.bart(x.train=x.train, times=times, delta=delta,

mc.cores=8, seed=99)

pre <- surv.pre.bart(times=times, delta=delta, x.train=x.train,
x.test=x.train)

K <- pre$K
M <- nrow(post$yhat.train)

pre$tx.test <- rbind(pre$tx.test, pre$tx.test)
pre$tx.test[, 2] <- c(rep(1, N*K), rep(2, N*K))
sex pushed to col 2, since time is always in col 1

pred <- predict(post, newdata=pre$tx.test, mc.cores=8)

pd <- matrix(nrow=M, ncol=2*K)

for(j in 1:K) {
h <- seq(j, N*K, by=K)
pd[, j] <- apply(pred$surv.test[, h], 1, mean)
pd[, j+K] <- apply(pred$surv.test[, h+N*K], 1, mean)

}

pd.mu <- apply(pd, 2, mean)
pd.025 <- apply(pd, 2, quantile, probs=0.025)
pd.975 <- apply(pd, 2, quantile, probs=0.975)

males <- 1:K
females <- males+K

plot(c(0, pre$times), c(1, pd.mu[males]), type='s', col='blue',
ylim=0:1, ylab='S(t, x)', xlab='t (weeks)',
main=paste('Advanced Lung Cancer ex. (BART::lung)',

"Friedman's partial dependence function",
'Male (blue) vs. Female (red)', sep='\n'))

lines(c(0, pre$times), c(1, pd.025[males]), col='blue', type='s', lty=2)
lines(c(0, pre$times), c(1, pd.975[males]), col='blue', type='s', lty=2)
lines(c(0, pre$times), c(1, pd.mu[females]), col='red', type='s')
lines(c(0, pre$times), c(1, pd.025[females]), col='red', type='s', lty=2)
lines(c(0, pre$times), c(1, pd.975[females]), col='red', type='s', lty=2)

End(Not run)

surv.pre.bart Data construction for survival analysis with BART

130 surv.pre.bart

Description

Survival data contained in (t, δ, x) must be translated to data suitable for the BART survival analysis
model; see surv.bart for more details.

Usage

surv.pre.bart(times, delta, x.train=NULL, x.test=NULL,
K=NULL, events=NULL, ztimes=NULL, zdelta=NULL)

Arguments

times The time of event or right-censoring.

delta The event indicator: 1 is an event while 0 is censored.

x.train Explanatory variables for training (in sample) data.
If provided, must be a matrix with (as usual) rows corresponding to observations
and columns to variables.

x.test Explanatory variables for test (out of sample) data.
If provided, must be a matrix and have the same structure as x.train.

K If provided, then coarsen times per the quantiles 1/K, 2/K, ...,K/K.

events If provided, then use for the grid of time points.

ztimes If provided, then these columns of x.train (and x.test if any) are the times
for time-dependent covariates. They will be transformed into time-dependent
covariate sojourn times.

zdelta If provided, then these columns of x.train (and x.test if any) are the delta
for time-dependent covariates. They will be transformed into time-dependent
covariate binary events.

Value

surv.pre.bart returns a list. Besides the items listed below, the list has a times component giving
the unique times and K which is the number of unique times.

y.train A vector of binary responses.

tx.train A matrix with rows consisting of time and the covariates of the training data.

tx.test A matrix with rows consisting of time and the covariates of the test data, if any.

See Also

surv.bart

transplant 131

Examples

load the advanced lung cancer example
data(lung)

group <- -which(is.na(lung[, 7])) ## remove missing row for ph.karno
times <- lung[group, 2] ##lung$time
delta <- lung[group, 3]-1 ##lung$status: 1=censored, 2=dead

##delta: 0=censored, 1=dead

summary(times)
table(delta)

x.train <- as.matrix(lung[group, c(4, 5, 7)]) ## matrix of observed covariates
lung$age: Age in years
lung$sex: Male=1 Female=2
lung$ph.karno: Karnofsky performance score (dead=0:normal=100:by=10)
rated by physician

dimnames(x.train)[[2]] <- c('age(yr)', 'M(1):F(2)', 'ph.karno(0:100:10)')

summary(x.train[, 1])
table(x.train[, 2])
table(x.train[, 3])

x.test <- matrix(nrow=84, ncol=3) ## matrix of covariate scenarios

dimnames(x.test)[[2]] <- dimnames(x.train)[[2]]

i <- 1

for(age in 5*(9:15)) for(sex in 1:2) for(ph.karno in 10*(5:10)) {
x.test[i,] <- c(age, sex, ph.karno)
i <- i+1

}

pre <- surv.pre.bart(times=times, delta=delta, x.train=x.train, x.test=x.test)
str(pre)

transplant Liver transplant waiting list

Description

Subjects on a liver transplant waiting list from 1990-1999, and their disposition: received a trans-
plant, died while waiting, withdrew from the list, or censored.

Usage

data("transplant")

132 wbart

Format

A data frame with 815 observations on the following 6 variables.

age age at addition to the waiting list

sex m or f

abo blood type: A, B, AB or O

year year in which they entered the waiting list

futime time from entry to final disposition

event final disposition: censored, death, ltx or withdraw

Details

This represents the transplant experience in a particular region, over a time period in which liver
transplant became much more widely recognized as a viable treatment modality. The number of
liver transplants rises over the period, but the number of subjects added to the liver transplant waiting
list grew much faster. Important questions addressed by the data are the change in waiting time,
who waits, and whether there was an consequent increase in deaths while on the list.

Blood type is an important consideration. Donor livers from subjects with blood type O can be used
by patients with A, B, AB or O blood types, whereas a donor liver from the other types will only be
transplanted to a matching recipient. Thus type O subjects on the waiting list are at a disadvantage,
since the pool of competitors is larger for type O donor livers.

This data is of historical interest and provides a useful example of competing risks, but it has little
relevance to current practice. Liver allocation policies have evolved and now depend directly on
each individual patient’s risk and need, assessments of which are regularly updated while a patient
is on the waiting list. The overall organ shortage remains acute, however.

References

Kim WR, Therneau TM, Benson JT, Kremers WK, Rosen CB, Gores GJ, Dickson ER. Deaths on the
liver transplant waiting list: An analysis of competing risks. Hepatology 2006 Feb; 43(2):345-51.

wbart BART for continuous outcomes

Description

BART is a Bayesian “sum-of-trees” model.
For a numeric response y, we have y = f(x) + ϵ, where ϵ ∼ N(0, σ2).

f is the sum of many tree models. The goal is to have very flexible inference for the uknown
function f .

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it
contributes a small amount to the overall fit.

wbart 133

Usage

wbart(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE,
sigest=NA, sigdf=3, sigquant=.90,
k=2.0, power=2.0, base=.95,
sigmaf=NA, lambda=NA,
fmean=mean(y.train), w=rep(1,length(y.train)),
ntree=200L, numcut=100L,
ndpost=1000L, nskip=100L, keepevery=1L,
nkeeptrain=ndpost, nkeeptest=ndpost,
nkeeptestmean=ndpost, nkeeptreedraws=ndpost,
printevery=100L, transposed=FALSE

)

Arguments

x.train Explanatory variables for training (in sample) data.
May be a matrix or a data frame, with (as usual) rows corresponding to obser-
vations and columns to variables.
If a variable is a factor in a data frame, it is replaced with dummies. Note that
q dummies are created if q>2 and one dummy is created if q=2, where q is the
number of levels of the factor. wbart will generate draws of f(x) for each x
which is a row of x.train.

y.train Continuous dependent variable for training (in sample) data.

x.test Explanatory variables for test (out of sample) data.
Should have same structure as x.train.
wbart will generate draws of f(x) for each x which is a row of x.test.

sparse Whether to perform variable selection based on a sparse Dirichlet prior rather
than simply uniform; see Linero 2016.

theta Set theta parameter; zero means random.
omega Set omega parameter; zero means random.
a Sparse parameter for Beta(a, b) prior: 0.5 <= a <= 1 where lower values

inducing more sparsity.
b Sparse parameter for Beta(a, b) prior; typically, b = 1.
rho Sparse parameter: typically rho = p where p is the number of covariates under

consideration.
augment Whether data augmentation is to be performed in sparse variable selection.
xinfo You can provide the cutpoints to BART or let BART choose them for you. To

provide them, use the xinfo argument to specify a list (matrix) where the items
(rows) are the covariates and the contents of the items (columns) are the cut-
points.

134 wbart

usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; oth-
erwise, if TRUE, uniform quantiles are used for the cutpoints.

cont Whether or not to assume all variables are continuous.

rm.const Whether or not to remove constant variables.

sigest The prior for the error variance (σ2) is inverted chi-squared (the standard con-
ditionally conjugate prior). The prior is specified by choosing the degrees of
freedom, a rough estimate of the corresponding standard deviation and a quan-
tile to put this rough estimate at. If sigest=NA then the rough estimate will be
the usual least squares estimator. Otherwise the supplied value will be used.

sigdf Degrees of freedom for error variance prior.

sigquant The quantile of the prior that the rough estimate (see sigest) is placed at. The
closer the quantile is to 1, the more aggresive the fit will be as you are putting
more prior weight on error standard deviations (σ) less than the rough estimate.

k For numeric y, k is the number of prior standard deviations E(Y |x) = f(x) is
away from +/-.5. k is the number of prior standard deviations f(x) is away from
+/-3. The bigger k is, the more conservative the fitting will be.

power Power parameter for tree prior.

base Base parameter for tree prior.

sigmaf The SD of f.

lambda The scale of the prior for the variance.

fmean BART operates on y.train centered by fmean.

w Vector of weights which multiply the standard deviation.

ntree The number of trees in the sum.

numcut The number of possible values of c (see usequants). If a single number if given,
this is used for all variables. Otherwise a vector with length equal to ncol(x.train)
is required, where the ith element gives the number of c used for the ith variable
in x.train. If usequants is false, numcut equally spaced cutoffs are used covering
the range of values in the corresponding column of x.train. If usequants is true,
then min(numcut, the number of unique values in the corresponding columns of
x.train - 1) c values are used.

ndpost The number of posterior draws returned.

nskip Number of MCMC iterations to be treated as burn in.

nkeeptrain Number of MCMC iterations to be returned for train data.

nkeeptest Number of MCMC iterations to be returned for test data.

nkeeptestmean Number of MCMC iterations to be returned for test mean.

nkeeptreedraws Number of MCMC iterations to be returned for tree draws.

printevery As the MCMC runs, a message is printed every printevery draws.

keepevery Every keepevery draw is kept to be returned to the user.

transposed When running wbart in parallel, it is more memory-efficient to transpose x.train
and x.test, if any, prior to calling mc.wbart.

wbart 135

Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from the
joint posterior (f, σ)|(x, y) in the numeric y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f∗(x) (and σ∗ in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train) or the test data (x.test).

Value

wbart returns an object of type wbart which is essentially a list. In the numeric y case, the list has
components:

yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds
to a draw f∗ from the posterior of f and each column corresponds to a row of
x.train. The (i, j) value is f∗(x) for the ith kept draw of f and the jth row of
x.train.
Burn-in is dropped.

yhat.test Same as yhat.train but now the x’s are the rows of the test data.
yhat.train.mean

train data fits = mean of yhat.train columns.

yhat.test.mean test data fits = mean of yhat.test columns.

sigma post burn in draws of sigma, length = ndpost.

first.sigma burn-in draws of sigma.

varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw.
For each variable (corresponding to the columns), the total count of the number
of times that variable is used in a tree decision rule (over all trees) is given.

sigest The rough error standard deviation (σ) used in the prior.

See Also

pbart

Examples

##simulate data (example from Friedman MARS paper)
f = function(x){
10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x[,5]
}
sigma = 1.0 #y = f(x) + sigma*z , z~N(0,1)
n = 100 #number of observations
set.seed(99)
x=matrix(runif(n*10),n,10) #10 variables, only first 5 matter
Ey = f(x)
y=Ey+sigma*rnorm(n)
lmFit = lm(y~.,data.frame(x,y)) #compare lm fit to BART later

136 xdm20.test

##test BART with token run to ensure installation works
set.seed(99)
bartFit = wbart(x,y,nskip=5,ndpost=5)

Not run:
##run BART
set.seed(99)
bartFit = wbart(x,y)

##compare BART fit to linear matter and truth = Ey
fitmat = cbind(y,Ey,lmFit$fitted,bartFit$yhat.train.mean)
colnames(fitmat) = c('y','Ey','lm','bart')
print(cor(fitmat))

End(Not run)

xdm20.test A data set used in example of recur.bart.

Description

A matrix containing a 20% random sample of the testing set for a real data example of recurrent
events survival analysis. There are 100 patients in the cohort: 50 in the training set and 50 in the
testing set. See the Reference below (and the References therein) for more detailed information; a
brief synopsis follows.

xdm20.test contains both the training set and the testing set. There are 798 unique time points
so there are 50*798=39900 rows of the training set followed by 50*798=39900 rows of the testing
set. For patient’s who died prior to the end of follow-up, their external factors are last value carried
forward. Therefore, we can use xdm20.test to estimate the cumulative hazard for all patients for
all time points.

The full data set, xdm.test, can be obtained online at https://www.mcw.edu/-/media/MCW/
Departments/Biostatistics/tr064zip.zip There are 488 patients in the full cohort: 235 in
the training set and 253 in the testing set.

xdm.test contains both the training set and the testing set. There are 798 unique time points so
there are 235*798=187530 rows of the training set followed by 253*798=201894 rows of the testing
set. For patient’s who died prior to the end of follow-up, their external factors are last value carried
forward.

Usage

data(xdm20.test)

References

Sparapani, Rein, Tarima, Jackson, Meurer (2020). Non-parametric recurrent events analysis with
BART and an application to the hospital admissions of patients with diabetes. Biostatistics doi:10.1093/biostatistics/kxy032

https://www.mcw.edu/-/media/MCW/Departments/Biostatistics/tr064zip.zip
https://www.mcw.edu/-/media/MCW/Departments/Biostatistics/tr064zip.zip

xdm20.train 137

See Also

xdm20.train

Examples

data(xdm20.test)
head(xdm20.test[, 1:10])

xdm20.train A real data example for recur.bart.

Description

A matrix containing a 20% random sample of the training set for a real data example of recurrent
events survival analysis. There are 100 patients in the cohort: 50 in the training set and 50 in the
testing set. The full data set, xdm.train, can be obtained online at https://www.mcw.edu/-/
media/MCW/Departments/Biostatistics/tr064zip.zip There are 488 patients in the full co-
hort: 235 in the training set and 253 in the testing set. See the Reference below (and the References
therein) for more detailed information; a brief synopsis follows.

We explored the hospital admissions for a cohort of patients with diabetes cared for by the Froedtert
and Medical College of Wisconsin health network. These patients were identified via their Elec-
tronic Health Records (EHR) which include vital signs, diagnoses, procedures, laboratory values,
pharmacy orders and billing data. This human subjects research and de-identified data release was
approved by the Medical College of Wisconsin and Froedtert Hospital joint Institutional Review
Board. To maintain patient privacy, roughly one fourth of patients were randomly sampled for
inclusion as well as other de-identification procedures.

We identified likely incident diabetes mellitus type 2 patients by tabulating their first diagnosis
code of primary diabetes (ICD-9 codes 250.x0 and 250.x2) in 2006 or 2007, i.e., no such codes
were found for these patients prior to 2006 for as far back as each patient’s records go which is
variable. We restricted the population to adults aged 21 to 90 by 01/01/2008. Among the patients
treated in this health system, the vast majority were racially self-identified as either white or black
so our inclusion criteria is restricted to these groups. Since our interest is in patients with pri-
mary diabetes, we excluded those patients who were diagnosed with either secondary diabetes or
gestational diabetes.

For this cohort, we identified every hospital admission between 01/01/2008 and 12/31/2012. For
convenience, follow-up begins on 01/01/2008, rather than from each patient’s actual incident diag-
nosis date which varied over the preceding 2 years. Following all patients concurrently allows us
to temporally adapt, via our model, for seasonal/epidemic hospital admissions such as the H1N1
influenza outbreak in the US from April to June 2009.

We investigated the following risk factors: gender, race, age, insurance status (commercial, gov-
ernment or other), diabetes therapy (insulin, metformin and/or sulfonylurea), health care charges,
relative value units (RVU), vital signs, laboratory values, comorbidity/complication diagnoses and
procedures/surgeries (we will refer to vital signs and laboratory values collectively as signs; and co-
morbidity/complication diagnoses and procedures/surgeries collectively as conditions). In total, we
considered 85 covariates of which 82 are external factors as described above and three are temporal

https://www.mcw.edu/-/media/MCW/Departments/Biostatistics/tr064zip.zip
https://www.mcw.edu/-/media/MCW/Departments/Biostatistics/tr064zip.zip

138 xdm20.train

factors: time, t, the counting process, Ni(t−), and the sojourn time, vi(t). Among these potential
predictors only gender, race and age are time-independent. The rest are defined as last value carried
forward.

For insulin, metformin and sulfonylurea, we only had access to prescription orders (rather than
prescription fills) and self-reported current status of prescription therapy during clinic office visits.
Since, generally, orders are only required after every three fills, and each fill can be for up to 90
days, we define insulin, metformin and sulfonylurea as binary indicators which are one if there
exists an order or current status indication within the prior 270 days; otherwise zero.

Health care charges and relative value units (RVU) are measures related to the services and proce-
dures delivered. However, they are so closely related that recent charges/RVUs are of no practical
value in this analysis. For example, just prior to a patient’s hospital admission on a non-emergent
basis, they often have a series of diagnostic tests and imaging. Similarly, for an emergent admission,
the patient is often seen in the emergency department just prior to admission where similar services
are conducted. We do not consider these charges/RVUs predictive of an admission because we are
interested in identifying preventive opportunities. Therefore, we investigate charges/RVUs that are
the sum total of the following moving windows of days prior to any given date: 31 to 90, 91 to 180,
181 to 300.

For many patients, some signs were not available for a given date so they were imputed; similarly,
if a sign was not observed within the last 180 days, then it was imputed (except for height which
never expires, weight extended to 365 days and body mass index which is a deterministic function
of the two). We utilized the Sequential BART missing imputation method. However, instead of
creating several imputed data sets, we imputed a new sign at each date when it was missing, i.e.,
in order to properly address uncertainty within one data set, a new value was imputed for each date
that it was missing and never carried forward.

Conditions are binary indicators which are zero until the date of the first coding and then they are
one from then on. Based on clinical rationale, we identified 26 conditions (23 comorbidities and 3
procedures/surgeries) which are potential risk factors for a hospital admission many of which are
possible complications of diabetes; besides clinical merit, these conditions were chosen since they
are present in more than just a few subjects so that they may be informative. Similarly, we employed
15 general conditions which are the Charlson diagnoses and 18 general conditions from the RxRisk
adult diagnoses which are defined by prescription orders. Seven conditions are a composite of
diagnosis codes and prescription orders.

Usage

data(xdm20.train)

References

Sparapani, Rein, Tarima, Jackson, Meurer (2020). Non-parametric recurrent events analysis with
BART and an application to the hospital admissions of patients with diabetes. Biostatistics doi:10.1093/biostatistics/kxy032

See Also

xdm20.test

ydm20.train 139

Examples

data(xdm20.train)
head(xdm20.train[, 1:10])

ydm20.train A data set used in example of recur.bart.

Description

Two vectors containing the training and testing set outcomes for a 20% random sample for a real
data example of recurrent events survival analysis. There are 100 patients in the cohort: 50 in the
training set and 50 in the testing set. See the Reference below (and the References therein) for more
detailed information; a brief synopsis follows.

ydm20.train contains the training set only. ydm20.test is provided for completeness; it contains
both the training set and the testing set. There are 798 unique time points so there are 50*798=39900
rows of the training set followed by 50*798=39900 rows of the testing set.

The full data sets, ydm.train and ydm.test, can be obtained online at https://www.mcw.edu/-/
media/MCW/Departments/Biostatistics/tr064zip.zip There are 488 patients in the full co-
hort: 235 in the training set and 253 in the testing set.

ydm.train contains the training set only. ydm.test contains both the training set and the testing
set. There are 798 unique time points so there are 235*798=187530 rows of the training set followed
by 253*798=201894 rows of the testing set.

Usage

data(ydm20.train)
data(ydm20.test)

References

Sparapani, Rein, Tarima, Jackson, Meurer (2020). Non-parametric recurrent events analysis with
BART and an application to the hospital admissions of patients with diabetes. Biostatistics doi:10.1093/biostatistics/kxy032

See Also

xdm20.train

Examples

data(ydm20.train)
data(ydm20.test)
table(ydm20.train)
table(ydm20.test)

https://www.mcw.edu/-/media/MCW/Departments/Biostatistics/tr064zip.zip
https://www.mcw.edu/-/media/MCW/Departments/Biostatistics/tr064zip.zip

Index

∗ OpenMP
mc.cores.openmp, 54

∗ convergence diagnostics
gewekediag, 36
spectrum0ar, 121
stratrs, 123

∗ data construction
crisk.pre.bart, 23
recur.pre.bart, 110
surv.pre.bart, 129

∗ datasets
ACTG175, 8
alligator, 10
arq, 12
bladder, 14
leukemia, 44
lung, 45
transplant, 131
xdm20.test, 136
xdm20.train, 137
ydm20.train, 139

∗ multi-threading
mc.cores.openmp, 54

∗ nonlinear
abart, 4
gbart, 31
lbart, 38
mbart, 46
mbart2, 50
mc.crisk.pwbart, 55
mc.crisk2.pwbart, 58
mc.lbart, 61
mc.pbart, 65
mc.surv.pwbart, 69
mc.wbart, 73
pbart, 78
predict.crisk2bart, 83
predict.criskbart, 86
predict.lbart, 88

predict.mbart, 91
predict.pbart, 94
predict.recurbart, 96
predict.survbart, 99
predict.wbart, 101
pwbart, 103
rs.pbart, 114
wbart, 132

∗ nonparametric recurrent events model
recur.bart, 105

∗ nonparametric survival model
crisk.bart, 17
crisk2.bart, 25
surv.bart, 124

∗ nonparametric
abart, 4
gbart, 31
lbart, 38
mbart, 46
mbart2, 50
mc.crisk.pwbart, 55
mc.crisk2.pwbart, 58
mc.lbart, 61
mc.pbart, 65
mc.surv.pwbart, 69
mc.wbart, 73
pbart, 78
predict.crisk2bart, 83
predict.criskbart, 86
predict.lbart, 88
predict.mbart, 91
predict.pbart, 94
predict.recurbart, 96
predict.survbart, 99
predict.wbart, 101
pwbart, 103
rs.pbart, 114
wbart, 132

∗ nonproportional hazards variable

140

INDEX 141

selection
mc.wbart.gse, 76

∗ nonproportional hazards
crisk.bart, 17
crisk2.bart, 25
recur.bart, 105
surv.bart, 124

∗ package
BART-package, 3

∗ parallel
mc.cores.openmp, 54

∗ regression
abart, 4
gbart, 31
lbart, 38
mbart, 46
mbart2, 50
mc.crisk.pwbart, 55
mc.crisk2.pwbart, 58
mc.lbart, 61
mc.pbart, 65
mc.surv.pwbart, 69
mc.wbart, 73
pbart, 78
predict.crisk2bart, 83
predict.criskbart, 86
predict.lbart, 88
predict.mbart, 91
predict.pbart, 94
predict.recurbart, 96
predict.survbart, 99
predict.wbart, 101
pwbart, 103
rs.pbart, 114
wbart, 132

∗ survival
bladder, 14

∗ tree
abart, 4
gbart, 31
lbart, 38
mbart, 46
mbart2, 50
mc.crisk.pwbart, 55
mc.crisk2.pwbart, 58
mc.lbart, 61
mc.pbart, 65
mc.surv.pwbart, 69

mc.wbart, 73
pbart, 78
predict.crisk2bart, 83
predict.criskbart, 86
predict.lbart, 88
predict.mbart, 91
predict.pbart, 94
predict.recurbart, 96
predict.survbart, 99
predict.wbart, 101
pwbart, 103
rs.pbart, 114
wbart, 132

∗ utilities
bartModelMatrix, 13
class.ind, 16

abart, 4
ACTG175, 8
alligator, 10, 49, 53
arq, 12

BART (BART-package), 3
BART-package, 3
bartModelMatrix, 13
bladder, 14
bladder1 (bladder), 14
bladder2 (bladder), 14

cancer (lung), 45
class.ind, 14, 16
crisk.bart, 17, 24, 29, 56, 87
crisk.pre.bart, 21, 23
crisk2.bart, 21, 25, 59, 84

draw_lambda_i, 31

gbart, 31, 49, 53
gewekediag, 36, 121

lbart, 31, 38, 64, 120
leukemia, 44
lung, 45, 122

mbart, 46, 92
mbart2, 50, 92
mc.abart (abart), 4
mc.cores.openmp, 54, 84, 87, 89, 95, 97, 100,

102
mc.crisk.bart, 56, 87

142 INDEX

mc.crisk.bart (crisk.bart), 17
mc.crisk.pwbart, 21, 55, 87
mc.crisk2.bart, 59, 84
mc.crisk2.bart (crisk2.bart), 25
mc.crisk2.pwbart, 29, 58, 84
mc.gbart (gbart), 31
mc.lbart, 61
mc.mbart (mbart), 46
mc.mbart2 (mbart2), 50
mc.pbart, 65, 116
mc.pwbart, 102
mc.pwbart (pwbart), 103
mc.recur.bart, 97
mc.recur.bart (recur.bart), 105
mc.recur.pwbart, 97, 108
mc.recur.pwbart (mc.surv.pwbart), 69
mc.surv.bart, 89, 95, 100
mc.surv.bart (surv.bart), 124
mc.surv.pwbart, 69, 89, 95, 100
mc.wbart, 73, 78, 102
mc.wbart.gse, 76

pbart, 35, 68, 78, 120, 135
predict.crisk2bart, 29, 83
predict.criskbart, 21, 86
predict.lbart, 88
predict.mbart, 91
predict.mbart2 (predict.mbart), 91
predict.pbart, 94
predict.recurbart, 96, 108
predict.survbart, 99
predict.wbart, 101, 104
pwbart, 54, 56, 59, 71, 102, 103

recur.bart, 97, 105, 111
recur.pre.bart, 108, 110
recur.pwbart, 97, 108
recur.pwbart (mc.surv.pwbart), 69
rs.pbart, 114, 123
rtgamma, 119
rtnorm, 31, 120

spectrum0ar, 37, 121
srstepwise, 122
stratrs, 123
surv.bart, 89, 95, 100, 124, 130
surv.pre.bart, 29, 128, 129
surv.pwbart, 89, 95, 100
surv.pwbart (mc.surv.pwbart), 69

transplant, 131

wbart, 7, 41, 76, 81, 102, 104, 132

xdm20.test, 136
xdm20.train, 137

ydm20.test (ydm20.train), 139
ydm20.train, 139

	BART-package
	abart
	ACTG175
	alligator
	arq
	bartModelMatrix
	bladder
	class.ind
	crisk.bart
	crisk.pre.bart
	crisk2.bart
	draw_lambda_i
	gbart
	gewekediag
	lbart
	leukemia
	lung
	mbart
	mbart2
	mc.cores.openmp
	mc.crisk.pwbart
	mc.crisk2.pwbart
	mc.lbart
	mc.pbart
	mc.surv.pwbart
	mc.wbart
	mc.wbart.gse
	pbart
	predict.crisk2bart
	predict.criskbart
	predict.lbart
	predict.mbart
	predict.pbart
	predict.recurbart
	predict.survbart
	predict.wbart
	pwbart
	recur.bart
	recur.pre.bart
	rs.pbart
	rtgamma
	rtnorm
	spectrum0ar
	srstepwise
	stratrs
	surv.bart
	surv.pre.bart
	transplant
	wbart
	xdm20.test
	xdm20.train
	ydm20.train
	Index

